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Abstract

These are notes of lectures on the Atiyah-Singer index theorem given dur-
ing a masterclass in Bedlewo. The general aim is to survey the K-theoretic
and local proofs of the index theorem.
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In this lecture we shall discuss Fredholm Operators, Differential Operators,
and the (top order) Symbol of an Elliptic Operator.
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1.1 Fredholm Operators

Definition 1.1. Fix vector spaces V,W typically infinite-dimensional. Let T :

V −→ W be a linear operator. We say T is Fredholm if dim(ker T) < ∞ and
dim(coker T) < ∞, where coker is the co-kernel. If T is Fredholm, then the
index of T is the integer

Index(T) = dim(ker T) − dim(cokerT).

Example 1.2. The shift operator
0 0 0

1 0 0
. . .

0 1 0
. . .

0 0 1
. . .


on just about any sequence space is Fredholm, and its index is −1.

Lemma 1.3. If F : V −→ W has finite rank, then T is Fredholm ⇐⇒ T + F is
Fredholm. That is, Index(T) = Index(T + F).

In the Banach space context, there is an interesting variation on the above
lemma:

Lemma 1.4. Given a bounded linear operator T : V → V that is also Fredholm (in
the above purely algebraic sense), if S : V → W is a bounded linear operator with
sufficiently small norm (depending on T ) then T + S is also Frehdolm and moreover
Index(T) = Index(T + S).

Thus the set of Fredholm bounded linear operators from one Banach space
to another is an open subset (in the norm topology) of the space of all bounded
linear operators, and the Fredholm index is a locally constant integer-valued
function on it.

So, (typically) the index assumes all values.

Definition 1.5. Fix an infinite-dimesional Hilbert space H. We shall denote by
Fred the space of all Fredholm operators on H (with the norm topology), and
by Fred0 the subspace of all Fredholm operators of Index 0.

Both Fred and Fred0 are reasonable topological spaces (for example they
have the homotopy type of CW-complexes). The homotopy-theoretic structure
of Fred0 can be illuminated by considering the map

{ compact operators }× { invertible operators } onto−−→ Fred0

defined by
(K,A) 7−→ K+A,
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or, better, the map

{ operators of the form identity plus compact }× { invertible operators } onto−−→ Fred0

defined by the formula

((I+ K) , A) 7−→ (I+ K)A

The group

GL∞ = { invertible operators of the form I+ compact }

acts freely on the left-hand side via the formula

B · (I+ K,A) = ((I+ K)B−1, BA)

and the boxed map is a principal GL∞ fibration (roughly speaking the right-
hand side is the quotient by the group action, which is has no pathologies).
Now the space on the left-hand side of the boxed formula is a contractible topo-
logical space, so, from homotopy theory we obtain isomorphisms of homotopy
groups

πk (Fred0)
∼=−→ πk−1 (GL∞) .

for all k.
The group GL∞ is very interesting from a homotopy theory point of view.

Its homotopy groups agree with those of the direct limit⋃
n

GLn(C)

in which GLn(C) is embedded into GLn+1(C) via

X 7−→ [
X 0

0 1

]
.

In fact each individual homotopy group πk−1(GL∞) identifies with the group
πk−1(GLn(C)) for any sufficiently large k (and “sufficiently large” is not so
large; just bigger than n/2). Bott’s famous periodicity theorem says that

πk−1 (GL∞) =

{
Z k even
0 k odd.

Atiyah and Hirzebruch defined

K(X) = [X,Fred]

where the square bracket notation means homotopy classes of maps (actually
they defined K(X) a bit differently, and it’s a theorem that their definition is
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equivalent to the one above). This is K-theory. We find from Bott’s theorem
that

K(Sk) =

{
Z k odd
Z⊕Z k even.

So while individual Fredholm operators have an interesting integer invari-
ant, families of Fredholm operators parametrized by even-dimensional spheres
have a second, even more interesting, integer invariant.

Two footnotes about the definition of K-theory.

1) In the definition as stated, X should be compact (compact Hausdorff). If
Z is a locally compact Hausdorff space then experience shows it is better
define K(Z) to be the space of homotopy slasses of maps Z → Fred that
are invertible operator-valued outside a compact set.

2) In the definition we can allow the Hilbert space H to vary with x ∈ X or
z ∈ Z. That is we can define a K-theory group using continuous families
{Tx : Hx −→ Hx} of Fredholm operators (that are invertible outside a com-
pact set). The details are best arranged using the concept of continuous
field of Hilbert space, and first arranged this way by Kasparov.

1.2 Differential Operators

Examples on the plane are

• D = ∂
∂x

+ ∂
∂y

(this is really just a directional derivative).

• D = ∂
∂x

+ i ∂
∂y

(this is the Cauchy-Riemann operator from complex anal-
ysis).

Despite their similar appearance, they behave very differently from an analytic
point of view. Let’s consider the equation

Du = v

in which v is given and the task is to study all solutions u.

Definition 1.6. A linear partial differential operator D is hypoelliptic if all the
solutions u of the above equation are smooth (that is, infinitely differentiable)
in any open set where v is smooth.

This condition is very close to the Fredholm condition, in the sense that the
techniques to prove it are usually very close to (some of) the techniques used
to prove a differential operator is Fredholm. Returning to the two exaxmples,
the first is definitely not hypoelliptic. The operator is differentiation in the
direction x = y, and the derivative in this direction tells us nothing about the
derivative in the orthogonal direction. On the other hand, it’s a famous fact
that Cauchy-Riemann equationDu = 0 are smooth (and a slightly less famous
fact that more generally the Cauchy-Riemann operator is hypoelliptic).
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1.3 A First Look at the Symbol

Is there a way to tell at a glance whether or not a linear partial differential
operator D is hypoelliptic (and likely to lead to a Fredholm operator, perhaps
after imposing boundary conditions of a suitable sort)? Yes! We need only
examine the (principal) symbol of D which is a function (a simpler object than
an operator) and examine the values of this function one point at a time.

We’ll give here a down-to-earth treatment of the symbol here, and then
a fancier treatment, suitable for the discussion of operators and symbols on
manifolds, in a while.

Start with an operator

D =
∑
|α|≤p

aα(x)
∂α

∂xα

of order p or less on an open set U in Rn. Here α is a multiindex (α1, . . . , αn)

with nonnegative integer entries,

|α| = α1 + · · ·+ αn,

and of course
∂α

∂xα
=

∂|α|

∂xα1

1 · · ·∂x
αn
n
.

Thank heavens for multiindex notation . . .

Definition 1.7. The order p symbol of D is the function

σp(D) : U×Rn −→ C

defined by the formula

σp(D) : (x, ξ) 7−→ ∑
|α|=p

aα(x)ξ
α

Remark 1.8. It’s important to note that we’ve dropped all the terms in the ex-
pression for D except the terms of degree exactly order p. The lower order
terms do not contribute to the symbol.

Example 1.9. The symbols of the two operators that we began with are

• (x, y, ξ, η) 7−→ ξ+ η

• (x, y, ξ, η) 7−→ ξ+ iη

The big definition:

Definition 1.10. An operatorD of order less than or equal to p is elliptic of order
p if at every point (x, ξ) with ξ 6= 0 the symbol value σp(x, ξ) is invertible.
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Remark 1.11. Saying that a scalar is “invertible,” as we did in the above defini-
tion, is an awkard way of saying that it is nonzero. But soon we’ll be studying
operators whose coefficients aα(x) are not scalar-valued functions, but matrix-
valued functions. In this context, the definition of the symbol is the same, but
now the symbol is a matrix-valued function, and the criterion for ellipticity is
exactly as in the definition above—that the symbol take values in invertible
matrices whenever ξ is nonzero.

Example 1.12. The Cauchy-Riemann operator ∂/∂x+ i∂/∂y is elliptic; the direc-
tional derivative operator ∂/∂x+ ∂/∂y is not.

Here’s a important and quite substantial result:

Theorem 1.13. If an operator D is elliptic, then it is hypoelliptic.

We shall discuss aspects of the proof of the big theorem in Lecture 3. We
shall obtain our Fredholm operators from the pool of elliptic partial differential
operators, starting with the examples to be discussed tomorrow.

1.4 Differential Operators on Manifolds

Now letM be a smooth manifold w/o boundary. We want to define and study
differential operators on M. We can simply say that such operators have local
coordinate expressions like the ones considered above. But for variety (and
because it is eventually more efficient to do so) we shall describe a fancier ap-
proach.

We start with differential operators of order zero, which are dull:

Definition 1.14. A differential operator of order 0 is a complex-linear map

D : C∞(M) −→ C∞(M)

that commutes with all operators given by pointwise multiplication by smooth
functions. That is, an order 0 operator is a C∞(M)-module map on C∞(M).

Order k+1 (or less) operators are defined in terms of order k (or less) oper-
ators:

Definition 1.15. A differential operator of order k+1 is a complex-linear map

D : C∞(M) −→ C∞(M)

with the property that for every smooth function f, viewed as a pointwise mul-
tiplication operator on C∞(M), the commutator

[D, f] : C∞(M) −→ C∞(M)

is a differential operator of order k.
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Example 1.16. IfM is an open subset of Rn, then the differential operators given
by the fancy definition are precisely the same as the differential operators given
earlier by the multiindex formula.
Example 1.17. Every differential operator of order 1 on anyM has the form

D = X+ h

where X is a vector field on M, that is, a derivation of the algebra C∞(M), and
h is an order zero operator, that is, a C∞(M)-module map. In fact h = D(1), so
the assertion (an exercise for you) is that if D is a differential operator of order
1, then D−D(1) is a derivation.

Lemma 1.18. The composition of an order p operator with an order q operator is an
order p+q operator.

Lemma 1.19. The commutator [D,E] of an order p operator with an order q operator
is an order p+q−1 operator.

It will be important to consider linear partial differential operators in a
slightly broader context that corresponds in the local coordinate, multiindex
picture to considering operators whose coefficient functions aα(x) are matrix-
valued functions. The essential point is that we want to consider operators

D : E −→ F

where E and F are modules over the ring C∞(M), rather than C∞(M) itself.
The main examples to keep in mind are spaces of differential forms overM.

Working in this generality, we can repeat the definitions above, with small
modifications. An order zero operator is any C∞(M) module map from E to F.
An order k+1 operator is, exactly as in the definition above, a complex-linear
mapD all of whose commutators [D, f] with functions (not arbitrary order zero
operators) are order k operators. The composition of an order p and an order
q operator (when the composition makes sense) will still be an operator of
order p + q. So for example if E = F, then we obtain an algebra of differential
operators on E.

But as it stands the setup is too general to be of value: it will be impossible to
prove theorems in this degree of generality. To remedy this we insist that E and
F be the global sections of locally free, finitely generated sheaves of modules
over the sheaf of smooth functions onM. In other words, for those who prefer
vector bundles over sheaves, E and F are the modules of sections of smooth
vector bundles overM. We shall be able to develop a reasonable theory in this
generality, which encompasses many interesting geometric examples.

1.5 The Symbol

To discuss the symbol of an operator of the general type considered above, we
shall need to consider “values” of elements in the modules E and F at points
x ∈M. This is done as follows:
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Definition 1.20. The fiber of F at x ∈M is the vector space quotient

F|x = F/IxF,

where Ix ⊆ C∞(M) is the ideal of all smooth functions onM vanishing at x.

For the modules we are considering, this is a finite-dimensional vector space.
The symbol of an order p differential operator

D : E −→ F

will be a family of polynomial functions

σp(D)x : T
∗
xM −→ Hom(E|x,F|x),

one for each point x ∈ M. Here T∗xM is the cotangent vector space at x ∈ M
(more on this in a moment), and the target of the map above is the space of
linear transformations between two finite-dimensional vector spaces. In effect,
the target is the space of matrices of some particular shapem× n.

The fancy definition of symbol will be in agreement with the concrete one
we gave before. The functions ξi that were used before will become coordinate
functions on T∗xM, and the agreement will be

σp(D)x = σp(D)(x, ξ)

=
∑
|α|=p

aα(x)ξ
α.

Now let us discuss the cotangent vector space T∗xM. It can be defined in
various ways, but a convenient way for us is to set

T∗xM = Ix/I
2
x.

That is, the cotangent vector space is the quotient of the vanishing ideal Ix by
its square (the ideal of functions vanishing to order two at x). If y1, . . . , yn are
local coordinates centered at x, then their images in the above quotient vec-
tor space, which are written dy1, . . . , dyn, constitute a basis for the cotangent
space.

Definition 1.21. LetD be a differential operator of order p, as above. The order
p symbol of D, is the family of polynomial functions

σp(D)x : T
∗
xM −→ Hom(E|x,F|x),

defined by

σp(D)x : df 7−→ 1

p!
[..[[D, f], f], · · · , f]

in which there occur p commutators with the function f, viewed as an operator
on E and on F.
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Example 1.22. By far the most important case for us will be the case of an oper-
ator of order 1, in which case the formula is simpler:

σp(D)x : df 7−→ [D, f]

The operator [D, f] : E → F has order zero, which is to say that it is a C∞(M)-
module map, so that it induces a map

[D, f] : E|x −→ F|x,

as the definition requires.

Example 1.23. Another simple case to check is the case where M = R (the case
of Rn is the same, but with more notation involved). Consider say

D = a(x)
d2

dx2
+ b(x)

d

dx
+ c(x).

Then
[D, f] = 2a(x)f ′(x)

d

dx
+ b(x)f ′(x) + f ′′(x)

and
[[D, f], f] = 2a(x)f ′(x)2.

So the symbol is
σ2(D)x = a(x)ξ2,

where ξ is the coordinate function on T∗xM that maps df to f ′(x) (so the right
hand side of the display is a function on T∗xM with values in the scalars, or in
other words with values in the space of linear operators from a one-dimensional
vector space to itself). As a result, we find that we are in agreement with the
concrete notion of symbol given earlier.

Example 1.24. A more serious example is the de Rham differential

d : Ωk(M) −→ Ωk+1(M),

which is a differential operator of order one. The fiber at x ∈ M of Ωk(M)

identifies with the exteriof power ∧kT∗xM (this is a finite-dimensional vector
space). The symbol can therefore be studied as a map

σ(D)x : T∗xM −→ Hom
(
∧kT∗xM,∧

k+1T∗xM
)

(we’re dropping the subscript 1 in our notation for the symbol). It is a poly-
nomial map, and in fact a linear map because d is a first order operator. One
computes that

σ(d)x(ξ) : ω 7−→ ξ∧ω.

It is an excellent exercise, almost an essential exercise, to carefully make sense of all of
this: to make the identifications explicit, and verify the formula.
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1.6 An Extended Example

Think of this section as an extended exercise, with plenty of hints. We’re going
to take a fairly close look at one operator on the 2-sphere (in fact it is the Dirac
operator, which will be discussed in a much more general context in the next
lecture).

The 2-sphere as a homogeneous space

It will be convenient to describe the 2-sphere not in the usual coordinate way
as

S2 = { (x, y, z) : x2 + y2 + z2 = 1 }

but as a homogeneous space for the group SU(2).
To do so, recall the following preliminaries. The Lie algebra su(2) of SU(2)

is linearly spanned over R by the three matrices

X =

[
i 0

0 −i

]
, Y =

[
0 i

i 0

]
and Z =

[
0 −1

1 0

]
.

The group SU(2) acts on su(2) in the usual way by conjugation (this is the
adjoint action, in the Lie-theory language). The action preserves the real inner
product

〈W1,W2〉 =
1

2
Trace(W∗1W2),

where the factor of 1/2 makes {X, Y, Z } an orthonormal basis, and so we get a
homomorphism

SU(2) −→ SO(3)

if we use the {X, Y, Z } basis to identify su(2) with R3. This is the famous spin
double covering of SO(3).

The isotropy subgroup for X ∈ su(2) under the conjugation action is the
diagonal subgroup T ⊆ SU(2), and the action of SU(2) is transitive on the
unit sphere in su(2), so we obtain an identification of the homogeneous space
SU(2)/T with the 2-sphere. In particular, we obtain an identification of algebras

C∞(S2) =
{
f : SU(2)→ C : f(u exp(tX) = f(u) ∀u ∈ SU(2) ∀t ∈ R

}
(it is not written explicitly above, but from now on we’ll be dealing exclusively
with smooth functions on the 2-sphere).

Remark 1.25. While we’re on the subject of the su(2), let us make note of the
commutation relations

[X, Y] = 2Z, [Y, Z] = 2X and [Z,X] = 2Y,

which we shall use later on. We shall also use the really simple formula

exp(tX) =
[

exp(it) 0

0 exp(−it)

]
.
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Modules

Our operator will act not on scalar functions, but between two modules over
the smooth functions on the two-sphere, as we discussed above. The modules
will be as follows:

S+ =
{
f : SU(2)→ C : f(u exp(tX)) = exp(it)f(u)

}
and

S− =
{
f : SU(2)→ C : f(u exp(tX)) = exp(−it)f(u)

}
.

They are indeed modules, since the action by pointwise multiplication of the
ring of functions on SU(2) for which f(u) = f(u exp(tX)) leaves invariant the
spaces S±.

Differential Operator

Our operator will be a combination of the following elementary operators:

Definition 1.26. If W is any matrix in the Lie algebra su(2), and if f is any
smooth function on SU(2), then let us define

(Wf)(u) =
d

ds

∣∣∣
s=0
f
(
u exp(sW)

)
,

which is of course another smooth function on SU(2).

A warning: these operators do not individually preserve the spaces S±, or
map one of them into the other. They are however very simply related to the
Lie bracket on su(2):

Lemma 1.27. If [W1,W2] =W3 in su(2), and if f is any smooth function on SU(2),
then

W1(W2f) −W2(W1f) =W3f.

Using the operators in the definition, we obtain a more computationall use-
ful description of the spaces S±, as follows:

Lemma 1.28. S± = { f : SU(2)→ C : Xf = ±if }.

