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Matrices from 200 BC to now

A matrix calculation from 200-100BC China …

[
1 2 3
2 3 1
3 2 1] ⋅ [

x
y
z] =

26
34
39

Manipulations with rectangular arrays of numbers (row operations) have been 
around for a long time.

But the term matrix and the discipline of matrix theory is surprisingly modern, 
dating from the 2000 years after the equation above was solved.  



Matrix multiplication and linear transformations

I shall be dealing with square matrices.  Any two of the same size can be added 
together, multiplied, etc.  The order of the factors in a product is important, but 
otherwise the usual rules of algebra apply.

Matrices also have a geometric character: 
an  matrix is a linear transformation of 

-dimensional space.
n × n

n

 = Tv w

This is obviously related to the role of 
matrices in solving linear equations, but it 
opens up new possibilities, too.



Eigenvalues

 = Tv λ ⋅ v

[ 1 1

1 0] [ 5 + 1
2 ] =

5 + 1
2 [ 5 + 1

2 ]

The eigenvalue equation for a matrix  is T

eigenvalue
eigenvector (nonzero)

For example

The presence of roots (from the quadratic formula?)  hints that finding the 
eigenvalues of a matrix is a bit like finding the roots of a polynomial equation, 
which is exactly right …



Spectrum

The spectrum of a (finite) matrix is the set of all its eigenvalues.

As with polynomial equations, an  matrix has  eigenvalues … if counted 
correctly.

n × n n

As with polynomial equations, there are multiplicities to cope with.

And as with polynomial equations, there might be complex eigenvalues.



Spectrum of light

Image credit: Wikipedia

All this and more was figured out just in time for 
the arrival of quantum mechanics, which is 
organized around (the geometric perspective on) 
matrix theory … with matrices of infinite size.

The frequencies of light emitted by say hydrogen 
are the differences between eigenvalues in the 
spectrum of an associated matrix.

Newton’s discovery during 
the plague years …



Topology and spectrum

Sample questions: what does the geometric space of all real two by two matrices 
with spectrum  look like?{ 0,1 }

A

Since the real number  is an eigenvalue of , 
there is a nonzero vector  such that .

1 T
v Tv = v

Color the vector  and all its multiples red, so as 
to obtain a red line in the plane.

v

The line makes some angle  with the horizontal 
axis in the plane.

A

The angle is between 0 and 180 degrees, inclusive, 
and the two extreme angles correspond to the same 
line. 

Now I come to the main theme of the lecture …



Topology and spectrum

B
A

Similarly since the real number  is an eigenvalue 
of , there is a nonzero vector  such that 

.

0
T w

Tw = 0
Color the  and its multiples blue, so as to obtain 
a blue line in the plane.

w

The blue line makes some angle  with the red 
line.

B

This angle is bigger than 0 degrees (the two lines 
are distinct) and less than 180 degrees.

The red and blue lines determine , and vice 
versa.

T



Topology and spectrum

So, what does the geometric space of all real two by two matrices with spectrum 
 look like?{ 0,1 }

It looks like a cylinder, with the angle B giving the “height” above the bottom of 
the cylinder, and that angle A giving (half the) angle around the base.

But often one is interested 
only in the shape up to 
deformation, a.k.a homotopy. 
Since the cylinder squashes 
down to a circle, the answer 
is then that up to homotopy 
the shape is a circle.



Topology and spectrum

What about complex two by two matrices with spectrum ?{ 0,1 }

It’s relevant to ask this because in many contexts the complex answer is simpler 
than the answer using real numbers.

The answer here is that up to homotopy the shape is 
a two-dimensional sphere.

For the record, the exact answer is that the shape is 
the space of all tangent vectors to the sphere (a.k.a 
the tangent bundle).  For comparison, note that the 
space of all tangent vectors to a circle is a cylinder.

And note that the real space is indeed a subspace of 
its complex cousin.



Symmetric and anti-symmetric matrices

Here are examples of symmetric and anti-symmetric (real) matrices:

     and     
a b c
b d e
c e f

0 b c
−b 0 e
−c −e 0

The symmetric matrices behave especially simply with regard to eigenvalues and 
eigenvectors.  I shall discuss them, or at least mention them, in the next lecture.

Anti-symmetric matrices will be of special interest in this lecture.

An interesting fact: all the eigenvalues of an anti-symmetric matrix are purely 
imaginary complex numbers.  And they always come in pairs .±iλ

So for example,  must be an eigenvalue of the anti-symmetric matrix above.0



The Pfaffian and the topology of anti-symmetric matrices

Pf

0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

= af − be + cd

I’ll generally be examining invertible anti-symmetric matrices, to avoid the 
eigenvalue , which is special for anti-symmetric matrices.0

The space of all invertible anti-symmetric matrices separates 
into two parts according to the sign of the Pfaffian, which is

Its square is the determinant (so the determinant is always positive).



