
Contemporary Mathematics
Volume 00, 0000

Equivariant Homology for
SL(2) of a p-adic Field

PAUL BAUM, NIGEL HIGSON AND ROGER PLYMEN

Let F be a p-adic field and let G = SL(2) be the group of unimodular 2 ×
2 matrices over F . The aim of this paper is to calculate certain equivariant
homology groups attached to the action of G on its tree. They arise in connection
with a theorem of M. Pimsner on the K-theory of the C∗-algebra of G [12], and
our purpose is to explore the representation theoretic content of Pimsner’s result.

The outcomes of our calculations are given in Theorems 5.4 and 6.1. In
Sections 8 and 9 of the paper we re-examine Pimsner’s theorem in the light of
these new results.

The first author and A. Connes have formulated a very general conjecture [1]
describing the K-theory of the reduced C∗-algebra of any locally compact group.
For a semisimple group over a p-adic field it asserts, roughly speaking, that the
cohomology of the space of tempered representations of G is isomorphic to the
equivariant homology of the affine Bruhat-Tits building of G. For SL(2) and
other split rank one groups the conjecture amounts to Pimsner’s theorem, but
for groups of higher rank the conjecture is not yet proved. In a sequel to this
article we shall study the representation theoretic aspects of the conjecture for
p-adic groups (we note that the arguments in Sections 5 and 8 readily extend to
this general case).

Our homology groups are very closely related to the cyclic homology groups
of the convolution algebra of smooth compactly supported functions on G, and
the results of our calculations are similar to some of P. Blanc and J-L. Brylinski
in [3]. But the methods we employ are different, and we hope they complement
rather than duplicate those of Blanc and Brylinski. The connection between the
two will be explored elsewhere.
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1. Local Fields

We review some terminology. See [23] for further details.

A local field is a locally compact, non-discrete topological field. There is a
natural norm function | · | given by the formula

|x|dt = d(xt),

where dt is a Haar measure on the additive group of the field. Restricted to the
multiplicative group the norm is a homomorphism into the positive real numbers,
and the field is non-Archimedean if the range of | · | is discrete. In this case the
norm satisfies the inequality

|x + y| ≤ max(|x|, |y|).

If F is a non-Archimedean local field then the subset

O = {x ∈ F : |x| ≤ 1}

is a principal ideal domain, from which F can be recovered as the field of frac-
tions. It has a unique prime ideal, a generator of which we shall denote by
!.

We shall use the term p-adic field for a non-Archimedean local field of char-
acteristic zero. In concrete terms F is a finite extension of some Qp.

2. SL(2) and its Tree

Let G = SL(2) be the group of unimodular 2 × 2 matrices with entries in a
p-adic field F . It is a locally compact, totally disconnected topological group [6]
[20].

Let

I = {

(
a11 a12

a21 a22

)
∈ SL(2) | a21 ∈ !O},

or, more schematically,

I =

(
O O

!O O

)
∩ SL(2).

This is a compact open subgroup of G, called the Iwahori subgroup.

Let

w0 =

(
0 −1
1 0

)
and w1 =

(
0 −!−1

! 0

)
.

These elements appear in the Tits system associated to G, which plays an im-
portant role in what follows. Let W̃ be the group generated by w0 and w1, and
denote by W the quotient of W̃ by the normal subgroup consisting of ±1. The
Tits system may be viewed as an elaboration of the Bruhat decomposition

(2.1) G =
⋃

w∈W

IwI,
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in which multiplication in W is related to multiplication of the double cosets in
I\G/I. See [4] or [17] for details.

Let

K0 = I ∪ Iw0I =

(
O O
O O

)
∩ SL(2)

and

K1 = I ∪ Iw1I =

(
O !−1O

!O O

)
∩ SL(2),

which are compact open subgroups of G. Note that K0 ∩ K1 = I. The tree for
G = SL(2) is the graph βG constructed as follows:

(1) To each left coset of I in G associate an oriented edge with one black
and one white vertex.

(2) Join the edges gI and g′I at the black vertex if gI and g′I lie in a
common left coset of K0. Join them at the white vertex if gI and g′I lie
in a common left coset of K1.

The fact that βG is a tree is related, via the axioms for the Tits system, to the
geometry of W in the word length metric for the generators w0 and w1 [4].

The group G acts on βG by multiplication on the left. Note that I is the
stabilizer of the fundamental edge (labelled by I), and that K0 and K1 are the
stabilizers of the black and white vertices of this edge, respectively.

3. Homology

Let K be a compact, totally disconnected group. Denote by R(K) the repre-
sentation ring of K. (Its multiplicative structure is irrelevant to us: view R(K)
as an abelian group.) Denote by C∞

inv(K) the vector space of smooth (meaning
locally constant), complex valued functions on K which are invariant under the
adjoint action.

