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“IJohn’s work] grew out of a conviction and prayerful
reflection that [his] knowledge as a mathematician and
an educator could be channeled into wise action on

matters that will impact us all.”
Francis Su



From Jesus College ...
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The Mathematical Institute,
24 - 29 St Giles,
Oxforde

30th July 1983

Dear Dr, Hurder,

Thank you for your letter of 1 July, which was waiting for me when I returned to
Oxford a few days agoe

I'm afraid that I have nothing which is in a sufficiently final form for me to
send to you, but I will try to describe the idea of my worke The ‘grand design' is
to mimic Connes procedure for certain non cpmpact Riemammian manifolds instead of
compact manifolds. The manifolds I consider are those with "bounded geometry" which
means a lower bound on the injectivity radius and an upper bound on the curvature
tensor and its covariant derivatives, Such manifolds, for example, occur as the leaves
of foliations of compact manifolds - in fact it seems to be an open question whether
they all do. Now to such a Riemannian manifold (M,g) I propose to associate a
C* algebra C¥(M,g) in such a way that the corresponding K-theory group Kb(C*(M,g))
will contain the indices of the 'natural' elliptic operators on M such as the de Rham
operator d+d¥*  Next, some manifolds (in fact exactly those manifolds "closeé at
infinity" in the sense of Sullivan, Inventiones 36) admit certain functionals which I
call ‘'invariant means'; these play the role of transverse measures in the Connes theory,
giving rise to = dimension functions Kb(C*(M,g))-—* R. There seems to be a Gauss Bommet
formula wikk which expresses the real valued index of the de Rham operator in terms of
curvature = modulo some analysis which is proving rather rdcalcitrant at presente Finally,
I hope to be able to compute Kb(C*(M,g)) for nice M = e.ge symmetric spaces or deformations

thereof - by means of representation theory.

If you think this is interesting let me know and I will try and let you have a
copy of anything respectable.

Yours sincerely,

John Roe (Mr)

PS. One interesting aspect of theseximim results is that they seem to be closely related =

at least in the 2 dimensional case - to classical Nevanlinna theory.



The Mathematical Institute,
24-29 St Giles,
Oxford.

30th July 1983

Dear Dr. Hurder,

I'm afraid I have nothing which is in sufficiently final
form to send to you, but I will try to describe to you my
WOrk.

The “Srand design” is to mimic Connes’ procedure for
certain noncompact Riemannian manifolds ...

... to such a Riemannian manifold (M,g) I propose to
associate a C*-algebra C*(M,8)...



The Roe Algebra

John’s C*(M,g) is what we now call the Roe algebra (or one
version of it). Nowadays we just write C*(M).

[ want to explain where it came from, what it is, and what it’s

good for.

I'll focus not so much on John’s thesis (which he was descri

to Steve Hurder in the letter) but on a later result that is both

oIng

beautiful and simple. Because it is so beautiful and so simp.
has been widely used and widely imitated.

e, 1t



In the winter of 1900-1901 the Swedish mathematician
E. Holmgren reported in Hilbert’s seminar on Fredholm’s
first publications on integral equations, and it seems that
Hilbert caught fire at once ...

Hermann Weyl
Dayvid Hilbert and his Mathematical Work

Hilbert famously examined integral operators

(Kf)(x) = | k(x, y)f(y)dy

(Y

with say k continuous and compactly supported, and

proved that

k(x,y) =k(y,x) = 31 O.N.B. of eigenfunctions



“...in the terrain of analysis a rich vein of gold had been
struck, comparatively easy to exploit and not soon to be
exhausted.”

Weyl lists a range of work:

e Simplifications and generalizations (w. Schmidt)

e Singular kernels k(x,y)

® Spectral theorem for bounded self-adjoint operators
® Riemann-Hilbert problem

@ Birkhoff decomposition

® Representations of compact groups

e Hodge theory



“It became possible to develop such asymptotic laws for
the distribution of eigenvalues as were required by the
thermodynamics of radiation”

Weyl is referring to his own work on the asymptotics of
eigenvalues for the Laplace operator ...

Dirichlet eigenvalue problem:

Afy = Anly
Julog =0
Theorem. /In ~ 4n / Area(Q) A bounded planar domain €2

Viewed in retrospect, this is the first theorem of NCG ...



“The story would be dramatic enough had it ended there,
but then a sort of miracle happened ...”

I'll adapt Weyl’s words to my own purposes ...

Given a foliated manifold (M, F'), Alain
Connes examined integral operators
associated to smooth, compactly
supported kernel functions k(x, y) that are

defined on the space { (x,y) : x ~p vy }

This operator algebra captures crucial features of the foliation.
For instance, the algebra (and even its K-theory) distinguishes
distinct Kronecker foliations, as pictured.



John was familiar with Connes’ work on foliations ...

Math. Proc. Camb. Phil. Soc. (1987), 102, 459 459
Printed in Great Britain

Finite propagation speed and Connes’ foliation algebra

By JOHN ROE
Mathematical Institute, University of Oxford

(Received 9 February 1987)

Introduction

In [4], A. Connes has defined the convolution algebra CX(%) associated to a
foliation & of the compact manifold M. Here ¢ is the graph or holonomy groupoid of
the foliation # (Winkelnkemper[15]). By forming the completion of CP(%) in its
regular representation, he obtains the C*-algebra C*(M,%# ) associated to the
foliation. The completeness of C*(M, % ) makes it easier to handle in some analytical
contexts, but in others it seems to be too big, and it is necessary to consider instead
some carefully selected dense subalgebra (cf. [6]). The purpose of this note is to show
that certain spectral functions of leafwise elliptic operators, which might a prior: be
expected to belong to C*(M,# ), in fact belong to the more controllable dense
subalgebra C?(¥%). We give a couple of applications, including a proof not passing
through C*-algebras of Connes’ index theorem for measured foliations [4]. It should
be emphasized that the proof of that result offered here is essentially Connes’ one, but
the presentation may perhaps be more congenial to those who are not C*-algebra
specialists.



