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Questions

The name hypoelliptic Laplacian
is Jean-Michel Bismut’s term for
a family of operators constructed
by him to make some very
striking computations in Lie
theory and spectral geometry.

I’ll try to answer some of the
obvious questions:

• What is it?

• What does it do?

• How does it do what it does?

The full theory requires a quite heavy dose of analysis (estimates).
I won’t discuss this at all, except to point out where it is needed.



Hypoelliptic Laplacian on the Circle

There are versions of the hypoelliptic Laplacian in a variety of
contexts (Riemannian manifolds, Hermitian manifolds, symmetric
spaces, compact groups, . . . ).

I’ll mostly consider compact groups in this talk. In fact I’ll mostly focus
on the circle T = R/Z.

Here is Bismut’s hypoelliptic Laplacian for the circle:

Lb =

[ 1
2b2 (y2 − ∂2

y − 1) + 1
b y∂x 0

0 1
2b2 (y2 − ∂2

y + 1) + 1
b y∂x

]
(b > 0)

• Lb acts on (vector-valued functions on) T×R, not T, with x
coordinatizing the circle and y coordinatizing the line.

• Lb is not elliptic and it is not self-adjoint.



Hypoellipticity

A linear partial differential operator P is hypoelliptic if

∀U Pf |U ∈ C∞ ⇒ f |U ∈ C∞

Theorem (Hormander)
If X0, . . . ,Xd are vector fields and if Lie〈X0, . . . ,Xd 〉 spans each
tangent space, then the operator

P = X0 + X 2
1 + · · ·+ X 2

d + h

is hypoelliptic.

This applies to Lb and to the “heat operator” ∂t + Lb.



Spectrum and Geodesics

A study of Lb on the circle of circumference c leads to the formula∑
λ∈Spec(∆)

e−tλ2
=

c√
4πt

∑
closed geodesics

e−`(γ)2/4t

My goal is to explain how this comes about.

Of course, the formula just says that∑
k∈Z

e−4π2k2t/c2
=

c√
4πt

∑
n∈Z

e−n2c2/4t ,

which is a special case of the Poisson summation formula, among
other things. So easy harmonic analysis applies.

In contrast, Bismut’s method requires a considerable amount of effort!

But for other problems Bismut’s method gives answers that look quite
different from those given by harmonic analysis.



Methods from Spectral Geometry and Index Theory

On a closed manifold M, the Laplace operator (or similar) may be
diagonalized in L2(M):

∆fn = λnfn 〈fn, fm〉|L2(M) = δmn & λn → +∞.

There is a one-parameter semigroup of operators exp(−t∆) for which

ut = exp(−t∆)u ⇒ ∂tut + ∆ut = 0.

for t ≥ 0. Each exp(−t∆) for t > 0 is an integral operator, with

exp(−t∆)(p,q) =
∑

e−tλn fn(p)fn(q),

and
Tr
(
exp(−t∆)

)
=

∫
M

exp(−t∆)(p,p) dp =
∑

e−tλn .



Rescaling Argument

Evidently

lim
t→∞

exp(−t∆) = orthogonal projection onto kernel(∆).

To understand the small t limit, rescale the metric g  t−1g.

At any p ∈ M, the rescaled manifolds Mt converge to TpM, while

t∆M ∼ ∆Mt

For instance this leads to

exp
(
−t∆M

)
(p,p) ∼ t−n/2 exp

(
−∆TpM

)
(0,0)

and Weyl’s asymptotic law.



The Supertrace and the Index Formula

In the Z2-graded context the supertrace is of course the functional

STr
([A00 A01

A10 A11

])
= Tr(A00)− Tr(A11).

on (traceable) operators. It vanishes on supercommutators.