We are now almost ready to define our operator. We need one more com-
putation:

Lemma 1.29. If f ∈ S+, then Yf+ iZf ∈ S−.

Proof. If f ∈ S+, then according to the previous lemmas

X(Y + iZ)f = (Y + iZ)Xf+ ([X, Y] + i[X,Z])f

= i(Y + iZ)f+ (2Z− 2iY)f,

or in other words
X(Y + iZ)f = −i(Y + iZ)f,

as required.
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Lemma 1.30. The formula
Df = (Y + iZ)f

defines a first-order differential operator

D : S+ −→ S−

on the 2-sphere.

Proof. According to the definition, we need to show that if f is a smooth func-
tion on the 2-sphere, or in other words a rightU(1)-invariant function on SU(2),
then the commutator

[D, f] : S+ −→ S−

commutes with pointwise multiplication by other functions on the 2-sphere.
We compute that

[D, f] = Yf+ iZf

where the function Yf+ iZf on SU(2) is acting by by pointwise multiplication.
Certainly this commutes with all other pointwise multiplication operators.

Symbol

The computation of the first order symbol ofD is mostly easy, since it involves
only the operators [D, f] that we have already computed. Namely, if x is a point
on the 2-sphere, then the symbol

σ(D)x : T
∗
xM 7−→ Hom(S+|x, S

−|x)

is the map
σ(D)x : df 7−→ [

(Yf+ iZf) : S+|x → S−|x
]

But we need to identify the fiber spaces S±|x in order to make the formula a bit
more useful.

Recall that
S±|x = S±/IxS

±

where Ix is the ideal of smooth functions on the 2-sphere that vanish at x. The
point x corresponds to some left coset uT in SU(2), and Ix corresponds to the
functions on SU(2) that are invariant under the right T -action and that vanish
on that coset. We find that

IxS
± = { f ∈ S± : f|uT = 0 }

So
S±|x = { f : uT → C : Xf = ±if }

= { f : uT → C : f(u exp(tX)) = exp(±it)f }
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which is a one-dimensional vector space, isomorphic to C via evaluation at
u ∈ uT . Of course, the choice of u within the coset is not canonical, so our
identification of the fibers with C is a bit arbitrary, but let us make it anyway.
Under the identification, the symbol becomes

σ(D)x : df 7−→ (Yf)(u) + i(Zf)(u),

where the object on the right is a complex number, to be viewed as a linear
operator from C to C by multiplication.

Now if (Yf)(u) = 0 and (Zf)(u) = 0, then Yf and Zf are zero on the whole
coset uT , because f is right T -invariant, and Xf is zero on uT too, so f vanishes
to second order on uT ⊆ SU(2), and therefore df = 0. We find that if σ(D)xdf

fails to be invertible, it is because df = 0. So D is elliptic.

A Family of Operators

If we define
S±n = { f : SU(2)→ C : Xf = (n± i)f },

then we can define an operator

Dn : S
+
n −→ S−n

by exactly the same formula Y + iZ as before (we just need to check that Y + iZ
does indeed map S+n into S−n , which is done in the same was as the n = 0 case).

Point by point in S2, the symbol ofDn is the same as the symbol ofD, if we
identify S±n |x withC by picking the same element of SU(2) that maps to x as we
did for D. Therefore the operators Dn are all elliptic. But overall the symbol
is different: for instance the K-theory classes associated to the symbols σ(Dn)
that we shall describe in the next section are distinct from one another.

The Fredholm index of the operator Dn certainly does depend on n. In fact
we shall see that

Index(Dn) = −n.

1.7 A Final Remark

Suppose that M is now a closed manifold (for a reason that we’ll point out
below) and that D is an elliptic linear partial differential operator on D.

We don’t know it yet, but the assumptions imply that D is a Fredholm op-
erator, say in the algebraic sense as a complex linear map

D : E −→ F.

So D has a Fredholm index, which is an integer.
There is another discrete (that is, resembling an integer) invariant that one

can attach toD. It is made from the symbol ofD, and it uses the K-theory ideas
we described in the first part of the lecture.
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To begin, the various cotangent vector spaces T∗xM assembled to form a
single smooth manifold T∗M of twice the dimension on M. This is the (total
space of the) cotangent bundle, of course.

Now the symbol attaches to each point of each cotangent vector space T∗xM
a linear operator from E|x to the vector space F|x. These are finite-dimensional
vector spaces, so it is automatic that the linear operators that constitute the
symbol are Fredholm. Moreover for all but a compact subset of T∗M (namely
the “zero section” consisting of the zero vectors in all the spaces T∗M, which is
compact because M is compact) the operators that constitute the symmbol are
invertible. This is so because of the definition of ellipticity.

So in summary, the symbol can be viewed as a family of Frehdolm operators
parametrized by the locally compact space T∗M that is invertible outside of a
compact set. And as a result there is an associated K-theory class

[σ(D)] ∈ K(T∗M).

An observation made very early on, essentially by Gelfand, is that the Fredholm
index ofD depends only on the symbol class [σ(D)]. So the index problem begins to
assume a definite form: understand K-theory and the properties of the symbol class
well enough to determine a formula for the index of D in terms of the symbol class.

2 06 September 2016, Erik van Erp

2.1 Dirac Operators

Before we consider Dirac Operators on manifolds, we present the “model”
Dirac Operator on Rn. The Dirac operator on Rn is constructed inductively.

• n = 1 : the Dirac operator on R is D = −i d
dx

.

The symbol of D is σ = −iξ, which is invertible if ξ 6= 0, so D is an
elliptic operator. If u, v are two distributions onR such thatDu = v, then
u(x) = c +

∫x
0
v(t)dt. Thus, u is “more regular” than v. In particular, we

see thatD is hypo-elliptic: If v is C∞ on some open set (a, b) ⊂ R, then u
is also C∞ on (a, b).

• n = 2 : the Dirac operator on R2 is the Cauchy-Riemann operator D =
∂
∂x

+i ∂
∂x

= ∂
∂z̄

. The symbol ofD is σ = ξ+iη. Since σ = 0 iff (ξ, η) = (0, 0),
we see that D is elliptic.

• n = 3 : . . . we will proceed inductively.

The Dirac operator on Rn is the map D : C∞ (Rn,C2r) 7−→ C∞ (Rn,C2r)
defined by

(2.1) D =

n∑
j=1

Ej
∂

∂xj
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Here n = 2r or n = 2r + 1, and Ej are 2r × 2r complex-valued matrices that
satsify:

• E2j = −In for j ∈ {1, . . . , n},where In is the n× n identity matrix.

• EjEk = −EkEj for j, k ∈ {1, . . . , n} and j 6= k.

The matrices Ej are defined inductively in the following way.

• n = 1 (r = 0) : E1 = (−i).

• n = 2 (r = 1) : E1 =

[
0 −i

i 0

]
, E2 =

[
0 −1

1 0

]
.

• n = 3 (r = 2): E1, E2 are the same as in the case n = 2, and E3 =[
−i 0

0 i

]
.

• n = 4 (r = 2): For j = 1, 2, 3 we replace the 2 × 2 matrix Ej from the

case n = 3 by the 2r × 2r = 4 × 4 matrix
[
0 Ej
Ej 0

]
, and add E4 =[

0 −I2
I2 0

]
,where I2 is the 2× 2 identity matrix.

• n = 5 (r = 2): E1, E2, E3, E4 are as in the case n = 4. Add E5 =[
−iI2 0

0 iI2

]
.

Etcetera.

Remark 2.1. D2 =
∑

−I2r ⊗ ∂2

∂x2
j

=


∆

∆
. . .

∆

 , where ∆ is the Lapla-

cian.

Aim: We want to define a Dirac operator D on a manifold and not just on
Rn. Consider the “model” Laplacian ∆ =

∑n
j=1−

∂
∂x2

j

on Rn. What, funda-

mentally, is the reason that a Laplacian ∆ exists on Riemannian manifolds?
The reason is that the structure group of a Riemannian manifold is O(n), the
group of orthogonal matrices of size n×n. This means that we can identity the
tangent space TpM ≈ Rn with the standard Euclidean space, up to an action
of the group O(n) on Rn.

=⇒ therefore ∆ is well-defined as an operator on each fiber TpM
=⇒ which implies, in turn, that the highest order part of ∆ is well-defined

onM,

∆ =
∑

−gij
∂2

∂xi∂xj
+ lower order terms.
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The difficulty is that the “model” Dirac operatorD onRn is not SO(n)-invariant,
where SO(n) is the group of special orthogonal matrices of size n×n. The first
modification is that we need the more sophisticated notion of equivariance to
replace invariance.
Equivariant vector bundle. LetM be a manifold with a group actionG×M→
M. A vector bundle E → M is an G equivariant vector bundle if the group G
acts on E in a way that lifts the action of G on M. This means that if g ∈ G,
then there is a vector bundle homomorphism g̃ : E → E that lifts the action
g :M→M,

E

��

G?
_oo

M G?
_oo

E

��

g̃ // E

��
M

g
//M

We will assume that M,E,G and all the actions are C∞. If E is a G equivariant
vector bundle, then g ∈ G acts on sections s ∈ C∞(E) by

(g, s)(x) = g̃(s(g−1x))

An operator D : C∞(E) → C∞(E) is called G equivariant if it commutes with
the action of g ∈ G on sections,

C∞(E)

D

��

g // C∞(E)

D

��
C∞(E)

g
// C∞(E)

Unfortunately, D is not SO(n)-equivariant. However D is equivariant for an
action of the spin group. Recall that for n ≥ 3 the fundamental group of SO(n)
is the two element group Z/2Z. The spin group Spin(n) is the connected dou-
ble cover of SO(n) (for n ≥ 2), which is simply connected if n ≥ 3,

Spin(n)

2:1
����

SO(n)

The group Spin(n) acts on Rn (via its map to SO(n)), and we will see that it
also acts on C2

r

(by an action that does not factor through SO(n)).

Theorem 2.2. The Dirac OperatorD =
∑n
j=1 Ej

∂
∂xj

on Rn is Spin(n)-equivariant.

Proof. The proof uses facts about Clifford algebras that will be discussed in the
next section.
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2.2 Clifford Algebras

The Clifford algebra Cn is the universalR-algebra with n generators e1, . . . , en
and relations

e2j = −1 ejek = −ekej j 6= k

Note that these relations are satisfied by the matrices Ej used in the definition
of the Dirac operator on Rn in Equation (2.1).

The relations easily imply that Cn is spanned (as an R vector space) by the
2n products ei1ei2 · · · eip with i1 < i2 < · · · < ip (including 1 for p = 0).
Exercise(tricky): dim(Cn) = 2n, i.e., the products ei1ei2 · · · eip are linearly in-
dependent.

Consider the subspace

g = span{eiej : i < j, } ⊂ Cn

The subspace g is closed under commutators in Cn, and is therefore a Lie alge-
bra. This can be easily checked by direct calculation. For example,

[eiej, ejek] = eiejejek − ejekeiej = −2eiek.

In fact, we have an isomorphism of Lie algebras g ∼= so(n), where so(n) is the
Lie algebra of skew n× n real-valued matrices. This isomorphism is given by

1

2
eiej 7−→


1

· · · −1
...


where the matrix on the right has −1 in the ith row and jth column, and 1 in
jth row and ith colum, 0 elsewhere. Furthermore, we can define the following
Lie algebra representation

dρ : g −→ End (Rn) dρ(α)v = αv− vα α ∈ g, v ∈ Rn

where we view Rn = span{e1, . . . , en} as a subset of Cn. The fact that αv −
vα ∈ Rn is established by direct calculation. For example, [eiej, ej] = eiejei −
ejeiej = −2ei.

Note that SO(n) = exp so(n) ⊂MnR, the space of n×n real-valued matri-
ces. Likewise, we can exponentiate the Lie algebra g in the Clifford algebra Cn
and we obtain a Lie group,

G = exp g =

{
g =

∞∑
k=0

1

k!
αk : α ∈ g

}
⊂ Cn

The group G is represented on Rn by conjugation

(2.2) ρ : G 7−→ End (Rn) ρ(g)v = gvg−1 ∈ Cn.

17



Then dρ is the Lie algebra representation induced by ρ, and so we have in fact

ρ : G 7−→ SO(n)

To establish that G is isomorphic to Spin(n) we only need to prove that ρ is not
one-to-one. The following caclulation does this.
Calculation: Consider te1e2 ∈ g, t ∈ R. Note that (e1e2)2 = e1e2e1e2 = −1.
Therefore,

exp(te1e2) = cos(t) + sin(t)e1e2

For t = π, we have exp(πe1e2) = −1 ∈ Cn. Therefore −1 ∈ G. From Expres-
sion (2.2), we see that ρ(−1) = In ∈ SO(n), which establishes thatG ∼= Spin(n).
Back to the Dirac operator: Consider the map

(2.3) c : Rn 7−→ End
(
C2

r
)

c(v) =

n∑
j=1

vjEj

where n = 2r or n = 2r+ 1, and Ej are the 2r× 2r matrices as in Equation (2.1).
Since c(ej) = Ej, and the matrices Ej satisfy the defining relations of the Clif-
ford algebra Cn, by universality of Cn we see that c extends to a representation
of the Clifford algebra

c : Cn −→ End
(
C2

r
)

This representation, in turn, restricts to a (unitary) representation of the spin
group,

c : Spin(n) −→ End
(
C2

r
)

This is the spinor representation.
Now:

• G = Spin(n) acts on Rn (by conjugation g 7→ gvg−1 ∈ Cn).

• G acts on C2
r

via c(g) and on End
(
C2

r)
via T 7→ c(g)Tc(g)−1.

It is now immediately clear that the R linear map

c : Rn 7−→ End
(
C2

r
)

c(v) =

n∑
j=1

vjEj

is Spin(n)-equivariant, by inspecting the commuting diagram

v_

g

��

� // c(v) =
∑n
j=1 vjEj_
g

��
gvg−1

� // c(gvg−1) = c(g)c(v)c(g)−1

18



But the map c is just the symbol of the Dirac operator on Rn,

D =

n∑
j=1

Ej
∂

∂xj
: C∞ (Rn,C2r) 7−→ C∞ (Rn,C2r)

The symbol of D is σ =
∑
ξjEj = c(ξ), with ξ = (ξ1, . . . , ξn) ∈ Rn. In

other words, the map c is the symbol of D. Since the symbol of D is Spin(n)-
equivariant, andD is a constant coefficient operator on Rn, it follows thatD is
Spin(n)-equivariant. This establishes Theorem (2.2).

�

Next, let M be a Riemannian Manifold oriented SO(n) structure group.
The frame bundle

F = {(p, v1, . . . , vn) : p ∈M, (v1, . . . , vn) = oriented orthonormal basis for TpM}.

with F/SO(n) =M fiber bundle overM and TM = F ×
SO(n)

Rn in which (f, v) ∼

(f.g, g−1v).
Spin structure onM:

P

~~
2:1

����

M

F

``

= double cover of Fwith connected fibers

3 07 September 2016, Nigel Higson

Our goal today is to move from elliptic partial differential operators to Fred-
holm operators. We’ll reach the goal in Theorem 3.17, but along the way there
will be some important milestones. Good news for the functional analysts:
today there will be Hilbert spaces . . .

So we’ll start with a linear partial differential operator (PDO)

D : E→ F

on some manifold M, as in Lecture 1. For the most part you can think of E,F
as the spaces of smooth functions on M, but as we mentioned earlier the addi-
tional generality discussed in Lecture 1 is important.

We’re going to relocate D to the Hilbert space context, and the first step is
to manufacture Hilbert spaces out of E and F. We shall assume given
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• a pointwise inner product

E ⊗
C∞(M)

E
< , >−−−−→ C∞(M),

where E is denotes the complex conjugate space of E, and

• a smooth measure onM.

We get from these things a Hilbert space, which we denote EL2 . And similarly
we get FL2 . We want to consider our operator D as an unbounded operator

D : EL2 −→ FL2

initially with doman Ecomp (the compactly supported elements of E). You can
think of Ecomp as the compactly supported functions onM.

Along the initial domain Ecomp we’ll also be concerned with two other do-
mains, both of which are more convenient than Ecomp for functional analysis.
First, we denote by

D� : F −→ E

the formal adjoint of D, which is the PDO defined by

〈Dw1, w2〉F
L2

= 〈w1, D�w2〉E
L2

for allw1 ∈ Ecomp, w2 ∈ Fcomp. It is a fact (which comes down to the integration
by parts formula) that:

Lemma 3.1. There is a unique formal adjoint D� as above.

The first of our two domains us the minimal domain:{
u ∈ EL2 : u = lim

n→∞un, (un)n∈N ⊂ Ecomp and v = lim
n→∞Dun exists

}
.

This is larger than the initial domain, and D extends to it by setting v = Du.
(For the functional analysts, this is the so-called minimal closed domain, hence
the name.) The second is the maximal domain:{

u ∈ EL2 : ∃v ∈ FL2 , 〈u,D�w〉E
L2

= 〈v,w〉F
L2
, for all w ∈ Fcomp

}
.

This is is larger than the minimial domain, and again D extends by setting
Du = v.

Our first helpful (and not trivial) result is this:

Theorem 3.2. If D has order 1 and is compactly supported, then the Maximal and
Minimal domains agree.

The theorem is not true for higher order (this is a challenging exercise).
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3.1 Self-adjoint and essentially self-adjoint operators

Let H be a Hilbert space. Suppose D : H −→ H is unbounded such that

〈Du, v〉 = 〈u,Dv〉

for all u, v ∈ dom(D), the domain of D. In the abstract Hilbert space context
one says that D is symmetric. In the PDO context, where dom(D) will be the
initial domain Ecomp, the symmetry condition in the display is just the formal
self-adjointness condition D = D�.

