KUIPER'S THEOREM FOR HILBERT MODULES

Dedicated to

Hans Borchers, Nico Hugenholtz, Richard Kadison, and Daniel Kastler,

in Honor of their Sixtieth Birthdays

Joachim Cuntz* and Nigel Higson

Let A be a C*-algebra with a countable approximate identity, let K denote the C*-algebra of compact operators on a separable Hilbert space, and denote by $M(K \otimes A)$ the multiplier algebra of $K \otimes A$. The purpose of this note is to prove that the unitary group of $M(K \otimes A)$ is a contractible topological space. The result is due to Mingo [7] in the case that A is unital, although the proof given here is different and simpler. The first theorem of this type is due to Kuiper [5], who showed that the unitary group of a separable, infinite dimensional Hilbert space is contractible: the relationship between this result and ours is that $M(K \otimes A)$ can be viewed as the algebra of adjoinable operators on the "standard" Hilbert A-module ℓ^2A (see [4]). As with Kuiper's theorem, the result on $M(K \otimes A)$ has implications for the representability of K-theory functors in terms of Fredholm families -- see [1] and [7].

The proof rests on one or two facts concerning projections in $M(K \otimes A)$. Let us call a projection P in a unital C*-algebra proper if both P and 1 - P are equivalent to the identity in the sense of Murray and von Neumann. It is useful to introduce another notion

^{*}Partially supported by NSF.

^{© 1987} American Mathematical Society 0271-4132/87 \$1.00 + \$.25 per page

of equivalence: let us say that two projections P and Q in a unital C*-algebra are strongly equivalent, denoted $P \approx Q$, if there exists a unitary W, connected to the identity, such that WPW* = Q. This is the same as requiring that P and Q be connected by a path of projections.

LEMMA 1. Let P and Q be equivalent projections in a unital C^* -algebra. If $\|PQ\| < 1$ then P and Q are strongly equivalent.

PROOF. Suppose first that PQ = 0. Let V be a partial isometry such that V*V = P and VV* = Q. If R denotes the projection 1 - P - Q then the element W = V + V* + R is a self-adjoint unitary such that WPW* = Q. In the general case, write Q as a matrix

$$\begin{bmatrix} a & b \\ b^* & c \end{bmatrix}$$

with respect to the decomposition of the identity 1 = P + (1 - P). Since Q is a projection, a and c are positive elements with norm less than or equal to one, and the relations

(1)
$$a = a^2 + bb^*$$

$$(2) b = ab + bc$$

(3)
$$c = c^2 + b^*b$$

are satisfied. (These conditions are in fact necessary and sufficient for

$$\begin{bmatrix} a & b \\ b^* & c \end{bmatrix}$$

to be a projection.) The second relation may be written as (1-a)b = bc, and by approximating with polynomials we get that f(1-a)b = bf(c) for any continuous function $f: [0,1] \to \mathbb{C}$. The hypothesis $\|PQ\| < 1$ implies that $\|a\| < 1$, say $\|a\| < 1 - \epsilon$, where $\epsilon > 0$. Let f_t (t ϵ [0,1]), be a norm continuous family of continuous functions on [0,1], with values in [0,1] such that:

(4)
$$f_0(x) = x \text{ for all } x \in [0,1],$$

(5)
$$f_t(x) \le x$$
 for all $t \in [0,1]$ and all near 0, and $f_t(x) \ge x$ for all $t \in [0,1]$ and all x near 1,

(6)
$$f_1(x) = 1$$
 for all $x \in [\epsilon, 1]$.

Now, let:

$$a_t = 1 - f_t(1 - a)$$

$$b_t = b \left(\frac{f_t(c) - f_t(c)^2}{c - c^2} \right)^{1/2}$$

$$c_{\star} = f_{\star}(c)$$

(condition (5) ensures that b_t is well defined). Then

$$\begin{bmatrix}
a_t & b_t \\
b_t^* & c_t
\end{bmatrix}$$

is a projection because the relations (1)-(3) are satisfied. Since $||a|| < 1 - \epsilon$, from (6) we have that $f_1(1 - a) = 1$. In particular, $f_1(1 - a)^2 = f_1(1 - a)$, so that

$$0 = (f_1(1-a) - f_1(1-a)^2)b = b(f_1(c) - f_1(c)^2),$$

and thus b₁ is equal to zero. Therefore

$$Q = \begin{bmatrix} a_0 & b_0 \\ b_0^* & c_0 \end{bmatrix} \approx \begin{bmatrix} a_1 & b_1 \\ b_1^* & c_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & f_1(c) \end{bmatrix},$$

and since

$$P\begin{bmatrix}0&0\\0&f_1(c)\end{bmatrix}=0,$$

we conclude that

$$\mathbf{P} \approx \begin{bmatrix} 0 & 0 \\ 0 & f_1(\mathbf{c}) \end{bmatrix} \approx \mathbf{Q}. \qquad \Box$$

