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1 Introduction
My goal in this talk is to introduce some topics in Alain Connes’ noncommutative
geometry, organized around the notion of groupoid and involving for the most part
elaborations of the index theory of Atiyah and Singer.

2 Groupoids and Noncommutative Geometry
Groupoids figure prominently in Alain Connes’ noncommutative geometry, where
noncommutative algebras serve as the coordinate rings for a variety of highly
singular spaces — for example the space of leaves of a foliation or the space of
orbits of a group action on a manifold.

2.1 Definition. A groupoid is a small category (the collections of all morphisms
and all objects are sets) in which every morphism is invertible.

It is often convenient to present a groupoid by specifying its set of objects, B,
and the set G of all morphisms, together with the following structure maps:

(i) The source and range maps s, r : G → B, which map each morphism to its
source and range.

(ii) The composition map ◦ : G(2) → G, where G(2) is the set of composable
pairs of morphisms in G:

G(2) = {(γ1, γ2) ∈ G×G : r(γ2) = s(γ1)}.
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(iii) The unit map e : B→ G which maps each object to the corresponding iden-
tity morphism

(iv) The inverse map i : G→ G which sends each object to its inverse.

2.2 Example. Suppose that group A acts on a set B. Build a groupoid A n B as
follows. The object space is B and the morphism space is the set of triples

An B = { (b2, a, b1) ∈ B×A× B : a · b1 = b2 }.

The source and range maps are

s(b2, a, b1) = b1 and r(b2, a, b1) = b2

while the composition is

(b3, a2, b2) ◦ (b2, a1, b1) = (b3, a2a1, b1).

The identity at b is (b, 1, b) and the inverse of (b2, a, b1) is (b1, a−1, b2). This is
the crossed product groupoid associated to the action of A on B.

Noncommutative geometry adopts what might be called the quotient space
picture of groupoid theory. We focus on the object space B of a groupoid, and
we think of the morphisms in the groupoid as defining an equivalence relation on
B: two objects are equivalent if there is a morphism between them. Two objects
might be equivalent for more than one reason, and the groupoid keeps track of
this.

It is customary in mathematics to form the quotient space from an equivalence
relation, but even in rather simple examples the ordinary quotient space of gen-
eral topology can be highly singular, and for example not at all a manifold. The
groupoid serves as a smooth stand-in for the quotient space in these situations,
and using it one can study for example the cohomology of the quotient space, and
even its geometry.

2.3 Example. The crossed-product groupoid construction gives a perfect illustra-
tion of this. Let us consider, for instance, the action of the group Z on the unit
circle T in which the generator of Z acts by rotation of the circle through an angle
which is an irrational multiple of π. The quotient space T/Z is a disaster as a topo-
logical space — there are no non-trivial open sets at all — and the groupoid ZnT
serves as a stand-in. This is in fact a fundamental example in noncommutative
geometry.
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Of particular interest among groupoids, and especially easy to handle, are the
smooth groupoids:

2.4 Definition. A smooth groupoid is a groupoid for which the set G of all mor-
phisms and the set B of all objects are smooth manifolds; for which the source
and range maps s, r : G→ B are submersions; and for which the other remaining
structure maps (composition, units, inverses) are smooth.

2.5 Remark. It is a consequence of the fact that r and s are submersions that the
set G(2) of composable pairs of morphisms, is a smooth submanifold of G×G.

Before continuing, we need to sketch out what might be called the families
picture of groupoids, which is a little different in perspective from the quotient
space picture. In the families picture we view a groupoid as, first and foremost,
the family of smooth manifolds

Gx = {γ ∈ G : s(γ) = x }

parametrized by x ∈ B. If η : x → y is a morphism in G, then there is an
associated diffeomorphism

Rη : Gy → Gx

defined by Rη(γ) = γ ◦ η. In this way we view the groupoid G as a smooth
family of smooth manifolds, on which acts the collection of all the intertwining
diffeomorphisms Rη.

Of interest in many contexts are familes of smoothing kernels kx(γ2, γ1) de-
fined on the fibers of G, which are equivariant with respect to the action of the
diffeomorphisms Rη: thus ky(γ2, γ1) = kx(γ2 ◦ η, γ1 ◦ η) when η : x→ y. Such
families correspond to smooth functions on G. Indeed from a smooth function
f : G→ C we obtain an equivariant family of smoothing kernels kx on the spaces
Gx by the formula kx(γ2, γ1) = f(γ2γ−1

1 ).
In other to consider kernel functions as operators (for instance on the spaces

L2(Gx)) we need to speicify measures on the fibers Gx.

2.6 Definition. A Haar system on a smooth groupoid G is a family of smooth
measures µx on the fibers Gx of G such that

(i) If f is a smooth, compactly supported function on G then
∫
Gx
f dµx is a

smooth function on B; and

(ii) If γ : x→ y is a morphism inG, then the right-translation operator Rγ : Gy →
Gx is measure-preserving.
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Haar systems may be proved to exist in much the same way that Haar measures
are proved to exist on Lie groups. Any two Haar systems {µx} and {µ ′x} differ by a
smooth, positive function f on the object space B: thus µx = f(x)µ ′x, for all x. For
our purposes this means that there is an essentially unique choice of Haar system,
as there is in the Lie group case. We shall assume from now on that attached to
each smooth groupoid there is a fixed Haar system.