Symmetric operators were studied by von Neumann, who worked out that
the good symmetric operators from the point of view of spectral theory are
those which have the additional property that the operators

(D± iI) : dom(D) −→ H,

have dense range, in which case we have bounded operators (D ± iI)−1 since
the operators in the display are always injective, and indeed bounded below.
Starting with these resolvent operators

(D± iI)−1 : H −→ H

we get a von Neumann symbol

C0(R) −→ B(H),

a C∗-algebra homomorphism that maps (x± i)1 to the resolvent operators (this
property characterizes the symbol). The symbol extends (uniquely)to a C∗-
algebra homomorphism

Cb(R) −→ B(H).

So as long as the symbol exists, we have operators

eitD, e−tD
2

(when t is nonnegative), D(I+D2)−1/2, etc.

The good operators have an official name: essentially self-adjoint.
If D is a PDO, then “essentially self-adjoint” means formally self-adjoint,

plus Maximal domain = Minimal domain.

Remark 3.3. The use of the term “symbol” here is not standard, but it is justified
(we think) by the following comparision. Assume for simplicity that D is a
formally self-adjoint operator of order q acting on a closed manifold M, and
assume further, also for simplicity, that E = C∞(M). The (PDO) symbol is a
smooth function

σ : T∗M −→ iqR

it induces a C∗-algebra homomorphism

σ∗ : C0(i
qR) −→ Cb(T

∗M).
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Incidentally ellipticity implies that the symbol is a proper function in the topo-
logical sense, and therefore it corresponds to a C*-homomorphism

σ∗ : C0(i
qR) −→ C0(T

∗M).

There is therefore an interesting formal analogy between the von Neumann
symbol and the PDO symbol . . .

Remark 3.4. There is a helpful 2× 2 matrix trick that can be used to reduce the
study of operators for whichD 6= D� to the formally self-adjoint case. Consider

D+ : E+ −→ E−

where perhaps D+ 6= D�+ . Define D− := D�+, and form

D =

[
0 D−

D+ 0

]
: E+ ⊕ E− −→ E+ ⊕ E−.

This operator is formally self-adjoint.

3.2 Elliptic operators

From now on we shall be studying elliptic PDO’s

D : E −→ F

of some order q, mostly but not exclusively on closed manifolds. The first of
two fundamental theorems about these operators is as follows:

Theorem 3.5. If M is compact and D elliptic, then the Maximal and Minimal do-
mains agree. So if in addition D is formally self-adjoint, then it is essentially self-
adjoint.

Remark 3.6. In the non-compact case, the theorem is true with the following
modification: if f ∈ C∞

comp(M), then

f · {maximal domain} = f · {minimal domain}.

The next theorem is even more fundamental:

Theorem 3.7. If M is compact, then all the minimal domains of all elliptic operators
D of the same order q that act on E are equal to one another. Moreovoer the com-
mon minimal domain of elliptic operators of order q is the intersection of all minimal
domains of all PDO of order q or less.

Remark 3.8. If M is not compact, then there is a modification like the one in
the previous remark: all domains agree after multiplication pointwise by any
smooth, compactly supported function f onM. Moreover the common (in this
sense) domain agrees with the interection described above after pointwise mul-
tiplication by f.
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The theorem summarizes just above everything we need to know about
the functional analysis of elliptic operators. The proof is not easy, but we can
discuss part of it. The idea is to reduce from the case of general operators to the
case of constant coeefficient operators (in some coordinate system), and then
apply the following argument:

Proof for constant coefficient operators on Tn = Rn/Zn. Thanks to Fourier, we have
a unitary isomorphism

L2(Tn)
∼=−→ `2(Zn).

Then, under the constant coefficient assumption the operator D =
∑
aα∂

α

corresponds poinwise multiplication by
∑

|α|=q aα(in)
α. These multiplication

operators are easy to analyze directly.

3.3 Rellich and Sobolev

The following results of Rellich and Sobolev pertaining to the common domain
will lead us towards the conclusion Elliptic =⇒ Fredholm.

Definition 3.9. Assume that M is compact. Fix q > 0. Let EL2
q

be the common
domain of Theorem (3.7) for elliptic PDO of order q. This is called the qth
L2-Sobolev space associated to E.

Lemma 3.10 (Rellich lemma). IfM is compact and q > 0, then the inclusion

EL2
q
−→ EL2

is/factors through a compact operator. Moreover, it is/factors through a Schatten class
operator of type dim(M)/q+ ε for all ε > 0.

Remark 3.11. If M were not compact, the lemma would say instead that the
composition

EL2
q
−→ EL2

q

f−→ EL2

is compact and indeed Schatten class, as above, for any f ∈ C∞
comp(M).

Theorem 3.12 (Sobolev embedding theorem). IfM is compact, then⋂
q

EL2
q
= E.

Remark 3.13. IfMwere not compact, we would have

f ·
⋂
q

EL2
q
= f · E

for f ∈ C∞
comp(M).
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3.4 Eigenfunctions, Hypoellipticity, Hodge, and the Fredholm
property

We’re ready to draw some important conclusions after all the hard work of the
previous section (that we didn’t actually do).

3.4.1 Eigenfunctions and eigenvalues

If M is compact and D is elliptic and formally self-adjoint, then (D + iI)−1 is
bounded, normal, and compact (by the Rellich lemma (Lemma (3.10))).

So, by Hilbert’s theory of compact operators,

Theorem 3.14. IfM is compact andD is elliptic and formally self-adjoint, then there
is a basis for EL2 consisting of eigenfunctions for D. Moreover the eigenvalues con-
verge to infinity (in absolute value).

Moreover, due to Sobolev, the eigenfunctions are smooth, since from the
eigenvalue equation it is clear that they lie in the (maximal) domains of all
powers of D (and all powers are elliptic).

Corollary 3.15. IfM is compact andD is elliptic, then the kernel ofD in its maximal
domain is equal to its kernel on E, and the kernel is finite-dimensional. Moreovoer the
operator is bounded below (in the Hilbert space norm) on the orthogonal complement
of the kernel.

Proof. Use the 2×2matrix trick to reduce to the formally self-adjoint case, then
apply the previous theorem.

3.4.2 Hypoellipticity

Suppose that M is compact and D is elliptic. Suppose Du = v, where v is
smooth everywhere. Then, u ∈ dom(Dk) for all k, so u is smooth.

The above is an easy version of hypoellipticity. The fuller version, that if v
is smooth on U, then u is smooth on U, is easy to get, too, using smooth cutoff
functions to reduce to the case we have just considered. It’s a fun exercise.

3.4.3 Hodge Theorem

Theorem 3.16. Suppose thatM is compact and let

D : E −→ F

be an elliptic PDO. If v ∈ F and if

v ⊥ ker
(
D� : F → E),

then v = Du for some u ∈ E.
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Proof. Elementary Hilbert space theory tells us that v, being orthogonal to the
kernel of D�, is in the closure of the range of D in FL2 . But by the corollary of
the previous section the range of D as it acts on its minimal domain is closed
in FL2 . So can write v = Duwith u in the miminal domain. But hypoellipticity
now implies that u is smooth.

3.4.4 Fredholm Property

From Hilbert and Hodge we see that if

D : E −→ F

is an elliptic operator on a compact manifold, then both ker(D) (on smooth
functions) and coker(D) (on smooth functions) are finite dimensional. so D is
Fredholm. That is,

Theorem 3.17. IfM is compact and D is elliptic, then D is Fredholm.

4 08 September 2016, Erik van Erp

Theorem 4.1. [Atiyah-Singer] If M is a closed (compact without boundary) spin
manifold, and D the Dirac operator ofM, then

(4.1) IndexD =

∫
M

Â(TM).

In this lecture I will describe in detail the meaning of the left hand side and
the right hand side of Equation (6.1). We begin with...

4.1 Left Hand Side of Equation (6.1) of Atiyah-Singer

We need to explain what the Dirac operator is for a spin manifold. In Section 06
September we constructed the "model" Dirac operator onRn. Forn = 2r, 2r+1:

D : C∞ (Rn,C2r) −→ (
Rn,C2

r
)
,

is defined by

D =

n∑
j=1

Ej
∂

∂xj

where Ej are 2r × 2r matrices with entries 0,±1,±i. The main property of D is
that its square D2 is a Laplacian, and that D is Spin(n) equivariant.

Spin-manifold: Let M be an oriented Riemannian manifold. Choose a good
open cover of M and local trivializations: TM|Ui

≈ Ui × Rn . Then TM is
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represented by transition functions ψij : Ui ∩ Uj −→ SO(n). Locally, we can
lift each smooth map ψij to the spin group:

Ui ∩Uj

ψ̃ij %%

ψij // SO(n)

Spin(n)

OOOO

For each triple intersectionUi∩Uj∩Uk, we have the cocyle conditionψijψjkψki =
I ∈ SO(n). This implies that

ψ̃ijk = ψ̃ijψ̃jkψ̃ki = ±1 ∈ Spin(n)

In other words, ψ̃ijk defines a 2-cocyle with values in Z/2Z. The cohomology
class of this 2-cocycle does not depend on the choice of trivializations. It is
called the second Stieffel-Witney class,

w2(M) =
[
ψ̃
]
∈ H2(M,Z/2Z)

If w2(M) = 0, then ψ̃ijk is the boundary of a 1-cochain Ui ∩Uj → Z/2Z. This
1-cochain tells us how to correct the original choices ψ̃ij to obtain maps for
which

ψ̃ijψ̃jkψ̃ki = 1

Such a choice of lift ψ̃ij is called a spin structure.

Spinor bundle: If we have a spin structure {ψ̃ij}, as above, then the spinor rep-
resentation c : Spin(n) → GL (2r,C) of Expression (2.3) gives rise to transition
functions

c ◦ ψ̃ij : Ui ∩Uj → GL (2r,C)

The spinor bundle S associated to the spin structure ψ is the complex vector
bundle with fiber C2

r

defined by the transition functions c ◦ ψ̃ij.
Recall that the R-linear map

c : Rn −→ End
(
C2

r
)

c(v) =

n∑
j=1

Ejvj

is Spin(n)-equivariant. Therefore we have a well-defined global map

c : TpM −→ End(Sp) p ∈M

Furthermore,{
E2j = −I, ∀j
EiEj = −EjEi,∀i, j, i 6= j

} ⇐⇒ c(v)2 = −‖v‖2I, ∀v ∈ Rn

26



shows that we also have c(v)2 = −‖v‖2I for v ∈ TpM. In summary, by choosing
a spin structure ψ̃ onM, we obtain a spinor bundle S equipped with some extra
structure:

(4.2) Spinc structure


c : TpM −→ End(S)

c(v)2 = −‖v‖2I

dim(Sp) = 2r

 .
Remark 4.2. We have seen that a spin manifold has a Spinc structure. But there
are other ways in which Spinc structures arise. For example, a complex mani-
fold is Spinc:
T1,0M = holomorphic tangent bundle with dimRM = n = 2r, dimCM = r

S =
∧0
T1,0M dim(Sp) = 2r.

z ∈ T1,0M = TpM
c−→ End(S)

c(z)α = z∧ α− zxαwith α ∈ Sp
Exercise: c(z) = −|z‖2I.
This defines a natural Spinc structure associated to a complex structure. But

there are many other geometric structures that give rise to a Spinc structure.
The following diagram gives an overview.

(spin) +3 (Spinc) contact

rz

symplectic

ow
stably almost complex

KS

almost complex

KS

(complex)

KS

Now, that we know what a spin manifold is, we move on to the Dirac oper-
ator on a spin manifold. The "model" Dirac operator on Rn,

DRn : C∞ (Rn,C2r) −→ C∞ (Rn,C2r)
is Spin(n) equivariant, and therefore for every point p ∈ M we have a well-
defined Dirac operator on the tangent fiber,

DRn  Dp : C∞ (TpM, Sp) −→ C∞ (TpM, Sp)

Now eachDp is an operator on TpM, not onM. But in a small neighborhood of
p, TpM is a good approximation of M. What the family of operators {Dp, p ∈
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m} defines is, in fact, the highest order part of a differential operator onD onM,

{Dp, p ∈M} D : C∞(S) −→ C∞(S)

The choice of the order zero term ofD is arbitrary, but it should be chosen such
that D is formally self-adjoint. Regardless of the choice of the order zero term,
the principal symbol of D is precisely the map c : TpM → End(Sp). We see
from c(v)2 = −‖v‖ · I that c(v) is invertible as long as v 6= 0, which means,
by definition, that D is elliptic. Therefore as long as we choose the order zero
term such that D is formally self-adjoint, it will also be essentially self-adjoint
(i.e., the minimal and maximal domains of D are equal, and the closure of D is
self-adjoint).

The index that appears at the left hand-side of Equation (6.1) is not

IndexD = dim kerD− dim cokerD

= dim kerD− dim kerD∗

SinceD is essentially self-adjont, this index is zero. To understand the left hand
side of Equation (6.1) we need to consider one final bit of structure.

Grading: We now need to restrict ourselves to even dimensional manifolds. If
n = 2r, then the inductively defined matrices E1, . . . , En are all off-diagonal,

E1, . . . , En =

[
0 ∗
∗ 0

]
Thus, the spinor vector space C2

r

= W splits into two vector spaces W =

W+ ⊕ W− such that each Ej maps W+ → W− and W− → W+. Therefore
each of the subspacesW+,W− is invariant under all products EiEj. Recall that
Spin(n) = exp g, where g = span{eiej : i 6= j} in the Clifford algebra Cn.
Therefore every element g ∈ Spin(n) is represented on W by a matrix of the

form c(g) =

[
∗ 0

0 ∗

]
. In other words, the subspacesW+ andW− are invariant

under the action of Spin(n).
Fact: W+,W− are irreducible representations of Spin(n) that do not factor

through representations of SO(n) (they are so-called 1
2

-spin representations),
andW+ andW− are the two smallest such representations.

It follows that the split W = W+ ⊕W− also exists for the spinor bundle
S = S+ ⊕ S− (if n = 2r even). Moreover, by the way it is defined, the Dirac
operator maps positive spinors to negative spinors,

D+ : C∞(S+) −→ C∞(S−)

Then the “total” Dirac operatorD defined before can be represented as the 2×2
matrix of operators

D =

[
0 D∗+
D+ 0

]
,
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corresponding to the splitting S = S+ ⊕ S−.
The index on the left hand side of Equation (6.1) is really the index of D+,

IndexD+ = dim kerD+ − dim cokerD+ = dim kerD+ − dim kerD∗+.

4.2 Right Hand Side of Equation (6.1) of Atiyah-Singer

IndexD =

∫
M

Â(TM).

The left hand side IndexD is a global invariant. For example, the kernel of D—
i.e., the space of solutions of the differential equationDs = 0 for section s in the
spinor bundle S+—is locally an infinite dimensional space. Ds = 0 is equivalent
to D∗Ds = 0, and D∗D is a Laplace-type operator. In an open subset of Rn the
space of harmonic spinors (solutions ofD∗Ds = 0) is infinite dimensional, and
the same is true in small open subsets of a manifold.

However, to solveDs = 0 globally, you need to “propagate” a local solution
across the manifold. If the manifold is closed, only in very exceptional cases
will the local solution propagate in such a way as to “match up” to a globally
defined smooth solution. Indeed, as we know, the solution space of Ds = 0 is
finite dimensional ifM is closed.

Thus, the index of a geometrically defined differential operator, like D, de-
pends on the global topology of the manifold.

By contrast, the right hand side of the formula is an integral of a function
Â(TM), which, as we will see, is a polynomial expression in the Riemannian
curvature tensor ofM. Curcature is of course a purely local phenomenon.

Â - class/genus. On a Riemannian manifold we have the Riemannian curva-
ture tensor

R ∈ C∞ (∧2T∗M⊗ End(TM)
)

which can be thought of as an End(TM) valued 2-form. If we choose an or-
thonormal basis for TpM at a point p ∈ M, then R is represented concretely
as an n × n skew symmetric matrix of 2-forms (on M). We want to extract
differential forms onM from the curvature R.

Definition 4.3. A polynomial p : so(n) −→ R in the coefficients of n×n skew-
symmetric real matrices is O(n)-invariant if

p(gAg−1) = p(A) ∀A ∈ so(n), g ∈ O(n)

How do we get such a polynomial? Skew symmetric matrices can be brough
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in a normal form:

∀A ∈ so(n),∃g ∈ O(n) such that gAg−1 =


0 −x1
x1 0

0 −x2
x2 0

. . .


Therefore an invariant polynomial p is entirely determined by its value on ma-
trices in normal form, which is a polynomial in the variables x1, . . . , xr. Fur-
thermore, theO(n)-action can permute the values x1, ..., xr, and even exchange
each pair xj,−xj (i.e., change the sign of each xj). It follows that p, when evalu-
ated on matrices in normal form, must be a symmetric polynomial in x21, . . . , x

2
r .

It is not hard to prove the following result.

Proposition 4.4. There is a ring isomorphism

• {O(n) − invariant polynomials p : so(n) −→ R}

•
{

symmetric polynomials in x21, . . . , x
2
r

}
.

We wish to apply an invariant polynomial p to the Riemannian curvature
tensor R. While R is (in a local representation) a skew symmetric matrix, its
coeffiecients are 2-forms instead of real numbers. But note that∧even

TpM is a commutative algebra

Thus, it makes sense to evaluate an invariant polynomial p : so(n)→ R on the
coefficients of the curvature matrix R.

Definition 4.5. Given an O(n)-invariant polynomial p : so(n) :−→ R. Then

p (TM) := p

(
R

2π

)
∈ Ω•(M).

Note that each xj is replaced by a 2-form, and hence x2j by a 4-form. Thus,
p(R) is a form in degrees 0, 4, 8, 12, . . . .

