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A Mathematical Epitaph for John?

[ shall try to explain something (by no means everything) about

this diagram, which expresses a relation between the topology of
manifolds—surgery theory—and K-theory of C*-algebras.

There is a sort of addendum to the diagram—a third row—that I
shall try to explain, too.



Surgery For Amateurs

In 1996 1 was the Ulam Visiting Professor at the
University of Colorado, Boulder. While I was there I gave a
series of graduate lectures on high-dimensional manifold
theory, which I whimsically titled Surgery for Amateurs.
The title was supposed to express that I was coming to the
subject from outside - basically, trying to answer to my
own satisfaction the question “What is this Novikov
Conjecture you keep talking about?”

J.R.



A Word of Caution

Sometimes in order to tell the truth one must lie ... and
so it is here.

(In fact I have already misrepresented some details.)

(There will be more of the same to come ... but they are
just details.) (Mostly.)



Surgery Problems

Lot (71) = 8(V) —= N(V) — Ln (1

e Vis a closed n-manifold with fundamental group =

e 5(V) is comprised of i
manifold structures M — V C S @ M
<_V
o N (V) is comprised of - P \D
normal maps M. — V i N l

o [, (7t) is the group of

surgery obstructions C:D V



Analytic Surgery Problems

Kn1 (CR(V)) —= 8yr (V) —= Ky (V) —= K (CL(V))
This comes from C*-algebra K-theory:
0 — CL(V) —= Dx(V) — DA(V)/CL(V) —0

e C*(V)is the C*-algebra of 7-equivariant operators in C (V)

o D*(V)is the C*-algebra of bounded propagation,
pseudolocal operators on L*( V)

e D*(V) is the C*-algebra of n-equivariant operators in D*(V)

Theorem. The K-theory of D¥(V)/C*(V) is the K-homology of V.



Mapping Surgery to Analysis

Knt1 (CH(V)) — §jr (V) —= Ky (V) —= Ka (CL(V))

e A normal map M—V is sent to
Signature(M) — Signature(V) € K,,(C:(V))

e S0 the signature is a homotopy invariant

o And if the analytic structure set 8;r () is zero,
then the image of M—V in K, (V) is a homotopy invariant.
This is the Novikov conjecture



Mapping Surgery to Analysis

Read all about it in
John’s CBMS notes ...
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K-Theory (2004) 33:277-299 © Springer 2005
DOI 10.1007/s10977-005-1561-8

And here:

Mapping Surgery to Analysis I:
Analytic Signatures*

NIGEL HIGSON and JOHN ROE
Department of Mathematics, Penn State University, University Park, Pennsylvania 16802,
USA. e-mail: higson@math.psu.edu, roe@math.psu.edu

(Received: February 2004)

Abstract. We develop the theory of analytically controlled Poincar¢ complexes over C*-
algebras. We associate a signature in C*-algebra K-theory to such a complex, and we
show that it 1s invariant under bordism and homotopy.



K-Theory (2004) 33:301-324 © Springer 2005
DOI 10.1007/s10977-005-1559-2

And here:

Mapping Surgery to Analysis II:
Geometric Signatures*

NIGEL HIGSON and JOHN ROE
Department of Mathematics, Penn State University, University Park, Pennsylvania 16802,

USA. e-mail: higson@math.psu.edu; roe@math.psu.edu

(Received: February 2004)

Abstract. We give geometric constructions leading to analytically controlled Poincaré com-
plexes in the sense of the previous paper. In the case of a complete Riemannian manifold
we 1dentify the signature of the associated complex with the coarse index of the signature

operator.



K-Theory (2004) 33:325-346 © Springer 2005
DOI 10.1007/s10977-005-1554-7

And here:

Mapping Surgery to Analysis III:
Exact Sequences

NIGEL HIGSON and JOHN ROE
Department of Mathematics, Penn State University, University Park, Pennsylvania 16802.
e-mail: roe@math.psu.edu, higson@math.psu.edu

(Received: February 2004)

Abstract. Using the constructions of the preceding two papers, we construct a natural
transformation (after inverting 2) from the Browder—Novikov—Sullivan—Wall surgery exact
sequence of a compact manifold to a certain exact sequence of C*-algebra K-theory
groups.
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The last paper in the surgery to analysis series ...

Pure and Applied Mathematics Quarterly
Volume 6, Number 2

(Special Issue: In honor of

Michael Atiyah and Isadore Singer)
555—601, 2010

K-Homology, Assembly and Rigidity Theorems for
Relative Eta Invariants

Nigel Higson and John Roe

Abstract: We connect the assembly map in C*-algebra K-theory to rigidity
properties for relative eta invariants that have been investigated by Mathai,
Keswani, Weinberger and others. We give a new and conceptual proof of
Keswani’s theorem that whenever the C*-algebra assembly map is an iso-
morphism, the relative eta invariants associated to the signature operator
are homotopy invariants, whereas the relative eta invariants associated to

the Dirac operator on a manifold with positive scalar curvature vanish.



Twisting A Differential Operator

o LetD=—id/dx on L*(R/Z)

e For 0 € R, let L5(R/Z) be the Hilbert space
of O-twisted-periodic functions on R:
f(x+1) = ef(x)
e Define Dg = —id/dx on L5(R/Z)

e Spectrum(Dg) ={2m +0:ne€Z}



Twisted Dirac Operators

The operators Dy have generalizations far beyond the circle . ..

e D is the Dirac operator on a closed (spin) manifold V

e 0 is now a unitary representation
0: 1 — U(N)

e Itis again interesting to study the spectral asymmetry
of the operators Dy



Eta Invariants

The eta-function of a self-adjoint operator D is

no(s) = ) sign(An)An/™

n

and the eta-invariant of D is
n(D) =np(0)

So it is a regularization of the number of positive
eigenvalues, minus the number of negative eigenvalues.



Relative Eta Invariants

The relative eta-invariants of D are

Indg, 6,(D) =n(Ds,) —n(De,)
These have some remarkable properties:

® They are differential invariants (Atiyah, Patodi, Singer)

® They are homotopy invariants modulo the integers (Weinberger)

e If the surgery structure set is trivial, they are homotopy invariants
on the nose (Weinberger)

e [f the analytic structure set is trivial, they are again homotopy
invariants on the nose (Keswani)



Surgery to Analysis, Again

All this is explained by a third row of the surgery to analysis diagram:

L1 () S(V) >N (V) > L, (71)
| l | |
Knt1 (CR(V)) —= §jr. (V) —= K (V) —= Ky (CL(V))
| ] |
7 > R ~R/Z > ()

First, the image of a structure or normal map is the relative eta invariant



Surgery to Analysis, Again

All this is explained by a third row of the surgery to analysis diagram:

L1 () S(V) >~ N(V) > L, (71)
| l | |
Knt1 (CH(V)) —= 8jr (V) —= Ky (V) —= K (CL(V))
| ] |
Z > R >~ R/Z > ()

This plus a Novikov argument implies homotopy invariance mod Z



Surgery to Analysis, Again

All this is explained by a third row of the surgery to analysis diagram:

Lyt (71) > 3(V) ~N(V) > L (71)
| | | |
K1 (Cr(V)) —= Sjr. (V) —= Ku (V) —= K (C(V))
| | | |
7 - R ~-R/Z ~ 0

And if the structure set vanishes, we get exact homotopy invariance



Thank You!



John Roe, 1959-2018