2.7 Definition. Let G be a smooth groupoid. The convolution algebra of G is the
spae C∞

c (G) of smooth, compactly supported functions on G, equipped with the
following associative convolution product:

f1 ? f2(γ) =

∫
Gs(γ)

f1(γ ◦ η−1)f2(η)dµs(γ)(η).

Thus C∞
c (G) is made into an associative algebra, consisting of equivariant

families of smoothing operators on the fibers of G.
The operation

f∗(γ) = f(γ−1).

makes C∞
c (G) into a ∗-algebra. For many applications in geometry and topology

it is useful to complete this ∗-algebra so as to obtain a C∗-algebra:

2.8 Definition. Let G be a smooth groupoid with right Haar system. Define rep-
resentations

λx : C
∞
c (G)→ B(L2(Gx))

by the formulas

λx(f)h(γ) = f ? h(γ) =

∫
Gs(γ)

f(γ ◦ η−1)h(η)dµs(γ)(η).

The reduced groupoid C∗-algebra of G, denoted C∗λ(G), is the completion of
C∞
c (G) in the norm

‖f‖ = sup
x

‖λx(f)‖B(L2(Gx)).

Returning to the quotient space picture, the groupoid C∗-algebra is Alain
Connes’ substitute for the algebra of continuous, complex-valued functions on
the quotient space associated to G.
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2.9 Example. The C∗-algebra of the crossed product groupoid associated to an
irrational rotation action of Z on the circle is the famous irrational rotation alge-
bra, or noncommutative torus Aα. It is the C∗-algebra generated by two unitary
elements U and V subject to the relation UV = exp(iα)VU, where α is the angle
of rotation.

Let us consider in more detail the irrational rotation action of Z on the unit
circle, and the associated crossed product groupoid G = Z n T. The C∗-algebra
Aα = C∗λ(G) is an algebra consisting of continuous operator-valued functions on
the circle which are invariant under the irrational rotation action of Z on the cir-
cle. This might at first seem surprising since of course every continuous, scalar
function on the circle which is invariant under an irrational rotation must be con-
stant. However the fact that our functions are operator valued allows for some
interesting possibilities, as follows. First, the spaces Gx all identify with Z. The
functions which constitute elements of C∗λ(G) are continuous functions from the
unit circle into B(`2(Z)) which are equivariant under the action of Z which com-
bines irrational rotation on the circle with translation in `2(Z). Two examples are
the functions U and V given by the formulas

Uzφ(n) = φ(n+ 1) and Vzφ(n) = exp(iαn)zφ(n),

where z ∈ T, n ∈ Z, and φ ∈ `2(Z). They satisfy the relationUV = exp(iα)VU,
and they generate the C∗-algebra C∗λ(G).

2.10 Remark. The families picture is especially appropriate when we consider the
von Neumann algebra of a groupoid G. This is a certain von Neumann algebra
completion of C∗λ(G), and it consists of all bounded, measurable and equivariant
families of bounded operators on the field of Hilbert spaces {L2(Gx)}. These von
Neumann algebras figured prominently in Connes’ early work on noncommutative
geometry.

3 K-Theory and Index Theory
The main cohomological invariant of Connes’ non-commutative spaces, or indeed
of C∗-algebras in general, is K-theory. The K-theory groups of a C∗-algebra can
be defined1 as the homotopy groups of the stable general linear group GL∞(A):

Kj(A) = πj−1(GL∞(A)).

1Most of the C∗-algebras of interest to us fail to be unital, and for these the definition of
GL∞(A) has to be appropriately tailored.
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The famous Bott periodicity theorem generalizes to C∗-algebra K-theory and as-
serts that Kj(A) ∼= Kj+2(A), for all j, using which we can extend the definition of
Kj(A) to all integer indices j. If A is the commutative C∗-algebra of continuous,
complex-valued functions on a compact space X then K∗(A) is isomorphic to the
Atiyah-Hirzebruch topological K-theory K∗(X).

Elements ofC∗-algebraK-theory groups are obtained from constructions which
produce invertible matrices over C∗-algebras, loops of invertible matrices, and so
on, and an important source of these constructions is index theory. Suppose for
example that D is an elliptic linear partial differential operator on a closed mani-
foldM (we will review the theory of these in the next section). IfD is self-adjoint
then we may apply to it Hilbert space spectral theory and form functions, f(D),
of D. It follows from regularity theory for elliptic operators that if f is a rapidly
decreasing function then f(D) is in fact a smoothing operator onM, and in partic-
ular a compact operator on L2(M).2 In fact if f is any continuous function which
vanishes at infinity then f(D) is a compact operator. Using this fact it is possible
to construct an element Ind(D) ∈ K∗(K(L2(M)), where K(L2(M)) denotes the
C∗-algebra of compact operators on L2(M). Which particular Kj-group the class
Ind(D) belongs to depends on the symmetry of D. If we assume, for example,
that D has the “supersymmetric” form

D =

(
0 D−

D+ 0

)
which is common in geometry then [D] belongs to the K0-group. Now, the group
K0(K) identifies with Z, and under this identification Ind(D) corresponds to none
other than the Fredholm index of D+.