Lemma. The map which associates to a representation its character induces
an isomorphism from R(K) ⊗Z C to C∞

inv(K).

Proof. A finite dimensional representation of K factors through a finite
quotient K/N [14]. So the representation ring R(K) is the direct limit of the
representation rings of the finite groups K/N , where N varies amongst the open
normal subgroups of K. The lemma follows from the corresponding result for
finite groups. !

Let H be an open subgroup of K. Since it is of finite index, induction of
representations gives a homomorphism

IndK
H : R(H) −→ R(K),

and a corresponding linear map

IndK
H : C∞

inv(H) −→ C∞
inv(K).
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The latter is given by the formula

(3.1) IndK
Hφ(g) =

∑

k∈H\K

φ(kgk−1),

where the sum is over representatives of the right cosets of H in K, and where
we extend φ to a function on K by setting it equal to zero outside of H .

Let I, K0 and K1 be the compact subgroups of G = SL(2) defined in the
previous section. Form the “complex”

(3.2) 0 → C∞
inv(I)

Ind
K0

I ⊕−Ind
K1

I−−−−−−−−−−→ C∞
inv(K0) ⊕ C∞

inv(K1) → 0

and denote by H∗(G, C) its homology, so that

H0(G; C) = cokernel

(
C∞

inv(I)
Ind

K0

I
⊕−Ind

K1

I−−−−−−−−−−→ C∞
inv(K0) ⊕ C∞

inv(K1)

)

and

H1(G; C) = kernel

(
C∞

inv(I)
Ind

K0

I
⊕−Ind

K1

I−−−−−−−−−−→ C∞
inv(K0) ⊕ C∞

inv(K1)

)
.

These may be viewed as equivariant homology groups for the action of G on βG.
We shall not go into this here, except to note that the quotient space βG/G can
be identified with the fundamental edge in βG, and if we attach to this edge and
its vertices the invariant functions on the corresponding stabilizer subgroups of
G, we obtain a co-sheaf on βG/G, of which Hj(G, C) is the homology.

We can also form an “integral” complex

(3.3) 0 → R(I)
Ind

K0

I ⊕−Ind
K1

I−−−−−−−−−−→ R(K0) ⊕ R(K1) → 0.

The groups Hj(G; C) are obtained from the homology groups Hj(G) of this
complex by tensoring with C (hence the notation).

4. Pimsner’s Theorem

Let K be a compact, totally disconnected group. Choose a Haar measure and
view C∞(K) as an algebra with respect to convolution multiplication.

Let V be an irreducible complex linear representation of K, and denote by χ
its character. The function

EV (g) =
dim(V )

vol(K)
χ(g)

is a central idempotent in C∞(K). (Our formula for EV gives the projection
onto the isotypical component of L2(K) labelled by the conjugate representation
V .)
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Proposition 4.1. (Compare [18].) The algebra C∞(K) decomposes as a
direct sum

C∞(K) =
⊕

V

EV C∞(K),

over representatives of the isomorphism classes of irreducible complex linear rep-
resentations. Each summand EV C∞(K) is isomorphic to a complex matrix al-
gebra. If v ∈ V is a unit vector, with respect to an invariant inner product, then
the function

(4.1) ev(g) =
dim(V )

vol(K)
(gv, v)

is a minimal idempotent in EV C∞(K). !

Let A be an algebra (perhaps without unit) and denote by K0(A) its K-
theory, as in [11] or [2]. Let Φ: A → V be a trace with values in a vector space
V , in other words a linear map such that

Φ(aa′) = Φ(a′a), for all a, a′ ∈ A.

There is an induced map Φ∗:K0(A) → V . If A has a unit this is defined by the
formula

(4.2) Φ∗([pij ]) =
∑

i

Φ(pii),

where [pij ] is an idempotent in a matrix algebra over A. If A has no unit then
we extend Φ to the unitalization Ã of A by setting Φ(1) = 0, and then use (4.2).

We define
Φ: C∞(K) −→ C∞

inv(K),

Φ(φ)(g) =

∫

K
φ(k−1gk) dk.

It is a trace, and we obtain a map

(4.3) Φ∗:K0(C
∞(K)) → C∞

inv(K).

Lemma 4.2. The map Φ∗:K0(C∞(K)) → C∞
inv(K) is an isomorphism onto

the subgroup R(K) of C∞
inv(K). We have

(4.4) Φ∗([ev]) = character of V ,

where ev is defined in (4.1). !

Proof. This follows immediately from Proposition 4.1. !

