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1. Introduction

Over the past several years, operator algebraists have become increasingly inter-
ested in the problem of calculating the K-theory of group C∗-algebras. The focal
point of research in this area is the Baum-Connes Conjecture [BCH], which proposes
a description of K-theory for the C∗-algebra of a group in terms of homology and
the representation theory of compact subgroups. Although the main applications
of the Baum-Connes Conjecture are to issues in geometry and topology, the con-
jecture also appears to be of interest from the point of view of harmonic analysis.
Whereas for applications to topology one is concerned with discrete groups G (aris-
ing as the fundamental groups of manifolds), the conjecture’s links with harmonic
analysis appear to be the strongest for reductive Lie groups and p-adic groups.

The purpose of these notes is to convey to a reasonably broad audience some
byproducts of the authors’ research into the C∗-algebra K-theory of the p-adic
group GL(N), which culminated in a proof of the Baum-Connes Conjecture in this
case [BHP2]. Along the way to the proof a number of interesting issues came to
light which we feel deserve some exposure, even though our understanding of them
is far from complete, and is indeed mostly very tentative.

Much of what follows is focused on what we call here chamber homology, which is
a type of equivariant homology associated to the action of a reductive p-adic group
on its Bruhat-Tits affine building. The problem of computing chamber homology
can be approached from a number of different directions. An especially interesting
problem is to reconcile chamber homology with the Bernstein decomposition for
representations of reductive p-adic groups [Be, BD]. This appears to be a far from
trivial matter, even in comparatively simple cases. In Section 5 we formulate two
very general conjectures which give a broad description of a Bernstein decomposi-
tion in chamber homology (perhaps we should call our conjectures questions, since
the evidence we have gathered in their favor is not overwhelming).
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Since chamber homology is about the representations of compact open sub-
groups, it is obviously quite likely that a proper account of the correspondence
between the Bernstein decomposition and chamber homology for the group GL(N)
will revolve around the Bushnell-Kutzko theory of types [BK4]. In Sections 6 and
7 we outline some calculations to support this expectation, along with some con-
jectural descriptions of chamber homology, at the level of cycles, deriving from the
Bushnell-Kutzko theory. One might optimistically view a description of chamber
homology along these lines as a primitive foundation for a theory of types.

Our proof of the Baum-Connes conjecture for GL(N) invoked a good deal of
powerful and detailed representation theory (both smooth and tempered), some of
it very new (and all of it due to the experts in representation theory, not ourselves).
Sections 7 and 8 develop most of the relevant ideas, while at the same time adding
some perspective, we hope, to the conjectures in earlier sections. A central tool
throughout is cyclic homology, and at the end of Section 8 we formulate purely in
cyclic homology a conjecture parallel to the Baum-Connes conjecture in K-theory.
The Baum-Connes conjecture itself is formulated in Section 9.

Our own heavy dependence on the machinery of representation theory makes all
the more remarkable the recent work of V. Lafforgue [La1,La2], who has proved the
Baum-Connes conjecture not only for GL(N) but for all reductive p-adic groups
(and for a lot more besides, in the realms of discrete groups and Lie groups). Laf-
forgue’s argument is developed around the geometric structure of the affine building
and foundational properties of Harish Chandra’s Schwartz space (essentially, that
convolution by a Schwartz class function is a bounded operator on L2; see [La3]).
At the present time it is not clear how to translate Lafforgue’s work into asser-
tions and theorems in the language of representation theory. This is obviously an
interesting topic for future research.

Our purpose in writing the present notes has been to outline to representation
theorists some problems suggested by operator algebra theory which we feel might
be of some interest within representation theory. At the same time, we have tried to
make the paper a reasonable point of entry for operator algebraists who may want
to venture into the beautiful and fascinating world of p-adic representation theory.
These dual goals have resulted in a rather long paper, and even at this length we
have included essentially no detailed arguments. Lafforgue’s work suggests at least
the possibility that in the future the interaction between operator algebra theory
and representation theory will be considerably strengthened — we certainly hope
so! If the present paper contributes even in a modest way to the development of
such an interaction we shall be very pleased.

It is a pleasure to acknowledge the assistance of C. Bushnell, P. Kutzko, V.
Nistor and P. Schneider, with whom we have had many useful discussions.

2. Chamber Homology

Let X be a finite-dimensional simplicial, or polysimplicial, complex and suppose
that a discrete or totally disconnected group G acts simplicially on X , in such a way
that the stabilizer of each vertex in X is a compact and open subgroup of G (thus
X is a proper G-simplicial, or G-polysimplicial, complex). We shall also suppose
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that if an element g of G maps a simplex σ into itself then g fixes all the vertices
of σ. The main example we have in mind is the action of a reductive p-adic group
on its affine Bruhat-Tits building [Ti].

We are going to define equivariant homology groups H∗(G; X) in such a way
that:

• If G is discrete, and if the action of G on X is free, then H∗(G; X) identifies
with the ordinary homology H∗(X/G) of the quotient space X/G, with
complex coefficients. In particular, if G is trivial then H∗(G; X) is the
ordinary homology of X with complex coefficients.

• At the other extreme, if X is a one-point space and if G is a profinite group
then H0(G; X) is the space of locally constant class functions on G, while
Hp(G; X) = 0, for p > 0. Note that by character theory, the space of locally
constant class functions on G identifies with R(G)⊗Z C, the tensor product
of the representation ring of the compact group G with C.

This type of equivariant homology was treated in [BCH]. See also [HN] for another
account of its construction, on which the discussion below is based. For another,
more general, approach see [Sc2].

For simplicity we shall assume that X is a simplicial, as opposed to polysimplicial,
complex and that X is oriented, which means the vertices of each simplex are
linearly ordered (two orderings are regarded as the same if they differ by an even
permutation). The ordering need not be done with any regard to the inclusion
relations among simplices. But for simplicity again, we shall assume that G acts in
an orientation-preserving manner on X .

If σ is a simplex in X then denote by Gσ its isotropy group in G. It is a compact
and open subgroup of G. Denote by H(Gσ) the vector space of locally constant,
complex-valued functions on Gσ and form the vector space

Cp(G; X)=
⊕

σ∈Xp

H(Gσ),

where the direct sum is over the set Xp of p-simplices in X . We shall write elements
of Cp(G; X) as finite formal sums

∑

σ∈Xp

ϕσ[σ],

where ϕσ ∈ H(Gσ). Note that if G is the trivial group then ϕσ is simply a com-
plex number, and Cp(G; X) is the space of simplicial p-chains in X (with complex
coefficients).

If σ and η are simplices in X , and if η ⊂ σ, then Gσ is an open subgroup of
Gη and every locally constant function on Gσ extends by zero to a locally constant
function on Gη. Hence

η ⊂ σ ⇒ H(Gσ) ⊂ H(Gη).

If σ is a simplex in X with vertices v0, v1, . . . , vp (written in order) and if η is a
codimension-one face of σ with vertices v0, . . . , v̂i, . . . , vp then the incidence number
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(−1)〈η:σ〉 is +1 if this listing of the vertices of η agrees with the given orientation
of η, and −1 otherwise. Now define linear maps

∂: Cp(G; X) → Cp−1(G; X)

by the formula
∂(ϕσ[σ]) =

∑

η⊂σ
η∈Xp−1

(−1)〈η:σ〉ϕσ[η],

where the sum is over the codimension one faces of σ. The maps ∂ constitute the
differentials in a chain complex:

C0(G; X) ∂←− C1(G; X) ∂←− C2(G; X) ∂←− · · · .

The group G acts on this complex in the following way:

g
∑

σ∈Xp

ϕσ[σ] =
∑

σ∈Xp

gϕσ[gσ],

where gϕσ(γ) = ϕσ(g−1γg) (we note that gϕσ ∈ H(Ggσ), as is required by the
definitions, since Ggσ = gGσg−1).

From each vector space Cp(G; X) we now form the vector space of coinvariants
Cp(G; X)G, which is the quotient of Cp(G; X) by the vector subspace spanned by
all elements of the form g(a) − a, with g ∈ G and a ∈ Cp(G; X). Alternatively, if
H(G) denotes the convolution algebra of locally constant and compactly supported
functions on G, then Cp(G; X)G is the tensor product

Cp(G; X)G = Cp(G; X) ⊗
H(G)

C

(the algebra H(G) will be discussed further in the next section).

2.1. Definition. We define the chamber homology of X , denoted H∗(G; X), to be
the homology of the complex of coinvariants

C0(G; X)G
∂←− C1(G; X)G

∂←− C2(G; X)G
∂←− · · · .

If σ is a simplex in X then denote by C&(Gσ) the vector space of locally con-
stant, complex-valued class functions on Gσ (a class function is a function which is
constant on conjugacy classes). Form the subspace

C′
p(G; X) =

⊕

σ∈Xp

C&(Gσ) ⊂
⊕

σ∈Xp

H(Gσ) = Cp(G; X).

It has the property that

C′
p(G; X)G = Cp(G; X)G,
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so the chamber homology groups H∗(G; X) may in principle be computed from
the spaces C′

p(G; X) instead of the spaces Cp(G; X). To actually do so requires a
formula for the differentials ∂ which is adapted to the subspaces C′

p(G; X) (note
that extending a class function on Gσ to a larger group Gη by zero will not in general
produce a class function on Gη, so our previous formula for ∂ is unsuitable). The
correct definition of the differential in this context is

∂′(ϕσ[σ]) =
∑

η⊂σ
η∈Xp−1

(−1)〈η:σ〉 IndGη

Gσ
(ϕσ) [η],

where IndGη

Gσ
: C&(Gσ) → C&(Gη) is induction, defined by

IndGη

Gσ
(ϕ)(g) =

vol(Gη)
vol(Gσ)

∫

Gσ

ϕ(γgγ−1) dγ.

To explain the terminology, we note that the map which assigns to each finite-
dimensional representation its character produces an isomorphism

R(Gσ)⊗
Z

C ∼= C&(Gσ),

where R(Gσ) is the ring of finite-dimensional complex linear representations of Gσ.
Under the above isomorphism, the map IndGη

Gσ
: C&(Gσ) → C&(Gη) corresponds to

the usual induction operation on representations.
Let us turn now to some examples.

2.2. Example. If G is trivial then the complex which computes chamber homology
is just the complex which computes the simplicial homology of X . More generally,
if G acts freely on X then of course C&(Gσ) = H(Gσ) = C, for all σ, and upon
taking coinvariants we obtain a complex which computes the ordinary homology of
X/G. Observe that in general (whether or not the action is free), the homology
groups Hp(G; X) vanish above the dimension of the simplicial complex X .

2.3. Example. Suppose that ) ⊂ X is a subcomplex which is a fundamental
domain for the action of G on X in the sense that the G-orbit of any simplex in X
contains precisely one simplex from ). Then the complex of coinvariants

C0(G; X)G
∂←− C1(G; X)G

∂←− C2(G; X)G
∂←− · · ·

identifies with the complex

C′
0(G;)) ∂′

←− C′
1(G;)) ∂′

←− C′
2(G;)) ∂′

←− · · · ,

where C′
p(G;)) denotes the direct sum

C′
p(G;)) =

⊕

σ∈(p

C&(Gσ)

over the p-simplices in ) (not X). The differential ∂′ is defined exactly as above.
Note that the bottom complex does not involve coinvariants—indeed G does not
act on the spaces C′

p(G;)).
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2.4. Example. The previous example applies to the action of the p-adic group
SL(N) on its affine Bruhat-Tits building X , for which we may take ) to be any
chamber of the building. The case of SL(2) is particularly simple. Here X is a
tree and ) is any edge in the tree. The isotropy group of an edge is an Iwahori
subgroup I of G, and the isotropy groups of the two vertices of the edge are the
two maximal compact subgroups of G which contain I. The chamber homology
H∗(G; X) is therefore computed from the complex

C&(K0)⊕ C&(K1)
∂←− C&(I),

where the differential is induction into C&(K0) and the negative of induction into
C&(K1) (or the other way round, depending on the choices of orientation). The
homology of even this very small complex is challenging to compute. For example
a cycle for the group H1(G; X) consists of a class function on I which induces to
zero on both K0 and K1. Thus if ρ and ρ′ are distinct representations of I which
induce to the same representation on K0, as well as on K1, then the difference of
the characters of ρ and ρ′ is a cycle for H1(G; X). In [BHP1] the authors construct
a basis for H1(G; X) comprised of cycles of this type. Every representation of either
K0 or K1 determines a cycle for H0(G; X); in [BHP1] the authors characterize the
boundaries among the cycles in terms of invariant distribution theory on G.