Fact: p(TM) is a closed form
Fact: The de Rham cohomology class [p(TM)] ∈ H•dR(M,R) does not de-

pend on the metric.
It follows that every symmetric polynomial in formal variables x21, . . . , x

2
r

gives rise to a smooth invariant of a closed manifolds. If we orient M, then for
every pwe can define the real number

p(M) :=

∫
M

p(TM) ∈ R

It is a deep result of Novikov that these numbers are, in fact, topological invari-
ants ofM.
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Remark 4.6. The Pfaffian Pf : so(n)→ R is the polynomial that, when restricted
to matrices in normal form, is defined by Pf(x) = x1x2 · · · xn. However, this
expression is not O(n)-invariant but only SO(n)−invariant. Conjugation by a
matrix in O(n) can change the sign of any of the variables xj. But conjugation
by a matrix in SO(n) can only change the signs of an even number of the vari-
ables x1, . . . , xr. Thus the product x1x2 · · · , xr is invariant for SO(n) but not
O(n).

It follows that the differential form Pf(R) is well-defined on every oriented
Riemannian manifold. We thus obtain an invariant of closed oriented mani-
folds,

Pf(M) =

∫
M

Pf(
R

2π
)

The Chern-Gauss-Bonnet theorem identifies this number as the Euler number∫
M

Pf

(
R

2π

)
= Euler number ∈ Z

This classical theorem is a special case of the Atiyah-Singer theorem. Note that
the invariant is always an integer in this case. This justifies, to some extent, the
factor 2π in the definition p(TM) = p(R/2π).

For surfaces (n = 2, r = 1) the Riemann curvature is of the form R =[
0 −κ

κ 0

]
, where κ is the Gaussian curvature. In this case Pf(x) = x1 and

so Pf(R/2π) = κ/2π. The Chern-Gauss-Bonnet theorem reduces to the much
simpler Gauss-Bonnet theorem,∫

M

κ

2π
= Euler number

The Â-genus Â(M) ∈ R is an invariant of closed manifolds defined in the
same way by specifying an invariant polynomial Â(x). We will define the Â
polynomial next time in Section 12 September.

5 09 September 2016, Nigel Higson

Throughout this lecture we shall be dealing with a linear elliptic PDO

D+ : E+ −→ E−

on a closed manifold M. We’ll assume that D is of order one, although today
that is no more than a small convenience, and we shall use the 2 × 2 matrix
trick to convert D into a formally self-adjoitn operator

D =

[
0 D−

D+ 0

]

31



acting on E = E+ ⊕ E−.
The Atiyah-Singer index formula expresses the index of D+ as an integral

(5.1) Index(D+) =

∫
M

a certain form onM ,

at least for Dirac operators, where form comes from the world of geometry
(connections and curvature). Our goal today is to calculate that irrespective of
geometric considerations

(5.2) Index(D+) =

∫
M

a certain function onM dm.

An advantage of equation (5.2) over (5.1) is that the equality will result from
a rather direct and general calculation, and in principal enough students locked
in a room for long enough could actually compute the integral. A huge disad-
vantage of (5.2) is that the calculation, if done using only the technoloyg we’ll
develop today, would be extraordinarily complicated: in principal it would in-
volve calculating all the partial derivatives of all the coefficients of D+ (and
a bit more) to order the dimension of M. That’s a lot of partial derivatives.
In contrast the integral provided by the Atiyah-Singer formula involves only
second order derivatives.

What eventually emerges is that for “the” Dirac operator (a term we shall
have to explain), not only are the two integrals the same (this is what the index
theorem says) but the integrands are the same, point by point. So all those
higher derivatives do not in fact contribute to the integrand, let alone to the
integral. This is the phenomenon of miraculous cancellations, as McKean and
Singer called it.

5.1 Traces of operators

We begin with a quick review of the the trace in the Hilbert space context. Fix a
bounded Hilbert space operator T . If we have a diagram of bounded operators

EL2

!!

T // EL2

EL2
k

==

with k� 0 (actually k > dim(M)/2), then T is a Hilbert-Schmidt operator and
can be representated as a kernel

kT ∈ E⊗ E

in the Hilbert space tensor product. If k is still larger (k > dim(M), in fact),
then T is a trace-class operator, and kT can be represented as a sum

kT =
∑

ej ⊗ fj

32



with ∑
‖ej‖ · ‖fj‖ <∞

The trace of T is then
Trace(T) =

∑
〈fj, ej〉.

Keeping in mind the definition of the inner product (see Lecture 3), we find that
the Trace has the form of an integral overM (of the sum of the pointwise inner
products of ej with fj). We are making (a very small bit of) progress towards
equation (5.2).

To make further progress, we need to represent the index as a trace. There
are many options here; we’re going to examine a strategy originally outlined by
Atiyah and Bott (see for example Atiyah’s 1966 ICM address). Actually, we’ll
begin with a modification suggested by Hörmander) that is perhaps easier to
understand on a first encounter.

5.2 Heat Equation Approach to the Index Theorem

Use the functional calculus (part of von Neumann’s symbol package) to form
the family of operators

e−t∆ : EL2 −→ EL2 ,

where ∆ = D2 and t > 0. The ranges of these operators lie in EL2
k

for all k,
so the operators belong to the trace class. Rather than study the traces of the
operators e−t∆ themselves we shall study Trace(γe−t∆),where

γ =

[
1

−1

]
: E −→ E.

Lemma 5.1. Trace(γe−t∆) is equal to Index(D+) for all t > 0.

Proof. Let’s first show that the index is independent of t. Calculus gives

d

dt
Trace(γe−t∆) = −Trace(γ∆e−t∆)

= −Trace(γD2e−t∆)

Next, we use the trace property to compute that

Trace(γD2e−t∆) = Trace(γDe−t∆D)

= Trace(DγDe−t∆).

But D and γ anticomute, so

Trace(DγDe−t∆) == Trace(γD2e−t∆).

As a result,
Trace(γD2e−t∆) = −Trace(γD2e−t∆),
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so the derivative is zero. Now recall that there exists an orthonormal basis
(en)n∈N for EL2 consisting of (smooth) eigenfunctions for D. We have that
e−t∆en = e−tλ

2

en, and we see therefore that e−t∆ converges, even in the trace
norm, to the orthogonal projection onto the kernel of D. As a result,

lim
t→∞ Trace(γe−t∆) = Index(D+),

as required.

The operators e−t∆ are closely related to the heat equation

du

dt
= −∆u,

and Hörmander’s proposal was to take advantage to the theory of this PDE in
the service of index theory. The point is that heat equation techniques show
that for a second order ∆ (subject to some hyptotheses that are certainly satis-
fied when D is the Dirac operator and ∆ = D2) there is an asymptotic expan-
sion

Trace(e−t∆) ∼
∑

n≥− dim(M)

ant
n/2

as t → 0. Moreover each of the coefficients is the integral over M of an ex-
plicit (but complicated) expression in the coefficients of∆ and their derivatives.
More on this later (in the lecture after the next one).

5.3 Zeta Function Approach to the Index Theorem

Let us turn now to the original proposal of Atiyah and Bott, who suggested
that one should study, instead of the operators e−t∆, the zeta function

Trace
(
γ(I+ ∆)−s

)
.

As with the heat operators e−t∆, it is easy to see that the trace is a constant func-
tion of s, and that the constant is Index(D+). Moreover it can be shown (and
we shall show it in the lecture after next) that the value at s = 0 can be com-
puted by local methods, like the coefficients in the asymptotic expansion. So
the the zeta function above offers an alternative to the heat equation approach
to the index theorem (and actually, as we have noted, it was the original local
approach).

Before we can go any further, we need to address the following impor-
tant issue: the operators (I + ∆)−s are only in the trace class when Real(s) >
dim(M)/2, so it does not (yet) make sense to consider the value of the zeta
function at s = 0. The issue is resolved by the following remarkable result:
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Theorem 5.2. [Minakshisundaram-Pleijel] Let ∆ be any (2nd order), positive, invert-
ible, elliptic PDO with scalar symbol,1 then Trace(∆−s) extends to a meromorphic
function on C with only simple poles.

In the remainder of this lecture we shall sketch a proof of this theorem.

5.3.1 Traces on the Algebra of Differential Operators

The key idea (in the proof that we shall present) is well illustrated by the proof
of the following little result:

Proposition 5.3. There are no nonzero traces on the algebra of differential operators
onM

Lemma 5.4. There are functionsA1, . . . , BN and vector fields B1, . . . , BN onM such
that

1.
∑

[Bi, Ai] = nI, where dim(M) = n, and

2. if T is any differential operator of order q, then

(n+ q)D =
∑

[BiD,Ai] + R,

where the remainder R has order less than q.

Proof. If the manifold is Rn, then let Ai = xi and Bi = ∂
∂xi

. If the manifold is
notRn, use local coordinate charts and partitions of unity to reduce to the case
of Rn.

Note that in (2), the expression [BiD,Ai] = D[Bi, Ai] + Bi[D,Ai], in which
the first term provides the constant n in (n + q) by (1), and q comes from the
second term.

Proof of the Proposition. If τ is any trace on the algebra of differential operators,
then applying it to both sides of the identity in the lemma we find that

(n+ q)τ(D) = τ(R)

since the trace vanishes on commutators. So if the trace is zero on every oper-
ator of order less than q then it vanishes on every operator of order q. But the
trace does indeed vanish of every operator of order −1 (there are none).

1Recall that the symbol is a function valued in matrices; we require that the matrices be mul-
tiples of the identity. This hypothesis will be used in the following way: if T is any differential
operator acting on E, of order q, then the commutator [T, ∆] has order at most q + 1.
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5.3.2 Algebras of Holomorphic Families of Operators

We’re going to prove the meromorphic continuation theorem by applying the
idea of the previous section to the algebra2 C of families of differential operators
(parametrized by z ∈ C) that have asymptotic expansions of the form

T1∆
az+b1 + T2∆

az+b2 + · · · ,

where a and the bk are nonpositive integers, and if we define

order
(
T∆az+b) = order(T) + 2(az+ b),

then the order of the terms is strictly decreasing. We won’t spell out the nature
of the asymptotic expansion, but it will be clear from the proofs below (which
supply examples) that the definition ought to be.

Let’s take it for granted, for a moment, that the above is indeed an algebra
(obviously the issue is how to compute the product of two families, as above).
We want to define a trace, argue as in the previous section that the trace must
be zero, and then deduce the meromorphic continuation theorem from the van-
ishing of the trace.

The range of the trace will be a vector space QN, rather than the complex
scalars (actually, as the notation suggests, there will be a trace for eachN ∈ N).
It is defined as follows

(i) Given N ∈ N, let AN be the vector space of functions that are holomor-
phic in the region Real(z) > N. These spaces form a directed system

A1 −→ A2 −→ · · ·
and we define A to be the direct limit. It consists of functions that are
defined and analytic in some right half-space in C.

(ii) Next, let M−N be the space of functions that are meromorphic in the re-
gion Real(z) > −N, with only simple poles, and analytic in some right
half-space.

(iii) Finally, define QN to be the quotient vector space

QN = A/M−N.

There is an obvious functional

τN : C −→ QN

2Actually it is technically better to work with the bimodule over the algebra of differential
operators that consists of those families with a = −1 in the definition below, but we’ll allow some
slight inaccuracies and work with algebras rather than bimodules. This is because we want to
emphasize the relation between the proof of the M-P theorem and the proof of the proposition in
the previous section.

36



that maps T∆az+b to its trace function z 7→ Trace(T∆az+b). If the order of
T∆az+b is sufficiently small then the trace function is defined on Real(z) > −N

and is analytic there (and in particular it is meromorphic there). So the τN-trace
of T∆az+b is zero if the order is sufficiently small, and as a result, the trace τN
is well defined on all families admitting an asymptotic expansion of the type
we are considering (only finitely many terms have a nonzero trace).

It will be obvious that the functional τN is indeed a trace once we have
consider the issue of whether or not C is an algebra, which is what we shall
turn to next.

5.3.3 Commutators and the Binomial Expansion

We shall use the Cauchy formula

∆z =
1

2πi

∫
λz(λ− ∆)−1dλ

to define the complex powers of∆. The contour of integration is a (downwards
oriented) vertical line in the plane separating 0 from the spectrum of ∆.

The fact that our algebra C is indeed an algebra follows from the following
lemma, due to Connes and Moscovici.

Lemma 5.5. If C is any differential operator, then

[C,∆z] =

(
z

1

)
∆z−1C(1) +

(
z

2

)
∆z−2C(2) + · · ·+

(
z

k

)
∆z−kC(k)

+

∫
λz(λ− ∆)−1[∆,C](k)(λ− ∆)−kdλ,

where C(1) = [C,∆] and C(k+) = [∆,C(k)]

Remark 5.6. It will actually suffice to consider values of zwhich have large neg-
ative real part. For these, all the operators under discussion will be bounded,
and indeed trace class.

Proof. Using the commutator identity

[C, (λ− ∆)−1] = (λ− ∆)−1[C,∆](λ− ∆)−1

we find that

[C,∆z] =
1

2πi

∫
λz[C, (λ− ∆)−1l]dλ

=
1

2πi

∫
λz(λ− ∆)−1[C,∆](λ− ∆)−1 dλ

=
1

2πi

∫
λz(λ− ∆)−2[C,∆]dλ+

1

2πi

∫
λz(λ− ∆)−1[[C,∆], (λ− ∆)−1]dλ
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The first term can be calculated by using the Cauchy integral formula:

1

2πi

∫
λz(λ− ∆)−2[C,∆]dλ =

(
z

1

)
∆z−1[C,∆]

As for the second term can manipulate it using the commutator formula

[[C,∆], (λ− ∆)−1] = (λ− ∆)−1[[C,∆], ∆](λ− ∆)−1

Plugging this into the second integral gives

1

2πi

∫
λz(λ− ∆)−1[[C,∆], (λ− ∆)−1]dλ

=
1

2πi

∫
λz(λ− ∆)−2[[C,∆], ∆](λ− ∆)−1 dλ

=
1

2πi

∫
λz(λ− ∆)−3[[C,∆], ∆]dλ

+
1

2πi

∫
λz(λ− ∆)−2[[C,∆], (λ− ∆)−1]dλ.

Once again, we can calculate the first term at the bottom using the Cauchy
integral formula. As for the second term, we can continue to manipulate it in
the same way. After k steps like this we arrive at the formula in the statement
of the lemma.

Proof of the Minakshisundaram-Pleijel theorem. The argument used to prove the
vanishing of traces on the algebra of differential operators applies, because the
lemma on which it depends applies to the algebra C. The key formula is

Trace(T∆az+b) = (n+ q+ 2(az+ b))−1 Trace(Rz)

where q = order(T) and the family Rz has lower order than (n + q + 2(az +

b)) (note, by the way, that the pole of (n + q + 2(az + b))−1 is the reason
meromorphic functions appear). We find that if the trace τN vanishes on all
families

T1∆
az+b1 + T2∆

az+b2 + · · · ,
with leading order q+ az+ b1 then it vanishes on all families of leading order
q + az + b1 + 1. On the other hand τN vanishes on all families of sufficiently
low leading order just by virtue of its definition. So it vanishes on all families.
This being true for all N, we see that each function Trace(T∆−z) extends to a
meromorphic function as required.

6 12 September 2016, Erik van Erp

6.1 continuation of right hand side of Equation (6.1) of Atiyah
Singer

Recall the version of the Atiyah-Singer formula that we are considering.
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Theorem 6.1. IfM is a closed (compact without boundary) spin manifold, andD the
Dirac operator ofM, then

(6.1) IndexD =

∫
M

Â(TM).

As we saw in Subsection (4.1), by IndexDwe really mean Index(D+), where
D+ : C∞(S+) −→ C∞(S−).

We continue with the description of the right hand side of the equation. As
before, we let dim(M) = n = 2r, and

R = Riemannian curvature

= (locally) n× n skew matrix of 2-forms,

As we explained, every n×n skew matrix with coefficients in R is similar (via
conjugation by an orthogonal matrix) to a matrix of the form

skew ∼


0 −x1
x1 0

0 −x2
x2 0

. . .


Every symmetric polynomial in the variables x21, x

2
2, x

2
3, . . . induces an O(n)-

invariant polynomial so(n) → R, which can be evaluated on the Riemannian
curvature matrix of 2-forms.

The Â-class corresponds to the invariant polynomial

Â : so(n) −→ R

Â(x1, x2, . . .) =

r∏
j=1

xj

exj − e−xj
 even function

=
∏

1−
1

24
x2j +

7

5760
x4j − · · · ,

(6.2)

Note that the series has rational coefficients. As defined here, Â(x) is of course
a formal power series, and not a polynomial. But on a finite dimensional man-
ifold M the higher powers of xj correspond to forms of too high a degree, and
so those terms will vanish when Â is evaluated on the curvature matrix R.

The Â-genus ofM is by definition

Â(M) =

∫
M

Â

(
R

2π

)
∈ Q,

This is a rational number (because Expression (6.2) has rational coefficients).
Note that the number Â(M) is defined for any oriented Riemannian manifold,
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and like all numbers defined in this way, it is independent of the choice of
metric, and in fact a topological invariant ofM.
Genus Properties:

(6.3)

1. Â(MtN) = Â(M) + Â(N). This is clearly true by the way the number is
defined. This property hold for all numbers p(M) associated to invariant
polynomials p : so(n)→ R. Here t denotes disjoint union.

2. Â(M×N) = Â(M)Â(N). This property holds essentially because the Â-
plynomial is defined as a product of functions in xj. To see why this is so
consider

T(M×N) = p∗1TM⊕ p∗2TN

M×N
p1

{{

p2

##
M N

RM×N =

[
RM 0

0 RN

]

Note that the Pfaffian Pf(x) = x1x2 · · · = Πxj is also a product of func-
tions in xj. Indeed, the Euler number satisifies properties (1) and (2), but
not the following property (3).

3. Â(∂M) = 0 =⇒ Â is bordism invariant.