Topology of anti-symmetric matrices

Now let’s take a closer look at invertible  anti-symmetric matrices …4 × 4

0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

There are 4 eigenvalues, in two imaginary pairs,  and .  I’m assuming that  
and  are nonzero.  I shall also consider matrices where the two eigenvalue pairs 
are distinct (so, no multiplicities). The other case, where this isn’t assumed, is 
interesting, too. But the present case is the most interesting.  

±λ ±μ λ
μ

What is the shape of this space? 



Topology of anti symmetric matrices

The values  and  give two coordinates on this space.  But they’re like the 
angle  in the  matrix example: he after deformation they don’t help 
describe shape of the space.  I shall ignore them.

λ2 μ2

B 2 × 2

What is left as regards the shape is perhaps a bit surprising, and not so easy to 
calculate. What is left is the product of two 2-dimensional spheres (for each of 
the two components separated by the Pfaffian). 

That’s a 4-dimensional space, but there is plenty of room for it inside the space 
of anti-symmetric matrices, which is 6-dimensional.

××



Higher topological Pfaffians

The title of this slide is a bit fanciful … it’s supposed to suggest .Sign(Pf(A))

Suppose one is presented with a family of  antisymmetric matrices, with 
, parametrized by points on a -torus.  This isn’t fanciful; it will actually 

happen later in the lecture!

4 × 4
λ2 ≠ μ2 2

×

How can one begin to understand family?  One can analyze the map below 
(using degree theory) to find out at least something about it.



Some calculations

Where do those spheres come from?  I’m glad you asked …

1. Let’s assume that .  Take the  eigenvectors, and take their wedge 
product.

λ2 > μ2 ±iλ

3. The wedge product lies in (  times) the second exterior power of 4-space.i

4. The -dimensional second exterior power of 4-space decomposes into 

a -dimensional self-dual part, and a -dimensional anti-self-dual part.

6
3 3

2. Take the  eigenvectors, and take their wedge product.±iλ

5. Project the wedge product into each part, and then onto the unit sphere in 
each part.



A brief comment about stable versus unstable

For stable topological invariants, the size of the matrices is not so important.  For 
unstable topological invariants, size matters. 

The higher degree invariants I’ve defined are unstable, but there sum is stable, 
and it is the sum that will have the most obvious application in what follows.

The higher degree invariants I’ve defined are unstable, but their sum is stable, 
and it is the sum that will have the most obvious application in what follows.

The most famous statement about stable invariants is the Bott periodicity 
theorem.  It will feature in what follows (but I hope to manage without precisely 
formulating the result).



From the spectrum and topology to mechanics …

But first, any questions? Image credit: Wikipedia



A 54-gyroscope network ...

For the rest of the talk, I shall examine a 
network like the one here … under each 

node of which there is suspended a rapidly 
spinning gyroscope.  The gyroscopes are 

magnetized, and so interact with one 
another via magnetism.  What happens?



Mechanical details of the system

N

S

Once  again, the gyroscopes 
are rapidly spinning, all in the 
same direction and at the 
same rate. 

And they are all magnetized in 
the same way, to the same 

degree.



Mathematical details

x y

z

J
dψ
dt

= (αI + βd*Pd + γd*P⊥d)ψ

The state of each gyroscope is described by a point in the 
 plane. A state of the gyroscope network is therefore 

described by a list of 54 points in the  plane.
(x, y)

(x, y)

That is, a state  of the gyroscope network is described by 
vector of length 108.

ψ

The (first order!) differential equation describing the 

evolution has the form 

 and everything in the parentheses are matrices, and  is a 
vector-valued function of .
J ψ

t



Mathematical details

x y

z

J
dψ
dt

= (αI + βd*Pd + γd*P⊥d)ψ

Here  is an orthogonal projection matrix, and . 
So the matrix in parentheses is positive-definite. Also: 

P α, β, γ > 0

J =

0 −1
1 0

⋱
0 −1
1 0

dψ
dt

= − JDψ

This gives This matrix is similar to , 
which is anti-symmetric

D1/2JD1/2



Anti-symmetric matrices and the gyroscope network

The system is governed by a first-order equation

dψ
dt

= Aψ

where  is (basically) an anti-symmetric matrix. By 
design, this is very similar in mathematical form to 
Schrodinger’s equation from quantum mechanics.  

A

This takes advantage of an odd feature of 
gyroscopes, that a force applied produces a torque in 
a direction orthogonal to the force and the axis.



An experiment
Lisa M. Nash et al

Topological mechanics 
of gyroscopic meta 
materials 
PNAS 112 (2015)


The view is directly 
from below the 
gyroscope network. 


