
WEYL, HEISENBERG AND LEVINSON THEOREMS,
AFTER KODAIRA

NIGEL HIGSON

ABSTRACT. These are notes from two 2020 Noncommutative Ge-
ometry Seminars at Penn State. The goal in the seminars was to
describe and prove theorems of Weyl, Heisenberg and Levinson
about Sturm-Liouville operators on a half-line, at least in simple
special cases, following an approach due to Kodaira.

1. INTRODUCTION AND STATEMENT OF THE MAIN THEOREMS

I’m going to be considering a linear differential operator on [0,∞)
of the form

H = −
d2

dx2
+ q.

To keep things simple, I’ll assume that q is a real-valued, smooth
and compactly supported function on [0,∞), as in Fig. 1. This is too

FIGURE 1. A graph of the potential function q(x). For sim-
plicity I’ll be examining smooth and compactly supported
potentials on [0,∞). Kodaira’s arguments cover much more
general potentials, but at the cost of some added complica-
tions, and somewhat reduced conclusions.

simplistic for applications. More realistic would be something like
the “Coulomb potential”

q(x) =
`(`+1)

x2
−
α

x
.
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This arises in the study of the Schrödinger equation for the hydro-
gen atom (for an explanation, see Higson and Subag (2019)). It’s
called a “long-range potential,” which means that the component
α/x doesn’t converge to zero fast enough as x→∞ to avoid analytic
troubles. See for instance Yafaev (2010, Chapter 4) for much more
information about long-range versus short-range.

Throughout most of these notes I’ll be following a beautiful paper
of Kodaira (1949), which doesn’t shrink from the challenge of han-
dling the difficulties attendant to at least some long-range potentials.
I, on the other hand, will take pains to avoid such troubles.

Anyway, of interest here will be the eigenvalue problem

Fλ = λFλ, (1.1)

subject to suitable boundary conditions, which I shall fix in these
notes to be

Fλ(0) = 0 and F ′λ(0) = 1. (1.2)
For each λ ∈ C there is a unique solution.

Thanks to the assumption that q is compactly supported, one can
say with confidence that this solution has the form

Fλ(x) = c(λ) exp(i
√
λx) + c(λ) exp(−i

√
λx) for x� 0, (1.3)

where c(λ) is independent of x but holomorphically dependent on λ.
The simple fact expressed by is what makes dealing with compactly
supported potentials so much easier than dealing with long range
potentials.

The first theorem that I want to discuss is due to Weyl (1910). It ex-
plains how to reconstruct a general function on (0,∞) from its inner
products with the eigenfunctions Fλ. Qijun Tan and I studied Weyl’s
theorem from a certain geometric point of view in Higson and Tan
(2020). But in these notes I shall follow the quite different approach
of Kodaira.

Theorem (Weyl 1910). If f is a smooth and compactly supported function
on (0,∞), then

f(x) =
∑
λ<0

〈Fλ, f〉L2
〈Fλ, Fλ〉L2

Fλ(x) +
1

4π

∫∞
0

〈Fλ, f〉L2Fλ(x)
1

|c(λ)|2
dλ√
λ
,

where the sum is over those λ < 0 for which Fλ is square-integrable.

Remark. Except for this comment, I won’t discuss the what type of
converge is involved, beyond saying that one can use convergence
in L2(0,∞). But it’s also true that the sum and integral are absolutely
convergent, uniformly so on compact subsets of (0,∞).
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To formulate our other theorems, I want to look at the eigenfunc-
tions Fλ just a little differently. For λ > 0 they can be written as

Fλ(x) = constantλ · sin(kx+ δ(k)) for x� 0,

where the constant in front is positive, and where k is the positive
square root of λ. This characterizes δ(k) ∈ R as a function of k>0,
modulo multiples of 2π. The function δ is called the scattering phase
shift and it is important (or so I understand) from the physics per-
spective because it is measurable. The objective of scattering theory,
invented by Wheeler and Heisenberg, is to determine other features
of the equations (1.1) and 1.2 from the scattering phase shift.

With that superficially-described background in mind, here is the
next result, which Kodaira attributes to Heisenberg (1943a,b, 1944).