The Supertrace and the Index Formula

If D =
[

0 D−
D+ 0

]
and ∆ = D2, then

d
dt

STr
(
exp(−t∆)

)
= −STr

({
D,D exp(−t∆)

})
= 0

In the case of the Dirac operator, by rescaling both M and Clifford
variables, Getzler showed that

lim
t→0

str
(
exp
(
−t∆

)
(p,p)

)
= str0

(
exp
(
−ΩTpM

)
(0p,0p)

)
for a suitable explicit limit operator ΩTpM and supertrace functional str0
(there is no divergence in t).

This gives the local index formula

Index(D) =

∫
M

str0
(
exp
(
−ΩTpM

)
(0p,0p)

)
dp

(LHS is the limit of STr(exp(−t∆)) as t→∞; RHS is the limit as t→0).



Selberg Trace Formula

Before examining how Bismut’s theory works, here is
an application that gives a somewhat more accurate
impression of the reach of Bismut’s method.

In dimension two, the analysis of Lb leads to the
Selberg trace formula for a (closed) hyperbolic
surface S:

∑
λ∈Spec(∆)

e−tλ =
Area(S)

4πt
· e−t/4
√

4πt

∫ ∞
−∞

x/2
sinh(x/2)

e−x2/4t dx

+
e−t/4
√

4πt

∑
closed geodesics

`0(γ)/2
sinh

(
`(γ)/2

)e−`(γ)2/4t



Orbital Integrals

If S is a hyperbolic surface, then S ∼= Γ\SL(2,R)/SO(2), and

exp(−t∆S)(p,p) =
∑
γ∈Γ

exp(−t∆H)(P, γP)

where H = SL(2,R)/SO(2). An elementary calculation shows

Tr(exp(−t∆S)) =
∑
〈γ〉

vol
(
ZΓ(γ)

∖
ZG(γ)

)
· Tr〈γ〉

(
exp(−t∆H)

)
The sum is over representatives of conjugacy classes in Γ, and

Tr〈γ〉
(
exp(−t∆H)

)
=

∫
ZG(γ)\G

exp(−t∆H)(gP, γgP) dg.

What Bismut actually does is evaluate these (semisimple) orbital
integrals.



Bismut’s Orbital Integral Formula

Bismut’s formulas for orbital integrals even apply to the orbital integral
over the one-element conjugacy class of the identity element.

For SL(2,R) one gets

exp(−t∆H)(P,P) = (4πt)−3/2
∫ ∞
−∞

x/2
sinh(x/2)

e−x2/4t dx

In contrast, from the Plancherel formula one gets

exp(−t∆H)(P,P) =

∫
Ĝ spherical

e−t‖ inf.ch(π)‖2
dµPlancherel(π)

In general, it is an interesting challenge to compare and reconcile
Bismut’s formulas with the explicit Plancherel formula of
Harish-Chandra (c.f. work of Shu Shen, Yanli Song, Xiang Tang).



Components of the Hypoelliptic Laplacian

From now on I shall focus on the circle (of circumference one). But
actually there would be few changes for compact groups, and not so
many more for the noncompact case.

1. I shall describe the parts from which Lb is built:

• The Dirac operator

• The square root of the quantum harmonic oscillator

2. Then I shall explain how these are assembled into Lb.

3. Finally I shall examine the features of Lb that lead to the Bismut’s
formulas.



Square Roots of the Laplacian

On the circle, Bismut essentially uses the following Dirac operator

D =

[
0 −i ∂x
−i ∂x 0

]
(which is more or less the de Rham operator). It acts as a self-adjoint
operator.

In the general case Bismut uses Kostant’s cubic Dirac operator on a
(real reductive) group, acting on Λ•(g).

One has
D2 = Casimir +

1
24

tr(Casimirg) · I

So the square is Casimir, plus a scalar. This is important.

Disclosure: Bismut actually uses i D, which will cause me to insert
some square roots of minus one later.



Spectral Geometry on a Vector Space
The operator

H = −∂2
y + y2

on L2(R) is the well-known quantum harmonic oscillator. It has simple
spectrum {1,3,5, . . . } and the ground state is exp(−y2/2).