Suppose now that G is a smooth groupoid with compact object space, and
assume that {Dx} is a smooth, equivariant family of self-adjoint differential oper-
ators on the fibers Gx of G. If we apply to the operators Dx a rapidly decreasing
function f then each f(Dx) is a smoothing operator, and so is represented by a
kernel function kx(γ2, γ1). These kernels vary smoothly with x, and are invariant
under right translations, in the sense that if η : x→ y then

ky(γ2, γ1) = kx(γ2 ◦ η, γ1 ◦ η).

Accordingly they give rise to a single smooth function fD on G via the formula
fD(γ) = kx(γ, e), where x = s(γ), that ew employed earlier.

2Here and elsewhere, we are going to neglect in our notation the fact that D may act not on
scalar functions but on sections of some vector bundle.

6



3.1 Theorem. LetG be a smooth groupoid with compact object space B. LetD =
{Dx} be a smooth, equivariant family of elliptic, first order differential operators
on the fibers Gx of G. If f is a continuous function on R which vanishes at infinity
then the above construction defines an element fD ∈ C∗λ(G).

3.2 Remarks. The extra hypothesis, that the operators Dx are of first order, is
used to satisfy a support condition — recall that C∗λ(G) is a completion of the
compactly supported smooth functions on M. For a general continuous function
f, the kernel kx associated to the operator f(Dx) may not be a smooth function,
but rather just a distribution. So the statement of the theorem has to be interpreted
with some care. What is true is that if f has compactly supported Fourier trans-
form then the function fD on G, assembled from the kernels kx(γ2, γ1), is smooth
and compactly supported. The interpretation of the statement fD ∈ C∗λ(G), for a
general continuous function f which vanishes at infinity, is made via an approxi-
mation argument.

3.3 Example. Associate to a smooth, closed manifoldM the pair groupoid M×
M with object spaceM, source and range maps

s(m2,m1) = m1 and r(m2,m1) = m2,

and composition
(m3,m2) ◦ (m2,m1) = (m3,m1).

The identity morphism at m ∈ M is (m,m), and the inverse of (m2,m1) is
(m1,m2). Looking at the pair groupoid G = M ×M from the families point
of view, we find that all the fibers Gm identify with M, in such as way that the
intertwining maps Rη : Gy → Gx are all the identity map on M. So a single oper-
ator D on M gives rise to a (effectively constant) equivariant family of operators
on the fibers of the pair groupoid. Applying the theorem we obtain the statement
f(D) ∈ K(L2(M)) that we noted earlier.

A richer collection of examples is provided by the theory of foliations. In
order to avoid some complications we shall consider here only foliated manifolds
(M,F) with trivial holonomy. It is not important, in this survey, to know the
meaning of this hypothesis. But for example if the leaves of the foliation are
simply connected then the foliation automatically has trivial holonomy.

3.4 Definition. Let (M,F) be a foliated manifold, with trivial holonomy. The
foliation groupoid G(M,F) is, in the families picture, the union

G(M,F) = ∪m∈MLm,
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where Lm is the leaf of the foliation which contains m ∈M. Thus G(M,F) may
alternately be thought of as the space

G(M,F) = { (m2,m1) ∈M×M |m1 andm2 belong to the same leaf }.

The source and range maps are the projection onto them1 andm2-coordinates, re-
spectively. Composition is given by the formula (m3,m2)◦(m2,m1) = (m3,m1);
the identity morphism atm is (m,m), and the inverse of (m2,m1) is (m1,m2).

The reason for the hypothesis of trivial holonomy is that using it we can give
G(M,F) a very natural smooth groupoid structure, which however we shall not
describe here. (In general the definition ofG(M,F) requires some modification —
one must replace the leaves Lm by their “holonomy covers.”) We may therefore
form the groupoid C∗-algebra, which is called the foliation C∗-algebra and is
denoted C∗λ(M,F).

Now if (M,F) is a compact, foliated manifold, and if D is a leafwise elliptic
operator onM (meaning thatD restricts to each of the leaves ofM, and is elliptic
there), then by means of K-theory constructions we hinted at earlier we obtain
a class Ind(D) ∈ K∗(C∗λ(M,F)). This is the K-theoretic index of the leafwise
elliptic operator D, and the subject of Connes’ index theorem for foliations. It
has many of the familiar properties from classical index theory. For example (for
those familiar with some index theory) the index of the leafwise signature operator
is a (leafwise) homotopy invariant, while the leafwise index of the Dirac operator
is zero in the presence of positive (leafwise) scalar curvature.

If the leaves of the foliated manifold (M,F) are actually the fibers of a sub-
mersion M → Z then the foliation C∗-algebra is very closely related to C0(Z),
the algebra of continuous functions on the base, and indeed K∗(C∗λ(M,F)) is iso-
morphic to K∗(C0(Z)), which is in turn isomorphic to the Atiyah-Hirzebruch K-
theory K∗(Z). In this case the element Ind(D) is given by the Atiyah-Singer index
of families construction. In general it is a rather more elaborate object.