Theorem (Heisenberg 1944). The function

s(k) = exp(2iδ(k))

defined initially for k > 0, has a meromorphic continuation to C with
only simple poles in the upper half-plane. The eigenfunction Fλ is square-
integrable if and only if λ < 0 and i

√
−λ is a pole of the function s.

Remark. I won’t do so, but one can say more, for instance about the
L2-norm of Fλ. See Kodaira (1949, Theorem 6.1).

Remark. In more physically realistic contexts (beyond our toy model
short range potential) the conclusions tend to be a bit weaker, in that
the function s(k) has a meromorphic continuation to C \ [0,∞), but
not necessarily to all of C. Moreover the conclusion of the theorem
about the poles of s can sometimes fail: there can be poles of s that do
not correspond to eigenvalues. See the commentary and references
in Kodaira (1949).

Before stating the final theorem, I need a preliminary result:

Theorem. The number of negative eigenvalues of H as a self-adjoint op-
erator on L2(0,∞), or equivalently the number of square-integrable Fλ, is
finite.

Now let n be the number of negative eigenvalues of H (inciden-
tally, each eigenvalues has multiplicity one).

Theorem (Levinson 1949). If the eigenfunction F0 is a bounded function
of x ∈ [0,∞), then

nπ = δ(0) − δ(∞).

If F0 is unbounded, then

(n+ 1
2
)π = δ(0) − δ(∞).
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The theorem requires a little explanation, since the scattering phase
shift δ(k) is only defined modulo 2π, and it is not defined at all for
k = 0 or k = ∞. Initially the scattering phase shift is defined as a
smooth function δ : (0,∞)→ R/2πZ. But it may be lifted to a smooth
function we can choose δ to be a smooth function δ : (0,∞)→ R, and
then

s ′(k)/s(k) = 2iδ ′(k),

The right hand sides of the formulas in the theorem should be com-
puted using

δ(0) − δ(∞) := lim
ε→0 lim

R→∞
(
δ(ε) − δ(R)

)
= lim

ε→0 lim
R→∞

i

2

∫R
ε

s ′(k)/s(k)dk.

We shall prove below that the limits exist.

2. THE WRONSKIAN

The classical Wronskian of a pair of smooth functions of one real
variable is the function

Wr(F,G)(x) = F ′(x)G(x) −G ′(x)F(x).

2.1. Lemma. If F and G are eigenfunctions of H for the same eigenvalue,
then Wr(F,G) is a constant function of x. �

2.2. Lemma. For every λ ∈ C the Wronskian is a nondegenerate alternat-
ing bilinear form on the 2-dimensional space of λ-eigenfunctions for H on
(0,∞). �

The Wronskian will have several roles to play in what follows. Per-
haps most important among them is the following simple fact:

2.3. Lemma. If U+ and U− are linearly independent eigenfunctions of H
for the same eigenvalue λ, then the morphism

U 7−→ (
Wr(U+, F),Wr(U−, F)

)
is an isomorphism from the space of all λ-eigenfunctions into C2. �

3. WEYL’S SPECTRAL THEOREM

The Wronksian also has a small role to play in the following result:

3.1. Theorem. The operator H is essentially self-adjoint on the domain of
smooth, compactly supported functions on [0,∞) that vanish at 0.
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Sketch of the proof. First, if f is smooth and compactly supported on
[0,∞), then for any other smooth function on [0,∞) ,

〈Hf, g〉− 〈f,Hg〉 = −Wr(f, g)(0).

Now if H failed to be essentially self-adjoint, then according to the
theory worked out by von Neumann, there would be a function g in
the domain of H∗ with H∗g = ±ig, and in particular Hg = ±ig in
the sense of distributions. Such a function, being an eigenfunction
would necessarily be smooth on [0,∞). The display above, and the
definition of H∗, would imply that the linear functional

f 7−→ −Wr(f, g)

would be L2-continuous on the domain of H. But

Wr(f, g) = f ′(0)g(0)

on the domain of H and continuity would imply g(0) = 0, and there
is no square-integrable ±i-eigenfunction satisfying this boundary
condition. �

According the von Neumann’s spectral theorem, there is a pro-
jection-valued measure on the spectrum of H such that

H =

∫
Spec(T)

λdP(λ).

The following result is a reformulation of Weyl’s theorem:

3.2. Theorem. If f is a smooth, compactly supported function on (0,∞),
and if b>a>0, then

(P[a,b]f)(x) =
1

4π

∫b
a

〈Fλ, f〉L2Fλ(x)
1

|c(λ)|2
dλ√
λ
.