There is an almost equally well-known “square root:”

Q =

[
0 −∂y + y

∂y + y 0

]
: L2(R,Λ) −→ L2(R,Λ)

(with Λ the exterior algebra of R) for which

Q2 =

[
−∂2

y + y2 − 1 0
0 −∂2

y + y2 + 1

]

There is a counterpart on any euclidean vector space, with Q acting
on functions valued in the exterior algebra, and

Q2 = H + dim(V )I − N



Products, Geometric and Operator-Theoretic

The Laplace operator on a product manifold can be written as the
sum of Laplace operators acting on each factor:

∆M1×M2 = ∆1 + ∆2 : L2(M1 ×M2) −→ L2(M1 ×M2)

What about the square roots—the Dirac operators D?

In index theory one defines

D1 # D2 : L2(M1 ×M2,Λ⊗ Λ) −→ L2(M1 ×M2,Λ⊗ Λ)

which is almost the sum of D1 and D2, as above. The difference:
some ± signs are added strategically.

The product D1 # D2 has the fundamental properties that

(D1 # D2)2 = D2
1 + D2

2 and Ind(D1 # D2) = Ind(D1) · Ind(D2)



Asymptotics (a Baby Case)
Returning to the circle T, introduce a parameter T > 0, and form

D # T Q : L2(T× R,Λ⊗ Λ
)
−→ L2(T× R,Λ⊗ Λ

)
Here is why one introduces T :

Theorem
If L2(T,Λ) is identified with the kernel of Q in L2(T×R,Λ⊗Λ), then

lim
T→+∞

exp
(
−t(D # TQ

)2)
= exp

(
−tD2)

for all t > 0 (convergence of operators).

Proof. Use (D # T Q)2 = D2 + T 2Q2. The rest is easy.

Remark
The kernel of Q consists of functions, degree zero in the 2nd Λ-factor,
that behave like e−y2/2 in the y -direction. It is preserved by D.

The theorem refines the identity Ind(D #T Q) = Ind(D).



An Accidental Discovery?
Look again at the product

D # T Q : L2(T× R,Λ⊗ Λ
)
−→ L2(T× R,Λ⊗ Λ

)
Remember that in real life Λ is an exterior algebra . . .

. . . so it’s tempting to multiply the tensor factors together, and build an
operator

D #̄ T Q : L2(T× R,Λ) −→ L2(T× R,Λ),

say
D #̄ T Q = D+T Q.

Then

(D #̄ T Q)2 = D2 + T{D,Q}+ T 2Q2

and the cross-term, now non-zero, is

{D,Q} = 2y∂x .

From a geometrical point of view, y∂x is the generator of the geodesic
flow on (the tangent bundle of) T . . . which is interesting.



Convergence of Heat Operators?

But does it amount to anything? For instance what about the formula

lim
T→+∞

exp
(
−t(D #̄ T Q)2) = exp

(
−tD2)?

The initial indications are not promising, since D doesn’t preserve the
kernel of Q as it did before. In fact D exchanges the kernel and its
orthogonal complement (just look at the Z2-grading).

But D2 does preserve the kernel of Q. Let’s examine the matrix
decomposition

(D + T Q)2 =

[
D2 T DQ

T QD D2+T{D,Q}+T 2Q2

]
with respect to

L2(T× R,Λ) = Ker(Q)⊕ Ker(Q)⊥ ∼= L2(T)⊕ L2(T)⊥

not with respect to any Z2-grading.