LEMMA 2. (i) If P is a proper projection in $M(K \otimes A) \otimes C(X)$ (where X is a compact space) and $U \in M(K \otimes A) \otimes C(X)$ is a unitary such that PUP = P, then U is connected to the identity by a path of unitaries.

(ii) If $Q \in M(K \otimes A) \otimes C(X)$ is a projection such that Q and 1-Q contain subprojections equivalent to the identity, then Q is proper.

PROOF. (i) This follows from the fact that $K_1(M(K \otimes A) \otimes C(X)) = 0$ (cf. [3], Lemma 3.2). Indeed, U is path connected to the identity in $M_n(M(K \otimes A) \otimes C(X))$ for some n, and since U is of the form

$$\begin{bmatrix} U' & 0 \\ 0 & 1 \end{bmatrix}$$

in $M(K \otimes A) \otimes C(X)$ in the matrix decomposition with respect to P, we may transfer this path to one in $M(K \otimes A) \otimes C(X)$ by conjugating with an appropriate isometry.

(ii) This follows from the fact that $K_0(M(K \otimes A) \otimes C(X)) = 0$ (cf. [3], Lemma 3.2 once more) in a similar manner. \square

For the next two lemmas, we fix an infinite sequence $\{e_n\}_{n=1}^{\infty}$ of pairwise orthogonal, rank one projections in K. It is convenient to assume that $1 - \sum_{n=1}^{\infty} e_n$ is an infinite dimensional projection in $\mathcal{B}(\mathcal{H})$.

LEMMA 3. Let $\{e_n\}_{n\in K}$ be a subsequence of $\{e_n\}_{n=1}^{\infty}$ and let $\{u_n\}_{n=1}^{\infty}$ be an approximate unit for A such that $u_{n+1}u_n = u_n$ for all n. There exists a proper projection $P \in M(K \otimes A)$ such that $P \notin \Sigma_{n\in K}e_n \otimes u_n$, and in fact $(\Sigma_{n\in K}e_n \otimes u_n)P = P$.

We remark that $\Sigma_{n \in K} e_n \otimes u_n$ is easily seen to converge in the strict topology of $M(K \otimes A)$.

PROOF. Let $d_n = (u_{n-1} - u_{n-2})^{1/2}$ (where we set $u_0 = u_{-1} = 0$). Choose partial isometries $v_{mn} \in K$ such that $v_{mn}^* v_{mn} = e_m$ and the $v_{mn} v_{mn}^*$ are pairwise orthogonal projections, each equal to some e_k for which $k \in K$ and $k \ge n$, and let $V_n = \sum_{m=1}^\infty v_{mn}$. The series $\sum_{n=1}^\infty V_n \otimes d_n$ converges in the strict topology (cf. [2], Lemma 2.4) to some element V, which is an isometry because $V^*V = \sum 1 \otimes d_n^2 = 1$. Since $u_k d_n = d_n$ if $k \ge n$, it follows easily that $(\sum_{k \in K} e_k \otimes u_k)V = V$. Thus if $P = VV^*$ then $(\sum_{k \in K} e_k \otimes u_k)P = P$. That P is proper follows from part (ii) of Lemma 2, together with the fact that 1 - P majorizes the proper projection $1 - \sum_{k \in K} e_k \otimes 1$.

If A is unital and we take u_n to be identically equal to 1 then the above lemma is of course trivial.

LEMMA 4. Let A be a C*-algebra with a countable approximate unit

and let $P,Q \in M(K \otimes A) \otimes C(X)$ be proper projections. There exist proper projections P' and Q' such that $P \geqslant P'$, $Q \geqslant Q'$, $\|P'Q'\| < 1$, and $P'Q' \in K \otimes A \otimes C(X)$.

