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First Introduction—Some Questions

The name hypoelliptic Laplacian
is Jean-Michel Bismut’s term for
an operator constructed by him
for use in carrying out very
striking computations in spectral
geometry.

I’ll try to answer some of the
obvious questions:

• What is it?

• What does it do?

• Where does it come from?

• How does it do what it does?



Hypoelliptic Laplacian on the Circle

There is a version of the hypoelliptic Laplacian for every (real
reductive) Lie group. I’ll mostly consider compact groups in this talk.
In fact I’ll mostly consider the circle T = R/Z.

Here is the answer to the first question in the case of the circle:

Lb =

[ 1
2b2 (y2 − ∂2

y − 1) + 1
b y∂x 0

0 1
2b2 (y2 − ∂2

y + 1) + 1
b y∂x

]

This operator acts on T×R, with x coordinatizing the circle and y
coordinatizing the line (which is the Lie algebra of T).

As for b, it is a positive parameter, so actually the hypoelliptic
Laplacian is a family of operators.

It is also evident from the formula what the hypoelliptic Laplacian is
not: it is not elliptic and it is not even formally self-adjoint.



Selberg Trace Formula

As for what Lb does (in general, and not just for T) it
is designed to prove identities such as the Selberg
trace formula.

This relates the eigenvalues λ of the Laplacian on a
(closed) hyperbolic surface S, to the lengths and
primitive lengths of the closed geodesics γ on S:

∑
λ

e−tλ =
Area(S)

4πt
· e−t/4
√

4πt

∫ ∞
0

xe−x2/4t

sinh(x/2)
dx

+
e−t/4
√

4πt

∑
γ

`0(γ)/2
sinh

(
`(γ)/2

)e−`(γ)2/4t



Poisson Summation Formula

Returning to the circle (of circumference c), there is a counterpart of
the Selberg formula:∑

k∈Z

e−4π2k2t/c2
=

c√
4πt

∑
n∈Z

e−n2c2/t

It’s much simpler. But you can see both the eigenvalues of the
Laplace operator and the lengths of the closed geodesics.

Of course, the formula is a special case of the Poisson summation
formula, among other things. So easy harmonic analysis applies.

I shall explain how Bismut’s method leads to a proof of the formula
. . . but you’ll see that the effort involved is considerable.

However, as the dimension increases, so can the complexity of the
harmonic analysis, while the difficulty of Bismut’s method remains
more or less unchanged.



The Hypoelliptic Laplacian and Orbital Integrals

To return briefly to the Selberg formula, if S is a hyperbolic surface,
then S ∼= Γ\SL(2,R)/SO(2) where π1(S) ∼= Γ, and

exp(−t∆S)(p,p) =
∑
γ∈Γ

exp(−t∆H)(P, γP)

where H = SL(2,R)/SO(2). It follows that

Tr(exp(−t∆S)) =
∑
〈γ〉

vol
(
ZΓ(γ)

∖
ZG(γ)

)
· Tr〈γ〉

(
exp(−t∆H/2)

The sum is over representatives of conjugacy classes in Γ, and

Tr〈γ〉
(
exp(−t∆H/2)

)
=

∫
ZG(γ)\G

exp(−t∆H)(gP, γgP) dg.

Bismut uses Lb for SL(2,R) to evaluate these orbital integrals.



Aside: Heat Kernels, Weyl’s Law and McKean-Singer

I’ve already used the heat kernel exp(−t∆S)(p,q) above. It is the
integral kernel representing the heat operator exp(−t∆S) arising from
the heat equation:

∂tut + ∆Sut = 0

Since the 1950’s, the preferred method of attack in spectral geometry
has been via the heat equation, not via resolvents, à la Weyl.

The first step is the formula

exp(−t∆S)(p,p) =
1

4πt
+O(1)

as t→0, which already implies Weyl’s asymptotic law.

This is the beginning of an asymptotic expansion that continues

exp(−t∆S)(p,p) =
1

4πt
+

K (p)

12π
+O(t)

where K (p) is the Gauss curvature at p ∈ S [McKean & Singer, 1967].



Aside: McKean-Singer Versus Selberg

Do the local, McKean-Singer-type computations shed light on
Selberg’s formula? Unfortunately no, since∑

γ

`0(γ)/2
sinh

(
`(γ)/2

)e−`(γ)2/4t = O(tN)

(On the other hand the asymptotic formula

e−t/4
√

4πt

∫ ∞
0

xe−x2/4t

sinh(x/2)
dx = 1− 1

3 t + · · ·

verifies the asymptotic expansion of McKean and Singer, using
Selberg, for a hyperbolic surface.)