Let I be an open subgroup of K and restrict the Haar measure on K to a Haar
measure on I. Then C∞(I) is a subalgebra of C∞(K). Checking the definitions
we see:
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Lemma 4.3. The diagram

K0(C∞(I))
induced

−−−−−−−→
by inclusion

K0(C∞(K))

Φ∗

(
(Φ∗

C∞
inv(I) −−−−→

IndK
I

C∞
inv(K)

commutes. !

Fix a Haar measure on G = SL(2). The algebra C∞
c (G) acts on L2(G)

by convolution on the left (the regular representation), and the C∗-algebra of
Hilbert space operators generated by C∞

c (G) is the reduced C∗-algebra of G,
denoted C∗

r (G).

The inclusions of K0 and K1 into G induce maps K0(C∞(Ki)) → K0(C∗
r (G))

and, in view of Lemmas 4.2 and 4.3, we obtain from them a map

µ0: H0(G) → K0(C
∗
r (G)).

There is also a map

µ1: H1(G) → K1(C
∗
r (G))

(on the right is the topological K-theory group, as defined in [2]). A class in the
homology group H1(G) may be viewed as a class in K0(C∞(I)) which maps to
zero in K0(C∞(K0)) and K0(C∞(K1)). It can be represented as [p]− [q], where
p and q are idempotents in C∞(I) (or in some matrix algebra over it) such that

p = u0v0 = u1v1 and q = v0u0 = v1u1

for some u0, v0 ∈ C∞(K0) and some u1, v1 ∈ C∞(K1). The quantity u0v1 +1−p
is an invertible element in the algebra obtained by adjoining a unit to C∗

r (G).
We define

µ1([p] − [q]) = [u0v1 + 1 − p].

Pimsner’s result, applied to the situation we are interested in, is as follows.

Pimsner’s Theorem. The maps

µi: Hi(G) → Ki(C
∗
r (G)) (i = 0, 1)

are isomorphisms of abelian groups. !

5. Calculation of H0

A distribution on a totally disconnected space X is a linear functional F on the
space C∞

c (X) of compactly supported smooth functions (there are no continuity
requirements on F ). If Y is an open subset of X then since C∞

c (Y ) ⊂ C∞
c (X)

any distribution on X restricts to one on Y .
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Lemma 5.1. Let U be an open cover of X, and for each U ∈ U let FU be a
distribution on U . Suppose that for all x ∈ X, and all U, U ′ ∈ U containing x,
the distributions FU and FU ′ agree on some neighbourhood of x ∈ U ∩U ′. Then
there is a unique distribution F on X such that F |U = FU for all U ∈ U .

Proof. This follows from the existence of smooth partitions of unity. !

A distribution on a totally disconnected group is invariant if it is fixed under
the adjoint action. Equivalently it is a complex valued trace on the convolution
algebra C∞

c (G). Note that if the group is compact then an invariant distribution
is the same thing as a linear functional on the invariant smooth functions.

Let (φ0, φ1) ∈ C∞
inv(K0)⊕C∞

inv(K1) represent a non-zero element of H0(G; C).
There is a linear functional on C∞

inv(K0)⊕C∞
inv(K1) which vanishes on the image

of the boundary map in our complex (3.2), but which is non-zero on (φ0, φ1). In
other words there are invariant distributions F0 and F1 on K0 and K1 such that

F0(φ0) + F1(φ1) += 0

and

(5.1) F0(IndK0

I ψ) − F1(IndK1

I ψ) = 0, for all ψ ∈ C∞
inv(I).

Lemma (Frobenius Reciprocity). Let I be an open subgroup of a compact
totally disconnected group K, let F be an invariant distribution on K, and let
ψ ∈ C∞

inv(I). Then

F (IndK
I ψ) = [K : I]F (ψ).

Proof. This follows immediately from the formula (3.1) for induction. !

Corollary. If F0 and F1 are invariant distributions on K0 and K1 satisfy-
ing (5.1) then they have a common restriction to I. !

Proposition 5.2. Let F0 and F1 be invariant distributions on K0 and K1

which have a common restriction to I. There is an invariant distribution F on
G such that F |K0

= F0 and F |K1
= F1.