Proof. Because Â(x) is a product of the form Πf(xj), we have Â(E⊕ F) =
Â(E)Â(F). Moreover, for a trivial vector bundle Â( trivial bundle ) = 1.
Combining these two facts we see that Â is stable, i.e., adding a triv-
ial bundle does not affect the Â-class of a vector bundle. So, if N is the
boundary N = ∂M of a compact manifold M, then the tangent bundle
TM restricted to N is TN plus a trivial line bundle (the normal bundle
of the boundary N). Therefore Â(TN) is the restriction of Â(TM) to the
boundary N. Then by Stokes’s Theorem,∫

N

Â(TN) =

∫
∂M

Â(TM) =

∫
M

dÂ(TM) = 0

because Â(TN) is a closed form.

Any topological invariant with properties (1), (2), (3) is called a genus. A
priori, the Â-genus is a rational number. There are examples of manifolds for
which Â(M) is not an integer. But it was known, before the work of Atiyah and
Singer, that the Â-genus of a spin manifold is always an integer. The fact that
the Â-genus of a spin manifold can be identified with the index of the Dirac
operator “explains” in some sense why it is an integer. Understanding the
integrality of the Â-genus of spin manifolds was Atiyah’s original motivation
for defining the Dirac operator.
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6.2 Other versions of the Atiyah-Singer theorem

Recall: If M is a closed complex manifold (to be more precise, a Kähler mani-
fold), then we obtain a Spinc structure by

Spinc :

 c : T1,0p M = TpM −→ End(Sp), where S =
∧0
T1,0M

c(v)α = v∧ α− vxα v ∈ T1,0p (M), α ∈ Sp
c(v) = −‖v‖2I

The Dirac operator for this Spinc structure is D = ∂ + ∂
∗
, where ∂ is the Dol-

beault operator, and ∂
∗

its adjoint. The Dolbeault operator is the ∂
∂z̄

version of
the de Rham operator d. The index of D is the Euler characteristic χ(∂) of the
Dolbeault complex, which is called the arithmentic genus of M. This number
plays an important role in algebraic geometry.

Theorem 6.2 ( Todd, 1937; Hirzebruch ∼ 1954). Considering D as above

IndexD =

∫
M

Td(T1,0M),

where Td(T1,0M) is the Todd class of the complex vector bundle T1,0M.

The Todd class that appears in this formula is a characteristic class of C
vector bundles, defined by Hirzebruch using the formalism of Chern classes.
However, the Todd class can be defined for every Spinc manifoldM as

Tdc(TM) = Â(TM) exp(c1(L)/2)

Here L is the so-called Spinc line bundle, a complex line bundle on M associ-
ated, in a natural way, to the Spinc structure ofM. Recall that complex line bun-
dles on M are in one-to-one correspondence with elements in H2(M,Z). The
class c1(L) ∈ H2(M,Z) denotes the 2-cocycle associated to L (the first Chern
class).

On a spin manifold, the line bundle L is trivial, and we have

Tdc(TM) = Â(TM)

On a complex manifold (of complex dimension r), the Spinc line bundle L is
just the determinant line bundle L = ΛrT1,0M, and it is an easy calculation to
see that in this case

Tdc(TM) = Td(T1,0M)

The two versions of the Atiyah-Singer formula discussed so far–the first for
spin manifolds, the second for complex manifolds–can be generalized to,

Theorem 6.3. IfM is an even dimensional Spinc manifold, then

IndexD =

∫
M

Tdc(TM).
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Twisting A last generalization of the theorem that we need to consider involves
the construction referred to as “twisting” the Dirac operator by a complex vec-
tor bundle.
M Spinc  D =Dirac operator, as above
E −→M, a C vector bundle onM
The symbol of the Dirac operator D is the map

c : TpM −→ End(Sp)

that is part of the Spinc-structure. We twist c by E to obtain

c⊗ IdE : TpM −→ End(Sp ⊗ Ep)

where IdE : Ep −→ Ep is the identity. Then the twisted Dirac operator DE is a
first order elliptic differential operator with symbol c⊗ IdE,

DE : C∞(S+ ⊗ E)→ C∞(S− ⊗ E)

With a suitable choice of lower order terms the twisted operator DE (like D
itself) is an essentially self-adjoint elliptic operator.

Theorem 6.4. If M is an even dimensional Spinc manifold and E −→ M is a C
vector bundle onM, then for the twisted Dirac operator

IndexDE =

∫
M

ch(E)∧ Tdc(TM),

The expression ch(E) in the formula refers to the Chern character of E. It
can be defined as

ch(E) = trace
(

exp
(
−
Ω

2πi

))
∈ Heven

dR (M)

whereΩ is the curvature of a (random choice of) connection on E.
Remark. There is an even more general version of the Atiyah-singer for-

mula which is valid for all elliptic operators. In this more general formula of
the theorem there appears a Todd class. However, the Todd class in the most
general formula is Td(TM⊗ C)—i.e., the Todd class of the complexified tangent
space. This is not to be confused with Td(T1,0M, which only makes sense ifM
is a complex manifold. To make matters more confusing, this class can also be
written as Td(TM⊗ C) = Â(TM)2.

proof of above theorem. Strategy of topological proof. Reduce (M,E)  (S2n, F)

and then apply Bott periodicity.

The Bott Generator in K-theory
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Theorem 6.5 (Bott, 1959). For the even integers k = 0, 2, 4, . . . , 2n − 2 we have
πk(GL(n,C)) = 0. For the odd integers k = 1, 3, 5, . . . , 2n−1we have πk(GL(n,C)) ∼=
Z.

Stated more simply, if we let GL = limk→∞ GL(k,C) then πk(GL) = 0 if k
even, and πk(GL) ∼= Z if k odd. In this section we give various (equivalent)
descriptions of the “Bott generator” of the cyclic group πk(GL) for odd k. This
element plays a central role in index theory.

(6.4)

1. At the very beginning we defined the R linear map

c : R2n −→ End(C2n) c(v) =

2n∑
j=1

vjEj

for v = (v1, . . . v2n) ∈ R2n. We had a split C2n = W = W+ ⊕W− into
positive and negative spinors, and c(v) mapsW+ →W−

c : R2n −→ Hom(W+,W−)

From c(v)2 = −‖v‖2 · I, we see that c(v) is an isomorphism of vector
spaces W+ ∼= W− as long as v 6= 0. Thus the pair of (trivial) vector bun-
dles R2n ×W+ and R2n ×W− together with the maps c(v) defined at
every point v ∈ R2n defines a class in the K-theory with compact sup-
ports,

[c] =
[
c,Rn ×W+,Rn ×W−

]
∈ K0

(
R2n

)
∼= Z

This group isZ by Bott periodicity in K-theory. The class [c] is a generator
of this group K0(R2n).

2. If v ∈ R2n is a unit vector, then c(v)2 = −I implies that c(v) is invertible.
Thus, the map c(v) : W+ → W− it is an isomorphism (in fact, it is a
unitary). If we identifyW+ =W− = C2

n−1

, we obtain a map

c : S2n−1 → GL(2n−1,C)

Thus, c defines an element in the homotopy group

[c] ∈ π2n−1(GL) ∼= Z

This homotopy element [c] is a generator of the group π2n−1(GL).

3. We have the isomorphism

K0
(
R2n

)
∼= K0

(
S2n, •

)
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Under this isomorphism, the Bott generator [c] of K0(R2n) maps to a vec-
tor bundle β on the sphere,[

c,R2n ×W+,R2n ×W−
]
7−→ [β] − [S2n × C2

n−1

]

The vector bundle β on S2n is obtained as follows. On the upper hemi-
sphere S2n+ we have the trivial vector bundle S2n+ ×W+, and on the lower
hemisphere we have S2n− ×W−. The equator can be identified with the
unit sphere S2n−1 in R2n. Now use the map

c : S2n−1 → Iso(W+,W−)

to clutch the trivial bundle with fiber W+ on the upper hemisphere to
the trivial bundle with fiber W− on the lower hemisphere. The resulting
bundle is the Bott generator vector bundle. We denote it by β.

4. The chern character gives an isomorphism

K0(S2n, •) ∼= H2n(S2n,Z) ∼= Z

by

β 7−→ ch(β)→ ∫
S2n

ch(β) ∈ Z

Exercise: With β as defined above,
∫

ch(β) = −1.

7 13 September 2016, Nigel Higson

We’re going to continue our examination of zeta functions

(7.1) s 7−→ Trace(T∆−s)

from the last lecture. Our aim is to show that the residues of these zeta func-
tions can be calculated, at least in principle, by purely local means, from the
coefficients of T and ∆ and their partial derivatives. And we’ll show in a bit
more detail what this has to do with index theory.

7.1 The Index as a Zeta Value st Zero

Let M be a closed manifold of dimension n. Let T be a differential operator of
order q. Let

D =

[
0 D−

D+ 0

]
be a (first order, for simplicity) formally self adjoint elliptic partial operator on
M and let ∆ = I+D2. Finally, let

γ =

[
I 0

0 −I

]
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be the grading operator. We noted in an earlier lecture that

Index(D+) ≡ Trace(γ∆−s)

(that is, the zeta function is in fact constant, and is equal to the index every-
where). Atiyah and Bott suggested that this observation might open a route
toward the index theorem because they knew from work of Seeley and others
that the value of any zeta function at s = 0 can in principle be computed from
the coefficients the operators involved. In this section we shall begin to explain
this fact by proving that every zeta function

s 7−→ Trace(T∆−s)

is regular at zero (there is no pole).

Definition 7.1. The Residue Trace on the algebra of differential operators is the
functional

ResTr(T) := Ress=0(Trace(T∆−s)).

Remark 7.2. The same formula can be defined for a much wider class of oper-
ators than the differential operators, namely the pseudodifferential operators,
where it is known as the noncommutative residue. This is a very interesting quan-
tity; in contrast, our aim here is to show that the residue trace is zero on the
algebra of differential operators.

Lemma 7.3. The residue trace is a trace on the algebra of differential operators

Proof. Let S and T be differential operators. We calculate, using the trace prop-
erty of the ordinary trace, that

ResTr(ST) = Res|s=0(Trace(ST∆−s))

= Res|s=0(Trace(T∆−sS))

= Res|s=0(Trace(TS∆−s)) + Res|s=0(Trace(T [∆−s, S]).

But

T [∆−s, S] = ±
(
s

1

)
T [∆, S]∆−s−1 ±

(
s

2

)
T [∆[∆, S]]∆−s−2 ± · · ·

= s× Rs,

where Rs is a combination of the families that we have been considering all
along (whose traces are meromorpohicm functions onCwith only simple poles).
Thanks to the factor of swe find that

Res|s=0(Trace(T [∆−s, S]) = 0,

and so the residue trace is indeed a trace, as required.
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Corollary 7.4. If T is any differential operator, then the meromorphic function

s 7−→ Trace(T∆−s)

is regular at s = 0.

Proof. We have already shown that there are no nonzero traces on the algebra
of differential operators.

We find that for any T the zeta function Trace(T∆−s) is regular at s = 0, and
so we can study its value there. In fact the value is computable as a residue, as
we shall show next.

7.2 Zeta Values at Zero as Residues

In this section we shall realize the zeta value

Trace(T∆−s)|s=0

(which we’ve just seen is extremely interesting from the point of view on index
theory) as a residue of a zeta function.

We’ll consider the simple case where T = γ, since this is all we actually
need. If we examine again the proof of the M-S theorem, then we see that in
the identity

(n− 2s)γ∆−s =
∑

[Biγ∆
−s, Ai] + Rs

the remainder Rs, which is

−Bi[γ∆
−s, Ai] − 2s∆

−s = −Biγ[∆
−s, Ai] − 2s∆

−s

is s times a combination Fs of families of the type T∆−s−k (which we could
write down explicitly). So

(n− 2s)Trace(γ∆−s) = sTrace(Fs)

As a result

n · Trace(γ∆−s)|s=0 = (sTrace(Fs)) |s=0 = Res |s=0 Trace(Fs),

as required.

7.3 Zeta Values and Residues as Distributions

Recall that if T is a differential operator of order q on a closed manifoldM, and
if ∆ is a postive, invertible, elliptic operator of order 2with scalar symbol, then
the zeta function (7.1) is defined as an ordinary trace for Re(s) > (n + q)/2,
and is a holomorphic function there. And, by the Minakshisundaram-Pleijel
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Theorem (5.2), the zeta function extends to a meromorphic function on C with
only simple poles, at

n+ q

2
,
n+ q− 1

2
,
n+ q− 2

2
, . . .

(of course, some of these singularites might be removeable, and indeed we
shall see precisely this in a little while).

It will be convenient to enlarge our analytical perspective a bit. We shall no
longer requireM to be compact. Instead, letU ⊆M and letD be a formally self-
adjoint, first-order differential operator on M that is elliptic over U. Assume
that D is essentially self-adjoint (for instance, this will be so if D is compactly
supported). Let ∆ = I+D2. Let f be a smooth function onMwhose support is
a compact subset of U. If T is a differential operator on M of order q, then the
zeta function

(7.2) s 7−→ Trace(f · T∆−s),

is defined and analytic on Real(s) > (n + q)/2. This uses the facts about the
maximal and minimal domains of elliptic operators on nocompact manifolds
that we mentioned in an earlier lecture.

Think of the zeta function (7.2) is associating to each complex scalar s a
distribution on U:

f 7−→ Trace(fT∆−s).

The argument from last Friday shows that this is a meromorphic function on
C with values in distributions on U. The following argument shows that the
residue distributions

(7.3) f 7−→ Res|s=s0Trace(fT∆−s)

depend only on the restriction of T and D to U:

Lemma 7.5. If T1, D1 are equal to T,D, respectively on U, then the difference of zeta
functions

Trace(f · T1∆−s
1 ) − Trace(f · T∆−s)

extends to an entire function.

Proof. Recall

∆−s =
1

2πi

∫
L

λ−s(λ− ∆)−1dλ,

where L is a downwards oriented vertical line in the plane separating 0 from
the spectrum of ∆. Choose L so that it separates 0 fromthe spectrum of ∆1, too.
Then

f · ∆−s − f · ∆−s
1 =

1

2πi

∫
L

λ−sf ·
(
(λ− ∆)−1 − (λ− ∆1)

−1
)
dλ

=
1

2πi

∫
L

λ−sf · (λ− ∆1)−1(∆− ∆1)(λ− ∆)
−1 dλ,

47



where (∆− ∆1) is supported away from supp(f).
Choose a smooth function h so that h ≡ 1 whereever D − D1 is nonzero,

yet f · h = 0. Then

(7.4) f · ∆−s − f · ∆−s
1 =

1

2πi

∫
L

λ−sf · (λ− ∆1)−1 · h · (∆− ∆1)(λ− ∆)
−1 dλ,

and now we calculate that

f · (λ− ∆1)−1 · h = f · [(λ− ∆1)−1, h]
= f(λ− ∆1)

−1[∆1, h](λ− ∆1)
−1

= f(λ− ∆1)
−1[∆1, [∆1, h]](λ− ∆1)

−2

...

= f(λ− ∆1)
−1 · h(k)︸︷︷︸

order k

· (λ− ∆1)−k︸ ︷︷ ︸
order −2k

,

where h(k) = [∆1, h
(k−1)] (more or less as before). We find that for any s the

integrand in (7.4) is trace class with rapidly decaying trace norm as a function
of λ.

Remark 7.6. We can say a little bit more: not only is the difference of traces an
entire function, but before traces, the quantity

fT∆−s − fT1∆
−s
1

is an entire function with values in the trace class operators, and indeed, if we
multiply by a compactly supported function on the right, with values in those
trace class operators represented by smooth kernels k(x, y).

We are going to study the residue distributions. We shall see that on a
closed manifold the index of an elliptic (first order) operator is representable
as an (in principle) explicit combination of residue zeta functions. We shall also
see that each residue distribution is in fact a smooth function onM (so that the
index is in principle computable as a combination of integrals over M of these
smooth functions). Finally we shall see that each of these smooth functions
is (in principle) computable as a function of the coefficients of T and D and
their derivatives. This gives an (in principle) explicit local solution of the index
problem.

7.4 Residue Trace Distributions as Smooth Functions

In this section we shall prove that the residue distribution (7.3) is (integration
against) a smooth function.

48



To do this, let’s return one more time to the argument that proved the M-S
theorem. The argument in the previous section shows that it suffices to prove
the M-S theorem on Rn. In this context we can set

Ai = xi and Bi =
∂

∂xi
,

which have the property that [Bi, Ai] = I, of course, and for any differential
operator, T , of order q,

(n+ q)T =
∑

[BiT,Ai] + R,

where R is differential operator of order less than q. Recall that we proved the
M-S theorem by computing the same for families of operators with asymptotic
expansions

T1∆
−z−k1 + T2∆

−z−k2 + · · ·

in place of T and R. The terms here should be of decreasing order qi−2(z+ki).
Sobolev theory tells us that for any r = 1, 2, 3, . . ., if Real(z) > r+(n+q)/2,

then fT∆−z is represented by a kernel kz(x, y) which is r-times continuously
differentiable in x and y.

Now, if the kernel of fT∆−z is kz(x, y), as above, then the kernel of the
operator

∑
[BifT∆

−z, Ai] is

(∂ikz(x, y))(xi − yi)

where the partial derivative operator ∂i is applied to the x-slot. This kernel
vanishes on the diagonal x = y. So in the formula

(n+ q− 2z)fT∆−z =
∑

[BifT∆
−z, Ai] + Rz,

the kernels of fT∆−z, times (n + q − 2z), is exactly equal to the kernel of Rz on
the diagonal. We find that the restriction of the kernel for fT∆−z to the diagonal
is not only a Cr-function but a C∞-function (away from poles). Hence:

Theorem 7.7. There is a meromorphic function on C with values in C∞(M),

z 7−→ kz(x, x),

such that
Trace(fT∆−z) =

∫
M

kz(x, x)dx

away from poles and

Res |s=s0 Trace(fT∆−z) =

∫
M

Res |s=s0kz(x, x)dx

at poles.

49



In what follows we’ll write this function as

kz(x, x) = tracex(fT∆−z)

to indicate as clearly as possible the relation between the kernel and the opera-
tor.