To prove this, we start with the formula

P[a,b] =
1

2πi

∫
Γε

(λ−H)−1 dλ (3.1)

from the holomorphic functional calculus, where Γε is the contour in
Fig. 2. Initially (3.1) is valid only for operators H for which a and b
are excluded from the spectrum, but the resulting formula

P[a,b] = lim
ε→0+

1

2πi

∫b
a

(H−λ−iε)−1 − (H−λ+iε)−1 dλ (3.2)

is actually valid as long as a and b are not eigenvalues. The limit
exists in the norm topology, even.
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FIGURE 2. The contour Γε for the integral in the Weyl-
Kodaira formula.

Theorem 3.2 will be proved by computing the limit in (3.2) when
b > a > 0. The main step is to introduce certain new λ-eigenfunctions,
which will also see duty throughout the rest of the paper.

3.3. Definition. For k ∈ C, denote by Uk the solution to HUk = k2Uk
for which

Uk(x) = exp(ikx) (x� 0).

Now let λ ∈ C. As long as λ 6= 0, we obtain from Definition 3.3 two
linearly independent λ-eigenfunctions for H from the two square
roots k of λ. We shall use the following notation throughout the rest
of the notes:

3.4. Definition. For k ∈ C we shall write

a(k) = Wr(Fλ, Uk)

where λ = k2. This is an entire function of k.

3.5. Lemma. If λ is any nonzero complex number, and if k2 = λ, then

Fλ =
1

2ik

(
a(−k)Uk − a(k)U−k

)
.

Proof. Certainly we can write

Fλ = α(k)Uk − β(k)U−k (3.3)

for some α(k) and some β(k). Taking the Wronskian of both sides of
(3.3) with Uk and U−k gives{

a(k) = −β(k)Wr(U−k, Uk)

a(−k) = α(k)Wr(Uk, U−k)

But by computing for x� 0we find immediately that

Wr(Uk, U−k) = 2ik,

from which the result follows. �
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The lemma implies that

Fλ(x) = c(λ) exp(i
√
λx) + c(λ) exp(−i

√
λx) for x� 0 (3.4)

where

c(λ) =
a(−
√
λ)

2i
√
λ
. (3.5)

The following lemma is the crucial step towards the proof of Weyl’s
theorem:

3.6. Lemma. Assume that ν /∈ Spec(H), that ν = k2, and that Im(k) > 0.
If f is any smooth and compactly supported function on (0,∞), then

a(k) ·
(
(H−ν)−1f

)
(x)

= Fν(r)

∫∞
r

Uk(s)f(s)ds+Uk(r)

∫ r
0

Fν(s)f(s)ds.

Proof. If we denote by (Kνf)(r) the right-hand side of the formula in
the statement of the lemma, then the formula defines a linear op-
erator Kν from smooth compactly supported functions on (0,∞) to
the vector space of smooth functions in dom(H) (here we use the ex-
ponential decay of Uk, and hence the assumption Im(k) > 0). We
compute directly from the definition of the Wronskian that

(H− ν)Kνf = Wr(Fν, Uk)f,

The lemma follows. �

Now we apply the lemma with ν = λ ± iε, with λ > 0 and ε > 0.
We are going to take a limit as ε→ 0+ of the operator

(H−λ−iε)−1 − (H−λ+iε)−1,

and since by the previous lemma the expression for this operator
involves a(k)−1, it will be helpful to know the following fact:

3.7. Lemma. If k ∈ R and k 6=0, then a(k) 6=0.

Proof. Examine the formula in the Lemma 3.5. If k ∈ R and if λ = k2,
then Fλ is a real-valued function, and as a result a(k) = a(−k). So if
a(k) was zero, then Fλ would be zero, too, which it isn’t. �

We can begin our computation of the limit. If f is smooth and
compactly supported on (0,∞), then

lim
ε→0+

(
(H−λ−iε)−1f− (H−λ+iε)−1f

)
(x)
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= Fλ(x)

∫∞
x

1
a(k)
Uk(y)f(y)dy+ 1

a(k)
Uk(x)

∫ x
0

Fλ(y)f(y)dy

+ Fλ(x)

∫∞
x

1
a(−k)