Two by Two Block Matrix Calculations
Let’s examine exp

(
−t(D+T Q)2

)
via

exp(−t(D+T Q)2) =
1

2πi

∫
e−tµ(µ− (D+T Q)2)−1 dµ,

using

µ− (D+T Q)2 =

[
µ 0
0 µ

]
−
[

D2 T DQ
T QD D2+T{D,Q}+T 2Q2

]

If the bottom right entry d of any block matrix is invertible, then[
a b
c d

]
=

[
1 bd−1

0 1

] [
e 0
0 d

] [
1 0

d−1c 1

]
where

e = a− bd−1c
The (1,1)-entry of the inverse matrix is therefore e−1. But in our case

e = µ− D2 + D · T2Q2

D2 + T{D,Q}+ T2Q2 − µ
· D

and as a result e→ µ as T →∞. The operator D disappears!



Two by Two Block Matrix Calculations
What this means is that

exp
(
−t(D+TQ)2) ≈ [I ?

? ?

]
as T →∞ (and actually the ?-terms are 0).

However, a simple adjustment presents itself. Start not with

µ− (D + T Q)2 =

[
µ 0
0 µ

]
−
[

D2 T DQ
T QD D2+T{D,Q}+T 2Q2

]
but with

µ− (D + T Q)2 + D2 =

[
µ 0
0 µ

]
−
[

0 T DQ
TQD T{D,Q}+T 2Q2

]
Then we get

e = µ+ D · T2Q2

D2 + T{D,Q}+ T2Q2 − µ
· D

Hence
e→ µ+ D2|ker(Q) as T→∞.



Block Matrix Calculations Summarized

To cope with the minus sign, we make a small adjustment, and
write

L(T ) = (
√
−1D + TQ)2 + D2.

Then L(T ) converges in the resolvent sense to D2|kernel(Q):

Theorem
For fixed t > 0

lim
T→∞

exp
(
−t L(T )

)
= exp

(
−t D2|kernel(Q)

)
and

lim
T→∞

STr
(
exp
(
−t L(T )

))
= Tr

(
exp
(
−t D2|kernel(Q)

))
Note the ordinary trace (not supertrace) on the RHS!



Definition of the Hypoelliptic Laplacian

Bismut uses b−1 instead of T , and divides by 2. So he defines the
hypoelliptic Laplacian (on the circle, or on any compact group) to be

Lb = 1
2 (
√
−1D + b−1Q)2 + 1

2 D2

This acts on L2(G×g,Λ•(g)).

In the case of the circle T we get

Lb =

[ 1
2b2 (y2 − ∂2

y − 1) + 1
b y∂x 0

0 1
2b2 (y2 − ∂2

y + 1) + 1
b y∂x

]
which is the operator we saw before.



Fundamental Properties

Theorem
For each b>0 the hypoelliptic Laplacian operator Lb is hypoelliptic,
and the generator of a one-parameter semigroup exp(−t Lb) of
traceable operators.

Theorem
limb→0 STr

(
exp(−t Lb)

)
= Tr(exp(−t∆/2))

Here ∆ is the restriction of D2 to 0-forms. Moreover:

Theorem
d
db STr

(
exp(−t Lb)

)
= 0

For this it is essential that D2 commute with Q (which is why in
general one should use Kostant’s version of the Dirac operator).



The Method of the Hypoelliptic Laplacian

As should now be clear, Bismut’s approach to trace formulas using Lb
is as follows:

1. Evaluate the limit of the supertrace of the heat kernel as b tends
to zero:

lim
b→0

STr
(
exp(−tLb)

)
= Tr

(
exp(−t∆/2)

)
2. Show that the b-derivative of the supertrace vanishes:

d
db

STr
(
exp(−tLb)

)
= 0

3. Evaluate the limit

lim
b→∞

STr
(
exp(−tLb)

)
I’ve already discussed the first two steps. The third requires still more
new ideas, this time geometric, not spectral.



Geometry of the Hypoelliptic Laplacian

I shall work now with the scalar operator

Lb = 1
2b2 (−∂2

y + y2) + 1
b y∂x

for simplicity (if you strain your eyes, you’ll see a different font in use).