2.5. Example. If G = SL(3) then the complex in Example 2.3 is built around a
2-simplex ). The isotropy groups of ) and its faces form a so-called triangle of
groups, with an Iwahori subgroup I attached to the triangle itself, the three dis-
tinct maximal compact subgroups Ki which contain I attached to the vertices, and
intermediate subgroups Jij = Ki ∩ Kj attached to the three sides of the triangle.
See Figure 1. The structure of cycles for H0(G; X) and H2(G; X) is rather similar
to the structure of the highest and lowest dimensional cycles in the SL(2) case (we
have not however obtained a complete analysis in the SL(3) case). An investiga-
tion of cycles for H1(G; X) in the same spirit presents new and as yet unexplored
challenges.

K0 K1

I

K J020

J J
I

K

K

1201

1

2

Fig. 1. Compact open subgroup data to compute H∗(G; X) for the
groups G = SL(2) and G = SL(3). Here X is the affine building
of G.
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2.6. Example. The affine building of the p-adic group G = GL(N) has the struc-
ture of a polysimplicial, as opposed to simplicial, complex. But since it is simply
the product X ×R of the building for SL(N) and the real line, it is not difficult to
construct a complex to compute its chamber homology along the lines of the pre-
vious example.1 The action of SL(N) on its affine building extends to an action of
GL(N), and the restriction of this action to the group ◦G = ◦GL(N) of matrices T
for which det(T ) and det(T−1) are p-adic integers is a proper action, for which any
chamber ) in X is a fundamental domain. The chamber homology for this action
of ◦G may be computed, or at least presented, exactly as we did for SL(N) in the
previous example. The group G itself is the semidirect product ◦G ! Z associated
to the action of the matrix

Π =





0 1 0 . . . 0
0 0 1 . . . 0
· · · ·
· · · ·
· · · ·
0 0 0 . . . 1
π 0 0 . . . 0





on ◦GL(N) by conjugation. Here π is the prime generator of the maximal ideal
within the ring of integers in our p-adic field. In line with this semidirect product
description, the complex to compute chamber homology for GL(N) may be written
as a ‘mapping torus’ complex, namely it is the totalization of the complex

C′
0(◦G;)) ∂′

←−−−− C′
1(◦G;)) ∂′

←−−−− C′
2(◦G;)) ∂′

←−−−− . . .

AdΠ

, AdΠ

, AdΠ

,

C′
0(◦G;)) ∂′

←−−−− C′
1(◦G;)) ∂′

←−−−− C′
2(◦G;)) ∂′

←−−−− . . .

.

Here ) is chosen to be the chamber in X which is stabilized by the standard Iwahori
subgroup of G (we shall say more about the Iwahori subgroup in Section 6). The
chamber ) is mapped into itself by the action of Π on the building X , so that
there is therefore an induced action of Π on the complex C′

∗(◦G;)). The reader
might compare this description of chamber homology with the fact that the quotient
[X × R]/G identifies with the mapping torus of an automorphism of a chamber in
X , acting by cyclically permuting the vertices of the chamber. The situation for
GL(3) is illustrated in Figure 2.

In both of the last two examples it should be emphasized that while setting
up a complex to compute chamber homology may make it clearer how H∗(G; X)
combines the representation theory and combinatorics of the parahoric subgroups
of G (that is, the isotropy subgroups of simplices in the building), having done so

1We could also barycentrically subdivide the building to obtain a simplicial complex, and then
proceed from there.
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Π

Fig. 2. A prism in the affine building for GL(3). The group ele-
ment Π ∈ GL(3) maps the front face ) of the prism to the back,
with a rotation of 2π/3.

we have moved hardly any distance toward computing what the chamber homology
groups actually are. Even in the ‘simple’ case of SL(2) the chain groups C′

∗(G; X)
involve the representation rings of quite nontrivial profinite groups, a direct com-
putation of which is challenging, to say the least. In the following sections we shall
proceed in a very indirect manner to obtain some insight into chamber homology.

We conclude this section with a remark concerning the functoriality of H∗(G; X).
The chamber homology of a proper G-simplicial (or polysimplicial) complex X is
invariant under barycentric subdivision of X , and also under (simplicial) equivariant
homotopy. It follows that H∗(G; X) is an invariant of the equivariant homotopy
type of X . Now if G is a reductive p-adic group (our main concern here) and if X is
the affine Bruhat-Tits building of G then it is noted in [BCH] that X is a universal
proper G-space: it has the property that every proper G-space Z has a unique-up-
to-G-homotopy equivariant map into X . Since universality clearly characterizes X ,
up to G-homotopy, it follows that H∗(G; X) is actually intrinsically associated to
the topological group G (namely it is the chamber homology of the universal proper
G-space).

We shall return to the notion of universal proper G-space in Section 9 of this
paper.

3. Cyclic Homology of the Hecke Algebra

Let G be a totally disconnected group and denote by H(G) the convolution
algebra of locally constant, compactly supported, complex-valued functions on G.
This is the Hecke algebra of G. The construction of H(G) requires a choice of
Haar measure on G, but perhaps it is worth pointing out that integration theory
for locally constant functions on a totally disconnected group is purely algebraic in
nature, so that no analysis is really involved in the construction of H(G).

The purpose of this section is to review a calculation which connects the Hecke
algebra H(G) to chamber homology through cyclic homology [HN,Sc1]. We shall
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begin by saying a few very brief words about cyclic homology. See [Lo] for a
complete treatment of the subject.

If A is an associative algebra over the complex numbers C then the cyclic homol-
ogy groups HCj(A), for j = 0, 1, 2, . . . , are the homology groups of the totalization
of the cyclic bicomplex shown in Figure 3. The differentials are described in [Lo].
The operator t is essentially a cyclic permutation of the multiple tensor product
A⊗ · · ·⊗A. In fact

t(a0 ⊗ · · ·⊗ an) = (−1)nan ⊗ a0 ⊗ · · ·⊗ an−1,

and it is from this that the term ‘cyclic homology’ derives.

...
...

...

b

, b′
, b

,

A⊗A⊗A
1−t←−−−− A⊗A⊗A

N←−−−− A⊗A⊗A
1−t←−−−− · · ·

b

, b′
, b

,

A⊗A
1−t←−−−− A⊗A

N←−−−− A⊗A
1−t←−−−− · · ·

b

, b′
, b

,

A
1−t←−−−− A

N←−−−− A
1−t←−−−− · · ·

Fig. 3. The cyclic bicomplex.

The cyclic bicomplex has a built-in 2-periodic structure: if we delete the first
two columns then what is left is simply a copy of the entire bicomplex. Associated
to this there are natural maps

S: HCn(A) −→ HCn−2(A).

There is version of cyclic homology which emphasizes this periodicity. To a first
degree of approximation this periodic cyclic homology is the inverse limit

HP∗(A) = lim←−
S

HC∗(A).

The formal definition of HP∗(A) involves extending the cyclic complex infinitely
to the left, preserving its 2-periodicity, and then totalizing by taking the direct
product of chain groups with a given total degree. The periodic cyclic homology
groups HP∗(A) are then related to the inverse limit lim←−HC∗(A) by a short-exact
sequence

0 −→ lim←−
1HC∗−1(A) −→ HP∗(A) −→ lim←−HC∗(A) −→ 0,
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of a type familiar in homological algebra whenever inverse limits arise. In favorable
circumstances, such as those we shall be considering in this paper, the sequence
simplifies: lim←−

1HC∗(A) = 0 and HP∗(A) ∼= lim←−HC∗(A).
In practice the computation of cyclic homology is often approached through

Hochschild homology theory, the Hochschild homology of an algebra being in this
context the homology of the first two columns in the complex of Figure 3. Associ-
ated to the process of deletion of the first two columns from the cyclic complex is
a long exact sequence,

· · · −→ HHn+2(A) I−→ HCn+2(A) S−→ HCn(A) B−→ HHn+1(A) I−→ · · · ,

called the Connes-Tsygan exact sequence, which connects Hochschild homology
with the periodization map in cyclic homology. The model result here is the fol-
lowing theorem of Hochschild, Kostant and Rosenberg [HKR]2 (see also [LQ]):

3.1. Theorem. Let X be a nonsingular complex affine variety and denote by O(X)
the algebra of regular functions on X. There are isomorphisms

HHn(O(X)) ∼= Ωn(X),

and
HPev/odd(O(X)) ∼= Hev/odd(X),

where Ωn(X) denotes the space of algebraic differential forms on X and Hev/odd(X)
denotes the periodized cohomology (see the remark below) of the de Rham complex
of algebraic differential forms.

Remark. In the theorem we use the notation Hev/odd for the direct sum of either
the even or odd degree cohomology groups: the theorem asserts that HPn(O(X))
is the direct sum of the groups H2p(X) if n is even and the direct sum of the groups
H2p+1(X) if n is odd. We will use similar notation later in the paper.

The idea of the proof of Theorem 3.1 is to use homological techniques (for ex-
ample, projection resolutions) to identify Hochschild homology, which fits very
naturally into the ordinary scheme of homological algebra. Then one identifies the
de Rham differential using the maps I and B in the Connes-Tsygan exact sequence
to prove the second part of the theorem.

We are now in a position to state the relevant result for H(G):

3.2. Theorem. [HN,Sc1] Let G be a totally disconnected group acting properly on
an affine Bruhat-Tits building X. There are isomorphisms

HPev/odd(H(G)) ∼= Hev/odd(G; X).

In other words, the chamber homology of the G-space X identifies, after periodiza-
tion, with the periodic cyclic homology of the Hecke algebra H(G).

Remark. This theorem parallels a substantial collection of prior results for discrete
groups, begun in [Bur] and summarized in [Lo]. For instance if a discrete group Γ

2They did not originally formulate it in the language of cyclic theory.
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acts properly on a space such as an affine building then it follows from these earlier
results that the periodic cyclic homology of the group algebra C[Γ] identifies with
Hev/odd(G; X).

Here is a sketch of the proof of Theorem 3.2. We begin with a simple geometrical
fact: the set Gc of elements in G each of which fixes some point of X is open in G
(it is the union of all the compact open subgroups of G), as is its complement Gnc,
comprised of elements which fix no point of X . Next, associated to a partition of
G, such as

G = Gc ∪Gnc,

into open, conjugation invariant subsets, there is a corresponding direct sum de-
composition

HHn(H(G)) = HHn(H(G))c ⊕HHn(H(G))nc,

and a similar decomposition in cyclic theory. The two components in the decom-
position can now be treated separately.