4 The Tangent Groupoid
The constructions in the last section raise two issues:

• Develop index theory in a variety of contexts; for example, for foliations..

• Develop tools to compute the K-theory groups of groupoid C∗-algebras.

8



In this section we shall consider the first. We shall look at classical index theory
from a groupoid point of view. The approach generalizes very easily to foliations
and other situations.

Let M be a smooth manifold. We are going to define the tangent groupoid of
M, which is a smooth groupoid TM whose object space is the product M × R.
In the families picture, the tangent groupoid of M consists of repeated copies of
M, together with the tangent spaces TmM. These are joined together to form the
fibers of a single smooth map s : TM→M× R. In order to describe how this is
done we need to review two rather simpler constructions, which we shall combine
to form TM.

The tangent bundle ofM, TM, can be thought of as a family of groups — the
vector spaces TmM— parametrized byM, and in this way it can be thought of as
a groupoid with object spaceM. Thus the source and range maps are3

s(X,m) = m and r(X,m) = m,

while composition is given by the formula

(X,m, 0) ◦ (Y,m, 0) = (X+ Y,m, 0).

The identity map at m ∈M is the morphism (0,m), and the inverse of (X,m) is
(−X,m). The tangent bundle is a smooth groupoid.

The pair groupoid onM was introduced in the last section. It isM×M, with
object spaceM, source and range maps

s(m2,m1) = m1 and r(m2,m1) = m2,

and composition
(m3,m2) ◦ (m2,m1) = (m3,m1).

The identity morphism at m ∈ M is (m,m), and the inverse of (m2,m1) is
(m1,m2).

4.1 Definition. Let M be a smooth, open manifold. The tangent groupoid of M
is the groupoid TM constructed as the disjoint union of groupoids G = ∪t∈RGt,
where G0 = TM and Gt =M×M, when t 6= 0.

Thus the object space for TM is the disjoint union of the object spaces for the
groupoids Gt, and since the object space for each Gt is M, we can identify the

3We denote elements of TM as pairs, (X,m), wherem ∈M and X ∈ TmM.
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object space of TM with M× R. The source, range and other structure maps for
TM are defined “fiberwise,” using the structure maps in each Gt.

We are going to topologize TM. To do so, it will be convenient to write to
write elements of G0 = TM as triples (X,m, 0), where m ∈ M and X ∈ TmM.
When t 6= 0 we shall write elements of Gt = M ×M as triples (m2,m1, t),
wherem1,m2 ∈M. Thus we shall regard TM as the space

TM = TM×{0} ∪ M×M×R×.

We shall think of a triple (m2,m1, t) as an “approximate tangent vector” which is
close to a real tangent vector X ∈ TM if the difference quotient |f(m2)−f(m1)|/t
is close to X(f) on smooth functions f ∈ C∞(M).

4.2 Definition. Let M be a smooth manifold. The space TM is equipped with
the weakest topology (the one with the fewest open sets) such that for each f ∈
C∞(M) the map 

(X,m, 0) 7→ X(f)

(m2,m1, t) 7→ f(m2) − f(m1)

t

from TM into R, is continuous, and in addition the maps s, r : TM→M×R are
continuous.

The topology on TM is Hausdorff. Moreover it is locally Euclidean:

4.3 Lemma. Let M be a smooth manifold. If W is an open subset of M then the
set

TW = TW×{0} ∪ W×W×R×

is an open subset of TM. Moreover if φ : W → Rn is a diffeomorphism onto an
open subset then the mapΦ : TW → Rn×Rn ×R defined by the fomulas

Φ(X,m, 0) = (Dφ(X), φ(m), 0)

Φ(m2,m1, t) =
(φ(m2) − φ(m1)

t
, φ(m1), t

)
is a homeomorphism onto an open subset.

4.4 Remark. We denote by Dφ : TmU → Rn the derivative of φ at m ∈ U (we
are identifying the tangent space Rn at the point φ(m) with Rn itself).

4.5 Definition. Let us call the map Φ : TW → Rn × Rn × R the standard local
coordinate chart on TM associated to the local coordinate chart φ onM.
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The standard local coordinate charts determine a C∞ atlas of charts for the
manifold TM:

4.6 Lemma. Let W and V be open subsets of a smooth manifold M, and let
Φ : TW → Rn×Rn×R andΨ : TV → Rn×Rn×R be the standard local coordiante
charts associated to local coordinate charts φ : W → Rn and ψ : V → Rn. The
composition Ψ ◦ Φ−1 is a smooth map from one open subset of Rn × Rn × R to
another.

Proof. The inverseΦ−1 is given by the formula

Φ−1(v2, v1, t) =

{
(Dφ−1

v1
(v2), φ

−1(v1), 0) if t = 0
(φ−1(tv2 + v1), φ

−1(v1), t) if t 6= 0

Using the notation θ = ψ ◦φ−1, the composition Θ = Ψ ◦Φ−1 is therefore given
by the formula

Θ(w2, w1, t) =

(Dθw1(w2), θ(w1), 0) if t = 0(θ(tw2 +w1) − θ(w1)
t

, θ(w1), t
)

if t 6= 0.