Proof. We shall construct F using Lemma 5.1. Let Gc be the subset of
compact elements in G, and let Gnc be its complement. They are both open
sets. Cover G by Gnc and all the conjugates in G of K0 and K1 (these cover
Gc). We define FGnc

to be zero and FgKig−1 to be the conjugate of Fi by g.
Denote by ≈ the equivalence relation on K0 ∪ K1 generated as follows: if

k and k′ are both elements of K0, or are both elements of K1, and if they are
conjugate within that group (not merely within G), then k ≈ k′. The hypotheses
of Lemma 5.1 follow from the assertion that if k, k′ ∈ K0∪K1, and if k′ = gkg−1

for some g ∈ G, then k ≈ k′.
Case 1: k and k′ are not equivalent to elements of I. The fixed point set of

any element of G acting on the tree βG is connected. In addition, an element of
K0 or K1 is conjugate (in K0 or K1 respectively) to an element of I if and only
if it fixes an edge. It follows that k and k′ fix no edge in the tree, and since their
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fixed point sets are connected, they each consist of a single vertex, say X and
X ′, respectively. From k′ = gkg−1 we see that X = X ′ and gX = X .

Case 2: k and k′ are equivalent to elements of I. We may assume that
k, k′ ∈ I, and using the Bruhat decomposition (2.1) we may assume that g is
an element of the group W̃ generated by w0 and w1. We proceed by induction
on the word length of g in the quotient group W . If it is zero then there is
nothing to prove. Otherwise write g = wg′, where w is one of w0, w1 and where
length (g′) < length (g). The key step in the proof is to show that g′kg′−1 ∈ I.
This is done in Lemma 3, p.92 of [17]. By induction,

k ≈ g′kg′
−1

≈ wg′kg′
−1

w−1 = k′. !

The content of the proposition is that H0(G; C) injects into the dual of the
space of invariant distributions on G, via the pairing

(φ0, φ1) ,→ F (φ0) + F (φ1)

(which is well defined by Frobenius Reciprocity). We shall calculate H0(G; C) on
the basis of this, borrowing several results from distribution theory (see especially
[19]).

Let T be a maximal torus in G = SL(2). (Up to conjugacy there are only
finitely many: apart from the subgroup of diagonal matrices, T , or its transpose,
is of the form

(5.1) T = {

(
a b
bx a

)
| a2 − b2x = 1 },

where x ∈ F× is a non-square. The conjugacy class depends only on the residue
class of x in F×/F×2

.) The quotient space G/T admits an invariant measure.
It depends on choices of Haar measure on G and T , and is characterized by the
formula

(5.2)

∫

G
φ(g) dg =

∫

G/T

(∫

T
φ(gt) dt

)
dg

(the inner integral is a T -invariant function on G, and so may be regarded as a
function on G/T ).

Denote by T reg the regular elements in T (for SL(2) these are all except plus
or minus the identity matrix). Fix t ∈ T reg, and for φ ∈ C∞

c (G) define

(5.3) FT
t (φ) =

∫

G/T
φ(gtg−1) dg.

The integral converges and defines an invariant distribution on G.
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Proposition 5.3. Let φ ∈ C∞
c (G) and suppose that FT

t (φ) = 0 for every
maximal torus T and every t ∈ T reg. Then F (φ) = 0 for every invariant distri-
bution F on G.

Proof. See Theorem 0 of [8] or Section 11 of [21], which deal with the
general case. For G = SL(2) the proposition follows easily from the arguments
in [19]. !

Fix φ ∈ C∞
c (G) and view FT

t (φ) as a function of t. It is smooth and invariant
under the action of the Weyl group WT (the normalizer of T in G, divided by
T ). We obtain maps

FT : H0(G; C) → C∞(T reg)WT

(φ0, φ1) ,→ FT
t (φ0) + FT

t (+φ1).

Since conjugate maximal tori give essentially the same map, we select one rep-
resentative from each conjugacy class, and form the direct sum

(5.4) H0(G; C)
⊕F T

−−−→ ⊕C∞(T reg)WT .

Putting Propositions 5.1 and 5.3 together we see that (5.4) is injective.
Let w ∈ G be either a unipotent element or minus a unipotent. The central-

izer G(w) of w is unimodular the quotient space G/G(w) is equipped with an
invariant measure as in (5.2). The integral

Fw(φ) =

∫

G/G(w)
φ(g) dg

converges for any φ ∈ C∞
c (G) (see [19], Section 1.2). It defines an invariant

distribution on G, depending only the conjugacy class of w ∈ G. These are

〈w〉 = 〈

(
±1 a
0 ±1

)
〉, (a = 0 or a ∈ F×/F×2

).

In particular, there are only finitely many conjugacy classes.
Denote by T reg

c the compact elements in T reg (those which lie in a compact
subgroup of G). With the exception of the diagonal subgroup, we have T reg

c =
T reg, and for the diagonal subgroup T reg

c is comprised of those elements of T reg

with entries in the ring of integers O.