First, one can show that the periodicity map

HCn(H(G))nc
S−→ HCn−2(H(G))nc

is zero, from which it follows that HP∗(H(G))nc = 0.
Next, the Gc-component of cyclic homology is computed through a sequence of

isomorphisms
H∗(G; X) ∼= H∗(G,H(Gc)) ∼= HH∗(H(G))c,

in which H∗(G,H(G)c) denotes the smooth homology of G with coefficients in the
smooth G-module of compactly supported, locally constant functions on Gc (on
which G acts by conjugation). The Gc-component of the Connes-Tsygan sequence
degenerates, producing isomorphisms

HCn(H(G))c ∼= Hn(G; X)⊕Hn−2(G; X)⊕Hn−4(G; X)⊕ · · ·

(the direct sum ends with either H0(G; X) or H1(G; X), depending on the parity
of n). This gives the proof of Theorem 3.2, and in fact proves a little more:

3.3. Theorem. Let G be a totally disconnected group acting properly on an affine
building X. The Connes-Tsygan exact sequence produces an isomorphism of the
chamber homology group Hn(G; X) with the intersection of the spaces

Kernel[S: HCn(H(G)) → HCn−2(H(G))]

and
Image[S: HCn+2(H(G)) → HCn(H(G))]

inside the cyclic homology group HCn(H(G)). !
We remark that a more detailed account of Theorem 3.1 reveals that a similar

assertion can be made, recovering the de Rham cohomology of the complex of
algebraic forms on a variety X from the cyclic homology of O(X).
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We conclude this section with a few comments concerning topological algebras.
For these it is appropriate to place the fundamental bicomplex of Figure 3 into the
context of topological vector space theory [Bou] and form completed tensor products
A ⊗ · · · ⊗ A. The theory of topological tensor products is quite elaborate, and in
order to chart a reasonably straight course through it we shall make the assumption
that the topological vector space underlying the algebra A is nuclear and Fréchet.
In this situation every separately continuous bilinear map on A is jointly continuous
(so that there is only one natural notion of continuous multiplication operation on
A) and furthermore there is an essentially unique topology on the n-fold tensor
product of A with itself. See [Gr]. Completing with respect to this topology we
obtain the the topological tensor product, and using this tensor product in Figure 3
we define cyclic and periodic cyclic theory for the nuclear Fréchet algebra A.

The central result concerning cyclic homology for topological algebras is the
following theorem of Connes [Co1]:

3.4. Theorem. Let M be a smooth closed manifold and denote by C∞(M) the
algebra of smooth complex-valued functions on M (with the topology of uniform
convergence of derivatives of all orders). The periodic cyclic homology of C∞(M)
identifies with the periodized ordinary cohomology of the manifold M (with complex
coefficients):

HPev/odd(C∞(M)) ∼= Hev/odd(M). !
As with Theorem 3.1, a more thorough account of the matter reveals that the

individual cohomology groups Hn(M) may be recovered from the cyclic homology
of C∞(M) via the formula in Theorem 3.3. We will return in Section 8 to the
obvious analogy between Theorems 3.1 and 3.4.

4. The Bernstein Decomposition

The purpose of this section is to review a very beautiful construction of Bern-
stein [Be,BD], which associates to a reductive p-adic group G a commutative, as-
sociative algebra Z(G) analogous to both the center of the universal enveloping
algebra of a real reductive group and the center of the group algebra of a finite
group.

A linear representation of a totally disconnected group G on a complex vector
space V is smooth if the isotropy group of each vector in V is an open subgroup of
G. By integration of the representation, we see that a smooth representation is the
same thing as a H(G)-module V for which H(G) · V = V . The smooth dual of G
is the set Irr(G) of linear equivalence classes of irreducible, smooth representations
of G.

Now let G be a reductive p-adic group. We aim to make somewhat more precise
the following result:

4.1. Decomposition Theorem (First version). The smooth dual Irr(G) maps
finite-to-one onto a Hausdorff topological space Ω(G) (which is a disjoint union of
affine algebraic varieties) and there is a decomposition

H(G) =
⊕

H(G)Ω,
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parametrized by the connected components of the space Ω(G). On the right hand
side above is the algebraic direct sum of a countable family of pairwise orthogonal
ideals H(G)Ω of the algebra H(G).

This is the Bernstein decomposition of the Hecke algebra H(G). The details
of the Decomposition Theorem are not all essential for what follows and so some
readers may wish to skip from here to the next section. The main point is that
the decomposition is determined by the representation theory of G, as understood
in terms of induction from parabolic subgroups (in the case of GL(N) this means
induction from block upper triangular subgroups). In the next section we will
investigate how the Bernstein decomposition is related to the representation theory
of compact subgroups, and in particular how it is related to chamber homology.

Here then is a brief account of the Decomposition Theorem, borrowing heavily
from [BD]. Let M(G) be the category of smooth representations of G. We fix a
minimal parabolic subgroup P0 ⊂ G and its Levi decomposition P0 = M0 · U0.
By a standard Levi subgroup of G we mean a subgroup M which contains M0

and which is a Levi component of the parabolic subgroup P = MP0 (notation:
M < G). For any standard Levi subgroup M < G we have the induction-type
functor iGM : M(M) → M(G), obtained by extending a representation from M to
P , then inducing to G.

Let Ψ(G) ⊂ {ψ : G → C×} be the group of unramified characters of G. It acts
naturally on Irr(G) by ψ : π .→ ψπ. The group Ψ(G) has a natural structure of
complex algebraic group and is isomorphic to a product of copies of C×.

If G = GL(N), and if P0 is chosen to be the upper triangular matrices, then
the Levi subgroups are the block-diagonal subgroups of G. The group Ψ(G) is
comprised of the characters T .→ zval det(T ), for z ∈ C×, where val denotes the
valuation on our p-adic field.

We refer the reader to say [Be] for the key notion of supercuspidal representation
which appears in the definition below. The irreducible supercuspidal representa-
tions are in a sense the fundamental building blocks for the representation theory
of a reductive group G, since an irreducible smooth representation of G is either
supercuspidal or a subquotient of the representation obtained by parabolically in-
ducing a supercuspidal representation of a Levi factor. The problem of classifying
supercuspidal representations is thus fundamental to the representation theory of
p-adic groups.

4.2. Definition. A supercuspidal pair for G is a pair (M, ρ) where M < G is a
standard Levi subgroup and ρ ∈ IrrM is an irreducible supercuspidal representation
of M . We denote by Ω(G) the set of all supercuspidal pairs up to conjugation by G.
This is the Bernstein variety of the group G. For any supercuspidal pair (M, ρ) we
shall call the image of the map Ψ(M) → Ω(G), given by3 ψ .→ (M,ψρ), a Bernstein
component of Ω(G).

The Bernstein components Ω ⊂ Ω(G) are complex affine algebraic varieties: the
map Ψ(M) → Ω(G) in the definition identifies Ω with the quotient of Ψ(M) by the

3One can show that if ρ is supercuspidal then so is ψρ; thus the map is well-defined.
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action of a finite group. In the case where M = G this finite group is simply the
subgroup of Ψ(G) comprised of characters ψ for which ψρ is equivalent to ρ.

As we noted above, if π: G → Aut(V ) is a smooth representation then there exists
a supercuspidal pair (M, ρ), such that π is a sub-quotient of iGM (ρ). This pair is
uniquely defined up to conjugation in G and hence defines a point in Ω(G), which is
called the infinitesimal character of the representation and denoted inf. ch.V . The
map inf. ch.: Irr(G) → Ω(G) is onto and finite-to-one.

4.3. Definition. The central algebra Z(G) is the direct product Z(G) = ΠΩO(Ω)
of the algebras of regular functions on Bernstein components of Ω(G).

4.4. Theorem. [BD] On each smooth G-module E there exists a natural action of
Z(G) such that

(i) z : E → E is a morphism of smooth G-modules for each z ∈ Z(G).
(ii) Each G-module morphism α : E → E′ is a Z(G)-morphism.
(iii) On each irreducible smooth G-module V the action of z ∈ Z(G) is given by

z = inf. ch.V (z) !

Remark. The system of actions of Z(G) on the class of all smooth G-modules is
uniquely determined by properties (i)–(iii).

4.5. Decomposition Theorem (Second Version). Let E be a smooth G-module.
Then for each Bernstein component Ω ⊂ Ω(G) the characteristic function 1Ω ∈
Z(G) acts on E as a projector onto a G-submodule EΩ, and E =

⊕
Ω EΩ. !

Now consider H(G) as a smooth G-module with respect to the left action of G.
Then the corresponding action of Z(G) on H(G) identifies Z(G) with the algebra of
all endomorphisms of H(G), invariant with respect to the left and right actions of G
(see [BD] Section 1). The above theorem implies that the Hecke algebra H(G) can
be decomposed as a direct sum of two-sided ideals H(G)Ω, as in our first version of
the Decomposition Theorem.

5. The Bernstein Decomposition for Chamber Homology

Let us now combine some ideas from the previous three sections. We have seen
that there is a very natural “chamber” homology theory associated to the action
of a reductive p-adic group G on its affine building X , which encodes aspects of
the representation theory of the compact open subgroups of G. At the same time
the representation theory of G itself decomposes according to the components Ω of
the Bernstein variety Ω(G). This involves not compact open subgroups but Levi
subgroups and supercuspidal representations thereon. What is the relationship
between the Bernstein decomposition and chamber homology?

We shall attempt to formulate an answer by approaching the question through
cyclic homology.

14



5.1. Lemma. Associated to the Bernstein decomposition

H(G) = ⊕ΩH(G)Ω,

of the Hecke algebra of G there is a decomposition

HC∗(H(G)) = ⊕ΩHC∗(H(G)Ω)

in cyclic homology. !
This sort of additivity follows almost immediately from the definition of cyclic

homology. In Section 3 we noted that the chamber homology of G may be placed
into the context of cyclic homology. In fact Theorem 3.3 gives a precise formula for
Hn(G; X) in terms of cyclic theory, and using it we define

Hn(G; X)Ω = Kernel [S: HCn(H(G)Ω) → HCn−2(H(G)Ω)]
∩ Image [S: HCn+2(H(G)Ω) → HCn(H(G)Ω)]

Combining the above lemma with Theorems 3.2 and 3.3 we obtain a decomposition

H∗(G; X) = ⊕ΩH∗(G; X)Ω.

It is not a simple matter to trace through the argument summarized in Section 3
to produce a more explicit description of the ‘Bernstein components’ H∗(G; X)Ω of
chamber homology. In fact the best we can manage at the present time is a series
of guesses about a more definite description of H∗(G; X)Ω, substantiated in part
by one or two calculations.

We begin by describing the simplest means of attempting to construct a complex
to compute H∗(G; X)Ω. Consider first the complex

C0(G; X) ∂←− C1(G; X) ∂←− C2(G; X) ∂←− · · ·

introduced in Section 2, in which

Cp(G; X)=
⊕

σ∈Xp

H(Gσ).

Recall that we defined chamber homology to be the homology of the complex of
coinvariants associated to C∗(G; X). Now any element of H(Gσ), that is, any locally
constant function on the compact open subgroup Gσ ⊂ G, may be extended by zero
to become a locally constant and compactly supported function on G. In this way
we obtain an inclusion H(Gσ) ⊂ H(G) and we may define

H(Gσ)Ω = H(Gσ) ∩H(G)Ω.
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5.2. Definition. Denote by Cp(Ω; X) the direct sum

Cp(Ω; X) = ⊕
σ∈Xp

H(Gσ)Ω.

The spaces Cp(Ω; X) assemble to form a G-subcomplex

C0(Ω; X) ∂←− C1(Ω; X) ∂←− C2(Ω; X) ∂←− · · ·

of the complex C∗(G; X) introduced in Section 2; denote by

C∗(Ω; X)G = C∗(Ω; X)⊗H(G) C

the associated complex of coinvariants, as in Section 2, and denote by H∗(Ω; X)
the homology of the complex C∗(Ω; X)G.

The inclusion of C∗(Ω; X) into C∗(G; X) induces a map from H∗(Ω; X) into
H∗(G; X)Ω.

5.3. Conjecture. The inclusions of the subcomplexes C∗(Ω; X) into C∗(G; X) in-
duce an isomorphism

⊕ΩH∗(Ω; X) ∼= H∗(G; X).

