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From Jesus College ...



... to Penn State









The Mathematical Institute, 
24-29 St Giles,         .    

Oxford.                . 

30th July 1983 

Dear Dr. Hurder,  

I’m afraid I have nothing which is in sufficiently final 
form to send to you, but I will try to describe to you my 
work.   

The “grand design” is to mimic Connes’ procedure for 
certain noncompact Riemannian manifolds ... 

... to such a Riemannian manifold (M,g) I propose to 
associate a C*-algebra C*(M,g)...



John’s C*(M,g)  is what we now call the Roe algebra (or one 
version of it).  Nowadays we just write C*(M).

I want to explain where it came from, what it is, and what it’s 
good for.

I’ll focus not so much on John’s thesis (which he was describing 
to Steve Hurder in the letter) but on a later result that is both 
beautiful and simple. Because it is so beautiful and so simple, it 
has been widely used and widely imitated.

The Roe Algebra



In the winter of 1900-1901 the Swedish mathematician 
E. Holmgren reported in Hilbert’s seminar on Fredholm’s 
first publications on integral equations, and it seems that 
Hilbert caught fire at once ...    

Hermann Weyl 
David Hilbert and his  Mathematical Work

Hilbert famously examined integral operators 

with say k continuous and compactly supported, and 
proved that

(Kf )(x) = ∫ k(x, y)f(y)dy

k(x, y) = k(y, x) ⇒ ∃ O.N.B. of eigenfunctions



“... in the terrain of analysis a rich vein of gold had been 
struck, comparatively easy to exploit and not soon to be 
exhausted.”

Weyl lists a range of work:

• Simplifications and generalizations (w. Schmidt)
• Singular kernels k(x,y)
• Spectral theorem for bounded self-adjoint operators
• Riemann-Hilbert problem
• Birkhoff decomposition
• Representations of compact groups
• Hodge theory



“It became possible to develop such asymptotic laws for 
the distribution of eigenvalues as were required by the 
thermodynamics of radiation”

Weyl is referring to his own work on the asymptotics of 
eigenvalues for the Laplace operator ...

Viewed in retrospect, this is the first theorem of NCG ...

Dirichlet eigenvalue problem:

             
           

Theorem.     

Δfn = λn fn
fn |∂Ω = 0

λn ∼ 4πn/Area(Ω) A bounded planar domain Ω



“The story would be dramatic enough had it ended there, 
but then a sort of miracle happened ...”

I’ll adapt Weyl’s words to my own purposes ... 

Thank you, Marco

Given a foliated manifold , Alain 
Connes examined integral operators 
associated to smooth, compactly 
supported kernel functions  that are 
defined on the space 

(M, F)

k(x, y)
{ (x, y) : x ∼F y }

This operator algebra captures crucial features of the foliation. 
For instance, the algebra (and even its K-theory) distinguishes 
distinct Kronecker foliations, as pictured.



John was familiar with Connes’ work on foliations ...



He was also familiar with closely related work of Atiyah ...



The global theory of elliptic operators on compact 
manifolds is very well established ... For noncompact 
manifolds, on the other hand, the situation is much more 
difficult ... 

The essential difficulties are:  

(i) one has to decide which growth conditions to impose 
at infinity. 

(ii) the spaces of solutions are usually infinite-
dimensional. 

In practice the most useful condition to impose under (i) 
is square-integrability.

He was also familiar with closely related work of Atiyah ...

Atiyah used von Neumann’s Type II traces to formulate and 
prove an index theorem for covering spaces ...



(k ⋆ f )(x) = ∫M
k(x, y)f(y) dy

Let M be a complete Riemannian manifold (of bounded geometry). 
John introduces the C*-algebra generated by all bounded integral 
operators on  given by smooth integral kernels  with L2(M) k(x, y)

sup{ d(x, y) : k(x, y) ≠ 0 } < ∞

The Roe Algebra

Propagation = sup{ d(x, y) : k(x, y) ≠ 0 }

C*(M) = C*-algebra completion of the algebra of finite 
propagation smoothing operators on M. 



The Roe Algebra and Foliation Algebras

If M is a leaf in a compact foliated manifold, then the 
restriction of one of Connes’ integral operators to M belongs 
to the Roe algebra.  If the leaf is dense, this leads to an 
embedding of Connes’ foliation algebra into the Roe algebra.

If M is the universal cover of a closed manifold, then a 
-equivariant integral operator with -compact support lies in 
the Roe algebra. This more or less leads to an embedding of 
the algebra of operators considered by Atiyah into the Roe 
algebra (except that Atiyah considers a von Neumann 
algebra completion).

π
π



The Roe algebra of M depends on M in a rather simple way, and 
in fact only on the coarse structure of M.  

The Roe Algebra and Coarse Geometry

Two Riemannian manifolds are coarsely equivalent if their large-
scale features are the same.  For instance, an infinite cylinder 
(of some fixed finite radius) and a line are coarsely equivalent. 

This makes the Roe algebra simple to understand in some 
cases, and its K-theory simple to understand in many more 
cases.  But not all cases. 



Theorem.  If  is a Dirac-type operator on a complete 
Riemannian manifold M, then the resolvent operators  
belong to the Roe algebra of M

D
(D − λ)−1

Corollary.  If  is a Dirac-type operator on a complete 
Riemannian manifold M, then  has a well-defined index in the K-
group of the algebra of smoothing operators on M with finite 
propagation.

D
D

The Roe Algebra and Index Theory

For example the resolvent operators for  lie in the 
Roe algebra of the line .

D = − i d/dx
ℝ





John’s Partioned Manifold Index Theorem

M = M+ ∪ M−

M

N

The theorem concerns complete (spin) manifolds like this one …

               … that can be chopped in two by a closed hypersurface:

                                 (but actually they should be odd-dimensional)



Index(P+ Cayley(DM) P+) = Index(DN)

Lemma.    If  is a unitary operator on  that is a 
perturbation of the identity operator by an operator in 
the Roe algebra, then the compression of  to  is 
a Fredholm operator.

U L2(M)

U L2(M+)

Theorem.    The Fredholm index of the compression to  of 
the Cayley transform of the Dirac operator on M is equal to the 
Fredholm index of the Dirac operator on N.

L2(M+)

This applies to the Cayley transform of the Dirac operator on M; 
for instance in applies to the Cayley transform of the operator 

  on the line .D = − i d/dx ℝ

M+



Index = n Index = -n

Proof by Pictures



Index(P(1)
+ Cayley(DM) P(1)

+ )

∴ Index(DN(1)) = Index(DN(2))

= Index(P(2)
+ Cayley(DM) P(2)

+ )

Corollary. The Dirac index is a cobordism invariant.



Time for Cake



The Original Recipe
“So you think the proof of the index 
theorem is a piece of cake?” 

Michael Atiyah 

Cake design by John Roe



Thank You!