In the reverse direction we’ll write

Op(k) : f 7−→ [
x 7→ ∫ k(x, y)f(y)dy]

for the integral operator associated to a kernel k.

Remark 7.8. It follows easily from the explicit formulas that the local residues
Res |s=s0kz(x, x) (which are our main interest) are continuous functions of the
coefficients of the operators T and∆ near x. We shall use this in the final section
of this lecture.

7.5 Computation of Residues

Our last topic is the computation of the residues

Res |s=s0 Trace(fT∆−s).

As for where the residues are, we have seen that the poles of our zeta function
are at

s0 =
n+ q

2
,
n+ q− 1

2
,
n+ q− 2

2
. . .

We’ll call n+q
2

the leading residue and we shall indicate how to compute it in
the next section. The purpose of this section is to point out that every other
residue of our zeta function can be identified with an explicit (but complicated)
combination of leading residues of different zeta functions.

It follows that the value of our zeta function at can also be identified with
an explicit but complicated combination of leading residues of other zeta func-
tions, since we have already seen how to identify the value at s = 0 with an
explicit but complicated combination of (non-leading) residues.

Let’s consider the problem of computing the next-to-leading residue of our
zeta function, at

s0 =
n+ q− 1

2
.

Let’s invoke our Minakshisundaram-Pleijel formula

(n+ q− 2s)fT∆−s =
∑

[BifT∆
−s, Ai] + Rs,

one last time. The remainder Rs is given by the formula

(7.5) Rs = (q− 2s)fT∆−s −
∑

Bi[fT∆
−s, Ai]
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and
Bi[fT∆

−s, Ai] = Bi[fT,Ai]∆
−s + BifT [∆

−s, Ai],

or, better,

(7.6) Bi[fT∆
−s, Ai] = Bi[fT,Ai]∆

−s + [Bi, fT ][∆
−s, Ai] + fTBi[∆

−s, Ai]

Let’s analyze the terms on the right-hand side.

(i) The first term on the right of (7.6), summed over all i, yields

qfT∆−s + S∆−s,

where S is a differential operator of order less than q.

(ii) For each value of i the second term on the right of (7.6) has the form

Ti[∆
−s, Ai]

where Ti is a differential operator of order no more than q. And the com-
mutator can be expanded as

[∆−s, Ai] =

(
−s

1

)
[∆,Ai]∆

−s−1 +

(
−s− 1

1

)
[∆, [∆,Ai]]∆

−s−2 + · · ·

The first term on the right has order −2s − 1; the next has order −2s −

2, and so on. So overall, the second term on the right of (7.6) has an
expansion as a sum of terms

Xk∆
−s−k

for k = 1, 2, . . . , with Xk a differential operator, and with order q−2s−k.
There are infinitely many terms, but only finitely many will contribute to
the residue that we are interested in.

(iii) The third term is

(7.7) fTBi[∆
−s, Ai]

= −sfTBi[∆,Ai]∆
−s−1 +

(
−s− 1

2

)
fTBi[∆, [∆,Ai]]∆

−s−2 + · · ·

Summing over iwe get

−sfT
∑

Bi[∆,Ai]∆
−s−1 = −2s∆∆−s−1 + Y∆−s−1

where Y has order 1 or less. The remaining terms in (7.7) are of the form
Xk∆

−s−k as in item (ii) above.
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Putting all of this mess together (and it is a mess, although we can in principle
write down all the terms involved with great precision), and returning to (7.5),
we find that there is an “asymptotic expansion”

Trace(T∆−s) ∼
∑
k≥1

Trace(Zk∆−s−k),

where the order of Zk is no more than q+k, and where the meaning of the term
“asymptotic expansion” is that for any given right-half plane Real s > −N in C
the difference between the left-hand side and the sum of any sufficently large
(but finite) number of terms from the right is holomorphic in that half-plane
(so the other terms will not contribute to residues in our half-plane). We get

Ress=(n+q−1)/2(Trace(T∆−s)) =
∑
k≥1

Ress=(n+q−1)/2(Trace(Zk∆−s−k))

and the sum is actually finite. Moreover, all the residues on the right-hand side are
leading residues or zero.

If we want to consider the next-to-next-to-leading order residue, then the
above argument identifies it with a combination of next-to-leading order residues,
which we can then reduce to a combination of leading order residues. And so
on.

7.6 Calculation of the Leading Residue

In this final section we shall explain how to calculate the leading residue.3

From everything that went before, we can write

Res |s=(n+q)/2 Trace(fT∆−s) =

∫
M

Res |s=s0 tracex(fT∆−s)dx.

We shall show how to compute integrand

Res |s=(n+q)/2 tracex(fT∆−s).

Since we are computing at a single point we can assume that

M = Rn,

that x = 0. We are going to use a rescaling method that we shall see again in
the next lecture.

Define operators
Uε : L

2(Rn) −→ L2(Rn)

for ε > 0 by
(Uεf)(x) = ε

n/2f(εx).

3Actually, the final part of the computation is given at the beginning of Lecture 9.
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The scalar factor εn/2 is not very important, but it makes Uε into a unitary
operator.

Given a differential operator

T =
∑
|α|6q

aα(x)∂
α,

we compute that
UεTU

∗
ε = ε

−q
∑
|α|6q

aα(εx)ε
q−|α|∂α.

Let’s write this as
UεTU

∗
ε = ε

−qTε,

and note that the operator

Tε =
∑
|α|6q

aα(εx)ε
q−|α|∂α

can be defined for negative ε and for ε = 0, where we obtain a constant co-
efficient operator of homogeneous degree q (in effect, it is the symbol of T at
x = 0), and that the coefficients of Tε vary smoothly with ε ∈ R.

Suppose now that k(x, y) is a kernel function, and that Op(k) is the associ-
ated integral operator. Then

UεOp(k)U∗ε = ε
nOp(kε),

where kε(x, y) = k(εx, εy) (the factor εn comes from the change of variables
formula

εn
∫
h(εx)dx =

∫
h(x)dx

for the integral on Rn). As a result,

trace0
(
UεOp(k)U∗ε

)
= εnk(0, 0) = εntrace0

(
Op(k)

)
.

Putting these things together, we find that

trace0(Tε∆−s
ε ) = εq−2strace0

(
UεT∆

−sU∗ε
)

= εn+q−2strace0(T∆−s)

and therefore

Resn+q−2s=0(trace0(Tε∆−s
ε )) = Resn+q−2s=0(trace0(T∆−s))

for all ε > 0 since the function εn+q−2s is entire and nowhere vanishing.
We would now like to take a limit as ε→ 0 and conclude that

Resn+q−2s=0(trace0(T0∆−s
0 )) = Resn+q−2s=0(trace0(T∆−s))
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but this doesn’t quite make sense because ∆0 is not invertible. Instead we first
note that

Tε∆
−s
ε − Tε(I+ ∆ε)

−s = trace-class operator

for n+ q− 2s ≥ 0 and all ε > 0, and so

Resn+q−2s=0
(
trace0(Tε∆−s

ε )
)
= Resn+q−2s=0

(
trace0(Tε(I+ ∆ε)−s)

)
Now we can use the continuity of the residue as a function of the coefficients
of T and ∆ and conclude that

Resn+q−2s=0
(
trace0(T∆−s)

)
= Resn+q−2s=0

(
trace0(T0(I+ ∆0)−s)

)
But the residue on the right, which involves only constant coefficient operators
on Rn, is easily computed explicitly using the Fourier transform. More on this
in Lecture 9.

8 14 September 2016, Erik van Erp

Recalling the setting of Theorem (6.4). Let M be an even dimensional Spinc

manifold and E −→M complex vector bundle.

(8.1) IndexDE =

∫
M

ch(E)Tdc(TM).

Here DE was the twisted Dirac operator. We note that this formula is exactly
correct, i.e., there are not hidden constants or signs. This is due to the fact that
we have defined the characteritic classes in the right hand side terms with the
appropriate factors of 2π or 2πi.

Also, recall that Tdc denotes the Todd class of a Spinc vectr bundle, which
is defined in such a way that

Tdc(TM) =

{
Â(TM) M spin
Td(T1,0M) M complex

Proof. Idea: To reduce via two moves to a sphere, then use Bott periodicity.
Step 1: Prove the above formula ifM = S2n with its standard spin structure.

Bott periodicity [Theorem of Raoul Bott, 1959]

πk(GL(n,C)) =

{
0 k even
Z k odd

if k = 1, 2, . . . , 2n− 1.
This theorem tells us exactly what the vector bundles on S2n are, up to sta-

ble isomorphism. Every vector bundle on S2n, when restricted to the upper or
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lower hemisphere, can be trivialized. Thus, the isomorphism class of the vec-
tor bundle is determined by the transition function, which is a map S2n−1 →
πk(GL(k,C)). The equator of S2n is S2n−1, and k is the rank of the vector bun-
dle. The isomorphism class of the vector bundle only depends on the homo-
topy type of the transition function, which is an element in π2n−1(GL(k,C)).
If we only want to classify vector bundle up to stable isomorphism, we may
assume that k is large enough so that Bott’s theorem applies. Therefore, the
reduced K-theory of S2n is K0(S2n, •) = Zβ. The non-reduced K-theory also
includes trivial vector bundles. So,

K0(S2n) ∼= Z⊕Zβ

Here β is the Bott generator vector bundle on S2n.
Remark. Rcall the Clifford map c and that we viewed C2

n

as W = W+ ⊕
W−. We then have

R2n
c // End(W+,W−)

S2n−1

⊆

OO

// GL(2n−1,C) ∼= Iso(W+,W−)

This defines the generator of π2n−1(GL(2n−1,C)).

Lemma 8.1. IndexDe =
∫
S2n ch(E) on S2n.

Proof. First establish that

• IndexDE = 0 (which will be proven later)

• IndexDβ = −1 =
∫
S2n ch(β).

The first item follows from bordism invariance of the index (to be discusses
later), and the fact that the spin structure on S2n is the boundary of the spin
structure on the unit ball in R2n+1. The second equality is obtained by direct
calculation.

Now Bott periodicity, and the knowledge it gives us of the group K0(S2n),
implies that the lemma holds for all vector bundle E on S2n.

Remark 8.2. The right hand side of the above equation is indeed the Atiyah-
Singer formula, because Â(TS2n) = 1. This is why the Â-class does not appear
in the formula. Indeed,
TS2n ⊕R = R2n+1, where R denotes the trivial bundle with fiber R. Now,

recalling the genus Properties (6.3), we have

Â(TS2n)Â(R) = Â(R2n+1),

and Â(R) = Â(R2n+1) = 1 implies that Â(TS2n) = 1.
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We now consider pairs (M,E), whereM is a closed Spinc manifold and E is
a complex vector bundle. To every such pair we assign two numbers.

(M,E)

��
IndexDE ∈ Z (Analytic index)

(M,E)

��∫
M

ch(E)Tdc(TM) ∈ Q (Topological index)

We must prove that for every pair (M,E) these two numbers—the analytic
and topological index—are equal. To achieve this we will modify the pair in 2
moves

(M,E) −→ (·, ·) −→ (S2n, F)

and we will show that the both the analytic index and the topologically defined
number are invariant under each of the two moves. We have already proved
(above) that the two numbers are equal for the pair (S2n, F). So it will follow
that the two numbers must be equal for the pair (M,E). This is how we will
prove the index formula.
The first move we will cover is the move (·, ·) −→ (S2n, F). This involves the
notion of bordism.

Definition 8.3. Two closed manifolds are bordant if ∃ compactW such that the
boundary ofW is the disjoint union ofMwith N.

∂W =M tN.

Oriented bordism:M,N,W are oriented then

∂W =M t (−N),

where (−N) denotes the manifold Nwith its orientation reversed.

Spinc bordism: Let M,N,W be Spinc, in which oriented is implicit by Spinc.
Consider dim(W) = 2r+ 1 and dim(Sp) = 2r . Note that dim(∂W) = 2r.

W is Spinc : S −→ W and c : TpW −→ End(Sp). Restrict both the spinor
bundle S and the map c to the boundary to get the Spinc structure on the
boundary ∂W.

We will say that a pair (M,E0) is bordant to a pair (N,E1) if M,N are Spinc

bordant byW, and ∃E −→W such that E|M ∼= E0 and E|N ∼= N.

To see that the analytic index is invariant under this move is hard. But to see
that the topological index is invariant under this move is an easy application
of Stokes’s theorem

∫
∂W

=
∫
W
d.
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Next, we cover the first move We first cover the notion of a Thom Isomorphism
from K-theory. We recall the following Setting (6.4).

We had a split C2n = W = W+ ⊕W− into positive and negative spinors,
and c(v) mapsW+ →W−

c : R2n −→ Hom(W+,W−)

and we had

[c] =
[
c,Rn ×W+,Rn ×W−

]
∈ K0

(
R2n

)
∼= Z

Recall that K0(R2n)
∼=−→ K0(S2n, •) = Z by Bott periodicity in K-theory. The

class [c] is a generator of this group K0(R2n).
Vector bundle version: Consider F π−→ M  R vector bundle with fibers Fp ≈
R2n.

A Thom class for F is a class in K0(F) that is a "Bott generator in each fiber".
Explicitly, this means that we have two complex vector bundles E0, E1 −→

M. If π : F → M denotest the projection onto the base point, let π∗E0, π∗E1

be the pull back of the bundles Ej to the total space of F. A Thom class for F
consists of two such bundles together with a vector bundle map τ,

π∗E0

!!

τ // π∗E1

}}
F

which restricted to each fiber Fp ≈ R2n is a Bott element. This means that the
lmap

τp : Fp → Hom(E0p, E
1
p)

defined by
τp(v) = τ(p, v) : E

0 −→ E1 v ∈ Fp, p ∈M

is isomorphic to our familiar map

c : R2n → Hom(W+,W−)

Notet that [τ, π∗E0, π∗E1] is an element in the compactly supported K-theory
K0(F).

Theorem 8.4 (Thom isomorphism inK-theory). If ∃ Thom class for F, thenK0(F) ∼=
K0(M)

The Thom isomorphism generalizes the Bott isomorphism K0(R2n) ∼= Z to
vector bundles.

We now discuss how the Thom isomorphism is used as one of the two
moves that gets us from an arbitrary pair (M,E) to (S2n, F).
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Given: F π−→ M a vector bundle F on M with a Thom class. The fiber of this
vector bundle Fp ≈ R2n. If we compactify each fiber we get F+p ≈ S2n. The
resulting space is denoted ΣF, and it is a fiber bundle over M whose fibers are
spheres. Alternatively, we may identify ΣFwith

B(F) t
S(F)

B(F)︸ ︷︷ ︸
ΣF−→M

in which ΣF −→M is fiber bundle with fibers ≈ S2n and B(F) denotes the ball
bundle of F and S(F) is the sphere bundle.

The Thom class τF of F corresponds to a vector bundle βF −→ ΣF. Re-
call how the Bott vector bundle β → S2n was obtained by clutching the Bott
element of K0(R2n) to get an element in K0(S2n, •). The same construction,
performed in each fiber, turns the Thom class τF of F into the vector bundle βF
on the bundle of spheres ΣF. Put differently, βF → ΣF is a vector bundle that,
when restricted to a fiber (ΣF)p ≈ S2n, is isomorphic to the Bott vector bundle
β→ S2n.

We then have
K0(ΣF) = K0(M)⊕ K0(M)βF

where the first copy of K0(M) on the RHS corresponds to vector bundles on ΣF
obtained by pulling back vector bundles from M to ΣF, while the second copy
is obtained by tensoring such vector bundles from M by βF. This generalizes
K0(S2n) = Z⊕ Zβ. It is the “compactified” version of the Thom isomorphism
in K-theory.

Remark. A real vector bundle with a Thom class is called a (Spinc vector
bundle). We have discussed here only the case of vector bundles of even rank,
but one can also define the Thom isomorphism for real vector bundles of odd
rank. Note that M is a spinc manifold precisely if the tangent space TM is a
spinc vector bundle, i.e., if it has a Thom class.

"Move 2": Compactified Thom isomorphism.
Start with a pair (M,E) of a closed spinc manifoldMwith a complex vector

bundle E → M. Given a real vector bundle F −→ M with even dimensional
fibers and a Thom class τF. We may then replace the pair (M,E) with the
pair (ΣF, βF ⊗ π∗E). It has to be shown that both the analytic index and the
topological index are invariant under this move.

Now that we know what the two moves are, how to get fromM to S2n?

(M,E) −−−−−→
Thom Iso

(·, ·) −−−−→
bordism

(S2n, F)

This is done as follows. Embed M in R2N, for large enough N. The normal
bundle ν of M in R2N is the quotient bundle of M × R2N by TM. M is Spinc

means that there is a Thom class for TM. There is a Thom class for M × R2N,
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because this is a trivial bundle and we can just take the Bott element of R2N

and place it in each fiber. Then by the “2-out-of-3” principle for Thom classes,
there is also a Thom class for the normal bundle ν.

0 // TM //M×R2N // ν

��

// 0

Spinc Thom class

OO

Thom class

OO

+3 Thom class

Step 1. Using the Thom isomorphism for the normal bundle ν→M, replace
the pair (M,E) by (Σν, π∗ν⊗ βν).

Step 2. Σν is bordant to S2N. To see this identify

ΣF = S(ν⊕R)

where S(ν ⊕ R) → M is the sphere bundle of the vector bundle ν ⊕ R → M.
This shows that we may identify the sphere bundle Σν with the boundary of
a tubular neighborhood of M in the larger vector space R2N+1 = R2N × R.
This boundary of the tubular neighborhood is bordant to S2N, as we can see by
considering the following picture,

The red region in the picture is the manifold W whose boundary is ∂W =

S2Nt(−Σν). Thus, ignoring the vector bundle E for the moment, our two steps
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are a Thom isomorphism followed by a bordism,

M
Thom // Σν

bordism // S2N

S(ν⊕R)

Remark. The vector bundle π∗E⊗ βν may not extend from the sphere bundle
Σν to the red colored region in the picture. This is an obstruction to obtain a
bordism from the pair (Σν, π∗E ⊗ βν) to a pair (S2N, F). However, this can be
fixed by an easy Mayer-Vietoris argument in K-theory. Before you extend the
vector bundle π∗E ⊗ βν, you may need to add a vector bundle on Σν that is
obtained as the pull-back of a vector bundle fromM. It follows easily from bor-
dism invariance that this modification does not affect the analytic or toplogical
index. This is a minor point in the proof, and I will leave out the details.