U−k(y)f(y)dy+ 1
a(−k)

U−k(x)

∫ x
0

Fλ(y)f(y)dy,

where k is the positive square root of λ. Taking into account Lemma 3.5
we obtain

lim
ε→0+

(
(H−λ−iε)−1f−(H−λ+iε)−1f

)
(x) =

2i
√
λ

|a(
√
λ)|2

Fλ(x)

∫∞
0

Fλ(y)f(y)dy

We find that

(P[α,β]f)(x) =
1

π

∫β
α

∫∞
0

Fλ(x)Fλ(y)f(y)dy

√
λ

|a(
√
λ)|2

dλ

or equivalently

(P[α,β]f)(x) =
1

4π

∫β
α

∫∞
0

Fλ(x)Fλ(y)f(y)dy
1

|c(λ)|2
dλ√
λ

as required.

4. HEISENBERG’S THEOREM

In this section I shall take advantage of the fact that a is an en-
tire function of k (although a weaker hypothesis would suffice, as in
Kodaira (1949)).

4.1. Lemma. If Im(k)>0, then a(k)=0 if and only if k is purely imaginary
and λ = k2 is a (negative) eigenvalue of H.

Proof. The proof will use the formula

Fλ(x) =
1

2ik

(
a(−k) exp(ikx) − a(k) exp(−ikx)

)
for λ = k2, plus the facts that exp(ikx) is exponentially decreasing
when Im(k)>0, while exp(−ikx) is exponentially increasing. It fol-
lows from the formula that for Im(k)>0,

a(k) = 0 ⇔ Fλ ∈ dom(H)

(I mean here the domain of the closure of H, on which H is self-
adoint). Now the only eigenvalues of H are real numbers, and the
only eigenvalues with positive imaginary square roots area negative
real numbers. The lemma follows. �

4.2. Lemma. Every zero of a(k) in the upper half-plane is a simple zero.
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Proof. This follows from the formula(
(H−ν)−1f

)
(x) = a(k)−1

(
Fν(r)

∫∞
r

Uk(s)f(s)ds+Uk(r)

∫ r
0

Fν(s)f(s)ds
)

and the fact that ν 7→ (H − ν)−1 has a simple pole at the (isolated)
negative eigenvalues of H. Now the only eigenvalues of H (if there
are any at all) are negative real numbers. �

4.3. Lemma. If k 6= 0, and if a(k)=0, then a(−k) 6= 0.

Proof. It follows from the formula

Fλ(x) =
1

2ik

(
a(−k) exp(ikx) − a(k) exp(−ikx)

)
that a(k) and a(−k) cannot simultaneously be zero. �

4.4. Lemma. a(k) = a(−k).

Proof. If k is real and nonzero, and if λ = k2, then from

Fλ(x) =
1

2ik

(
a(−k) exp(ikx) − a(k) exp(−ikx)

)
and the fact that Fλ is real-valued, it follows that a(k) = a(−k). In
other words

k ∈ R ⇒ a(k) = a(−k).

The lemma follows by analytic continuation of this formula from R
to C. �

4.5. Theorem. The function s(k) = exp(2iδ(k)) has a meromorphic con-
tinuation from (0,∞) to C. If Im(k) > 0, then k is a pole of s if and only
if k is purely imaginary and k2 is a (negative) eigenvalue of H.

Proof. It follows from Lemma 4.4 that if k > 0, then

a(−k)/a(k) = exp(2iδ(k)).

The left-hand side of this identity provides the meromorphic contin-
uation. The remaining assertions in the theorem follow from Lem-
mas 4.1, 4.2 and 4.3. �

5. LEVINSON’S THEOREM

Here is our starting point:

5.1. Theorem. The number of negative eigenvalues of H as a self-adjoint
operator on L2(0,∞), or equivalently the number of square-integrable Fλ,
is finite.
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Proof. We saw that λ is a negative eigenvalue of H if and only if
λ = k2, with k positive-imaginary and a(k) = 0. We also saw that the
negative eigenvalues are bounded from below, since H is bounded
from below. If there were an infinite number of negative eigenval-
ues, there would be an infinite number of zeros of the nonzero en-
tire function a on a bounded interval on the positive imaginary axis.
This is impossible. �

With that, here is our objective, repeated from the Introduction:

5.2. Theorem. Let n be the number of negative eigenvalues of H. If the
eigenfunction F0 is a bounded function of x ∈ [0,∞), then

nπ = δ(0) − δ(∞).