He was also familiar with closely related work of Atiyah ...

Société Mathématique de France
Astérisque 32-33 (1976)

ELLIPTIC OPERATORS, DISCRETE GROUPS AND

VON NEUMANN ALGEBRAS

by

M.F. ATIYAH

§ 1- Introduction.

The global theory of elliptic equations on compact manifolds is

very well established. In particular one has finite-dimensionality foxr

the spaces of solutions and an explicit topological formula for the

index [1]. For non-compact manifolds, on the other hand, the situation

is much more difficult and there are few general results. The essential

difficulties are
(i) one has to decide which growth conditions to impose at
infinity,

(ii) the spaces of solutions are usually infinite-dimensional.



He was also familiar with closely related work of Atiyah ...

The global theory of elliptic operators on compact
manifolds is very well established ... For noncompact
manifolds, on the other hand, the situation is much more
difficult ...

The essential difficulties are:

(i) one has to decide which growth conditions to impose
at infinity.

(i1) the spaces of solutions are usually infinite-
dimensional.

In practice the most useful condition to impose under (i)
is square-integrability.

Atiyah used von Neumann’s Type II traces to formulate and
prove an index theorem for covering spaces ...



The Roe Algebra

Let M be a complete Riemannian manifold (of bounded geometry).
John introduces the C*-algebra generated by all bounded integral
operators on L*(M) given by smooth integral kernels k(x, y) with

sup{ d(x,y) : k(x,y) # 0} < oo

(k*xf)x)=1 kC,y)f(y)dy
IM

> Propagation = sup{ d(x, y) : k(x,y) # 0 }

CH(M) = C*-algebra completion of the algebra of finite
propagation smoothing operators on M.



The Roe Algebra and Foliation Algebras

If M is a leaf in a compact foliated manifold, then the
restriction of one of Connes’ integral operators to M belongs
to the Roe algebra. If the leaf is dense, this leads to an
embedding of Connes’ foliation algebra into the Roe algebra.

If M is the universal cover of a closed manifold, then a &
-equivariant integral operator with z-compact support lies in
the Roe algebra. This more or less leads to an embedding of
the algebra of operators considered by Atiyah into the Roe
algebra (except that Atiyah considers a von Neumann
algebra completion).



The Roe Algebra and Coarse Geometry

The Roe algebra of M depends on M in a rather simple way, and
in fact only on the coarse structure of M.

Two Riemannian manifolds are coarsely equivalent if their large-
scale features are the same. For instance, an infinite cylinder
(of some fixed finite radius) and a line are coarsely equivalent.

This makes the Roe algebra simple to understand in some
cases, and its K-theory simple to understand in many more
cases. But not all cases.



The Roe Algebra and Index Theory

Theorem. It D is a Dirac-type operator on a complete
Riemannian manifold M, then the resolvent operators (D — )~
belong to the Roe algebra of M

For example the resolvent operators for D = — i d/dx lie in the
Roe algebra of the line R.

Corollary. If D 1s a Dirac-type operator on a complete
Riemannian manifold M, then D has a well-defined index in the K-
group of the algebra of smoothing operators on M with finite
propagation.



Partitioning non-compact manifolds and

the dual Toeplitz problem

John Roe
Mathematical Institute
24-29 St. Giles'
Oxford.

Introduction

In ({81, I introduced the idea of considering the index
of an elliptic operator on a non-compact manifold as an
element of the K-theory of a certain operator algebra, called
there the algebra of "uniform operators". The results of
(13! showed that in certain circumstances a trace could be
constructed on this operator algebra, giving rise to a real-
valued dimension function on its K-theory; the resulting
real-valued index was then calculated by the heat equation
method. This approach had already been employed in a different
geometrical context by Connes ([§ 1.

In this paper I address a speéial case of the following
general question: are there cyclic cocycles of dimension > 0

on the algebra of uniform operators?



John’s Partioned Manifold Index Theorem

The theorem concerns complete (spin) manifolds like this one ...

N
\/M\/\O/

... that can be chopped in two by a closed hypersurface:

N

<
< (| <&
<

M=M_UM_
(but actually they should be odd-dimensional)



Lemma. If U is a unitary operator on L*(M) that is a

perturbation of the identity operator by an operator in <
the Roe algebra, then the compression of U to L*(M L) 18
a Fredholm operator. M

This applies to the Cayley transform of the Dirac operator on M;
for instance in applies to the Cayley transform of the operator

D = —id/dx on the line R.

Theorem. The Fredholm index of the compression to L*(M.) of

the Cayley transform of the Dirac operator on M 1s equal to the
Fredholm index of the Dirac operator on N.

Index (P, Cayley(D,,) P,) = Index(Dy)



Proof by Pictures

Index = n Index = -n
\ 4
<
SIS
— 0 @f’)
\ 4

__



Corollary. The Dirac index is a cobordism invariant.

\
<

IndeX(PJ(rl) Cayley(D,,) Pfrl)) = IndeX(Pf) Cayley(Dy,) Pf))

IndeX(DNm) = IHd@X(DN@))



Time for Cake




The Original Recipe

“So you think the proof of the index
theorem is a piece of cake?”
Michael Atiyah




Thank You!