Despite the fact that H(G) = ⊕ΩH(G)Ω, it does not of course follow that
H(Gσ) = ⊕ΩH(Gσ)Ω. Thus while the direct sum ⊕ΩC∗(Ω; X) injects into the
complex C∗(G; X), the map is far from surjective. The same is true after taking
coinvariants, and so the relation between the direct sum of the homology groups
H∗(Ω; X) and H∗(G; X) is far from clear.

Let us continue with a second assertion:

5.4. Conjecture. For every Bernstein component Ω the complex of coinvariants

C0(Ω; X)G
∂←− C1(Ω; X)G

∂←− C2(Ω; X)G
∂←− . . .

is finite-dimensional.

In order to better understand what this conjecture is about, let us consider the
example of G = SL(N), for which, as we noted in Section 2, the complex computing
chamber homology has a more simple and concrete appearance. The same is true
for H∗(Ω; X): if ) is any chamber in the building for G then the complex of
coinvariants C∗(Ω; X)G identifies with the complex

⊕
σ∈(0

C&(Gσ)Ω
∂′
←− ⊕

σ∈(1
C&(Gσ)Ω

∂′
←− ⊕

σ∈(2
C&(Gσ)Ω

∂′
←− . . . ,

in which the direct sums are over the finitely many faces of ) of dimension p, and
C&(Gσ)Ω denotes the space of those locally constant, complex-valued class functions
on Gσ which lie in H(G)Ω, when extended by zero to be functions on G. The
differentials ∂′ are given by induction, as in Section 2.
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The vector space C&(Gσ)Ω has a natural basis, comprised of the characters of
those irreducible representations V of Gσ which are associated only to the Bernstein
component Ω, in the sense that if E is any smooth representation of G then the
Gσ-representation V occurs only in the Bernstein component EΩ ⊆ E. Or to
put it another way, C&(Gσ)Ω is generated by the characters of those irreducible
representations V of Gσ for which4 [IndG

Gσ
V ]Ω = IndG

Gσ
V . In Conjecture 5.4

we are asserting that for every simplex σ in the affine building X this class of
representations is finite-dimensional.

Taken together, Conjectures 5.3 and 5.4 propose a definite link between the
Bernstein decomposition for G and the structure of representations of compact
open subgroups, the bridging concept being the geometry of the action of G on
its affine building. The conjectures assert that to each Bernstein component Ω
of any reductive group G there is associated a finite-up-to-conjugacy collection
of representations of compact open subgroups, which is organized into a complex
and which carries that part of the chamber homology H∗(G; X) associated to Ω.
This has some resemblance to a theory of types, in the sense of Bushnell and
Kutzko [BK4], a point to which we shall return in Section 7.

6. Calculations in Chamber Homology

In this section we shall outline a few calculations which we hope will add a little
substance to the conjectures of the previous section (and along the way we will
generate more questions). In the next section we will try to place our calculations
within a more systematic framework.

We will concentrate on the p-adic group G = GL(3). As before, let X be the
affine building for G. Our aim is to construct certain classes in the homology
groups H∗(Ω; X) which we defined in the previous section, and indeed to arrive at
a reasonable understanding of the complex

C0(Ω; X)G
∂←− C1(Ω; X)G

∂←− C2(Ω; X)G
∂←− . . . ,

which computes H∗(Ω; X).
As we have already noted, it is possible to write the above complex in a more

concrete form. If Ω is a Bernstein component for GL(3) then by the local complex
for Ω we shall mean the complex

C′
0(

◦G;))Ω
∂′
←− C′

1(
◦G;))Ω

∂′
←− C′

2(
◦G;))Ω,

where ) is the chamber in the affine building for SL(3) which is fixed by the
standard Iwahori subgroup I ⊂ GL(3):

I =




O× O O
πO O× O
πO πO O×



 .

4The appropriate notion of induction here is smooth, compact induction, so that IndG
Gσ

V is
comprised of Gσ-covariant, compactly supported and locally constant functions from G into V .
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Here C′
p(◦G;))Ω is the direct sum

C′
p(

◦G;))Ω = ⊕
σ∈(p

C&(Gσ)Ω

introduced in the previous section, the sum being over the p-dimensional faces of
the chamber ). Conjecture 5.4 in the previous section asserts that this complex is
finite-dimensional. Conjecture 5.3 asserts that if Π is the matrix

Π =




0 1 0
0 0 1
π 0 0





then the local mapping torus complex

C′
0(◦G;))Ω

∂′
←−−−− C′

1(◦G;))Ω
∂′

←−−−− C′
2(◦G;))Ω

,AdΠ

,AdΠ

,AdΠ

C′
0(◦G;))Ω

∂′

←−−−− C′
1(◦G;))Ω

∂′

←−−−− C′
2(◦G;))Ω

computes the Ω-component H∗(G; X)Ω of the chamber homology of GL(3).
A full account of the Ω-component of chamber homology would require these

parts:
(1) the determination of all representations of the compact groups Gσ which,

when induced to G, lie within the Ω-component of the smooth dual of G
(this amounts to determining the vector spaces in the local complex for Ω);

(2) the computation of how the representations in (1) induce from one Gσ

to another (this amounts to determining the differentials ∂′ in the local
complex);

(3) the computation of the action of AdΠ on the local complex (so as to deter-
mine the local mapping torus complex); and

(4) the verification that the local mapping torus complex really does carry the
Ω-component of chamber homology.

Unfortunately we have not carried out this program in full for any Ω. What we
have done, for certain Ω, is obtain some but not perhaps all of the representations
required by (1), and with these, which assemble to form an AdΠ-invariant subcom-
plex of the local complex, we have gone on to compute ∂′, the action of AdΠ, and
the homology of the associated local mapping torus complex. The computations
support the assertion that we have located all the representations in (1). We will
formulate a precise and more general conjecture along these lines in the next sec-
tion. In the present section we shall focus on the computational aspects (2) and
(3) of the above program.

We shall need to carry out some induction computations in the representation
theory of compact groups, and for these Frobenius Reciprocity and the Mackey
formula will prove very useful. Suppose that J is an open subgroup of a compact
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group K. If ρ and π are finite-dimensional, complex-linear representations of J and
K, respectively then Frobenius reciprocity provides a vector space isomorphism

HomJ (ρ, ResK
J π) ∼= HomK(IndK

J ρ,π).

If ρ1 and ρ2 are finite-dimensional, complex-linear representations of open sub-
groups J1 and J2 of K, and if x ∈ K then we define the intertwining vector space
to be

Ix(ρ1, ρ2) = HomxJ1x−1∩J2(ρ
x
1 , ρ2),

where ρx1(y) = ρ1(x−1yx). The Mackey formula provides a vector-space isomor-
phism

HomK(IndK
J1
ρ1, IndK

J2
ρ2) ∼= ⊕

x∈J1\K/J2

Ix(ρ1, ρ2).

Setting ρ = ρ1 = ρ2 we get

EndK(IndK
J ρ) ∼= ⊕

x∈J\K/J
Ix(ρ, ρ).

The formula can, for example, be used to determine the irreducibility of induced
representations, since π = IndK

J ρ is irreducible if and only if EndK(π) ∼= C.
To apply the Mackey formula we shall need to know the double-coset decompo-

sitions for the isotropy groups Gσ appearing in the local complexes for GL(3). If
we set

s0 =




1 0 0
0 0 1
0 1 0



 s1 =




0 0 π−1

0 1 0
π 0 0



 s2 =




0 1 0
1 0 0
0 0 1



 ,

then the I-double cosets for the isotropy groups of the vertices and edges of ) are
represented by the elements in various groups generated by subsets of {s0, s1, s2},
as illustrated in Figure 4. Thus for instance the edge isotropy groups are

Jij = I ∪ IskI,

in the notation of Figure 1, where i, j and k are distinct indices from {0, 1, 2}. It
follows that the vertex stabilizers Ki have double coset decompositions

Ki = J ∪ JskJ,

where J = Jij and again i, j and k are distinct indices.
With these preliminaries in hand, let us turn to an analysis of the local complex

for some Bernstein components Ω.

6.1. The Borel component of the Bernstein variety. Let T be the diagonal
subgroup of G and let σ be the trivial representation of T . Then (T,σ) is a super-
cuspidal pair in the sense of Definition 4.2. It determines a Bernstein component
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Fig. 4. I-double coset representatives for the isotropy groups of the faces
of the Iwahori subgroup I. For example the notation 〈s2, s1〉 means that
the group generated by s2 and s1 forms a complete set of I-double coset
representatives for the isotropy group K0 of the lower left vertex.

Ω which was first analyzed (for a general G, not just GL(3)) by Borel [Bor], who
showed that a smooth representation5 satisfies E = EΩ if and only it is generated
as a representation of G by those of its vectors fixed by the Iwahori subgroup I.

Borel’s result implies that the trivial representation ι of the Iwahori subgroup
I belongs to the local complex for the Borel component Ω, as indeed does every
irreducible component of every representation induced from ι.

6.2. Conjecture. The irreducible components of the representations induced from
the trivial representation of the Iwahori subgroup generate the whole of the local
complex for the Borel component of the Bernstein variety.

Remark. In other terms, the conjecture asserts that if an irreducible representa-
tion π of a parahoric subgroup never occurs in any representation of G which has
no I-fixed vectors then π is a component of a representation induced from the
trivial representation of I. Thus the conjecture adds to Borel’s theorem a sort of
uniqueness assertion for the trivial representation of the Iwahori subgroup.

What are the irreducible components of the representations induced from the
trivial representation ι of the Iwahori subgroup? If ι is induced to the isotropy
subgroup of an edge of ) then according to the Mackey formula,

EndJij (IndJij

I ι) ∼= Ie(ι, ι)⊕ Isk (ι, ι),

from which we see right away that EndJij (IndJij

I ι) ∼= C ⊕ C, so that the induced
representation is a direct sum of two distinct irreducible constituents. By Frobenius

5Borel worked with smooth and admissible representations, but the result is the same for
general smooth representations.
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Reciprocity one of these constituents is the trivial representation of Jij , so that

IndJij

I ι = ι⊕ σ.

The Mackey formula shows that both of the representations σ and ι on Jij , when
induced to a vertex stabilizer, decompose as a direct sum of at most two (necessarily
distinct) irreducible representations. In addition, when the trivial representation
of I is induced to a vertex stabilizer Ki then EndKi(IndKi

I ι) is six-dimensional; by
Frobenius Reciprocity the trivial representation of Ki occurs with multiplicity one
in the induced representation.

A moment’s thought shows that the only possibility here is this: the two repre-
sentations ι and σ of each Jij decompose into two irreducible representations upon
induction to a vertex isotropy group, and that of the four representations of each
vertex isotropy group obtained in this way, two are isomorphic to one another,
netting three distinct irreducible representations, ι, τ and τ ′, of each vertex group.
The local complex for the Borel component Ω can now be described as in Figure 5
(assuming a postive resolution of Conjecture 6.2). Each dot represents a represen-
tation (giving a linear generator of the local complex) of the face-group next to
which it is placed. The arrows indicate how these representations decompose under
induction. The action of AdΠ is given by the obvious rotational symmetry of the
diagram. It is now a simple matter to compute the homology of the local complex
and of the local mapping torus complex, the result for the latter being

H0 = C3, H1 = C4, H2 = C, H3 = 0.

As we have already mentioned, we shall take a second look at these calculations in
Section 7.

6.3. Tame Characters. Let λ: F× → C× be a tame character of F× (we mean
that the restriction of the character to O× factors through a multiplicative char-
acter of the residue field O/πO; we are also assuming in this subsection that this
restriction is nontrivial). Let T be the diagonal subgroup of GL(3) and define
λ: T → C× by

λ




a 0 0
0 b 0
0 0 c



 = λ(c).

Then (T,λ) is a supercuspidal pair, and so it determines a component Ω in the
Bernstein variety.