Theorem 5.4. The map ⊕FT : H0(G; C) → ⊕C∞(T reg)WT gives rise to an
exact sequence

0 −→ ⊕C∞
c (T reg

c )WT −→ H0(G; C)
⊕Fw−−−→ ⊕wC −→ 0,

where the second direct sum is over the conjugacy classes of elements w, such
that ±w is unipotent.

Proof. If (φ0, φ1) ∈ C∞
inv(K0) ⊕ C∞

inv(K1) then it is clear that FT
t (φ0 + φ1)

is zero for all non-compact t: hence the restriction to T reg
c . On the other hand it

is easily checked that ⊕C∞
c (T reg

c )WT is contained in the range of the map ⊕FT .
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According to the theory of Shalika germs [19], if Fw(φ) = 0 for every unipotent
w then FT

t (φ) = 0 for all t near 1. Multiplying by the central element −1 ∈ G
we see that if F−w(φ) = 0 for every unipotent w, then FT

t (φ) vanishes for all
t near −1. This proves exactness in the middle of the sequence. Finally, one
verifies that ⊕Fw is surjective. !

6. Calculation of H1

If φ is a function on the Iwahori subgroup I then define a function φ̃ on the
group O× of units in O by the formula

φ̃(a) = φ(

(
a 0
o a−1

)
).

We shall prove the following result.

Theorem 6.1. The map φ ,→ φ̃ is an isomorphism from H1(G; C) to the
space of locally constant functions φ̃ on O× such that φ̃(a−1) = −φ̃(a).

The proof uses a few elementary facts in representation theory. Let K be any
compact group and let H be an open subgroup. For x ∈ K let

Hx = H ∩ x−1Hx,

If φ is a function on H then define a function φx on Hx by

φx(g) = φ(xgx−1).

Define an inner product on C∞
inv(K) by the formula

(φ, ψ)K =
1

vol(K)

∫

K
φ(k)ψ(k) dk.

Lemma (Mackey Formula). If φ, ψ ∈ C∞
inv(H) then

(IndK
Hφ, IndK

Hψ)K =
∑

x∈H\K/H

(φx, ψ)Hx
.

(The notation “x ∈ H\K/H” means that the sum is taken over representatives
for the double coset space H\K/H.) !

For a proof see [18].

Corollary. IndK
Hφ = 0 if and only if

∑

x∈H\K/H

(φx, φ)Hx
= 0,

in which case ∑

x∈H\K/H

(φx, ψ)Hx
= 0

for every ψ ∈ C∞
inv(H). !

We shall also use the following facts about the range of the induction map in
the case where K is totally disconnected.
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Lemma 6.2. The range of IndK
H : C∞

inv(H) → C∞
inv(K) is equal to the range of

the composition

C∞
inv(K)

restriction
−−−−−−→ C∞

inv(H)
IndK

H−−−→ C∞
inv(K).

It consists of those invariant functions on K which vanish on all conjugacy
classes disjoint from H. !

Let I and K0 be the subgroups defined in Section 3. Let

I(k) =

(
O O

!kO O

)
∩ SL(2).

Lemma 6.3.

K0 = I ∪ I(k)w0I(k).

Proof. Since K0 = I ∪ Iw0I it suffices to show that Iw0I = I(k)w0I(k).

There are left and right I(k)-coset representatives in I of the form

(
1 0
a 1

)
.

From

w0

(
1 0
a 1

)
=

(
1 −a
0 1

)
w0 ∈ Iw0

we get Iw0I = Iw0I(k). From
(

1 0
a 1

)
w0 = w0

(
1 −a
0 1

)
∈ w0I(k)

we get Iw0I(k) = I(k)w0I(k). !

Consider now the subgroup

I(k)w0
= I(k) ∩ w0

−1I(k)w0 =

(
O !kO

!kO O

)
∩ SL(2).

Lemma 6.4. For every positive integer k, the space H1(G; C) ⊂ C∞
inv(I) lies

in the image of the induction map IndI
I(k)w0

: C∞
inv(I(k)w0

) → C∞
inv(I).

Proof. Conjugation with the matrix

(
0 1
! 0

)
gives an automorphism

α: SL(2) → SL(2), α:

(
a b
c d

)
,→

(
d !−1c

!b a

)
.

It is of period two, restricts to an automorphism of I, and exchanges the groups
K0 and K1. For an invariant function φ on I let φα(g) = φ(α(g)), and note
that φ induces to zero on K1 (resp. K0) if and only if φα induces to zero on K0

(resp. K1). Therefore

(6.1) φ ∈ H1(G; C) ⇐⇒ φα ∈ H1(G; C).