Similar remarks apply on the circle case.

It is remarkable that nevertheless the hypoelliptic Laplacian is a child
of the heat equation method.



Second Introduction—A List of Ingredients

From now on I shall focus on the circle (of circumference one). But
actually there would be few changes for compact groups, and not so
many for the noncompact case.

1. I shall assemble a list of parts from which Lb is built:

• The Dirac operator

• The square root of the quantum harmonic oscillator

• The (Kasparov) product

2. Then I’ll explain the (counterfactual) steps that led to Lb:

• Simplify the Kasparov product (incorrectly!)

• Explore the consequences

3. Finally, with Lb to hand, I’ll examine its geometric aspects, which
lead to the Selberg-type formulas.



Square Roots of the Laplacian

On the circle, Bismut essentially uses the following Dirac operator

D =

[
0 i ∂x

i ∂x 0

]
(which is more or less the de Rham operator). It acts as a self-adjoint
operator on functions with values in a vector space Λ (which in
general is the exterior algebra of the Lie algebra):

D : L2(T,Λ) −→ L2(T,Λ)

Dirac operators were famously rediscovered by Atiyah and Singer in
index theory . . .

Denote by Ind(D) the Fredholm index of the lower left component of D
. . . it is zero for the circle, and even for any compact Lie group, but not
for general manifolds.

Disclosure: Bismut actually uses −i D, which will cause me to insert
some square roots of minus one later.



The Supertrace and the McKean-Singer Formula

The supertrace is the functional

STr
([A00 A01

A10 A11

])
= Tr(A00)− Tr(A11).

It vanishes on supercommutators.

McKean and Singer observed (in full generality, well beyond the
circle) that the quantity STr(exp(−tD2)) is independent of t>0. In fact

STr(exp(−tD2)) = Index(D)

Indeed, the derivative with respect to t is a supertrace of a
supercommutator, and it is therefore zero:

d
dt

STr
(
exp(−tD2)

)
= −STr

({
D,D exp(−tD2)

})
= 0

And then the large t limit is easy to compute.



Spectral Geometry on a Vector Space

The operator
H = −∂2

y + y2

on L2(R) is the well-known quantum harmonic oscillator, with simple
spectrum {1,3,5, . . . }.

It has an almost equally well-known “square root:”

Q =

[
0 −∂y + y

∂y + y 0

]
: L2(R,Λ) −→ L2(R,Λ)

for which

Q2 =

[
−∂2

y + y2 − 1 0
0 −∂2

y + y2 + 1

]
The scalars ±1 make it evident that

Index(Q) = 1.

The kernel is spanned by (e−y2/2,0).



Products, Geometric and Operator-Theoretic

The Laplacian on a product of circles (or anything else) can be written
as a sum of Laplacians acting on each factor:

∆T×T = ∆1 + ∆2 : L2(T× T) −→ L2(T× T)

What about the square roots—the Dirac operators D?

Kasparov defines

D1 # D2 : L2(T× T,Λ⊗ Λ) −→ L2(T× T,Λ⊗ Λ)

which is almost the sum of D1 and D2, acting on first and second
factors. The difference: some ± signs are added strategically.

It has the fundamental properties that

(D1 # D2)2 = D2
1 + D2

2 and Ind(D1 # D2) = Ind(D1) · Ind(D2)



Asymptotics (a Baby Case)

Now I shall combine D and Q into the product D # Q.

Actually I shall introduce a positive parameter T , and study the family

D # T Q : L2(S×V ,Λ⊗Λ
)
−→ L2(S×V ,Λ⊗Λ

)
Here is why. Identify L2(T,Λ) with the kernel of Q in L2(T× R,Λ⊗ Λ)
(consisting of the functions supported in the first component of the
second tensor factor of Λ, and behaving like e−y2/2 in the y -direction).

Theorem

lim
T→+∞

(
i I± D # TQ

)−1
=
(
i I± D

)−1

Proof. (D # TQ)2 = D2 + T 2Q2.

This refines the identity Ind(D #TQ) = Ind(D). Bismut and Lebeau
developed this simple idea enormously . . .



Third Introduction—Counterfactual History

The discovery story, as I shall tell it, centers on spectral theory,
although geometry plays a signicant role at the beginning.

I like to imagine that the discovery emerged from a sort of happy
accident. I don’t really believe it, but that is how I shall frame it.

A better—more complex—explanation is that the discovery was
guided by Bismut’s immense experience with the topics I’ve
discussed up to now.