By a version of the Taylor expansion, there is a smooth, matrix-valued function
θ̃(w2, w1) on Rn × Rn such that

θ(tw2 +w1) − θ(w1)

t
= θ̃(w2, w1)w2,

while θ̃(0,w1) is the derivative of θ at w. So we see that

Θ(w2, w1, t) =

{(
Dθw1(w2), θ(w1), 0

)
if t = 0(

θ̃(tw2, w1)w2, θ(w1), t
)

if t 6= 0.

This is clearly a smooth function.

We have therefore obtained a smooth manifold TM. It is clear that the source
map s : TM→M×R is a submersion since in the local coordinates of Lemma ??
it is a coordinate projection. To verify that TM is in fact a smooth groupoid, it is
convenient to consider first the case whereM = Rn, in the following way:
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4.7 Example. The map Φ : TRn → Rn× Rn×R defined byΦ : (v2, v1, 0) 7→ (v2, v1, 0)

Φ : (v2, v1, t) 7→ (v2 − v1
t

, v1, t
)

(t 6= 0)

is a diffeomorphism. Indeed it is the (globally defined) standard coordinate chart
on TRn associated to the “identity” chart id : Rn → Rn. Now consider the space

G = { (w2, a,w1) : w1, w2 ∈ Rn×R, a ∈ Rn, w2 = a4w1 },

where the operation4 is defined by

a4(v, t) = (v+ ta, t).

Thus the 4 operation defines an action of the group A = Rn on Rn×R, and our
spaceG is the corresponding crossed product groupoidAn (Rn×R). The smooth
manifold G identifies with Rn×Rn×R by dropping w2 from (w2, a,w1). Using
this, we can consider the diffeomorphismΦ to be a diffeomorphism from TRn to
G by the formulas

Φ(v2, v1, 0) =
(
(v1, 0), v2, (v1, 0)

)
Φ(v2, v1, t) =

(
(v2, t),

v2 − v1
t

, (v1, t)
)

(t 6= 0).

But it is evident that Φ is actually an isomorphism of groupoids (in other words,
Φ is compatible with all the groupoid structure maps). It therefore follows that a
TRn is a smooth groupoid, as required, since G is certainly a smooth groupoid.

To summarize:

4.8 Proposition. Denote byG = AnRn,1 the transformation groupoid associated
to the action of the groupA = Rn on the space Rn,1 = Rn×R given by the formula

a4(v, t) = (v+ ta, t) ( a ∈ Rn and (v, t) ∈ Rn,1).

The map Φ : TRn → G which is given by the formulas

Φ(v2, v1, 0) =
(
(v1, 0), v2, (v1, 0)

)
Φ(v2, v1, t) =

(
(v2, t),

v2 − v1
t

, (v1, t)
)

(t 6= 0).

is an isomorphism of smooth groupoids.
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4.9 Remark. The groupoid TRn only depends on the smooth structure of Rn,
whereas, superficially at least, the groupoid G = AnRn,1 depends very much on
the vector space structure of Rn. The proposition shows that this dependence is
an illusion.

4.10 Proposition. IfM is any smooth manifold, then TM is a smooth groupoid.

Proof. Since smoothness is a local property, we can check this in a coordinate
neighbourhood W. Since the construction of TW is coordinate-independent we
can assume thatW = Rn, and thereby reduce to the example just considered.

To understand what the tangent groupoid is good for, we need to recall some-
thing about the regularity theory of order k, elliptic linear partial differential op-
erators.

4.11 Definition. If D is a linear operator on M then for each point m of M
we can form the model operator Dm, which is the translation-invariant, homoge-
neous operator on TmM which best approximates D at the point m. Thus if, in
local coordinates,D =

∑
|α|≤k aα

∂α

∂xα
, where the aα are coefficient functions, then

Dm =
∑

|α|=k aα(m) ∂
α

∂xα
.

The theory of translation-invariant, homogeneous operators is easily devel-
oped using Fourier theory:

4.12 Proposition. Let D be a translation-invariant, self-adjoint homogeneous
partial differential operator on a vector space V . The following are equivalent:

(i) D is hypoelliptic (that is, if Du = v in the sense of distributions, and if v is
smooth, then u is smooth).

(ii) If f is a rapidly decreasing, then f(D) is a smoothing operator.

(iii) The Fourier transform ofD, which is multiplication operator on say L2(V∗),
is represented by a function σ on V∗ which is invertible everywhere expect
the origin.

The main theorem in elliptic regularity theory says that ifD is a general oper-
ator on a manifold, and if each model operatorDm is hypoelliptic, thenD itself is
hypoelliptic. In fact:

4.13 Theorem. Let D be a self-adjoint, linear partial differential operator on a
closed manifoldM. Assume that each model operator Dm is hypoelliptic. Then:
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(i) D is hypoelliptic.

(ii) If f is a rapidly decreasing, then f(D) is a smoothing operator.

4.14 Definition. If each Dm is hypoelliptic then D is said to be elliptic. The
symbol of D is collection of model operators of D, or equivalently the function σ
on T ∗M obtained from the Fourier transforms of all the model operators.