Note also that

(6.2) α[I(k)w0
] ⊂ I(k + 1).
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Combining (6.1) and (6.2) with an induction argument, it suffices to show that
if φ ∈ H1(G; C) is induced from I(k) then φα is induced from I(k + 1)w0

.
If φ ∈ H1(G; C) is induced from I(k) then, as noted in Lemma 6.2, we may

choose a ψ ∈ C∞
inv(I(k)) which is the restriction of an invariant function on I,

such that φ = IndI
I(k)ψ. We have that

IndK0

I(k)ψ = IndK0

I IndI
I(k)ψ = IndK0

I φ = 0,

and so according to the Mackey criterion
∑

x∈I(k)\K0/I(k)

(ψx, θ)I(k)x
= 0,

for every θ ∈ C∞
inv(I(k)). All but one of the double cosets lies within I, and since

ψ is I-invariant we obtain

(6.3)
∑

x (=w0

(ψ, θ)I(k)x
+ (ψw0 , θ)I(k)w0

= 0.

Let

θ(g) =





ψ(g)

if g is not conjugate in I(k) to an
element of I(k)w0

0 otherwise

.

The last term in (6.3) is then zero and all the remaining terms are non-negative
(see the formula for the inner product). Therefore all the terms are zero. But
the term corresponding to the coset containing the identity is a multiple of the
integral of |ψ|2 over the conjugacy classes disjoint from I(k)w0

, and so we see that
ψ vanishes on all such conjugacy classes. Returning to our invariant function
φ on I, we see that φ vanishes on all conjugacy classes in I which are disjoint
from I(k)w0

, and therefore φα vanishes on all conjugacy classes disjoint from
α[I(k)w0

]. !

Proof of Theorem 6.1. Let φ ∈ H1(G; C) and let g ∈ I. If φ(g) += 0 then
according to Lemma 6.4 the conjugacy class of g intersects each I(k)w0

. Since
this conjugacy class is compact, it intersects the intersection of all the I(k)w0

,
which is the diagonal subgroup of I. This shows that the map φ ,→ φ̃ is injective.

To prove that φ̃(a−1) = −φ̃(a) we use the automorphism α introduced in
Lemma 6.4. It acts as an involution on H1(G; C), which accordingly decomposes
as a direct sum of ±1 eigenspaces. Since α(g) = g−1, if g is diagonal, it suffices

to show that the +1 eigenspace is trivial. Note that φ̃w0 = φ̃α, and therefore
φα = φw0 . Applying Mackey’s formula for IndK0

I φ we get

(φ, φ)I + (φα, φ)Iw0
.

Thus if φα = φ then φ = 0.

It remains to show that φ ,→ φ̃ is surjective. The map a ,→

(
a 0
0 a−1

)
passes

to a homeomorphism of O× onto an open and closed subset of the space of
conjugacy classes in I. Consequently each locally constant function ψ on O×
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gives an invariant function φ on I, supported on the conjugacy classes of diagonal
matrices, such that φ̃ = ψ. If ψ(a−1) = −ψ(a) for all a ∈ O× then it follows
easily from the formula for induction that φ ∈ H1(G; C). !

7. The Tempered Dual of SL(2)

The structure of the C∗-algebra C∗
r (G) is worked out in [13] and [9]. There

is a decomposition

(7.1) C∗
r (G) ∼= C∗

principal(G) ⊕ C∗
discrete(G),

corresponding to the decomposition of the tempered dual of G into principal and
discrete series [5] [16]. We shall describe each component in turn.

The principal series representations are parametrized by the set E2M of uni-
tary characters of the diagonal subgroup M of G (M is of course isomorphic
to the multiplicative group of F ). Each character τ of M extends to a char-
acter on the subgroup B of upper triangular matrices, and the principal series
representation π(τ) is obtained by unitarily inducing τ from B to G.

Denote by Hπ(τ) the Hilbert space on which π(τ) acts. The spaces Hπ(τ)

combine to form a bundle H of Hilbert spaces on E2M . The representations
π(τ) and π(τ ) are unitarily equivalent and there are “normalized intertwining
operators”

A(τ):Hπ(τ) → Hπ(τ)

implementing this equivalence. They give H the structure of a Z/2-equivariant
vector bundle. See [9].

We define
C∗

principal(G) = C0

(
E2M , K(H)

)Z/2
.

Thus C∗
principal(G) is the C∗-algebra of continuous, Z/2-equivariant, compact

operator-valued endomorphisms of H, which vanish at infinity. The representa-
tion of C∞

c (G) on each Hπ(τ) determines a homomorphism of C∗-algebras

(7.2) C∗
r (G) → C∗

principal(G).