Anyway, as I shall tell the story, the hypoelliptic Laplacian is
automatically endowed with spectral significance, and the crucial
problem is to add geometry back into the picture.



An Accidental Discovery?
Let me look again at the product

D # T Q : L2(S×V ,Λ⊗Λ
)
−→ L2(S×V ,Λ⊗Λ

)
Remember that in real life Λ is an exterior algebra . . .

. . . so it’s tempting to multiply the tensor factors together, and build

D #̄ T Q : L2(T×R,Λ) −→ L2(T×R,Λ)

What if one lazily writes

D #̄ T Q = D+T Q?

Well, let’s start with

(D+T Q)2 = D2 + T{D,Q}+ T 2Q2

The cross-term, now non-zero, is

{D,Q} = 2y∂x .

From a geometrical point of view, y∂x is the generator of the geodesic
flow on (the tangent bundle of) T . . . which is interesting. Maybe.



Resolvent Convergence?

But does it amount to anything? For instance do we retain the formula

lim
T→+∞

(
i I± (D+TQ)

)−1
=
(
i I± D

)−1

so that D may be recovered from the new construction?

The initial indications are not promising, since D doesn’t preserve the
kernel of Q as it did before . . . quite the opposite.

But D2 does preserve the kernel of Q, so let’s examine the matrix
decomposition

(D + T Q)2 =

[
D2 TDQ

T QD D2 + T{D,Q}+T 2Q2

]
with respect to

L2(T× R,Λ) = Ker(Q)⊕ Ker(Q)⊥ ∼= L2(T)⊕ L2(T)⊥



Two by Two Block Matrix Calculations

If the bottom right entry d of a block matrix is invertible, then[
a b
c d

]
=

[
1 bd−1

0 1

] [
e 0
0 d

] [
1 0

d−1c 1

]
where

e = a− bd−1c

The (1,1)-entry of the inverse matrix is therefore e−1.

In our case

e = D2 − D · T2Q2

D2 + T{D,Q}+ T2Q2 · D

and e→ 0 as T →∞.

So D2 disappears from the resolvent in the limit as T →∞.

Which is not good.



Two by Two Block Matrix Calculations

BUT after looking at these (rather informal) calculations a bit more, a
simple adjustment presents itself.

If one starts with

(D + T Q)2 − D2 =

[
0 T DQ

T QD T{D,Q}+ T 2Q2

]
.

then for this new operator e→ −D2|ker(Q) as T →∞.

Perfect! We have (at least informally) the required resolvent
convergence!

To cope with the minus sign, let’s make one more small adjustment,
and focus on

LT = (
√
−1D + T Q)2 + D2

which converges in the resolvent sense to ∆T (it appears).



Block Matrix Calculations Summarized

Let me state an encouraging, precise, result.

Let D and Q be odd-graded self-adjoint operators on a
finite-dimensional graded Hilbert space H.

Assume that D2 commutes with Q, and that ker(Q) is entirely
even-graded.

Theorem
The operator LT = (

√
−1D + T Q)2 + D2 converges in the resolvent

sense to the compression of D2 to the kernel of Q. Moreover

lim
T→∞

STr
(
exp
(
−t LT )) = Tr

(
(exp

(
−t D2|kernel(Q)

))
for every t > 0. In addition

d
dT

STr
(
exp(−t LT )) = 0



Definition of the Hypoelliptic Laplacian

Bismut uses b−1 instead of T and divides everything by 2. So he
defines the hypoelliptic Laplacian (on a compact group) to be

Lb = 1
2 (
√
−1D + b−1Q)2 + 1

2 D2

or

Lb =

[ 1
2b2 (y2 − ∂2

y − 1) + 1
b y∂x 0

0 1
2b2 (y2 − ∂2

y + 1) + 1
b y∂x

]
as we saw before.

To summarize my story, Lb is designed with the formula

lim
b→0

STr
(
exp(−t Lb)

)
= Tr(exp(−t∆T/2))

in mind.

Of course, quite a few hard issues need to be resolved, now that we
are looking at unbounded operators.



Fundamental Properties

Theorem
For each b>0 the hypoelliptic Laplacian operator Lb is

• hypoelliptic, and

• the generator of a one-parameter semigroup exp(−t Lb) of
trace-class operators.