PROOF. Let $E = \sum_{n=1}^{\infty} e_n \otimes 1 \otimes 1$; then since any two proper projections are unitarily equivalent, there are unitaries V and W such that $P = VEV^*$ and $Q = WEW^*$. Without loss of generality we may assume that V = 1 and so P = E. Setting $g_n = e_n \otimes u_n \otimes 1$ and $h_n = Wg_nW^*$ (where u_n is as in the previous lemma) we have that $\lim_{m\to\infty}g_mh_n = 0$ for fixed n, and conjugating with W^* , also $\lim_{n\to\infty}g_mh_n = 0$ for fixed m. Choose subsequences g_{m_i} and h_{n_j} such

that $\|\mathbf{g}_{\mathbf{m_i}}\mathbf{h}_{\mathbf{n_j}}\| < 2^{-i-j}$. By Lemma 3, there are proper projections $\mathbf{P'} = \mathbf{P''} \otimes \mathbf{1} \leqslant \left(\sum \mathbf{e}_{\mathbf{m_i}} \otimes \mathbf{u}_{\mathbf{m_i}} \right) \otimes \mathbf{1} \leqslant \mathbf{P}$

and

$$Q' = W(Q'' \otimes 1)W^* \leq W\left(\left[\Sigma \ e_{n_i} \otimes u_{n_j}\right] \otimes 1\right]W^* \leq Q.$$

Since $P'Q' = P'(\Sigma_i g_{m_i})(\Sigma_j h_{n_j})Q'$, the lemma follows from the facts that $\Sigma_{ij}g_{m_i}h_{n_i} \in K \otimes A \otimes C(X)$ and $\|\Sigma_{ij}g_{m_i}h_{n_i}\| < 1$.

COROLLARY. Let A be a C*-algebra with a countable approximate identity and let P and Q be proper projections in $M(K \otimes A) \otimes C(X)$. There exists a unitary W, connected to the identity, such that WPW* = Q.

PROOF. Choose projections P' and Q' as in the preceeding lemma. By Lemma 1,

$$p \approx 1 - p \approx p' \approx Q' \approx 1 - Q \approx Q.$$

THEOREM. If A has a countable approximate identity then the unitary group of $M(K \otimes A)$ is contractible.

PROOF. Since the unitary group is homotopy equivalent to an open subset of a normed linear space (namely the group of invertible elements, for example), it is homotopy equivalent to a CW-complex (see [6], Lemma 5.2). Thus it suffices to show that any map from a compact space X into the unitary group is homotopic

to the identity, or in other words, that the unitary group of $M(K \otimes A) \otimes C(X)$ is connected. Given any element U of this group, and any proper projection P, by the corollary above, there is a unitary W, connected to the identity, such that WUPU*W* = P. Thus we may assume that

$$U = \begin{bmatrix} U_1 & 0 \\ 0 & U_2 \end{bmatrix}$$

in the matrix decomposition with respect to P. Since P is equivalent to 1-P, we have that

$$\mathbf{U} \sim \begin{bmatrix} \mathbf{U_1} \mathbf{U_2} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix},$$

and so the theorem follows from Lemma 2. \Box

REFERENCES

- [1] M. F. Atiyah, K-Theory, W. A. Benjamin (New York, 1964).
- [2] L. G. Brown, Stable isomorphism of hereditary subalgebras of C*-algebras. Pacific J. Math. 71 (1977), 335-348.
- [3] J. Cuntz, A class of C*-algebras and topological Markov Chains II: reducible chains and the Ext-functor for C*-algebras. *Invent. Math.* 63 (1981), 25-40.
- [4] G. G. Kasparov, Hilbert C*-modules: theorems of Stinespring and Voiculescu. J. Operator Theory 4 (1980), 133-150.
- [5] N. H. Kuiper, The homotopy type of the unitary group of Hilbert space, *Topology* 3 (1965), 19-30.
- [6] A. Lundell and S. Weingram, The topology of CW complexes. Van Nostrand Reinhold (New York, 1969).
- [7] J. A. Mingo, On the contractibility of the unitary group of the Hilbert space over a C*-algebra. Integral Eq. Operator Theory 5 (1982), 888-891.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF PENNSYLVANIA PHILADELPHIA, PENNSYLVANIA 19104

FACULTÉ DES SCIENCES DE LUMINY DÉPARTEMENT MATHÉMATIQUE CASE 901 70, ROUTE LÉON-LACHAMP 13288 MARSEILLE CEDEX 9

DEPARTMENT OF MATHEMATICS DALHOUSIE UNIVERSITY HAILFAX, NOVA SCOTIA B3H 3J5