We define
C∗

discrete(G) = ⊕π∈E2GK(Hπ),

where the sum is over the discrete series of G. The representation of C∞
c (G) on

each Hπ gives rise to a C∗-algebra homomorphism from C∗
r (G) onto C∗

discrete(G).
This map, combined with (7.2), gives the isomorphism (7.1).

8. Pimsner’s Isomorphism for K0

Using the results of Section 5 we shall exhibit an inverse to Pimsner’s map

µ0: H0(G) → K0(C
∗
r (G)).

Let S(G) be the Harish-Chandra algebra of G, comprised of uniformly locally
constant functions on G of rapid decay [20] [21]. It is a subalgebra of C∗

r (G)
which contains C∞

c (G).
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Theorem 8.1.
(1) The map

K0(S(G))
induced by
−−−−−−−→

inclusion
K0(C

∗
r (G))

is an isomorphism of abelian groups.
(2) Each of the orbital integrals FT

t , as in (5.3), extends to a trace on S(G).

Proof. See [21] and [22]. !

It follows that each orbital integral defines a functional

FT
t∗:K0(C

∗
r (G)) −→ C.

Lemma 8.2. Normalize the Haar measure on G so that vol(K0) = vol(K1) =
1. The diagram

H0(G; C)
µ0−−−−→ K0(C∗

r (G)) ⊗ C

F T
t

(
(F T

t∗

C −−−−−→
=

C

commutes.

Proof. Let V be an irreducible unitary representation of one of K0 or K1.
Its character determines an element of H0(G; C), and it suffices to check com-
mutativity for this. Let {v1, . . . , vn} be an orthonormal basis for V , and define
evi

as in (4.1). Note that the character of V is

χV =
1

n
(ev1

+ · · · + evn
).

Applying first µ0, and then FT
t∗, we obtain FT

t (ev1
). Applying FT

t first we obtain

FT
t (χV ) =

1

n
(FT

t (ev1
) + · · · + FT

t (evn
)).

But FT
t (evi

) = FT
t (evj

), since evi
and evj

are equivalent projections and FT
t is

a trace. Hence FT
t (χV ) = FT

t (ev1
). !

Viewing t ∈ T reg as a variable, and summing over representatives of the
conjugacy classes of maximal tori, we obtain a commutative diagram

H0(G; C)
µ0−−−−→ K0(C∗

r (G))

⊕F T

(
(⊕F T

∗

⊕C∞(T reg)WT −−−−−→
=

⊕C∞(T reg)WT

(see [20] for the fact that the right vertical map goes into smooth functions: this
also follows from Pimsner’s isomorphism). Since the left vertical map is injective
we have effectively inverted Pimsner’s map µ0.

Note that Pimsner’s theorem implies the Selberg Principle of [7]: if t ∈ T reg

is non-compact then the orbital integral FT
t (a) vanishes for every class a ∈

K0(S(G)).
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It is interesting to look at the map ⊕FT on K0(C∗
r (G)) in the light of the

detailed determination of the tempered dual of G in [5], [16], and the corre-
sponding description of the group K0(C∗

r (G)) [13]. For simplicity let us suppose
that the cardinality of the residual field O/!O is odd.

The principal series representations of G have already been described, and the
K0-group of C∗

principal(G) contains one generator for each character of O×, up to
the equivalence σ ∼ σ. There are three additional generators, associated to the
elliptic representations in the principal series (these appear as components of the
reducible principal series representations: those labelled by the three non-trivial
characters of M of order two).

The group K0(C∗
discrete(G)) has one generator for each discrete series represen-

tation. These consist of the Steinberg representation StG and the supercuspidal
representations. The latter fall naturally into three families, corresponding to
the three quadratic extensions of F . Each family is parametrized by characters
of the norm-one group of the quadratic extension (for a precise statement see
[15]).

As indicated in Section 5, the maximal tori of G are, up to conjugacy, the
diagonal subgroup and the norm-one groups of the quadratic extensions of F (see
[15]; up to a transposition the norm one groups embed naturally into SL(2)).
Based on character theory [5] [15] it is natural to guess that the map ⊕FT

admits a description at the level of K-theory generators, along the lines suggested
by the above remarks, so that K-theory generators for the principal series are
associated to functions supported on the diagonal subgroup, and so on. We have
not, however, checked this.

9. Pimsner’s Isomorphism for K1

The space E2M decomposes as a disjoint union of circles, parametrized by
the characters of O×. This leads to the following description of K1(C∗

r (G)) (see
[13]).

Proposition 9.1. The abelian group K1(C∗
r (G)) is isomorphic to the free

abelian group on the set of unordered pairs of characters {σ, σ} of O×, excluding
those characters of order two.

We shall obtain a corresponding description of the integral homology group
H1(G).