Actually to begin with, I shall work with the even simpler operator

K = − 1
2∂

2
y + y∂x

on the (x , y)-plane (this operator was initially studied by Kolmogorov).

I want to explain the influence of the term y∂x on the behavior of
solutions to the K -heat equation

∂tut + Kut = 0.



The Drift Term

Let ut be a solution of the K -heat equation (it is a family of functions
on the plane).

Define the center of mass of ut to be

cm(ut ) =
(
cmx (ut ), cmy (ut )

)
=
(∫ ∫

ut (x , y) x dx dy ,
∫ ∫

ut (x , y) y dx dy
)

By differentiating under the integral sign, we find that

d
dt

cm(ut ) = (cmy (ut ),0).

If the term y∂x was removed from K , then the derivative would be
zero. The drift is entirely attributable to y∂x .



The Drift Term

Here is a cartoon of what happens, showing where a solution of the
K -heat equation is concentrated as t increases.

• If u0 was concentrated higher, the drift would be faster.

• If u0 was concentrated lower, the drift would be to the left.



The Concentration Property for the Heat Kernel

The heat operators for Laplacian (on the circle or elsewhere) have the
following well-known property of concentration along the diagonal.

Proposition
Let σ1 and σ0 be smooth functions on T with disjoint supports. There
is a positive constant k such that

‖σ1 exp(−t∆)σ0‖ = O(e−k/t )

as t → 0 [this is true for any reasonable norm on the left ].

This adapts very nicely to incorporate the drift phenomenon we’ve
seen. If ϕ is a smooth function on the circle, define

ϕt (x , y) = ϕ(x−t−1by)

Then . . .



The Heat Kernel for the Hypoelliptic Laplacian

Proposition
If ϕ and ψ are smooth functions on T with
disjoint supports, then there is a positive
constant k such that∥∥ϕt exp(−tLb)ψ0

∥∥ ≤ O(e−kb2
)

for any fixed t as b →∞.

So the Lb-heat kernel concentrates on a drifted diagonal, which leads
to

exp
(
−tLb

)
(p,p) ≈ 0 unless p is near T×t−1bZ.

That is, the heat trace for the hypoelliptic Laplacian concentrates on
geodesic bands.



Rescaling Argument
What about when p is near T×t−1bZ, say near (0, t−1bn)?

I’ll set t = 1 for simplicity.

Identify T×R with b2T×R via

(u, v) = (b2x ,b(y−bn))

Then the (scalar version of the) hypoelliptic Laplacian transforms as
follows:

Lb = 1
2∂

2
v + v∂u + 1

2 n2 + b2n∂u +O(b−1)



Rescaling Argument

The right-hand side in

Lb = 1
2∂

2
v + v∂u + 1

2 n2 + b2n∂u +O(b−1)

does not approach a limit as b →∞ because of the highlighted term.

But the highlighted term commutes with all the others, and
exponentiates to the identity operator.

We obtain (taking into account all the terms in full operator Lb on
forms, and reinstating t):

str(exp(−tLb)
)(

(0,w+bn), (0,w+bn)
)

≈ b · e−n2/2t exp(−tK )((0,bw), (0,bw)
)

as b →∞, where K = −∂2
u + y∂v .



Explicit Formulas

There is an explicit formula for the K -heat kernel, found by
Kolmogorov:

exp(−tK )
(
(u1, v2), (u2, v2)

)
=

√
3

πt2 exp
(
− 1

2t

(
v1−v2

)2
− 6

t3

(
u2 − u1 −

(v1+v2)t
2

)2)
(We only need the case where u1 = u2 and v1 = v2.)

We obtain

lim
b→∞

STr(exp(−tLb)) =
∑
n∈Z

e−n2/2t
∫ ∞
−∞

exp(−tK )
(
(0, v), (0, v)

)
dv

=
1√
2πt

∑
n∈Z

e−n2/2t

which gives the “Selberg trace formula on the circle."



Thank you!