We have sketched how the verification of the index formula can be reduced,
in two moves, to the problem on a sphere. On S2N we verified the formula by
direct calculation. The crux of the proof is therefore to verify that both sides of
the index formula—the analytic index on the left hand side, and the topological
index on the right hand side—are preserved under the two moves. In other
words, there are four things to prove. The proofs of these four facts are entirely
independent.

IndexDE
∫
M

ch(E)Tdc(TM)

Hard Stokes’s Theorem bordsim
Easy Todd class Thom

Note that the index formula on the spin manifold S2N (to which we reduce)
contains the Chern character ch(E), but reveals nothing about the Todd class
Tdc(TM). Next time I will discuss the details of the proof of the invariance of
the topological index under the Thom isomorphism (the bottom right corner in
the above diagram). It is in this part of the proof that the formula for the Todd
class (and therefore also the Â-class) is calculated.

Of the other three corners in the diagram, two are easy (bordism invari-
ance of the topological index, and invariance of the analytic index under the
Thom isomorphism). However, the bordism invariance of the analytic index is
the deepest fact of the four. Like Bott Periodicity, it is a result of independent
interest that is a key ingredient of the topological proof as I outlined it here.

9 15 September 2016, Nigel Higson

In this final lecture on the local index theorem we shall (more or less) reach
our goal of computing the index of the Dirac operator in purely local terms,
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arriving at the Â-genus. But first we shall say more about the leading residue
that we were considering in the last lecture.

9.1 Completion of the Leading Order Residue Computation

Let M be a closed manifol of dimension n. As usual, let ∆ be a positive in-
vertible operator of order 2, and let T be a compactly supported differential
operator of order q. There is a smooth function

x 7→ tracex(T∆−s)

onM, varying meromorphically with s ∈ C, such that

Trace(T∆−s) =

∫
M

tracex(T∆−s)dx.

Our function is analytic in half-plane Re(s) > n+q
2

, and T∆−s is trace-class
there. The pointwise residue

Ress=n+q
2

tracex(T∆−s)

is a smooth function of x, and

Ress=(n+q)/2Trace(T∆−s) =

∫
M

Ress=(n+q)/2tracex(T∆−s)dx.

Finally, the pointwise residue at x depends only on the germs of T and ∆ at x.
Because of the last point, it suffices to compute residues in the case where

M = Rn and x = 0 ∈ Rn. We proved that

(9.1) Resn+q
2

trace0(T∆−s) = Resn+q
2

trace0(T0(I+ ∆0)−s),

where "0" means we freeze the coefficients at 0 ∈ Rn and drop the lower order
terms. Thus if

T =
∑
|α|≤q

aα(x)
∂α

∂xα
,

then
T0 =

∑
|α|=q

aα(0)
∂α

∂xα
.

We shall review this reduction-to-constant-coefficients argument in a little while,
but for now let us continue with an analysis of the right-hand side in (9.1). We
calculate, using Fourier analysis, that if Re(s) > (n+ q)/2, then

(9.2) trace0(T0(I+ ∆0)−s) =
∫
Rn

total-symbol(T0) total-symbol(I+ ∆0)−sdξ.
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Here ifD0 =
∑
aα∂

α is any constant coefficient operator, then the total symbol
is the function

total-symbol(D0) =
∑

aα(iξ)
α.

In contrast to the symbol discussed earlier, we have inserted powers of i =√
−1. We have also not dropped the lower terms ofD0. Note also that the total

symbol of I + ∆0 a positive function, so that raising it to a complex power is
unproblematic.

A remark or two about the proof of (9.2). Under the Fourier isomorphism

L2(Rn)
∼=−→ L2(R̂n)

the constant coefficient operators T0 and I + ∆0 correspond to multiplication
operators, the multipliers being the total symbols. So T0(I+∆0)−s corresponds
to multiplication by the integrand in (9.2). By Fourier theory, the operator
T0(I + ∆0)

−s itself is convolution by the inverse Fourier transform of the inte-
grand. And by more Fourier theory the value of this inverse Fourier transform
at zero (which is the local trace we are seeking) is the integral in (9.2).

The behaviour of the integral (9.2) as s converges to (n + q)/2 is easy to
analyze by changing to polar coordinates, and we find that

(9.3) Res(n+q)/2tracex(T0∆−s
0 )

= constantn
∫
Sn−1

symbol(T0) symbol(∆0)−
n+q

2 dξ,

where the constant in front depends on the dimension n alone (and since we
are now dealing with the homogeneous operators there is essentially no differ-
ence between the symbol considered before and the total symbol, since we can
absorb the powers of

√
−1 into the constant).

Remark 9.1. We’ve tacitly assumed that our operators are acting on scalar func-
tions. If that’s not the case, we need to insert traces at various points in the for-
mulas above. For instance if T0 and ∆0 act on vector-valued functions rather
than scalar functions, so that the coefficients of these operators are matrices,
then (9.3) becomes

Res(n+q)/2tracex(T0∆−s
0 )

= constantn
∫
Sn−1

trace
[
princ-symbol(T0)princ-symbol(∆0)−

n+q
2

]
dξ,

where the trace within the integral is the standard trace on matrices.

9.2 Weyl’s Theorem on Eigenvalue Asymptotics

The computation has a famous consequence, which it’s worth pausing to en-
joy. Let’s go back to a closed manifold M. Assume for simplicity that ∆ acts
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on scalar functions. There is an orthonomal basis of L2(M) consisting of eigen-
functions for ∆, say

∆fk = λkfk,

and
Trace(∆−s) =

∑
k

λ−s.

Therefore
Resn/2 Trace(∆−s) = lim

s↘n/2(s− n/2)
∑
k

λ−sk

Let us now apply the following Tauberian theorem (see for example Hardy’s
book Divergent Series):

Theorem 9.2. If µk are positive numbers with

lim
s↘1
∑
k

µsk =M

then
lim
µ→0µ · #{µk > µ } =M.

We obtain Weyl’s famous asymptotic law for the the eigenvalues λk:

Theorem 9.3. If ∆ is the Laplace-Beltrami operator on a closed Riemannian manifold
M of dimension n, and if

λ1 ≤ λ2 ≤ λ3 ≤ · · ·

is the eigenvalue sequence of ∆ (with eigenvalues listed possibly multiple times, ac-
cording to their multiplicity), then

lim
k→∞ λk · k−

2
n = constantn · vol(M),

where the constant depends only on n.

This uses the fact that that, thanks to our explicit computation, the leading
residue is proportional to the volume ofM, with the constant of proportionality
depending only on the dimension ofM.

9.3 Review of the Rescaling Argument

In this section we shall review the rescaling argument that we used last time
to reduce the computation of leading order residues to the constant coefficient
case. We want to study whether or not we can adapt it to the direct compu-
tation other residues, and, most importantly, to zeta values at zero (of course
we already know that we can identify these with complicated combinations of
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leading order residues by a laborious inductive argument involving the opera-
tors Ai and Bi from the M-S theorem; but we want to study whether or not we
can find a more direct route).

We defined a rescaling unitary isomorphism on L2(Rn) by

Uε : L
2(Rn) −→ L2(Rn)

defined by
(Uεf)(x) = ε

n/2f(εx)

(the fact that this operator is unitary is not important, and we could drop the
εn/2 factor without really affecting anything, but we’ll keep it in here). Our
analysis of the leading residue using these scaling operators had the following
two parts (which for clarity we’ll formulate for ∆−s alone, on a compact M,
rather than a more general family T∆−s):

(i) If we define
Uε∆U

−1
ε = ε−2∆ε

then the coefficients of differential operator ∆ε depends smoothly on ε,
and the family of differential operators so obtained extends smoothly
through ε = 0, where we obtain an operator with constant coefficients,
giving us a smooth family of operators parametrized by ε ∈ R.

(ii) If k is any smooth kernel function, then

UεOp(k)U−1
ε = εnOp(kε)

where kε(x, y) = k(εx, εy). As a result

ε2strace0(∆−s
ε ) = εntrace0(∆−s)

Taking residues at s = n/2, it follows from the second formula in (ii) that

εnResn/2trace0(∆−s
ε ) = εnResn/2trace0(∆−s)

Cancelling the εn-factors and integrating over a compactM gives

Resn/2Trace(∆−s
ε ) = Resn/2Trace(∆−s),

That is, the leading residue is unchanged under rescaling.
It is at this point that we invoke item (i) above to complete our calculation.

The residue on the left-hand side varies continuously with ε,and not only with
ε > 0 but with ε ∈ R (all we need is that the operators ∆ε vary smoothly with
ε and are elliptic, positive and invertible). So we obtain

Resn/2Trace(∆−s
0 ) = Resn/2Trace(∆−s),
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and we can complete the leading order residue computation as we did earlier
in this lecture.

For the purposes of index theory we’re interested not in the leading residue
but in the zeta value at s = 0. Can we somehow adapt the the argument just
given to cover zeta values at zero?

It is not evident at all that this is possible. For instance if we repeat the steps
just taken without any serious chance, then we obtain

(9.4) εn trace0(γ∆−s) = ε2strace0(γ∆−s
ε )

(here γ is the grading operator), and so, evaluating at s = 0,

(9.5) εn trace0(γ∆−s)|s=0 = Trace0(γ∆−s
ε )|s=0.

Unfortunately if we now take the limit as ε→ 0we obtain

0 · trace0(γ∆−s)|s=0 = Trace0(γ∆−s
0 )|s=0,

which tells us nothing of interest since we have multiplitied the quantity of
importance to us by zero.

In order to repair the argument we need to somehow get rid of the term εn

that appears in (9.4). There is a remarkable trick that allows us to do this for
(the squares of) Dirac operators, using information about the Clifford algebra,
and specifically its relation to exterior algebra. We shall discuss this in just a
moment, and so conclude the proof of the index theorem. But first we shall
pause to disucss the relation between zeta functions and heat kernel traces.

9.4 Zeta Functions and Heat Traces

Our zeta functions are related to traces of heat kernels by the Mellin transform
formula

Γ(s)λ−s =

∫∞
0

e−λtts
dt

t
,

which implies that

Γ(s)Trace(∆−s) =

∫∞
0

Trace(e−t∆)ts
dt

t
.

The formula requires some care. Since we need to be sure that both sides make
sense (the traces exist and the integrals converge) in at least some region of
the s-plane. But suffice it to say that the material we’ve covered is sufficient to
prove trace-ability for all t > 0 and convergence for all swith Real(s) > n/2.

There is an inverse Mellin transform formula and it implies that

Trace(e−t∆) =
1

2πi

∫
L

Γ(s)t−s Trace(∆−s)ds
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where the contour of integration is any upwards-traversed) vertical line in the
plane to the right of all the poles of Γ(s)Trace(∆−s). Once again, a bit of care
is needed, but the integrand is in fact a rapidly decreasing function on any
vertical line away from the poles, which is what we need to make sense of (and
to prove) the formula.

Further information can be gathered by considering the integral of the same
function around the contour C in Figure 1. The right vertical line is to the right

Figure 1: The contour C.

of all the poles; the left vertical line passes between the poles (coming from the
Gamma function) at 0 and −1; the top and bottom horizontal lines are very far
above and very far below the x-axis, respectively: soon we are going to take a
limit as these distances tend to infinity.

The residue formula says that

1

2πi

∫
C

Γ(s)t−s Trace(∆−s)ds

=
∑
p

Resp Γ(s)Trace(∆−s)

= Trace(∆−s)|s=0 +

2n∑
k=1

Γ(k/2)t−k/2 Resk/2 Trace(∆−s).

On the other hand the contour integral can be analyzed as follows:

(i) In the limit as the height and depth of the rectangular contourC converge
to infinity, the contributions to the integral from the horizontal parts of
the contour are zero.

(ii) In the same limit, the contibution from the left vertical part of the contour
is Trace(e−t∆).

(iii) Whether or not we take a limit, the left vectical part of the contour is o(t).

We find that

Trace(e−t∆) = o(t−1) + Trace(∆−s)|s=0 +

2n∑
k=1

Γ(k/2)t−k/2 Resk/2 Trace(∆−s),
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and so we have obtained the asymptotic expansion for the heat kernel (and
determined the coefficients of the asymptotic expansion).

9.5 Getzler’s Rescaling and the Index Theorem

Let’s start with the ingredients we’re given. The first is the Dirac operator D
on a closed Riemannian spin manifold. We’re interested in its square ∆, and if
we compute it in geodesic coordinates (and the associated trivialization of the
spinor bundle), then what we find is that

(9.6) ∆ = −
∑
i

(
∂i +

1

4
Rijxj

)2
+ small error

where Rij entry at 0 in Riemann’s curvature matrix of 2-forms, and where we’ll
explain what we mean by the “small error” in due course.

The formula (9.6) requires still further explanation, beyond a discussion of
the small error term. First, we haven’t discussed in these lectures what we
mean by “the” Dirac operator, only the Dirac symbol. But using ideas from
Riemannian goemetry, in particular the Levi-Civita connection, we can define
a single preferred (by geometers, and by us here) operator whose symbol is the
Dirac operator. It has the important and rather beautiful property that

∆ = ∇∗∇+
κ

4
,

where∇ is the Levi-Civita connection on the spinor bundle, and κ is the scalar
curvature function on the underlying Riemannian manifold. This is called the
Lichnerowicz identity (although it was discovered earlier by Schrodinger).

Next, we said that Rij is a two-form at 0, but it appears in (9.6) as a coef-
ficient of an operator that acts on spinors. We are using the standard isomor-
phism of vector spaces

Cliff(V) ∼= ∧•V

that corresponds
ei1 . . . eip ∈ Cliff(V)

to
ei1 ∧ · · ·∧ eip ∈

∧
•V

whenever ei1 , . . . , eip are distinct and orthornormal.
Before we go on, let’s imagine for a moment that there was no “small error”

term in (9.6). The value of trace0(γ∆−s) at s = 0 would then necessarily be a
function of the terms Rij alone, because these would be all the information
from the manifoldM, and from its spin structure, that would be present in the
formula for ∆.

In fact, by re-examining our clumsy-but-in-principle-explicit formula for
the value of trace0(γ∆−s) at s = 0, we would find that this function would be a
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polynomial in the Rij, and indeed a symmetric polynomial in them. So we would
be able to conclude that the local index of D is some universal polynomial in
the Rij. Compare the form of the actual (global) index formula, given in Lecture
4.

Remember that, in contrast, what we know up to now is that the local index
is the integral of a—possibly immensely complicated—function of all partial
derivatives, up to order n, or perhaps it’s 2n, of the coefficients of the Dirac
operator. But if we can disregard the “small error” terms, then we can guarantee that
no higher partial derivatives of any sort are involved in the local formula; we will have
verified the miraculous cancellation phenomenon, or most of it.4.

This observation should make it obvious what we ought to do: find a rescal-
ing that shrinks the error part of (9.6) to zero, while preserving the local index,
that is, the value of trace0(γ∆−s) at s = 0.

To accomplish this we shall use Getzler’s method of rescaling not only the
underlying space, as we did to compute the leading residue, but also the Clif-
ford algebra (or, if you like, the noncommutative space underlying the Clifford
algebra).

The method is a bit awkward to describe because it involves not only traces
on operators, but also traces on algebras. That is, rather than think of ∆ as an
operator acting on some Hilbert space, we shall need to think of∆ (or rather the
semigroup of complex powers ∆s for Real(s) � 0) as lying in an appropriate
algebra with a trace. We shall then rescale the algebra and its trace, along with
everything else.

Let’s start by describing how to rescale the Clifford algebra. Recall that

Cliff(Rn) =
〈
ej : eiej + ejei = 0 & e2j = −1

〉
(the angle-brackets mean the algebra generated by the indicated elements sub-
ject to the indicated relations) and form the following variant:

Cliffε(Rn) =
〈
ej : eiej + ejei = 0 & e2j = −ε21

〉
When ε 6= 0 this is not really different from the original Clifford algebra, be-
cause the correspondence

(9.7) ej 7−→ ε−1ej

induces an isomorphism of algebras

(9.8) Cliff(Rn) −→ Cliffε(Rn).

On the other hand when ε = 0we get

Cliff0(Rn) =
〈
ej : eiej + ejei = 0 & e2j = 0

〉
.

4Following this line of reasoning, it would remain to determine which symmetric polynomial
gives the local index. This is a relatively simple explicit computation based on the form of the
operator in (9.6)
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This is of course the exterior algebra on the indicated generators. Altogether,
we obtain a smooth bundle of algebras parametrized by ε ∈ R. The sections
ei1 · · · eip for i1 < · · · < ip give a global frame and so trivialize it as a smooth
vector bundle.

We shall need to use the so-called supertraces or (fancier) ferminonic integrals
on these algebras. These are the linear forms on Cliffε(Rn) that are defined as
follows:

str :
∑

ai1...ipei1 · · · eip 7−→ a12...n.

Thus all the supertraces on all the Cliffε(Rn) are given by the same formula.
We’re assuming throughout that n is even, and so if ε 6= 0, then there there

is an isomorphism

(9.9) Cliffε(Rn)
∼=−→ End(Sε),

where Sε is the spinor representation of the Clifford algebra—its unique irre-
ducible representation. Under this algebra isomorphism, the supertrace corre-
sponds to a rescaling of the usual operator trace, but with the grading operator
γ inserted:

(9.10) Cliffε(Rn)
x7−→εn(−2i)n/2 str(x) //

∼=

��

C

End(Sε)
X 7→trace(γT)

// C

On the other hand the supertrace at ε = 0 obviously calls to mind the integral
of differential forms.