There are three one-dimensional representations of the Iwahori subgroup I which
are naturally associated to λ, namely

ν0




a ∗ ∗
∗ ∗ ∗
∗ ∗ ∗



 = λ(a), ν1




∗ ∗ ∗
∗ b ∗
∗ ∗ ∗



 = λ(b), ν2




∗ ∗ ∗
∗ ∗ ∗
∗ ∗ c



 = λ(c).

Parallel to Borel’s result on the trivial representation of the Iwahori is the assertion
that a representation E of G satisfies E = EΩ if and only if for any j it is generated
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Fig. 5. The conjectural local complex for the Borel component of
the Bernstein variety. The trivial representation of I induces to a
direct sum of two irreducible representations at each edge isotropy
group. Each of these in turn induces to a two-fold direct sum at
each vertex-isotropy group, with one coincidence among the four
representations. The inner dot at each face represents the trivial
representation of the face-isotropy group.

by its νj-isotypical vectors. It follows in particular that each of the representations
ν0, ν1 and ν2 belongs to the local complex attached to Ω. Note that conjugation
with Π cyclically permutes ν0, ν1 and ν2, so that the complex generated from the
representations νj by induction to the various face-isotropy groups for ) is AdΠ

invariant. As in the previous subsection, we believe that these representations
generate the full local complex; as in the previous section we shall compute the
local complex, presuming this to be so. In what follows we shall use the notation
for isotropy groups indicated in Figure 1.

6.4. Lemma. If i, j, and k are distinct then the representation IndJij

I νk is a direct
sum of two distinct irreducible representations. If i, j, and k are not all distinct
then IndJij

I νk is irreducible.

Proof. Recall that the unique nontrivial double coset of I in Jij is generated by sk

(where i, j and k are distinct indices from {0, 1, 2}). One checks that Is0(τ, τ) = 0
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and also Is2(τ, τ) = 0, whereas Is1(τ, τ) = C (since τ is a one-dimensional repre-
sentation these computations amount to determining whether or not τsj = τ on
sjIsj ∩ I). The lemma follows from this and the Mackey formula. !

If i, j and k are distinct then the one-dimensional representation νk of I extends
to Iij (to take k = 2, for example, the group J01 is comprised of matrices which
are block upper triangular, modulo π, with a 1× 1 block in the lower right corner,
so that applying λ to this entry we still obtain a group homomorphism). It follows
from Frobenius Reciprocity that in the decomposition

IndJij

I νk = β ⊕ β′

given by Lemma 6.4, one of the representations, say β′, is this extended one-
dimensional representation.

6.5. Lemma. For every i and j, the representation IndKi
I νj is a direct sum of two

irreducible representations.

Proof. We’ll do the calculation when i 3= j and leave the other case to the reader.
The double coset space I\Ki/I identifies with the permutation group 〈sj , sk〉 (where
as usual i, j and k are distinct). If x ∈ 〈sj , sk〉 then

νx
j = νj ⇔ x = 1, sj.

Therefore by the Mackey formula we have

EndKi(IndKi
I νj) = I1(νj)⊕ Isj (νj) = C⊕ C

as required. !
It follows from this that the representations β and β′ of the edge-isotropy groups

discussed above induce irreducibly to representations of the vertex-isotropy groups.

6.6. Lemma. For any i, j and k (not necessarily distinct) there is an equivalence
of representations

IndKi
I νj

∼= IndKi
I νk.

Proof. It is enough to prove that

EndKi(IndKi
I νj , IndKi

I νk) = C⊕ C.

Now the left-hand side is ⊕Ix(νj , νk) with x ∈ I\Ki/I. Once again, let us analyze
the case where i, j and k are distinct, and leave the remaining cases to the reader.
We take x ∈ 〈sj , sk〉 and calculate that

Ix(νj , νk) 3= 0 ⇔ x = sksj , sjsksj .

The result now follows from the Mackey formula. !
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One can be a little more precise: the extended one-dimensional representations
β′ of any two edge isotropy groups induce to the same irreducible representation γ
of the isotropy group of the vertex shared by the two edges. This also follows from
the Mackey formula.

The various observations that we have made now justify the rather intricate
diagram presented in Figure 6, which summarizes the structure of the local complex
in the case we are considering (the diagram should be read in the same way as
Figure 5). The automorphism AdΠ acts via the obvious rotational symmetry of the
diagram, and the homology of the local mapping torus complex is as follows:

H0 = C2, H1 = C4, H2 = C2, H3 = 0.

6.7. Supercuspidal Representations. Every irreducible supercuspidal repre-
sentation of the group G = GL(3) defines a component of the Bernstein variety
Ω(G). Our previous examples involved the minimal Levi subgroup of G, whereas
we are now looking at the maximal Levi subgroup — G itself. So by turning our
attention to supercuspidal representations we are in some sense focusing on the
opposite end of the Bernstein variety Ω(G).

How do we expect the local complex to present itself in the case of a component
Ω in the Bernstein variety associated to a supercuspidal representation of G? It
is a well-known conjecture that every irreducible supercuspidal representation of a
reductive p-adic group G with compact center should be induced from a representa-
tion of a compact-modulo-center open subgroup. For G = SL(N) and G = GL(N)
this conjecture has in fact been proved by Bushnell and Kutzko [BK1,BK2]. The
answer to our question appears to be related to this induction conjecture, and since
the presence of a noncompact center in G is a complicating factor let us begin
with an account of SL(N). Here the simplest and most attractive counterpart in
chamber homology to the induction conjecture would be this:

6.8. Conjecture. The local complex associated to the component Ω of the Bern-
stein variety determined by an irreducible supercuspidal representation of G =
SL(N) identifies with the simplicial homology complex associated to some non-
empty face )Ω of the fundamental chamber ) in the affine building for G. In
other words the spaces C&(Gσ)Ω are either zero or are spanned by the character of
a single irreducible representation of G, and the set of faces σ of ) for which such
a representation exists6 is precisely the set of faces of )Ω ⊂ ).

We emphasize that in the conjecture the term ‘face’ does not mean ‘codimension
one face.’ Faces of all dimensions, from a vertex to ) itself, are allowed. Figure 7
shows a potential local complex under the scheme of the conjecture. Note that
for G = SL(3) the local complex is formed exactly as for GL(3), here there is
no automorphism AdΠ, and so the local complex, as opposed to a mapping torus
complex, is itself the complex C∗(Ω; X)G. Conjecture 6.8 is consistent with the fact

6Once again, the defining property of such a representation is that when induced from Gσ to
G the resulting representation lies wholly in the Ω-component of the smooth dual.
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Fig. 6. The conjectural local complex for the com-
ponent of the Bernstein variety associated to a tame
character of F×. The automorphism AdΠ acts ‘by
rotation’ on the diagram, so that for instance all the
representations labelled β lie in a single orbit under
the action.

that the homology of the local complex should be the homology of a point (we’ll
consider homology groups, as opposed to the complexes themselves, in the next
section).

Membership of the character of a representation π in C&(Gσ)Ω is very close to the
property that π induces to the given supercuspidal representation (certainly it is
implied by it). So Conjecture 6.8 comprises both an existence part (namely)Ω 3= ∅)
and a uniqueness part: for instance if two representations of distinct vertex-isotropy
groups both induce to the given supercuspidal representation then it is because the
two representations are both induced from a common representation of a smaller
group.
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Fig. 7. A conjectural local complex associated to
a supercuspidal representation of G = SL(3). The
face )Ω ⊂ ) is shown in black.

The case of G = GL(N) is more complicated, since we must now take into ac-
count the action of AdΠ on the local complex. For reasons to explained in the next
section the homology of the local mapping torus complex should be the homology
of a circle. There seem to be two simple ways of arranging this. The first is to
proceed as in the above conjecture, but require that )Ω = ) (this is forced by the
AdΠ-invariance of the local complex since the only AdΠ-invariant face of ) is )
itself). The second, which is new to GL(N), is to assert that the local complex is
concentrated in degree zero, that is on the vertex isotropy groups, with one repre-
sentation of each vertex-isotropy group in the local complex and no representations
of the isotropy groups of higher-dimensional faces. Both arrangements produce

H0 = C, H1 = C,

as required. One could modify Conjecture 6.8 to suit G = GL(N) by deleting the
requirement that )Ω be a simplex and replacing it by the requirement that )Ω be
a disjoint union of simplices on which AdΠ acts transitively. This new conjecture
would cover both of the above cases, but it clearly lacks the elegance of the assertion
for SL(N), and we are not certain that the new formulation is fully adequate.

7. Structure of the Hecke Algebra

In the previous section we focused on the complexes C∗(Ω; X)G and their ho-
mology groups H∗(Ω; X). Conjecturally, the homology groups H∗(Ω; X) identify
with the Bernstein components H∗(G; X)Ω of chamber homology. The purpose of
this section is to illuminate this conjecture just a little by studying in more detail
these Bernstein components.
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Recall from Section 5 that we decomposed chamber homology into Bernstein
components by means of the Bernstein decomposition

H(G) = ⊕ΩH(G)Ω

of chamber homology and the computation in Section 3 of the cyclic homology of
the Hecke algebra. By definition,

Hn(G; X)Ω = Kernel [S: HCn(H(G)Ω) → HCn−2(H(G)Ω)]
∩ Image [S: HCn+2(H(G)Ω) → HCn(H(G)Ω)]

From the above lemma we obtain a decomposition

H∗(G; X) = ⊕ΩH∗(G; X)Ω.

Thus in order to better understand the Bernstein components of chamber homology
we must in effect compute the cyclic homology of the ideals H(G)Ω in the Hecke
algebra of G.

7.1. The Borel component. Let G be a reductive p-adic group. If Ω is the Borel
component of the Bernstein variety Ω(G) (corresponding to the trivial representa-
tion of the minimal Levi subgroup of G) then Borel’s work, to which we referred
earlier, implies that

HΩ = HeH,

where

e(g) =






1
vol (I)

if g ∈ I

0 if g /∈ I,

and where we have used the abbreviation H = H(G). The element e is an idem-
potent in H. It has the characteristic property that in any smooth representation
of G the operator e is I-equivariant and its range is precisely the space of I-fixed
vectors.

There is a ‘Morita equivalence’ of algebras7

HeH ∼
Morita

eHe,

and since cyclic homology is Morita invariant, the problem of computing the Borel
component of chamber homology reduces to that of computing the cyclic homology
of the unital algebra eHe. But eHe is precisely the convolution algebra of I-
bi-invariant, compactly supported functions on G, and its structure is very well
known, thanks to the work of Iwahori and Matsumoto [IM]. Associated to G there

7Since HeH is not a unital algebra, we are not quite using the ordinary notion of Morita
equivalence from algebra. But for instance HeH is a direct limit of unital algebras, each equivalent
to eHe, and the associated system of bimodules is compatible with the inclusion maps in the
directed system.
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is an ‘affine Weyl group’ W̃ containing the Weyl group W of G. The I-double cosets
in G are parametrized by W̃ and so as a linear space the Iwahori Hecke algebra
eHe has a natural basis {Ta : a ∈ W̃ }. If we fix a generating system S ⊂ W then,
as an algebra, eHe has the following presentation:

{
TaTb = Tab if &(a) + &(b) = &(ab),

T 2
s = (q − 1)Ts + q if s ∈ S.

See [Lu]. Here q (a prime power) is the cardinality of the residue field of our p-adic
field. Of course the same relations determine an algebra H(W̃ , q) for any value of
q; note that if q = 1 then H(W̃ , q) reduces to the complex group algebra of W̃ .

Let us now specialize to G = GL(N). Here the affine Weyl group W̃ is the
semidirect product ZN !SN associated to the permutation action of the symmetric
group on the free abelian group ZN , and in this case we shall use the notation
H(N, q) for the Iwahori Hecke algebra.