Fix a character σ:O× → S1, not of order two, and denote by k the least
positive integer such that

(9.1) σ[1 + !kO] = 1.

The character σ extends to the group I(k) (introduced in Section 6) using the
formula

(9.2) σ:

(
a b

!kc d

)
,→ σ(a).
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We define
φσ = IndI

I(k)σ.

Lemma 9.2.
(1) φσ is an irreducible character.
(2) φσ

α = φσ, where α is the automorphism of SL(2) introduced in the proof
of Lemma 6.4.

Proof. The irreducible characters constitute an orthonormal basis for R(I)
[18], so irreducibility is equivalent to (φσ, φσ)I = 1. By Mackey’s formula,

(φσ , φσ)I =
∑

x∈I(k)\I/I(k)

(σx, σ)I(k)x
.

The inner product of two one-dimensional characters is zero if they are distinct,
and one if they are equal. Using the fact that k is the least integer satisfying
(9.1) it is easily verified that σx += σ on I(k)x unless x lies in the identity double
coset. This proves part (1).

Since both φσ
α and φσ are irreducible characters, to prove (2) it suffices to

show that (φσ, φσ
α)I = 1. By functoriality of induction,

φσ
α = (IndI

I(k)σ)α = IndI
α[I(k)]σ

α.

We have that

α [I(k)] =

(
O !k−1O

!O O

)
∩ SL(2)

and

σα:

(
a !k−1

!c d

)
,→ σ(d).

It follows from (9.1) that σ(d) = σ(a), and so we shall write σ for σα, noting
that this notation is consistent with (9.2) on the intersection of I(k) and α[I(k)].
Applying the version of Mackey’s formula appropriate to representations induced
from two different subgroups [18] we obtain

(φσ, φσ
α)I = (IndI

I(k)σ, IndI
α[I(k)]σ

α)I =
∑

x∈I(k)\I/α[I(k)]

(σx, σ)x−1I(k)x∩α[I(k)].

There is only one double coset here, so the inner product is 1, as required. !

Proposition 9.3. Let cσ = φσ − φσ. Then cσ ∈ H1(G), and the cycles cσ,
one selected from each pair of characters {σ, σ}, consititute a basis for H1(G).

Proof. Using Mackey’s formula and Lemma 6.3 one calculates that

(IndK0

I cσ, IndK0

I cσ)K0
=

∑

x∈I(k)\K0/I(k)

(σx − σx, σ − σ)I(k)x
= 0

(compare the proof of part (1) of the Lemma 9.2), so that IndK0

I cσ = 0. By part
(2) of Lemma 9.2, and functoriality of induction,

IndK1

I cσ = (IndK0

I cα
σ)α = (−IndK0

I cσ)α = 0.
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Therefore cσ ∈ H1(G).
From the formula for induction one calculates that

(9.3) cσ:

(
a 0
0 a−1

)
,→

σ(a) − σ(a)

|a − a−1|
,

So it follows from Theorem 6.1 that the cycles cσ constitute a basis for the vector
space H1(G; C). To get the integral result we observe that the inner product of
any cycle in H1(G) with any cσ must be an even integer. This follows from the
fact that α acts as multiplication by −1 on H1(G). The proof is completed by
noting that (cσ, cσ)I = 2 and (cσ, cσ′)I = 0 if cσ′ += ±cσ. !

We note the resemblance between formula (9.3) for cσ and the formula

θπ(τ):

(
a 0
0 a−1

)
,→

τ(a) + τ(a−1)

|a − a−1|

for the characters of the principal series representations π(τ) [5].
We conclude by relating the generators cσ of H1(G) to the natural genera-

tors of K1(C∗
r (G)). Because the proper setting for the following proof is cyclic

homology, which we shall consider elsewhere, we shall only outline an argument.

Proposition 9.4. Pimsner’s map µ1 takes cσ to a K1-generator attached to
the component of the principal series labelled by σ.

Proof (sketch). To calculate µ1(cσ), note that the idempotents p and q
representing cσ, as in Section 4, may be chosen to be

p =
1

vol(I(k))
σ and q =

1

vol(I(k))
σ

(they are viewed first as functions on I(k), then extended by zero to I). This
follows from (4.4) and Lemma 4.3. Another application of Mackey’s formula,
this time in the context of locally compact groups [10], shows that both p and q,
viewed as idempotents in C∗

r (G), give rank one projection valued functions in the
component of C∗

principal(G) labelled by σ, and zero elsewhere in C∗
principal(G).

Thus µ1(φσ) must be a multiple of the generator of K1(C∗
r (G)) labelled by σ.

The fact that the multiple is ±1 follows from Pimsner’s Theorem. !
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