The network (with the 
gyroscopes already 
rapidly spinning) is 
going to be excited at 
a precise frequency at 
a single gyroscope on 
the upper right of the 
array. 



Another experiment (edge modes)
Lisa M. Nash et al

Topological mechanics 
of gyroscopic meta 
materials 
PNAS 112 (2015)


The experiment will be 
repeated. 


This time a gap mode 
frequency will be used 
(I shall try to explain in 
the following slides 
what these frequencies 
are).



Topological nature of the boundary modes

Lisa M. Nash et al

Topological mechanics 
of gyroscopic meta 
materials 
PNAS 112 (2015)


Three gyroscopes have 
been removed from the 
network, at the 
bottom.


The same gap mode 
frequency will be used 
to excite the network.



Normal modes

dψ
dt

= − JDψ

Let me return to the differential equation 

If , a complex vector of length 108, is an eigenvector with eigenvalue  for  
(which is a  matrix) then the functions 

v iλ JD
108 × 108

ψ(t) = Re[eiλtv] ψ(t) = Im[eiλtv]and

are solutions.  These are the normal modes, and all solutions are built from them.

So everything about the system is in principle understandable in terms of the 
eigenvalues and eigenvectors of .  Are some eigenvalues more special than others? JD



Topologically protected spectrum

Sometimes, some eigenvalues are more special than others.  For example if an anti-
symmetric real matrix has odd size, then  is definitely an eigenvalue, and no amount 
of adjusting the entries of the matrix will make it go away.  

0

One might say that the value  is topologically protected. It is invariant under (in this 
case extreme) deformations of the matrix.

0

Special features about the eigenvalue  were exploited to the full by Atiyah and Singer 
in the index theorem.

0

Anti-periodic functionPeriodic function



Topology, the spectrum and the gyroscope network

To bring topology into the gyroscope 
problem, let’s examine an infinite network. 

(With more care, one could replace infinite 
networks by very large networks, or perhaps 
even somewhat large networks.)

What is the spectrum of  in the infinite 
network case?

JD

An interesting (but not terribly surprising) fact: the frequencies (spectral values) 
corresponding to boundary modes are missing from the spectrum in the infinite case.



Computation of the spectrum for the infinite network

The computation of the spectrum of an 
 matrix is in general hugely difficult.∞ × ∞

But here, the network has double translational 
symmetries, and double Fourier series can be 
used.

Conclusion: the spectrum is the same as the 
combined spectrum of a family of anti-
symmetric  matrices … parametrized by 
a -torus.

4 × 4
2

And for all of these  matrices, if the mechanical parameters are tuned 
appropriately, then .  In fact .  So there is a gap in the 
spectrum of  on the infinite network,

4 × 4
λ2 > μ2 λ2 ≥ ℓ > m ≥ μ2

JD



Consequences of the topological computation

×

Earlier I used, fancifully, the term higher 
topological Pfaffians (for topological degrees). 

Here they are non-zero (the important 
number is the sum). This has a striking 
consequence … 

Consider the infinite network to the right of a vertical cut. The spectrum of  for this 
half-infinite network always includes the spectrum for the full infinite network.


Can it be larger?  Yes, it must be larger, thanks to the topological degree computation! 

JD



Spectrum on the half-infinite network

The computation of the spectrum is much 
harder on the half-infinite network, since 
there are fewer symmetries.

But there is still one translational symmetry. 
The spectrum is the same as the combined 
spectrum of a family of anti-symmetric  
block Toeplitz matrices, parametrized by circle.

4 × 4

Now, (thanks to Bott periodicity) we know a great deal about families of Toeplitz 
matrices, and we know in particular that there are no nonzero higher topological 
invariants associated to them.

Oddly, from the point of view of topology, Toeplitz matrices behave like  
matrices! 

1 × 1



What is a Toeplitz matrix?

a0 a1 a2
a−1 a0 a1 a2

a−1 a0 a1 a2
⋱ ⋱ ⋱ ⋱

They are  matrices that are constant along every diagonal, like this: ∞ × ∞

The extensive theory of Toeplitz matrices is organized around the analogy between 
the matrices and associated Fourier series .∑ ane2πinθ



No-gap theorem

Proof.

1. IF some point between  and  was missing from the spectrum for the half-infinite 
network, THEN we could form the topological invariants of the torus family for the full 
network using circle families of Toeplitz operators for the half-infinite network.

ℓ m

2. BUT in that case the topological invariants for the torus family would be zero.

3. Which they’re not.

4. THEREFORE the entire interval between  and  belongs to the spectrum for the 
half-infinite network

ℓ m

The gap between  and  in the spectrum of the infinite network is entirely filled in the 
spectrum of the half-infinite network [which is a model for our finite network].

ℓ m



Thank you!