If F0 is unbounded, then

(n+ 1
2
)π = δ(0) − δ(∞).

Recall that I am writing

δ(∞) − δ(0) := lim
ε→0+ lim

R→∞
1

2i

∫R
ε

s ′(k)/s(k)dk.

To prove Levison’s theorem, we are going to count the number of
zeros of a(k) in the upper half-plane, and hence the number of neg-
ative eigenvalues of H, using complex analysis techniques.

Consider a contour like the one in Fig. 3 that includes all the zeros
of a. Since all the poles are simple, and since there are no zeros of s
within the contour, it follows from the argument principle that

number of negative eigenvalues =
−1

2πi

∫
Γ

a ′(k)/a(k)dk. (5.1)

We shall compute the contour integral in three stages.
Horizontal Components. If the small arc in Fig. 3 has radius ε and the
large arc has radius R, then the contribution to the integral in (5.1)
from the part of the contour along the x-axis is

−
1

2πi

∫−ε
−R

a ′(k)/a(k)dk−
1

2πi

∫R
ε

a ′(k)/a(k)dk

or in other words

−
1

2πi

∫R
ε

a ′(k)/a(k) − a ′(−k)/a(−k)dk

Now for k real,
s(k) = a(−k)/a(k),
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FIGURE 3. The contour Γ for the proof of Levinson’s theo-
rem. The radius of the outer arc is very big, and the radius
of the inner arc is very small.

and so by a little calculus,

s ′(k)/s(k) = −a ′(−k)/a(−k) − a ′(k)/a(k),

and therefore the contribution to the right-hand side in (5.1) from the
part of the contour along the x-axis is

−
1

2πi

∫R
ε

s ′(−k)/s(k)dk,

which, according to our conventions, is 1
π
(δ(ε) − δ(R)).

Small Semicircular Arc. It follows from the above that the number of
negative eigenvalues is

1

π
(δ(ε) − δ(R))

−
1

2πi

∫
Γε

a ′(k)/a(k)dk−
1

2πi

∫
ΓR

a ′(k)/a(k)dk, (5.2)

where Γε and ΓR are the small and large semicircular arcs in the con-
tour Γ , respectively. We’ll now tackle the integral over Γε.

5.3. Lemma. The eigenfunction F0 is bounded if and only if a(0) = 0.

Proof. If a(0) = 0, then from

U0 = a(0)G0 − b(0)F0

we find that F0 is a multiple of U0, and is hence bounded. If F0 is
bounded, then G0 cannot be bounded, since the space of 0-eigen-
functions is 1-dimensional. So it follows from

a(0)G0 = U0 + b(0)F0

that necessarily a(0) = 0. �
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So 0 is a pole if F0 is bounded, and is a regular point otherwise. By
a standard complex analysis computation,

lim
ε→0+

1

2πi

∫
Γε

a ′(k)/a(k)dk =

{
1
2

if F0 is bounded
0 if F0 is unbounded

Large Semicircular Arc. The remaining task is to show that the integral
over the large arc contributes nothing (in the limit as R → ∞) to the
formula (5.2). This is a consequence of the following result:

5.4. Proposition. Within the region Im(k) ≥ 0 we have

lim
k→∞a(k) = 1.

I believe that from a physics point of view this is supposed to be
clear. High energy waves will be scattered little to not at all by the
potential q, so that the potential might as well be zero. But when
q = 0, we have

Fλ(x) = 1/
√
λ sin(

√
λx)

=
1

2ik
exp(ikx) −

1

2ik
exp(−ikx),

where k2 = λ. Now compare with Lemma 3.5.
In any case, it follows directly from the proposition that

1

2πi

∫
ΓR

a ′(k)/a(k)dk = 0

since we can write a ′(k)/a(k) = d/dk log(a(k)) for the principal
branch of log and then use the antiderivative log(a(k)) to evaluate
the integral. Putting everything together, we obtain a proof of Theo-
rem 5.2.