Now the fundamental problem in index theory, solved by Atiyah and Singer,
is to compute the index of an elliptic operator in terms of the symbol. The tangent
groupoid fits very nicely into index theory because of the following result:

4.15 Proposition. Let M be a smooth manifold and let D be a linear partial
differential operator onM of order k. The family of operators on the fibers of the
tangent groupoid which is given by the formulas

D(m,t) = t
kD when t 6= 0; and Dm,0 = Dm

is smooth and equivariant.

So in some sense the tangent groupoid allows us to smoothly interpolate be-
tween the symbol of an operator (the family of model operators Dm) and the
operator itself (which appears here at t = 1).

To make use of this observation, let us go back to the definition of the groupoid
G = TM, which we constructed as a disjoint union of groupoids Gt. Each Gt
is a smooth groupoid in its own right, and so each has a groupoid C∗-algebra
C∗λ(Gt). When t = 0we obtain, by Fourier transform, theC∗-algebraC0(T ∗M) of
continuous functions, vanishing at infinity, on the cotangent bundle T ∗M. When
t 6= 0 we obtain the compact operators K(L2(M)).

The fact that the groupoids Gt fit together smoothly to form a single smooth
groupoid implies4 that their groupoid C∗-algebras fit together to form what is
called a continuous field of C∗-algebras. But if {At} is any continuous field of
C∗-algebras, then the K-theory groups Kj(At) have the property that any xt0 ∈
Kj(At0) can be canonically prolonged to a family xt ∈ Kj(At), for all t near t0.
(In fancy language, the Kj(At) form the stalks of a pre-sheaf over R.)

In our present case, since all the Gt are identical for t 6= 0, this prolongation
process determines a homomorphism

K∗(C
∗
λ(G0))→ K∗(C

∗
λ(G1)).

4To be accurate, this is a common, but not completely general, fact about smooth families of
groupoids.

14



4.16 Definition. The analytic index map is the homomorphism

Ind : K0(T ∗M)→ K0(K(L2(M))) ∼= Z

obtained from the above construction by identifying C∗λ(G0) with C0(T ∗M) and
C∗λ(G1) with K(L2(M)).

The symbol of D — the family of model operators Dm — defines an element
in K∗(C∗λ(G0)) by the process hinted at in the last section, and D itself defines
an element of K∗(C∗λ(G1)). The former is the same as the symbol class [σ] ∈
K0(T ∗M) which appears in the work of Atiyah and Singer; the latter identifies
with the Fredholm index of D, as discussed in the previous section. It follows
from the interpolation property of the tangent groupoid that the analytic index
map takes the symbol class to the Fredholm index.

The construction of the analytic index map, which puts the index problem
squarely in the context of K-theory, is a major step in the K-theory proof of the
Atiyah-Singer index theorem. There are other ways to define it — for example
Atiyah and Singer originally approached the construction through the theory of
pseudodifferential operators. The groupoid approach has the advantage that it
extends very naturally to more complex situations, for example to foliations.

The reader is referred to Connes’ book for an interesting approach to the re-
maining parts of the proof of the Atiyah-Singer index theorem via groupoid the-
ory.

5 The Baum-Connes Conjecture
Let M be a smooth, connected manifold and denote by M̃ its universal covering
space. Now form the tangent groupoid TM̃. The group π = π1(M) acts properly
and freely by diffeomorphisms on M̃, and hence π acts on TM̃, also properly and
freely.

5.1 Definition. Denote by TπM the quotient space obtained by dividing TM̃ by
the action of π.

The space TπM is a smooth manifold and indeed a groupoid with object space
M×R. It is not the tangent groupoid forM. Like TM, the groupoid TπM can be
thought of as a family of groupoids over R, and like TM the groupoid over 0 ∈ R
is TM, the tangent bundle of M. However the groupoid over t 6= 0 is not the pair
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groupoid M ×M but the quotient M̃ ×π M̃ of the cartesian product M̃ × M̃ by
the diagonal action of π.

We can think of M̃ ×π M̃ as the space of triples (m2, α,m1), where α is a
homotopy class of paths in M connecting m1 to m2. From this point of view,
the groupoid operations are easy to describe: the source and range maps send
(m2, α,m1) to m1 and m2, respectively, while composition is given by the for-
mula

(m3, α2,m2) ◦ (m2, α1,m1) = (m3, α2α1,m1),

where α2α1 denotes concatination of paths.
From the families point of view, elements of the groupoid algebra correspond

to equivariant (appropriately supported) smoothing operators on the universal cover
M̃. TheC∗-algebra of the groupoid is faithfully represented on L2(M̃) as the norm
closure of the algebra of π-equivariant smoothing operators on M̃.

5.2 Proposition. K(C∗λ(M̃×π M̃)) ∼= K(C∗λ(π)).

This is not difficult. In fact the groupoid C∗-algebra turns out to be Morita
equivalent (in the sense of C∗-algebra theory) to the group C∗-algebra of π. This
is a much stronger statement, which certainly implies that the K-theory groups are
isomorphic.