Theorem
d
dt STr

(
exp(−t Lb)

)
= 0

Theorem
limb→0 STr

(
exp(−t Lb)

)
= Tr(exp(−t∆T/2))



The Method of the Hypoelliptic Laplacian

As should now be clear, Bismut’s approach to trace formulas using Lb
is as follows:

1. Evaluate the limit of the supertrace of the heat kernel as b tends
to zero:

lim
b→0

STr
(
exp(−tLb)

)
= Tr

(
exp(−t∆/2)

)
2. Show that the b-derivative of the supertrace vanishes:

d
db

STr
(
exp(−tLb)

)
= 0

3. Evaluate the limit

lim
b→∞

STr
(
exp(−tLb)

)
I’ve already discussed the first two steps. The third requires still more
new ideas, this time geometric, not spectral.



Geometry of the Hypoelliptic Laplacian

I shall work now with the scalar operator

Lb = 1
2b2 (−∂2

y + y2) + 1
b y∂x

for simplicity. Actually to begin with, I shall work with the even simpler
operator

K = − 1
2∂

2
y + y∂x

on the (x , y)-plane (this operator was initially studied by Kolmogorov).

I want to explain the influence of the term y∂x on the behavior of
solutions to the K -heat equation

∂tut + Kut = 0

Since
ut = exp(−tK )u0

this should also tell us something about the heat semigroup.



The Drift Term

Let ut be a solution of the K -heat equation (it is a family of functions
on the plane).

Define the center of mass of ut to be

cm(ut ) =
(
cmx (ut ), cmy (ut )

)
=
(∫ ∫

ut (x , y) x dx dy ,
∫ ∫

ut (x , y) y dx dy
)

By differentiating under the integral sign, we find that

d
dt

cm(ut ) = (cmy (ut ),0).

If the term y∂x was removed from K , then the derivative would be
zero. The drift is entirely attributable to y∂x .



The Drift Term

Here is a cartoon of what happens, showing where a solution of the
K -heat equation is concentrated as t increases.

• If u0 was concentrated higher, the drift would be faster.

• If u0 was concentrated lower, the drift would be to the left.

Bismut undoubtedly understood this dynamical feature of K (shared
by Lb) immediately, while first experimenting with D # T Q . . .



The Concentration Property for the Heat Kernel
The heat operators for Laplacian (on the circle or elsewhere) have the
following well-known property of concentration along the diagonal.

Proposition
Let σ1 and σ0 be smooth functions on T with disjoint supports. There
is a constant k > 0 such that

‖σ1 exp(−t∆/2)σ0‖ = O(e−kt−1
)

as t → 0 [this is true for any reasonable norm on the left ].

This may be proved in a variety of ways.

My favorite is an argument of Garding and Gaffney (originally used to
study large distance behavior of heat kernels, not small time
behavior).

It adapts very nicely to incorporate the drift phenomenon we’ve seen.
If ϕ is a smooth function on the circle, define

ϕt (x , y) = ϕ(x−t−1by)



The Concentration Property for the Heat Kernel

Proposition
If ϕ and ψ are smooth functions on T with
disjoint supports, then there is a positive
constant k such that∥∥ϕt exp(−tLb)ψ0

∥∥ ≤ O(e−kb2
)

for any fixed t as b →∞.

So the Lb-heat kernel concentrates on a drifted diagonal. This leads
to

Tr
(
exp(−tLb)

)
≈

∑
a∈t−1bZ

∫
T

dx
∫ a+b−1C

a−b−1C
dy exp

(
−tLb)

(
(x , y), (x , y)

)
for C and b large. The heat trace concentrates on geodesic bands.



Limit Argument

There are two more steps. First, a limit computation, which is proved
by a change of variables

[a−b−1C,a+b−1C] −→ [−C,C]

Theorem
If a = bn, then

lim
b→∞

tb−3 · exp(−tLb)
(
(0,a+b−1v), (0,a+b−1v)

)
= e−n2/2 exp(−tK )

(
(0, v), (0, v)

)
Corollary

STr
(
exp(−t Lb)

)
=
∑
n∈Z

e−n2/2t
∫ ∞
−∞

dv exp(−tK )
(
(0, v), (0, v)

)



Explicit Formulas

Second, there is an explicit formula for the K -heat kernel, found by
Kolmogorov:

exp(−tK )
(
(x1, y2), (x2, y2)

)
=

√
3

πt2 exp
(
− 1

2t

(
y1−y2

)2
− 6

t3

(
x2 − x1 −

(y1+y2)t
2

)2)
The formula is complicated (I wrote it so you can see the drift
phenomenon clearly) but we only need it for x1 = x2 and y1 = y2.

We obtain

lim
b→∞

STr(exp(−tLb)) =
1√
2πt

∑
n∈Z

exp
(
−n2

2t

)
and from this we obtain the “Selberg trace formula on the circle."



Thank you, Again!