Now let’s return to the Dirac operator on a closed Riemannian spin man-
ifold, or rather its square, ∆. As usual we shall study ∆, its complex powers,
and so on, near one point in M, and introducing coordinates as we did at the
beginning of this section we can consider ∆ as an operator

∆ : C∞(U, S) −→ C∞(U, S),

where U is an open ball around 0 ∈ Rn and S is the spinor representation of
Cliff(Rn) as above. This is a second order partial differential operator whose
coefficients are smooth End(S)-valued functions. Let’s also write

Uε∆U
−1
ε = ε−2∆ε,

exactly as we did in our treatment of the leading residue. As we saw before, the
coefficients of ∆ε are smooth End(S)-valued functions that vary smoothly with
ε. There is a smooth extension to the value ε = 0 (where the coefficients are
constant), but this is not what we are interested in. Instead we are first going to
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modify ∆ε, or at least modify the way we look at ∆ε (so to speak, we are going
to change gauge), and only then will we extend to ε = 0.

The modification is as follows. Denote by ∆ε,ε the second order differential
operator on Uwhose coefficient functions are smooth, Cliffε(Rn)-valued func-
tions, which is obtained by applying the isomorphism defined by the diagram

End(S) // Cliffε(Rn)

Cliff(Rn)

∼=

OO

∼= (9.8)
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to the coefficients of ∆.
What sort of an object is this? We could think of∆ε,ε as an actual differential

operator, acting on the space C∞(U)⊗Sε, where Sε is the spinor representation
of Cliffε(Rn). But this is not what we are going to do, and the reason is that the
spinor representations of Cliffε(Rn) do not have a good limit as ε→ 0. Instead
we shall simply view ∆ε,ε as an element of the algebra

D(U)⊗ Cliffε(Rn)

of differential operators with coefficients in the ε-Clifford algebra. (If you really
want∆ε,ε to act somewhere, you can think of is as acting on the algebra D(U)⊗
Cliffε(Rn) by left multiplication.)

The justification for this point of view is as follows.

Lemma 9.4. The operators ∆ε,ε vary smoothly with ε and extend smoothly to ε = 0,
where

(9.11) ∆0,0 = −
∑
i

(
∂i +

1

4
Rijxj

)2
,

with Rij the (i, j)-entry at 0 of Riemann’s curvature matrix of 2-forms.

Remark 9.5. To make the lemma precise, it is helpful to note that the differential
operators of order 2 or less (or of any order q or less) form a locally free and
finitely generated sheaf of modules over the sheaf of smooth functions, or in
otherwords can be identified with the sheaf of sections of a smooth vector bun-
dle over U. The family {∆ε,ε}ε∈R discussed in the lemma is a smooth section
of the tensor product bundle, over U × R, of this bundle with the bundle of
algebras Cliffε(Rn).

Let’s now think of the operators ∆ε,ε as acting on the Hilbert spaces

L2(Rn,Cliffε(Rn)) = L2(Rn)⊗ Cliffε(Rn)

(the coefficient functions act by left multiplication), where we make Cliffε(Rn)
into a finite-dimensional Hilbert space by decreeing the monomials ei1 · · · eip
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to be an orthonormal basis. They are elliptic.5 The various operators such as
fT∆−s that we have considered commute with right-multiplication by elements
of Cliffε(Rn) on L2(Rn)⊗ Cliffε(Rn), and when they are trace class they lie in

(9.12) L1
(
L2(Rn)

)
⊗ Cliffε(Rn) ⊆ L1

(
L2(Rn)⊗ Cliffε(Rn)

)
(the left-hand copy of the Clifford algebra acts by left multiplication on the
Hilbert space). Thus

fT∆−s
ε,ε ∈ L1

(
L2(Rn)

)
⊗ Cliffε(Rn)

for Real(s)� 0. If Real(s) is larger still, then the tensor product on the left can
be replaced by r-times continuously differentible kernels valued in Cliffε(Rn),
and moreover the restriction to the diagonal is a smooth function, meromor-
phic in s ∈ C. Let’s denote by

s 7−→ supertrace0(fT∆
−s
ε,ε)

the supertrace (for Cliffε(Rn)) of the diagonal value at 0 ∈ Rn.
At this point, let’s pause to consider ε = 1. Thanks to (9.10), the value of

the function
s 7−→ trace0

(
γ∆−s : L2(Rn, S)→ L2(Rn,S)

)
at s = 0 that we need to calculate (at s = 0) for index theory is equal to the
value of

s 7−→ (−2i)n/2supertrace0(fT∆
−s
1,1)

at s = 0. Now think of this this as the value of

(−2i)n/2supertrace0(fT∆
−s
ε,ε)

at s = 0 and ε = 1, and observe from (9.10) again, and (9.5) that this is indepen-
dent of ε. We find that

trace0
(
γ∆−s

)∣∣∣
s=0

= (−2i)n/2supertrace0(fT∆
−s
0,0)
∣∣∣
s=0
.

This is really our grand conclusion about index theory for Dirac operators (just
as our grand conclusion about point-values of leading residues was that they
depended only on principal symbols, and so could be computed using con-
stant coefficient operators). Keeping in mind the formula for the supertrace at
ε = 0, we see immediately that the index is some degreen/2 invariant polymno-
mial in the Rij over M, and so is a characteristic number. To understand which

5They are not quite formally self-adjoint, but if we cut off on the left and right by a suitable
smooth bump function that is supported near 0 ∈ Rn, then they are norm-bounded perturbations
of formally self-adjoint and indeed essentially self-adjoint operators, and this is enough for the
analysis to proceed.
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characteristic number it is, only a modest amount of extra work is needed, in-
volving an explicit calculation parallel to the one we did with Fourier theory
at the beginning of this lecture.

Namely to calculate the precise formula for the (local) index, we need to
determine the value at zero of the zeta function

s 7−→ supertrace0
(
∆−s
0,0

)
for the operator ∆0,0 in (9.11). Using the result of our discussion on heat traces
and zeta functions, this is essentially the same as the following computation,
which can be done quickly by appealing to the theory of the quantum harmonic
oscillator

∆harmonic = −
d2

dx2
+ x2

(although time is up and we won’t do the calculation here).

Lemma 9.6. If ∆0,0 is the operator (9.11), then

supertrace0(exp(−t∆)) = (4πt)
n
2 det1/2

(
tR/2

sinh(tR/2)

)
where R = [Rij].

10 16 September 2016, Erik van Erp

The Dirac operator D of a closed even dimensional spinc manifold M deter-
mines a summable Fredholm module, which gives an element in K-homology
K0(M). A complex vector bundle E → M represents an element in K-theory
K0(M) (a cohomology theory). The pairing of the K-homology cycle [D] and
the K-theory class [E] is the integer Index(DE). The Chern character (in ho-
mology and cohomology) turns this into a pairing between the homology class
ch•(D) and the cohomology class ch•(E).

〈[D], [E]〉 ∈ K0(M)× K0(M)
_

��

� // IndexDE ∈ Z

〈ch•(D), ch•(E)〉 ∈ Hev(M,R)×Hev(M,R) // R

The Chern character of a vector bundle ch•(E) is well understood. We can
therefore think of the Atiyah-Singer index theorem as giving a topological for-
mula for the homology Chern character ch•(D). The formula

IndexDE =

∫
M

ch(E)∧ Tdc(TM)

is equivalent to
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Theorem 10.1 (Atiyah-Singer).

ch•(D) =

∫
M

−∧ Tdc(TM) = Poincaré Dual of Tdc(TM)

Topological proof. We have sketched a proof of the Atiyah-Singer formula by
reduction to the spin manifold S2n. The formula can be directly verified on
S2n, because Bott Periodicity gives us full knowledge of the stable isomor-
phism classes of vector bundles E → S2n. The reduction of the problem to
the calculation on S2n proceeds in two steps, and we must prove invariance of
both the analytic index and the topological index in each of these two steps.
Thus, the proof of the index formula in this approach depends on Bott Period-
icity, and four “invariance” proofs.

IndexDE
∫
M

ch(E)Tdc(TM)

(co)bordism Hard Stokes’s theorem
Thom Isom. Easy calculation of Tdc(TM)

In this approach, the calulation of the homology Chern character ch•(D)

takes place in the bottom right corner of the diagram, i.e., it is implicit in the
proof of the invariance of the topological index under the Thom isomorphism.
In today’s lecture I will focus on this calculation. I will first very briefly com-
ment on the other three “invcariances”.

The bordism invariance of the analytic index is a difficult analytic fact.
There are several proofs available, many of which depend on the analysis of
elliptic boundary value problems. An elementary proof that avoids boundary
value problems, and only requires some basic knowledge about the resolvent
of the Dirac operator on complete manifolds, can be found in a paper by Nigel
Higson, A note on the cobordism invariance of the index, published in Topology
(1991).

By contrast, the bordism invariance of the topological index is an easy con-
sequence of Stokes’s Theorem.

The invariance of the analytic index under the (compactified) Thom isomor-
phism is also not difficult to prove. It relies on the fact that ifM andN are two
even dimensional spinc manifolds, then the index of the Dirac operatorDM×N
of the product manifoldM×N is the product

Index(DM×N) = Index(DM) · Index(DN)

We know that on the even sphere S2n with Bott generator vector bundle β we
have IndexDβ̄ = 1. Therefore on the productM× S2n the index of the twisted
Dirac DE on M equals the index of the operator DE⊗β̄ on M× S2n. This same
argument can be easily adapted to nontrivial sphere bundles ΣF→M because
the Dirac operator and Bott generator vector bundle of the even sphere S2n are
both equivariant for the structure group of the spinc vector bundle F→M.
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Having briefly commented on the other three “invariances”, the content of
this lecture concerns the bottom right corner of the above table, i.e., the proof
of the invariance of the topological index under the Thom isomorphism. As
we will see, this amounts to the calulation of the characteristic class Tdc(TM),
and therefore, in essence, this step is where we calculate ch•(D).

Invariance of the topological Index under the "Thom Isomorphism". Let
M be an even dimensional Spinc manifold and E be a complex vector bundle.
Recall that in our reduction of the index problem to an even sphere S2n, one of
our two “moves” was to replace a pair (M,E) by

(M,E) (ΣF, π∗E⊗ βF),

Here ΣF π−→ M is a sphere bundle over M, whose fibers are even dimensional
spheres. F −→ M is a vector bundle with a Thom class τ ∈ K0(F). The fibers
of F are even dimensional, Fp ≈ R2n. Denote the one-point compactification
of Fp by F+p ≈ S2n ≈ S(Fp × R). We may identify ΣF with the sphere bundle
S(F⊕R).
Need: Before embarking on this proof, one needs to establish the following two
properties of the Todd class:

Td(E⊕ F) = Td(E)Td(F) Td(trivial) = 1

Using these two properties we find that∫
M

ch(E)Tdc(TM) =

∫
ΣF

ch(π∗E)ch(βF) Tdc(T(ΣF))︸ ︷︷ ︸
Tdc(π∗TM)Tdc(π∗F)

=

∫
M

ch(E)π!(ch(βF))Td(TM)Td(F),

where π! : H•c(F) −→ H•−2n(M) denotes integration in the fiber. Therefore,
to prove the equality, and thereby establish invariance of the topological index
under the Thom isomorphism, it suffices to prove the following proposition.

Remark: In the next proposition we actually need βF instead of βF, but we
will see why this is the case at the end of the lecture.

Proposition 10.2.

π!(ch(βF)) =
1

Tdc(F)

Proof. First, it is not hard to prove that we may replace the vector bundle βF of
ΣF by the Thom class τF on F. Thus we will prove that,

π!(ch(τF)) =
1

Tdc(F)
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Facts about Euler class The Euler class is the characteristic class associated to
the Pfaffian, i.e., the invariant polynomial Pf : so(2n)→ R that corresponds to
e = Pf =

∏
xj on skew matrices in normal form (see below).

Let κ :M→ F denote the zero section, and κ∗ restriction toM of compactly
supported differential forms on F,

κ∗ : H•c(F) −→ H•(M)

Then the Euler class e(F) ∈ H•(M) has the property that

π!(a)∧ e(F) = κ
∗(a),

where a ∈ H•c(F) −→
π!

H•−2n(M). With a = ch(τF) we get

π!(ch(τF))∧ e(F)) = κ∗(ch(τF))

= ch( κ̃(τF)︸ ︷︷ ︸
[S+]−[S−]

)

= ch(S+) − ch(S−),

where K0(F) κ̃−→ K0(M) is the map in K-theory induced by the zero section
κ : M → F, and S+/− → M are the two vector bundles that are part of the
Thom class τF : π∗S+ −→ π∗S− of F. Because M is compact, the restriction
map κ̃ “forgets” the map τF, and only remembers the vector bundles S+/−.

To simplify things, we will now restrict our attention to the case of spin
vector bundles. To calculate Tdc(TM) for spinc manifolds, we need a little
more knowledge about characteristic classes of spinc vector bundles. Instead,
I will discuss the calculation of Tdc(TM) in the case whereM is a spin manifold.
In other words, I will calculate Â(TM). Thus, for the sake of exposition, from
now on I will assume that F is a spin vector bundle.

To finish the calculation we use the following lemma.

Lemma 10.3. If F is a Spin(2n) - vector bundle, then the characteristic class

f(F) = ch(S+) − ch(S−)

is associated to the invariant polynomial

f : so(2n) −→ R

defined by f(x1x2 · · · ) = (−1)n
∏ (

exj/2 − e−xj/2
)

for skew matrices in normal
form 

0 −x1
x1 0

0 −x2
x2 0

. . .

 ∈ so(2n).
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This suffices to finish the proof of the proposition 10.2. From

π!(ch(τF))∧ e(F) = f(E)

we see that the characteristic class π!(ch(τF)) of the spin vector bundle F corre-
sponds to the invariant polynomial defined by

(−1)n
n∏
j=1

(
exj/2 − e−xj/2

)
xj

The sign (−1)n is removed if we replace βF by the dual bundle β̄F. What we
get then is precisely the inverse of Â, which is what we needed to prove. With
a minor modification the proof will work for spinc vector bundles F, in which
case we obtain the inverse of the Todd class, as required.

Proof of Lemma (10.3). A spin vector bundle F is given by transition functions,
defined on an open cover ofM. For two open subsets U,V ⊂M, we have

U ∩ V → Spin(2n)

If these are the transition functions for F, then the transition functions for the
spinors S = S+ ⊕ S− are obtained as follows,

U ∩ V // Spin(2n) //

φ &&

End(C2n)

U(2n),

⊆

OO

The structure group of S is the unitary group U(2n). In fact, because of the
grading S = S+ ⊕ S−, the structure group is really the subgroup U(2n−1) ×
U(2n−1) ⊂ U(2n).

The curvature of F is a so(2n)-valued 2-form, while the curvature of S is a
u(2n)-valued 2-form. To evaluate which characteristic class f of F corresponds
to the characteristic class

chS(S) = ch(S+) − ch(S−)

of S, we consider the diagram

so(2n)

f
$$

dφ // u(2n)

chS

��
C

We need an explicit formula for the Lie algebra map dφ −→ u(2n). We can
obtain such a formula from the calculations in the Clifford algebra that we did
in an earlier lecture.
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Recall,
so(2n)

∼=−→ Λ2R2n ⊂ C2n
where Λ2R2n denotes the subset of the Clifford algebra C2n spanned by el-
ements of the form eiej, i 6= j. We have shown in an easlier lecture that the
element 1

2
eiej ∈ Cn corresponds to the skew matrix in so(n) with a −1 in row

i and column j, and +1 in row j and column i. We can therefore realize the Lie
algebra map dφ explicitly by means of the 2n×2n complex valued matrices Ei
of Equation (2.1). We find, for a skew matrix in normal form,

dφ :


0 −x1
x1 0

0 −x2
x2 0

. . .

 ∈ so(2n) 7−→ x1

2
E1E2 +

x2

2
E3E4 + · · · .

Let us denote A = x1
2
E1E2 +

x2
2
E3E4 + · · · . To identify the characteristic class

f, we need to calculate

f(x1, x2, . . . , xn) = chS(A) = tr(γ exp(A))

where γ =

[
I 0

0 −I

]
is the grading operator.

Note that EiEj commutes with EkEl if i, j, k, l are four distinct indices. Thus,

exp(A) =
∏

exp
(xj
2
E2j−1E2j

)
=
∏(

cos
(xj
2

)
+ sin

(xj
2

)
E2j−1E2j

)
.

We now need the following fact about the “supertrace” tr(γ−) defined on the
Clifford algebra C2n → R. Exercise: Verify that

tr(γEi1Ei2 · · ·Eip) =

{
0 , except
(−2i) , if E1E2 · · ·E2n.

hint: You need to first verify that the grading operator is given by γ = inE1E2 · · ·E2n.
With this knowledge about the supertrace on the Clifford algebra, we obtain

tr(γ exp(A)) = (−2i)n
n∏
j=1

sin
(xj
2

)
= (−1)n

∏(
eixj/2 − e−ixj/2

)
This should be our expression for the function f : so(2n)→ R.

What about the i ′s in the exponents? This has to do with the fact that S is a
complex vector bundle, and F is a real vector bundle.
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conventions. If Ω denotes the curvature of a connection on a vector bundle,
then the conventions for characteristic classes of real and complex vector bun-
dles are slightly different.

R vector bundle
p : so(n) −→ R

p(F) = p
(
ΩF

2π

) C vector bundle
p : u(N) −→ C

p(S) = p
(
−ΩS

2πi

)
.

If we take this into account, the i ′s in the exponents will go away. Moreover, to
get all the signs to work out correctly, we note that in the statement of Proposi-
tion (10.2) we really need βF instead of βF.
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