Now, by following the procedure described in the preceding section, and by
invoking the above proposition, we obtain from the groupoid TπM a homomor-
phism of K-theory groups

µ : K(T ∗M)→ K(C∗λ(π)).

This map has been extensively studied in C∗-algebra theory, and is known as the
Baum-Connes assembly map. It can be thought of as associating to a symbol of
an elliptic differential operator on M a K-theoretic “index” of the π-equivariant
operator on M̃ obtained from this symbol.

It is quite instructive to consider the case where M is a torus Tn. Here π is of
course the free abelian group Zn, and by Fourier theory, C∗λ(Zn) is isomorphic to
C(Tn) (actually, the torus which appears here is “dual” to the one we began with,
but we can identify the two). On the other hand ifM is a torus, then the cotangent
bundle T ∗M is trivial and so by Bott periodicity, the K-theory of T ∗M identifies
with the K-theory of M. We obtain the following diagram, in which the bottom
map is the one induced from the Baum-Connes assembly map by the two vertical
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isomorphisms.
K(T ∗M)

∼=Bott
��

µ // K∗(C
∗
λ(π))

∼= Fourier
��

K∗(Tn)
µ ′

// K∗(Tn)

Now, the remarkable fact about his bottom version of the Baum-Connes assembly
map is that it is equal to its own inverse: the composition of µ ′ with itself is the
identity map on K(Tn). This is a K-theoretic version of what is known in other
contexts as Fourier-Mukai duality.

This example suggests to a willing mind the following quite sweeping conjec-
ture.

5.3 Conjecture (Baum and Connes). If M is any aspherical manifold, and π =
π1(M), then the Baum-Connes assembly map

µ : K∗(T ∗M)→ K∗(C
∗
λ(π))

is an isomorphism of abelian groups.

5.4 Remark. In fact the above is part of more general conjecture, which pro-
vides a formula for K∗(C∗λ(G)) whenG is any locally compact (second countable)
topological group.5

The Baum-Connes conjecture is a close relative of the topological rigidity
conjecture discussed in Weinberger’s talk (the Borel conjecture). It has some
quite striking implications — for example it implies Novikov’s conjecture on the
homotopy invariance of higher signatures — and for this and other reasons it has
been the topic of a great deal of research. One of the main reasons for attacking
the Novikov conjecture through the Baum-Connes conjecture is that the major
tool of K-theory — the Bott periodicity theorem — or at least a set of techniques
related to the Bott Periodicity theorem, can be brought to bear on the problem.

The conjecture is known to be true in a quite a few cases. Roughly speaking
they fall into two classes. The Haagerup property is a property of locally compact
groups which is a strong negation of Kazhdan’s property T (groups which have
both the Haagerup property and Kazhdan’s property T are automatically compact).

5This, in turn was formerly part of a still more general conjecture which did the same for
arbitrary (second countable) locally compact groupoids. In this ultimate generality however the
conjecture is now known to be false.
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Examples include all amenable groups, all Coxeter groups, complex hyperbolic
groups, and a few exotica, like Thompson’s group F. Higson and Kasparov proved
the Baum-Connes conjecture for all groups with the Haagerup property. In another
direction, Vincent Lafforgue proved the Baum-Connes conjecture in a number of
instances which mostly relate to the realm of negative curvature. For instance,
building on Lafforgue’s work, Yu and Mineyev were able to prove the Baum-
Connes conjecture for all word-hyperbolic groups.

The major outstanding problem is to prove the conjecture for lattices in semi-
simple groups. Not much is known here beyond the rank one case, although Laf-
forgue’s work did settle the case of uniform lattices in SL(3).

Actually, the Novikov conjecture does not require the full strength of the
Baum-Connes conjecture, only the (rational) injectivity of the Baum-Connes as-
sembly map. This injectivity has been proved in a much wider class of examples,
including for example all linear groups. In fact the C∗-algebra K-theory approach
to the Novikov conjecture has proved to be perhaps the most effective one avail-
able.

6 Index Theory on Contact Manifolds
We conclude with a variation on the tangent groupoid for a class of hypoelliptic,
but not elliptic, operators. This has been worked out recently by Erik van Erp.

LetM be a smooth manifold and let E be a codimension-one subbundle of the
tangent bundle. LetN be the quotient of the tangent bundle by E. It is of course a
line bundle onM.

The vector spaces Em⊕Nm are equipped with a natural Lie algebra structure,
in which Nm is central and the Lie bracket of two elements X, Y ∈ Em is the
element of Nm defined by the following procedure: extend X and Y to vector
fields on M; take their Lie bracket [X, Y]; and take the image of [X, Y]m in the
quotient space Nm. This prescription does not depend on the extensions of X and
Y that we chose.

6.1 Definition. The subbundle E is a contact structure on M if each Lie algebra
Em ⊕ Nm is a Heisenberg Lie algebra. This means that there are basis elements
X1, Y1, . . . , Xn, Yn of Hm and Z of Nm such that [Xi, Xj] = 0, [Yi, Yj] = 0, and
[Xi, Yj] = δijZ.