One can show that the periodic cyclic homology of the affine Hecke algebra is
actually independent of q:

7.2. Theorem. HP∗(H(N, q)) ∼= HP∗(H(N, 1)) = HP∗(C[ZN ! SN ])

This gives an effective means of computing cyclic homology for the Bernstein
component HΩ since the problem of computing cyclic homology for group algebras
has been studied in some depth, and with considerable success. One very suggestive
approach is this. The group W̃ = ZN !SN acts in the obvious way on the euclidean
space V = RN . This action is actually a product of two actions, one on the quotient
◦V of V by the line spanned by (1, . . . , 1), and one on this line itself. If we define

◦ZN = { (k1, . . . , kN ) ∈ ZN : k1 + · · · + kN = 0 }

then 0V tessellates as the Coxeter complex associated to the Coxeter group ◦W̃ =
◦ZN ! SN , and the product of this with the standard simplicial structure on a line
gives a polysimplicial structure on V which is preserved by the action of W̃ .

The situation when N = 3 is illustrated in Figure 8. It should be clear that the
action of W̃ on V models the action of GL(3) on its affine building (in fact V is
simply an apartment in the building). The cyclic homology of the group algebra
C[W̃ ] identifies with the chamber homology for the model action, exactly as in
Section 3. But now an interesting point arises: the complex to compute chamber
homology in this case, which may be viewed as a mapping torus complex just as in
Sections 2 and 6, identifies at the level of complexes with the complex we generated
in Paragraph 6.1 from the trivial representation of the Iwahori subgroup. This is
because the way in which the trivial representation of the Iwahori subgroup decom-
poses into irreducibles upon induction to higher parahoric subgroups is governed
by intertwining algebras which are in fact finite Hecke algebras H(W [S′], q), where
S′ ⊂ S. These are finite semisimple algebras, and are hence rigid under deformation
of the parameter q (through real values). Setting q = 1 we obtain the intertwining
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Fig. 8. The polysimplicial subdivision of V = R3 for the extended
Coxeter group W̃ = Z3!S3. The Coxeter subgroup ◦W̃ = ◦Z3!S3

acts on the 2-dimensional Coxeter complex ◦V shown in black. This
action extends to W̃ . The action of W̃ on V is a product of actions
on ◦V and R.

algebras appropriate to the computation of chamber homology for the action of W̃
on V . This provides, we hope, a good conceptual reason to believe in the validity of
Conjecture 6.2. It also shows that the conjecture has a very interesting geometric
foundation in the structure of an apartment in the affine building.

In concluding this discussion we must note that Theorem 7.2 computes the pe-
riodic cyclic homology for the affine Hecke algebra, and hence for the Borel com-
ponent H(G)Ω for the Hecke algebra of GL(N), but not the nonperiodic cyclic
homology. So strictly speaking we have only identified the homology considered in
Paragraph 6.1 with the groups of H∗(G; X)Ω after periodization (meaning the pas-
sage to Hev/odd). Presumably there is a slightly stronger version of Theorem 7.2,
implying that the spaces

Kernel [S: HCn(H(N, q) → HCn−2(H(N, q))]
∩ Image [S: HCn+2(H(N, q)) → HCn(H(N, q))]

are independent of q, and presumably the same holds for the Iwahori Hecke algebra
of any G.

7.3. Extended Quotients. Let us record for later discussion another aspect of
the problem of computing (periodic) cyclic homology for the group algebra C[W̃ ].
Suppose that a group Γ acts properly and (for simplicity) cocompactly on a space
X . The extended quotient associated to this action is the quotient space X̂/Γ,
where

X̂ = { (γ, x) ∈ Γ×X : γx = x }
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The group action on X̂ is g · (γ, x) = (gγg−1, gx). We are interested in the action
of W̃ on V , as discussed above.

7.4. Theorem. (See [BC].) The periodic cyclic homology of the group algebra C[W̃ ]
is isomorphic to the periodized ordinary cohomology (with complex coefficients) of
the extended quotient V̂ /W̃ :

HPev/odd(C[W̃ ]) ∼= Hev/odd(V̂ /W̃ ).

Observe that in our case (where W̃ is the affine Weyl group for GL(N)) the
extended quotient V̂ /W̃ identifies with the extended quotient for the permutation
action of SN on a real N -torus TN . The reader can easily check that the homology
groups computed in Paragraph 6.1 agree with the cohomology of this torus extended
quotient.

7.5. Bernstein Components and Bushnell-Kutzko Types. For the p-adic
group GL(N) Bushnell and Kutzko have completed a very ambitious program
[BK1,BK3,BK4] which is immediately called to mind by the conjectures in Sec-
tion 5, namely they have parametrized the components of the Bernstein variety,
and indeed in effect the entire smooth dual, by representation theoretic data at-
tached to compact open subgroups. Very interesting connections seem to exist
between their impressive achievements and our conjectures.

The Bushnell-Kutzko theory is organized around an elegant notion of Ω-type8

which we will present in a moment. But most relevant to the present discussion is
the following detailed and complete account of the structure of the Hecke algebra
H(G), up to Morita equivalence.

Let Ω be the Bernstein component of a supercuspidal pair (M, ρ) for GL(N).
Since M is a block-diagonal subgroup we can we can think of Ω as represented by a
vector (τ1, . . . , τs) of irreducible supercuspidal representations of the block-diagonal
component groups, the entries of this vector being only determined up to tensoring
with unramified characters and up to permutation. If the vector is equivalent to
(σ1, . . . ,σ1, . . . ,σr , . . . ,σr) where σj is repeated Nj times, 1 ≤ j ≤ r, and where
σ1, . . . ,σr are pairwise distinct, then we say that Ω has exponents {N1, . . . , Nr}.

7.6. Examples. The exponent list for the Borel component is {N}. For the ‘tame
character’ component considered in Paragraph 6.3 it is {N − 1, 1}; and for a com-
ponent associated to a supercuspidal representation of G it is {1}.

The following beautiful result is due to Bushnell and Kutzko (see [BK1], [BK3]
and [BK4]).

7.7. Theorem. Let N1, . . . , Nr be the exponents of a component Ω of the Bernstein
variety for GL(N). There is a Morita equivalence

H(G)Ω ∼ H(N1, q1)⊗ · · ·⊗H(Nr, qr)

8Bushnell and Kutzko use a different notation for the components of the Bernstein variety,
and so speak of s-types, not Ω-types.
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where q1, . . . , qr are natural number invariants attached to Ω.

Remark. The natural numbers q1, . . . , qr are the cardinalities of the residue fields
of certain extension fields E1/F, . . . , Er/F .

If M < G is a Levi subgroup then denote by W (M) the quotient by M of the
normalizer of M in G. If (M, ρ) is a supercuspidal pair and if Ω is the associated
Bernstein component then denote by W (Ω) the subgroup of W (M) which fixes ρ up
to equivalence of representations and unramified twists ρ .→ ψρ. If Ω has exponents
{N1, . . . , Nr} then W (Ω) is a product of symmetric groups,

W (Ω) = SN1 × . . .× SNr ,

and we can form the semidirect product Zd(Ω) ! W (Ω), where d(Ω) = N1 + · · · +
Nr. Combining and slightly generalizing Theorems 7.2 and 7.4 we obtain from
Theorem 7.7 the following result:

7.8. Theorem. For every Bernstein component Ω of GL(N) there is an isomor-
phism

HPev/odd(H(G)Ω) ∼= Hev/odd(T̂d(Ω)/W (Ω)).

In other words, thanks to the structure theorem of Bushnell and Kutzko it is
possible to completely compute the periodic cyclic homology of the Hecke algebra.

7.9. Examples. Here is the cohomology of the space T̂d(Ω)/W (Ω) for the com-
ponents Ω considered in Section 6, namely the Borel component, the component
associated to a tame character and the component associated to a supercuspidal
representation:

T̂d(Ω)/W (Ω) = T̂3/S3 H0 = C3, H1 = C4, H2 = C

T̂d(Ω)/W (Ω) = T̂2 × T1/S2 × S1 H0 = C2, H1 = C4, H2 = C2

T̂d(Ω)/W (Ω) = T̂1/S1 H0 = C, H1 = C.

The unlisted groups are zero. Note that the results support the calculations and
conjectures in Sections 5 and 6.

We have presented the basic result 7.7 outside of its natural context: the theory
of types. We conclude our discussion of the Bushnell-Kutzko theory by noting
how the theory of types suggests a precise description of the complexes C∗(Ω; X)G

considered in the last section.

7.10. Definition. An Ω-type is a pair (J, ρ), comprised of a compact open sub-
group J and an irreducible representation ρ of J , with the following property: an
irreducible, smooth representation of G belongs to the Ω component of the smooth
dual of G if and only if it contains the representation ρ with nonzero multiplicity
when it is restricted to J .
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7.11. Examples. The trivial representation of the Iwahori subgroup is a type
for the Borel component of the Bernstein variety of any reductive group. The
representations νk of the Iwahori subgroup that we studied in Paragraph 6.3 are
all types for the component associated to tame character, as in that paragraph.

The following fact is proved in [BK3]:

7.12. Lemma. Let (J, ρ) be an Ω-type. Then the character of ρ, extended by zero
to be a function on G, belongs to the Bernstein component H(G)Ω of the Hecke
algebra.

We come now to yet another conjecture, which should be viewed as a development
of our Conjecture 6.2 about the Borel component of the Bernstein variety of a
reductive group. Here we specialize G to GL(N) but make an assertion about
every component of the Bernstein variety.

7.13. Conjecture. Let G = GL(N) and let Ω be any component of the Bern-
stein variety Ω(G). Form a subcomplex of the local complex for Ω (see Section 6)
as follows: the character of an irreducible representation π of Gσ belongs to the
subcomplex if and only if there is an Ω-type (J, ρ) such that J ⊂ Gσ and π is a
component of IndGσ

J ρ. Then this subcomplex is the entire local complex for Ω.

In short, the conjecture asserts that the local complex associated to a Bernstein
component Ω is ‘generated’ by the Ω types. The conjecture is clearly related to the
issue of uniqueness of Ω-types.

7.14. Supercuspidal Representations. In this paragraph we shall quickly sum-
marize Bernstein’s Paley-Wiener Theorem [Be], as it applies to the Bernstein com-
ponents Ω ⊂ Ω(G) associated to supercuspidal representations of G = GL(N).

Suppose that ρ is an irreducible, supercuspidal representation of G. All the
twists ψρ (where ψ ∈ Ψ(G) is an unramified character, as in Section 4) may be
realized on the same space, say V . Associated to the representation ψρ there is a
representation of the Hecke algebra H(G) as endomorphisms of V . So varying ψ
over Ψ(G) we obtain a homomorphism of algebras

ρ:H(G) −→ F(Ψ(G), End(V )),

where F(Ψ(G), End(V )) denotes functions from Ψ(G) into End(V ). This map is
injective on H(G)Ω (and it vanishes on the other Bernstein components of H(G)).
The Paley-Wiener Theorem characterizes its image.

The map ψ .→ ψρ identifies Ω with a quotient of Ψ(G) by a finite subgroup G ⊂
Ψ(G), comprised of those characters for which ψρ is equivalent to ρ. If G = GL(N)
then G is cyclic and the equivalences ψρ ∼ ρ can be realized by an action of G
on the trivial bundle Ψ(G) × V (for general groups G there is a similar projective
action). It is clear that the homomorphism under consideration in fact maps H(G)
into F(Ψ(G), End(V ))G .

7.15. Definition. If K is a compact open subgroup of G then denote by H(G//K)
the subalgebra of H(G) comprised of K-bi-invariant, compactly supported functions
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on G. If Ω is any Bernstein component of Ω(G) then we write

H(G//K)Ω = H(G//K) ∩H(G)Ω
and note that

H(G)Ω = ∪KH(G//K)Ω,

the union being over the directed system of compact open subgroups of G.