To give a mathematical proof of Proposition 5.4 we shall use the
following interesting formula for a(k):

a(k) = 1+

∫∞
0

exp(iky)q(y)Fk2(y)dy (5.3)

This comes from the following computation:

5.5. Lemma. If λ 6= 0 and k2 = λ, then

Fλ(x) =
1

k
sin(kx) −

1

k

∫ x
0

sin(k(x−y))q(y)Fλ(y)dy

for every x ∈ [0,∞).
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Proof. This formula is obtained by the method of “variation of con-
stants.” But no matter how it is obtained, it can be checked as fol-
lows: the difference between the left-hand side and the right-hand
side has value 0 and derivative 0 at x=0, and the second derivative
of the difference is zero everywhere. �

As for the formula (5.3), it follows from the lemma and the com-
putation

1

k

∫ x
0

sin(k(x− y))q(y)Fλ(y)dy

=
1

2ik
exp(ikx)

∫ x
0

exp(−iky)q(y)Fλ(y)dy

+
1

2ik
exp(−ikx)

∫ x
0

exp(iky)q(y)Fλ(y)dy.

Note that the integrals on the right hand side are independent of
x� 0, since q is compactly supported.

Finally, Proposition 5.4 is proved using (5.3) and the following esti-
mate for Fλ(x) whose prove I’ll omit, except to say that it simply uses
the definition of Fλ as an H-eigenfunction: if k2 = λ, with Im(k) ≥ 0,
then

|Fλ(x)| ≤
K

|λ|
| exp(−ik)|.

The constant is independent of λ in the region |λ| ≥ 1. See Levinson
(1949, Lemma 2.0).

APPENDIX A. TRANSMISSION THROUGH A BARRIER

Here are some calculations for Jonathan on the Scrhödinger equa-
tion for a potential barrier. For the most part they’re from a first
course in quantum mechanics (I learned this from Dicke and Wittke
(1960)). The point is to determine the sign of δ and its magnitude in
relation to the size of the potential.

−uxx + Vu = k2u

V(x) = bW(x) (b ∈ [0, 1])

−uxxb +Wu+ bWub = k
2ub{

−ubuxx + ubVu = k2ubu

−uxxbu+Wuu+ Vubu = k2ubu
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Subtracting the second equation from the first yields

uxxbu− ubuxx = V |u|
2,

which I can write as

(uxbu− ubux) x = V |u|
2.

It follows that [
uxbu− ubux

]N
−N

=

∫N
−N

V |u|2 dx

v(x) = exp(ikx) (x� 0)

v(x) = c(k) exp(ikx) + c(−k) exp(−ikx) (x� 0)

u(x) =

{
exp(ikx) + α(k) exp(−ikx) x� 0

β(k) exp(ikx) x� 0

u(x) =

{
exp(ikx) + ρ exp(−ik(x+ε)) x� 0

τ exp(ik(x+δ)) x� 0

u(x) = exp(ikx) + ρ exp(−ik(x+ε))
ub(x) = ρb exp(ik(x+ε)) + ikρεb exp(ik(x+ε))
ux(x) = ik exp(ikx) − ikρ exp(−ik(x+ε))

ubx(x) = ikρb exp(ik(x+ε)) − k2ρεb exp(ik(x+ε))

uxb(−N)u(−N) − ub(−N)ux(−N) = 2ikρρb − 2k
2ρ2εb

u(x) = τ exp(ik(x+δ))
ub(x) = τb exp(−ik(x+δ)) − ikδbτ exp(−ik(x+δ))
ux(x) = ikτ exp(ik(x+δ))

ubx(x) = −ikτb exp(−ik(x+δ)) − k2δbτ exp(−ik(x+δ))

uxb(N)u(N) − ub(N)ux(N) = −2ikττb − 2k
2τ2δb

[
uxbu− ubux

]N
−N

= −2ikττb − 2k
2τ2δb − (2ikρρb − 2k

2ρ2εb)

= −2ik(ττb + ρρb) − 2k
2(τ2δb − ρ

2εb)

τ2 + ρ2 = 1

τ2δb − ρ
2εb = − 1

2k2
〈u, Vu〉
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Feynman, Leighton, and Sands (1963, Sec. 31) and Wellner (1964)
and Dicke and Wittke (1960)
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ementarteilchen. Z. Phys., 120:513–538, 1943a. ISSN 0170-9739.

W. Heisenberg. Die beobachtbaren Grössen in der Theorie der Ele-
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