If M is a contact manifold then it may be shown that M is locally equivalent
to the Heisenberg Lie group H — the simply connected Lie group whose Lie
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algebra is the Heisenberg Lie algebra — in much the same way that a general
manifold is locally equivalent to Rn. Thus there are local diffeomorphisms from
M to H which carry the subbundle E onto the subbundle of the tangent bundle of
H spanned by the vector fields Xi and Yj, for i, j = 1, . . . , n. This is a version of
Darboux theorem from the theory of symplectic manifolds.

Now a Heisenberg Lie group H admits a one-parameter family of endomor-
phisms, αt : H→ H, defined by the following Lie algebra formulas:

αt(Xi) = tXi, αt(Yj) = tYj, and αt(Z) = t
2Z.

When t 6= 0 these are of course automorphisms. Using the one-parameter family
we can define an action of the group H on the space H× R by the formula

h4(k, t) = (αt(h)k, t).

This of course mimics a construction that we made in Section ?? in the context
of the abelian Lie group Rn. It suggests the following global construction on a
contact manifold.

6.2 Definition. Let (M,H) be a contact manifold. Its H-tangent groupoid is the
groupoid THM constructed as the disjoint union of groupoidsG = ∪t∈RGt, where
G0 = HM, the bundle of Heisenberg Lie groups overM associated to the bundle
of Lie algebras E⊕N, and Gt =M×M, when t 6= 0.

Suppose thatM is diffeomorphic to the Heisenberg group H, via a diffeomor-
phism φ which maps the contact bundle of M to the contact bundle of H. If we
use the notation

h1 − h2
t

:= α(t−1)(h1h
−1
2 )

in the Heisenberg group (being careful, of course, to note that this does always
not behave in exactly the same way as its commutative counterpart), then we
can borrow a formula from Section ?? and define an isomorphism of groupoids
Φ : THM→ Ho (H×R) by the formulas

Φ(h,m, 0) =
(
(m, 0), Dφh, (m, 0)

)
Φ(m2,m1, t) =

(
(m2, t),

φ(m2) − φ(m1)

t
, (m1, t)

)
(t 6= 0).

HereDφ denotes the map on Lie groups induced from the derivative of φ, which
is a homomorphism at the level of Lie algebras.

The following result has been proved by Erik van Erp:
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6.3 Theorem. There is a smooth groupoid structure on the H-tangent groupoid
THM which is functorial with respect to inclusions of open sets into contact man-
ifolds, and for which the standard chartsΦ defined above are diffeomorphisms.

This suggests an index theory of “H-elliptic” operators on contact manifolds,
which is based on model operators which are not translation invariant operators on
tangent vector spaces but instead are translation invariant operators on the “tan-
gent” Heisenberg Lie groups associated to a contact structure. This theory indeed
exists, and it can be approached in a very conceptual way through the tangent
groupoid.

The necessary analysis was investigated first by Hormander and then devel-
oped by Stein and his coworkers. If D is a linear partial differential operator on
a contact manifold M then at each point m of M there is a model operator Dm,
which is a (right) translation invariant, homogeneous6 linear partial differential
operator on the tangent Heisenberg Lie group HmM.

6.4 Theorem. Let D be a self-adjoint, linear partial differential operator on a
contact manifold (M,H). Assume that each model operator Dm is hypoelliptic.
Then:

(i) D is hypoelliptic.

(ii) If f is a rapidly decreasing, then f(D) is a smoothing operator.

In particular, ifM is closed then D is Fredholm.

6.5 Definition. The H-symbol of D is collection of model operators of D. Let us
say that D is H-elliptic if each of the model operators Dm is hypoelliptic.

It should be stressed that that the analysis of H-elliptic operators on contact
manifolds is rather more complicated than the standard elliptic theory, due to the
more complicated nature of the Fourier transform for Heisenberg groups. In ad-
dition, we should note that althoughH-elliptic operators are hypoelliptic, they are
definitely not elliptic.

Since the tangent Heisenberg groups are noncommutative, the H-symbol is
a more complicated object than the classical symbol. When D is H-elliptic, the
symbol defines an element not in K0(T ∗M), as in the Atiyah-Singer theory, but
rather an element in K0(C∗λ(HM)), the K-theory of the groupoid C∗-algebra asso-
ciated to the bundle of Heisenberg tangent Lie groups.

6The term “homogeneous” refers to the fact that Dm transforms in a homogeneous fashion
under the scaling automorphisms αt introduced earlier: αt(Dm) = tkDm.

20



6.6 Theorem (van Erp). The analytic index map

Ind : K0(C∗λ(HM))→ K0(K(L2(M))) ∼= Z

associated to the H-tangent groupoid maps the symbol class of an H-elliptic op-
erator D to the Fredholm index of D.

On the basis of this result, which neatly packages all of the analysis of H-
elliptic operators using K-theory for noncommutative C∗-algebras, van Erp has
formulated and proved in his thesis the Atiyah-Singer index theorem forH-elliptic
operators on contact manifolds. Indeed, from here, there is a simple reduction to
the classical index theorem of Atiyah and Singer, since a noncommutative Thom
isomorphism theorem of Connes implies that K∗(C∗λ(HM)) ∼= K∗(T ∗M).
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