7.16. Theorem. Let Ω be the Bernstein component determined by a supercuspidal
representation of G = GL(N). If K is any compact open subgroup of G then
the image of the homomorphism ρ:H(G//K) → F(Ψ(G), End(V ))G is the algebra
O(Ψ(G), End(VK))G of G-covariant regular functions from the affine variety Ψ(G)
into the endomorphisms of the finite-dimensional vector space VK of K-fixed vectors
in V .

Remark. Essentially the same theorem holds for any reductive group and indeed
for any Bernstein component which is generic, in the sense that W (Ω) is trivial.
But the fact that in general G only acts projectively is a complicating factor in
what follows.

Each algebra O(Ψ(G), End(VK))G is Morita equivalent to the algebra O(Ω) of
regular functions on Ω = Ψ(G)/G (this uses the fact that the a priori projective
action of G may be altered to a linear action). Taking a direct limit over compact
open subgroups, as in Definition 7.15, we obtain9 from the Morita invariance of
cyclic theory an isomorphism

HC∗(H(G)Ω) ∼= HC∗(O(Ω)).

For GL(N) the component Ω of a supercuspidal representation identifies with C×,
and so O(Ω) is simply the algebra of complex Laurent polynomials. Its cyclic
homology may be readily computed in a number of ways (among them of course an
appeal to Theorem 3.1). We obtain the following simple formula for the Bernstein
component of chamber homology associated to a supercuspidal representation of
G = GL(N):

G = GL(N) ⇒ Hp(G; X)Ω =
{ C if p ≤ 1,

0 if p ≥ 2.

Supercuspidal representations of the group SL(N) may be treated in a similar way;
in fact this is much easier, since here Ψ(G) is a one-point space. We conclude that
HC∗(H(G)Ω) ∼= HC∗(C), from which we obtain

G = SL(N) ⇒ Hp(G; X)Ω =
{ C if p = 0,

0 if p ≥ 1.

Remark. In fact we could have obtained the same conclusions from the Bushnell-
Kutzko theory (note that the Iwahori Hecke algebra H(1, q) identifies with the
algebra of complex Laurent polynomials), but the present account seems conceptu-
ally very appealing. Furthermore modulo the projective action issue raised in the
remark following Theorem 7.16 the discussion in this section may be applied to any
G.

9See also the remark following Conjecture 8.9 below.
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8. The Schwartz Algebra

Let A = C[z, z−1] be the algebra of complex Laurent polynomials, or in other
words the algebra of regular functions on the affine variety C×. We noted in Sec-
tion 3 that the cyclic homology of A may be computed from the de Rham complex
of algebraic differential forms on C×. In addition, by Theorem 3.4 the cyclic ho-
mology of the Fréchet algebra B = C∞(S1) may be computed from the de Rham
complex of smooth differential forms on S1. But the inclusion of S1 into C× as
the real part of the variety C× is a homotopy equivalence; so it follows10 from the
forgoing computations of periodic cyclic homology that the inclusion A ⊂ B induces
an isomorphism

HP∗(A)
∼=−→ HP∗(B).

The purpose of this section is to transport this observation in a rather natural way
to the context of reductive p-adic groups and their Hecke algebras.

We are going to think of the smooth dual Irr(G) as some sort of algebraic variety,
and the Hecke algebra H(G) as some sort of algebra of regular functions on Irr(G)
(our remarks about the Bernstein variety in Section 4 and the Paley-Weiner Theo-
rem in Section 7 should help support this point of view, which has been promoted
by many people). There is an natural candidate for the ‘real part’ of the ‘variety’
Irr(G), namely the tempered dual Irrt(G). In addition there is a natural candidate
for the algebra of smooth functions on this ‘real part,’ namely the Schwartz alge-
bra S(G) of Harish Chandra. This is the algebra of uniformly locally constant11
complex functions f on G which satisfy the decay condition

νn(f) = sup
g∈G

|f(g)|Ξ(g)−1(1 + σ(g))n < ∞,

for every n ∈ N. Here σ is what one might call a proper length function on G,
meaning that σ(g1g2) ≤ σ(g1)+σ(g2) and in addition σ: G → [0,∞) is a continuous,
proper function. Thus apart from the presence of the additional Ξ-term the decay
condition is reminiscent of the usual rapid decay condition for a function on Rn.12
As for the special function Ξ, it plays a central role in Harish Chandra’s theory,
but has no abelian counterpart. We refer the reader to [HC,Si] for the definition of
Ξ, which will not be important here.

8.1. Definition. If K is a compact open subgroup of G and then we shall denote
by S(G//K) the subspace of functions in S(G) which are constant on K-double
cosets.

The space S(G//K) is nuclear and Fréchet in the topology associated to the norms
νn. The convolution product extends to a continuous multiplication on S(G//K),
which is thereby given the structure of a nuclear Fréchet algebra.

10The paper [Ha] gives a very complete treatment of the issue here.
11A function f on G is uniformly locally constant if there is an open subgroup K of G such

that f(k1gk2) = f(g), for every g ∈ G and all k1, k2 ∈ K.
12Recall that a smooth function on Rn lies in the Schwartz class if it and all its derivatives are

of rapid decay. In the context of reductive p-adic groups the condition on derivatives is replaced
by the condition of uniform local constancy.
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The topological vector space and algebra structure of the Schwartz space S(G)
itself is more complicated, but of course

S(G) = ∪KS(G//K),

and it therefore seems reasonable to approach the Schwartz space through the di-
rected system of unital nuclear Fréchet subalgebras S(G//K) (see [BP] for a further
discussion of this point). Thus we are going to define

HP∗(S(G)) = lim−→
K

HP∗(S(G//K)),

where the right-hand-side is periodic cyclic homology for Fréchet algebras. We are
going to address two issues: the computation of HP∗(S(G)); and the comparison
of HP∗(S(G)) with HP∗(H(G)). For both we will mostly specialize to the group
GL(N).

Our computation of HP∗(S(G)) depends on a complete structural analysis of the
algebra S(G), and this in turn depends on a reasonably thorough understanding of
the tempered dual of G. So we shall begin by giving a very telegraphic account of
the tempered dual.

8.2. Definition. Let M be a standard Levi subgroup of G, as in Section 4. We
denote by E2(M) denote the set of all representations σ in the discrete series of M ,
up to unitary equivalence.

The space E2(M) is a disjoint union of compact tori. Each representation in
E2(M) extends to the parabolic subgroup P associated to M , and after unitary
induction we obtain a tempered representation of the group G. The Weyl group
W (M) acts on M and hence on E2(M), and two representations of G obtained by
induction from discrete series representations of M are unitarily equivalent if and
only if they lie in the same orbit under the action of W (M) on E2(M).

In the special case of GL(N) all the representations obtained by induction from
discrete series representations on M are irreducible, and we obtain in this way the
full tempered dual of G. In other words if Irrt(G) denotes the tempered dual of
G = GL(N) then

Irrt(G) ∼= ∪ME2(M)/W (M),

where the disjoint union is over the Levi subgroups of G, up to conjugation in G.
The analysis of the Schwartz subalgebras S(G//K) follows a similar pattern.

By associating to each point σ of E2(M) the Hilbert space Hσ of the induced
representation we obtain a Hilbert space bundle H(M) over E2(M) on each fiber
of which there is a tempered representation of G. In fact all the representation
spaces over a single component of E2(M) may in a natural way be chosen the
same, so that the bundle we have constructed is componentwise trivial, as is the
finite-dimensional bundle H(M)K comprised of the K-fixed vectors in each fiber of
H(M). Only finitely many components in H(M) actually contain K-fixed vectors,
so H(M)K is in effect a smooth vector bundle over a finite union of components of
E2(M).
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Let us continue to suppose that G = GL(N). The action of W (M) on E2(M)
lifts to a projective unitary action on the bundle H(M) since if w ∈ W (M) then
the irreducible representations Hσ and Hwσ are unitarily equivalent, via a unitary
which is unique up to a scalar (by Schur’s Lemma). In fact these intertwining
operators can be chosen so as to produce a smooth unitary action of W (M) on
H(M) (not merely a projective unitary action). The action restricts to H(M)K

and a very attractive theorem of Mischenko [Mi] asserts that the representation of
G on H(M) induces an isomorphism

S(G//K) ∼=
⊕

M

[C∞(End(H(M)K))]W (M).

Here C∞(End(H(M)K)) denotes the smooth sections of the endomorphism bundle
of H(M)K and of course [C∞(End(H(M)K))]W (M) denotes the W (M)-invariant
subalgebra of C∞(End(H(M//K))). The (finite) direct sum is over conjugacy
classes of Levi subgroups, and as we already mentioned each bundle H(M)K is
defined over a compact smooth manifold.

8.3. Lemma. (See [BP], Lemma 5.) Denote by E2(M)K ⊂ E2(M) the com-
pact open subset of those σ for which the representation Hσ of G has nonzero
K-fixed vectors. The Fréchet algebra [C∞(End(H(M)K)]W (M) is Morita equiva-
lent to the commutative Fréchet algebra [C∞(E2(M)K)]W (M) via the equivalence
bimodule comprised of the invariant smooth sections of the bundle H(M)K . !

Thus thanks to Mischenko’s result there is a Morita equivalence

S(G//K) ∼
Morita

⊕

M

[C∞(E2(M)K)]W (M).

Having reduced S(G//K) by a Morita equivalence to a commutative nuclear Fréchet
algebra it is now a simple matter to apply the available tools from cyclic theory
[Wa,Co1] to deduce the following result:

8.4. Theorem. HPev/odd(S(G//K)) ∼= Hev/odd(E2(M)K/W (M)).

On the right-hand side here is the ordinary cohomology (with complex coef-
ficients) of the compact space E2(M)K/W (M). Taking the direct limit over all
compact open subgroups K we conclude that

HPev/odd(S(G)) ∼= Hev/odd(Irrt(G)),

where on the right-hand side is cohomology with complex coefficients and compact
supports. See Theorem 7 in [BP].

All of the above isomorphisms decompose according to the components of the
Bernstein variety:

8.5. Definition. Let Ω be a Bernstein component. We denote by Irrt(G)Ω the
Ω-component of the tempered dual of G, so that the Bernstein decomposition of
the tempered dual is

Irrt(G) = ∪Ω Irrt(G)Ω.
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8.6. Definition. Let Ω be a Bernstein component. We define

S(G//K)Ω = S(G//K)
⋂

S(G)Ω,

so that S(G)Ω = ∪KS(G//K)Ω and S(G) = ⊕ΩS(G)Ω, the latter being an algebraic
direct sum. We define

HP∗(S(G)Ω) = lim−→
K

HP∗(S(G//K)Ω).

Remark. The directed system {HP∗(S(G//K)Ω)}K⊂G actually stabilizes since for
small enough K all the algebras S(G//K) are Morita equivalent, in a manner com-
patible with the inclusions in the directed system.

8.7. Proposition. If G = GL(N) and if Ω is any component of the Bernstein
variety then

HP∗(S(G)Ω) ∼= H∗(Irrt(G)Ω).

What is the structure of the space Irrt(G)? For G = GL(N) the answer may be
read from the Langlands classification for G [Ku,Ze]. We refer the reader to the
article [Pl2] for details, and here simply state the result:

8.8. Theorem. Let Ω be a component in the Bernstein variety of GL(N). There
is a homeomorphism

Irrt(G)Ω ∼= T̂d(Ω)/W (Ω).

Here T̂d(Ω)/W (Ω) is the very same extended quotient that we considered in the
last section in connection with our analysis of the periodic cyclic homology for the
Bernstein components H(G)Ω of the Hecke algebra. Theorems 7.8 and 8.8 show
that the periodic cyclic homology groups of H(G)Ω and and S(G)Ω are abstractly
isomorphic. It is of course natural to guess a stronger assertion:

8.9. Conjecture. For any reductive p-adic group G and any Bernstein component
Ω ⊂ Ω(G) the inclusion H(G)Ω ⊂ S(G)Ω induces an isomorphism

HP∗(H(G)Ω)
∼=−→ HP∗(S(G)Ω).

Equivalently, the inclusion H(G) ⊂ S(G) induces an isomorphism

HP∗(H(G))
∼=−→ HP∗(S(G)).

Remark. The periodic cyclic homology for S(G)Ω has been defined as a direct limit,
whereas no such limit was involved in the definition of HP∗(H(G)Ω). So before
presenting the conjecture we should really have checked that the natural map

lim−→
K

HP∗(H(G//K)Ω) −→ HP∗(H(G)Ω)
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is an isomorphism. In fact this is so, for the following reason. For each Ω there is a
compact open subgroup KΩ with the property that every smooth G-representation
E for which E = EΩ has KΩ-fixed vectors. If e denotes the characteristic function of
KΩ then there is a Morita equivalence H(G)Ω ∼ eH(G)Ωe induced by the bimodule
eH(G)Ω. It follows that the directed system {HP∗(H(G//K))Ω}K⊂G stabilizes
(once K ⊂ KΩ) to HP∗(H(G)Ω). The same argument applies to the Schwartz
algebra, which justifies the remark following Definition 8.6.

As we shall explain in the next section, Conjecture 8.9 is valid for GL(N).

9. K-Theory and the Baum-Connes Conjecture

The purpose of this section is to place some of the ideas we have developed in
the previous sections into an extremely general context which incorporates not just
reductive p-adic groups but arbitrary locally compact groups. Doing so places some
of the questions we have raised into contact with a diverse collection of problems,
ranging from differential topology and Riemannian geometry to real harmonic anal-
ysis and operator theory, although in this paper we can no more than hint at the
relations with these other areas. The reader is referred to the paper [BCH] and
[Hi], as well as Connes’ extraordinary book [Co2], for more information.

Throughout this section, let G be a second countable, Hausdorff locally compact
group (for instance a p-adic group, a Lie group, or a countable discrete group).13

9.1. Definition. The reduced C∗-algebra of G, denoted C∗
r (G), is the completion

in the operator norm of the convolution algebra L1(G), viewed as an algebra of
operators on the Hilbert space L2(G).

In the p-adic case C∗
r (G) is a completion of both H(G) and S(G). In the discrete

case it is a completion of the complex group algebra C[G].
According the general point of view developed by Alain Connes, and named by

him noncommutative geometry, the C∗-algebra C∗
r (G) should be studied as if the

reduced dual14 Ĝr of G was a locally compact and Hausdorff space, and as if C∗
r (G)

was (Morita equivalent to) the C∗-algebra of continuous complex-valued functions
on Ĝr which vanish at infinity. If G is an abelian group then in fact C∗

r (G) iden-
tifies by a Fourier isomorphism with the C∗-algebra of continuous complex-valued
functions, vanishing at infinity, on the Pontrjagin dual Ĝ = Ĝr. If G is compact
then C∗

r (G) is Morita equivalent (in the sense of C∗-algebras) to the C∗-algebra of
functions vanishing at infinity on the discrete space Ĝr. For more general groups
we cannot take Connes’ point of view too literally: for instance for nonabelian free
groups the standard topology on the reduced unitary dual has no nontrivial open
sets, so that there are no nonconstant continuous functions at all, in the ordinary

13Some points of the theory to be sketched below require an additional, tiny hypothesis on
G. See item (1.5) in [BCH]. Since the hypothesis is satisfied for discrete groups, for totally
disconnected groups, and for Lie groups — the most interesting cases — we shall not dwell on
this point any further here.

14This is the subset of the unitary dual comprised of representations which are ‘weakly con-
tained’ in the regular representation. If G is a reductive group then the reduced dual is the same
thing as the tempered dual.
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sense of the term. Here C∗
r (G) provides a substitute for the ordinary notions of

topological structure and continuous function.
The most interesting and best developed tool with which to analyze the ‘non-

commutative topological structure’ carried by a C∗-algebra is K-theory. We refer
the reader to one of several texts (for instance [Bl]), and of course to Connes’
book [Co2], for a fuller discussion. Here let us just briefly recall that the K-theory
groups of a C∗-algebra are the homotopy groups

Kj(A) = πj−1(GL∞(A)) (j = 1, 2, . . . ),

of the stable general linear group over A, and that the famous Bott Periodicity
Theorem implies that

Kj(A) ∼= Kj−2(A),

so that by periodicity the definition of K-theory may be extended to all j ∈ Z. The
definition of K-theory is so arranged that if A is a commutative C∗-algebra, and
is hence of the form A = C0(X) for some locally compact Hausdorff space X , then
the K-theory groups of A identify with the Atiyah-Hirzebruch K-theory groups of
X :

K∗(A) ∼= K−∗(X).

Thus K-theory fits very nicely with Connes’ point of view which we summarized
above

Is is natural ask, what is K∗(C∗
r (G))? According to Connes’ philosophy, the

groups K∗(C∗
r (G)) should be viewed as the Atiyah-Hirzebruch K-theory of the

reduced unitary dual of G. If G is abelian then this is not just a point of philosophy
but an actual theorem. On the other hand if G is, for example, a nonabelian free
group then since the classical topological structure of the reduced dual is so poor,
the ordinary topological invariants are meaningless. In this case C∗-algebra K-
theory has no apparent counterpart in ordinary topology.

The development of a plausible conjectural formula for K∗(C∗
r (G)) is a long

story, starting in manifold theory and passing through the representation theory of
real semisimple groups and other topics. The final form of the conjecture involves
the following key idea (see [BCH] for a more complete discussion of what follows):

9.2. Definition. A G-space X is proper if X and the quotient space X/G are
metrizable topological spaces and if for each x ∈ X there exists a compact subgroup
J of G and G-map from a G-neighborhood of x to the homogeneous space G/J .
A proper G-space X is universal if whenever Y is a proper G-space there exists a
G-map f : Y → X and any two G-maps from Y to X are G-homotopic.

For every G there exists a universal proper G-space EG, and it is evident from
the definition that this space is unique up to G-homotopy. The task of locating a
universal proper G-space for a given group G is made easier by the following simple
universality criteria on a proper space X :

• The two projections X ×X → X should be G-homotopic.
• For every compact subgroup J ⊂ G there should be a point in X which is

fixed by J
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The universality conditions are guaranteed by many geometric notions of non-
positive curvature. In these cases the G-homotopy in the first item is constructed
using the unique geodesic connecting any two points of X , while the fixed point
in the second item is obtained as the barycenter of any J-orbit in X . Thus for
example the following spaces are universal, assuming that G acts properly and
isometrically: trees; symmetric spaces of noncompact type; Hadamard manifolds;
and affine buildings. Figure 9 gives two attractive examples for the group SL(2, Z)
along with a G-homotopy equivalence between them.

Fig. 9. Both the Poincaré disk and the embedded tree are univer-
sal proper spaces for the group SL(2, Z). The disk retracts onto the
tree using the nearest-point projection (along the dotted lines) in
the Poincaré metric. This is an equivariant homotopy equivalence.

The conjectural formula for K∗(C∗
r (G)) involves the equivariant K-homology

KG
∗ (EG) of the space EG. This is obtained using Kasparov’s KK-theory; in the

case where EG/G is compact (which is most relevant to us) the definition is

KG
∗ (EG) = KK∗

G(C0(EG), C).
There is an assembly map

µ : KG
∗ (EG) → K∗(C∗

r (G))
which combines ideas from surgery theory (from whence it takes its name) and
index theory.
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9.3. The Baum-Connes Conjecture. For every second countable, locally com-
pact Hausdorff topological group the assembly map

µ : KG
∗ (EG) → K∗(C∗

r (G))

is an isomorphism.

For an account of the current state of this conjecture see [Hi] (but note that the
recent work of Lafforgue, discussed below, is not covered there).

How should we interpret the Baum-Connes Conjecture if G is a reductive p-adic
group? The tempered dual of G is very close to Hausdorff in its natural topology, so
we can expect K∗(C∗

r (G)) to model very closely the K-cohomology, with compact
supports, of the tempered dual. Indeed we have already noted that if G = GL(N)
then the tempered dual really is a Hausdorff space; furthermore the description
of the Schwartz algebra that we presented in Section 8 goes over to the reduced
C∗-algebra, the only change being that the algebras C∞(End(H(M)K)) of smooth
sections are replaced with the corresponding C∗-algebras C(End(H(M)K)) of con-
tinuous sections. It follows that C∗

r (G) is Morita equivalent to the commutative
C∗-algebra of continuous functions, vanishing at infinity, on the tempered dual of
G [Pl1]. In this case, therefore, K∗(C∗

r (G)) is precisely K−∗(Irrt(G)).
The K-homology of the affine building for G and the assembly map µ are more

difficult to interpret directly. However there is a very simple relation between K-
homology, the assembly map and the cyclic homology ideas discussed in the previous
section:

9.4. Proposition. [BBH] Let G be a reductive p-adic group and let X be its affine
building. The Baum-Connes assembly map µ fits into a commutative diagram

KG
∗ (X) µ−−−−→ K∗(C∗

r (G))

ch

,
,ch

HP∗(H(G)) −−−−→ HP∗(S(G))

in which the vertical arrows are Chern characters and the bottom arrow is induced
from the inclusion of H(G) into S(G). Upon tensoring with C the left vertical arrow
becomes an isomorphism.

If G = GL(N) then the right vertical arrow also becomes an isomorphism upon
tensoring with C. This can be seen by passing from C∗

r (G)) to a commutative
algbra through a Morita equivalence, and then applying classical results in Atiyah-
Hirzebruch K-theory. The same is probably also true for a general group G, and
in view of this the Baum-Connes Conjecture amounts to essentially the same thing
as Conjecture 8.9.

Some time ago Kasparov and Skandalis [KS] proved that for any reductive p-
adic group G, the assembly map µ : KG

∗ (X) → K∗(C∗
r (G)) is injective. But we

noted in Sections 7 and 8 that if G = GL(N) then when we decompose according
to the Bernstein center the component groups HP∗(H(G)Ω) and HP∗(S(G)Ω) are

41



abstractly isomorphic, as finite-dimensional vector spaces. Since the natural map
between them is injective, it must in fact be an isomorphism. This proves Conjec-
ture 8.9 for GL(N) and (with a little more work) also the Baum-Connes conjecture
for GL(N).

We close with the remarkable recent work of Lafforgue [La1,La2].

9.5. Theorem. Let G be a reductive p-adic group. If X denotes the affine Bruhat-
Tits building of G then the assembly map

µ : KG
∗ (X) → K∗(C∗

r (G))

is an isomorphism of abelian groups.

Lafforgue’s proof is remarkable in that it is organized very directly around geo-
metric ideas. While it is true that some of the fundamental harmonic analysis
associated to the Schwartz algebra (as in [Si]) also plays a crucial role, the detailed
smooth representation theory that we touched upon in Section 7 of this paper is
entirely absent.

To go from Lafforgue’s theorem to a proof of Conjecture 8.9 is probably only
only a short journey. But it is far from clear that the conjectures in Sections 5 and
6 will be illuminated along the way. A proper account of these issues, hopefully at
least partially based on geometrical aspects of the affine building, appears to be a
challenging problem for the future.
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groupes réductifs sur un corps local, Hermann, Paris, 1984, pp. 1–32.

[Bl] B. Blackadar, K-theory for operator algebras, MSRI Publications 5 (Second edition),
Cambridge University Press, New York, 1998.

[Bor] A. Borel, Admissible representations over a local field with vectors fixed under an Iwahori
subgroup, Invent. Math. 35 (1976), 233–259.

[Bou] N. Bourbaki, Espaces topologiques vectoriels, Elements de mathématique, Livre 5, Her-
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