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We study Toeplitz operators on Bergman spaces using techniques from the analysis of
Dirac-type operators on complete Riemannian manifolds, and prove an index theorem of
Boutet de Monvel from this point of view. QOur approach is similar to that of Baum and
Douglas [2], but we replace boundary value theory for the Dolbeaut operator with much
simpler estimates on complete manifolds.

Let B be a strongly pseudoconvex domain in C*. The Bergman space H*(B)
is the subspace of £%(B) consisting of the Lebesgue square-integrable holomorphic
functions on B.

Let f be a smooth function on B. The Toeplitz operator T is the compression
to H2(B) of the operator of pointwise multiplication by f. If F = [f;;] is a smooth
N x N matrix-valued function (= matrix of smooth functions) then denote by T
the operator matrix with entries Ty, . View it as an operator on a direct sum of N
copies of H?(B).

In this note we are concerned with the following result, the first part of which
is due to Venugopalkrishna [11], and the second to Boutet de Monvel [3].

Theorem. Suppose that the restriction of F to the boundary 8B is an invertible
matriz-valued function. Then the operator Tr is Fredholm and

—(n—1)!

Index(Tr) = m

/ trace((F~1dF)?"1).
B
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(There is a more general result, valid for strongly pseudoconvex domains in
arbitrary complex manifolds; although our methods work just as well for this general
case we shall, for simplicity, consider only B ¢ C".)

We shall equip B with a complete Hermitian metric (an approximation to the
Bergman metric which is technically easy to manipulate), and borrow an estimate
from a paper of Donnelly and Fefferman [5] (see also [7]) to exhibit a gap in the
spectrum of the Dolbeaut operator on B. Thanks to this, a short sequence of reduc-
tions connects the Toeplitz index problem to standard index theory for the Dolbeaut
operator. The index formula itself follows from the Atiyah-Singer theorem.

Our approach to the Toeplitz index theorem owes much to the work of Baum
and Douglas [2] on relative K-homology theory, who provided a general framework
for reducing Toeplitz index theorems to the index theory of Dirac type operators.
But whereas Baum and Douglas proceed by imposing boundary conditions on the
d-operator for the bounded domain B, we take what seems to be a simpler approach
by “pushing the boundary to infinity” with a change of metric. This is the novelty
of the paper: after this is done (in the first three sections of the note) one could
simply appeal to the machinery of relative K-homology to complete the argument.
The final section of our note is simply a direct account of a central calculation (that
“boundary of Dirac is Dirac”) in K-homology theory.

1. A Complete Hermitian Metric

Let B be a bounded domain in C™ with smooth boundary. Let r be a smooth,
real-valued function on C™ such that

B ={peC"|r(p) > 0}

and such that dr is nowhere vanishing on 0B. Recall that B is strongly pseudoconvez
if the following condition (which depends only on B, not the choice of r) is satisfied
at every point p € 8B:

or &?r
4 - z o = E e Qi X 1.1
If ae C" is non-zero and i a; oz, 0 then 2. o, BZ]- a;a; <0 ( )

Replace r by » — Cr? in a neighbourhood of 8B, where C is a sufficiently large
positive constant. Then the following stronger condition holds at every p € 0B:

02
If o € C" is any non-zero vector then ———1:_—-045,- < 0. (1.2)
- (9Zi32j J

By continuity the inequality (1.2) holds in a neighbourhood U of B in B. It is a
simple matter to modify r so that (1.2) holds throughout B; see Proposition 10.4
in [6]. From now on we shall assume that (1.2) holds at every point in B.

Lemma 1. The form

4?1
Z h,’j dz; ® dfj Z azog_ dz; ® dzj (13)
ij *
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defines a Hermitian metric on B.

Proof. Calculating the derivatives we find that

18r 0r 1 8

hij=—2ror 1 om
7 r2020z; 1 oz0z;

(1.4)
Since r is real-valued the first term is positive semidefinite. The second (including
the minus sign) is positive definite by (1.2). O

Lemma 2. (1) The real part of h;; is a complete Riemannian metric on B.
(2) If f is any smooth function on B then with respect to this Riemannian metric
the gradient of f on B wanishes at infinity.

Proof. Let c(t) (0 <t < 1) be a curve in B. Write c(t) = (c1(t),...,ca(t)),
where the c;(t) are complex valued functions. Then

v de; dc;
length (c =/ h;— —2 dt.

Zh dcldcj Zl dr dr dc;dc;

Y dt dt 28z 0z; dt dt

But (1.4) shows that

1d7'
rdt

(we compose r with ¢ to get a function of t). Therefore

ldr

1
> - >
length (¢) > /0 e dt >

[ 2% ] = 10g(rs) - gt
0
where r; = r(c(1)) and rg = r(c(0)). Since |log(r)] — o at B this estimate shows
that bounded sets in B lie within compact subsets {p : |log(r(p))| < C} of B, which
proves completeness.

Let X be a tangent vector field on B. From (1.4) we get

|X| > constant - r~/?|X|gya,

where on the left-hand side we have the norm induced from the metric (1.3), and
on the right we have the ordinary Euclidean norm. So for a cotangent vector field
w on B we have |w| < constant - 7/?|w|gyc. Apply this to w = df to prove part (2)
of the lemma. 0O

2. An Estimate for the Dolbeaut Operator on B

The material in this section is adapted from a paper of H. Donnelly and C.
Fefferman [5]. One could also appeal to a beautiful argument of Gromov [7], but
our approach seems more in keeping with the operator-theoretic perspective of this
note.
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Let TB be the (real) tangent bundle of B, and A* T¢B the complexified exte-
rior algebra bundle. Both receive inner products from the Hermitian metric (1.3).
Denote by AP'? the space of smooth compactly supported forms on B of type (p, q).
Having specified a Hermitian metric on B the space AP has a natural inner prod-
uct. Denote by A%? the Hilbert space completion.

From the Hermitian metric (1.3) we obtain a Hodge operator

x: AP — A"TPTTE
(see [12]). It is a conjugate linear, isometric isomorphism. We recall that
O = —% 0%, (2.1)

where 8* denotes the formal adjoint of 8 with respect to the given inner products
on AP9,
Our analysis of Toeplitz operators relies on the following estimate.

Proposition. [f w € A™? then
3 2t d q
owl® +16* w||* > §I|w||2- (22)

Forn € T¢B and w € A\¢T*B we define interior product naw by the adjoint
relation
(iw,w') = ~(w,n A W)

(note that nuw is conjugate linear in n). Using this we define
cMw=nAw+niw

and also

Mw=nAw-niw.
If n, £ € T*B C T¢B then the operators ¢(n) and &(&) anticommute. In addition,
é(¢) is self-adjoint whereas c(n) is skew-adjoint.

Let s be a real valued C* function on B. Recall that the Hessian of s at a point
p € B is the symmetric bilinear form

H, : TB,xTB, - R
given by the formula
Hy(X,Y) = X(Y(s)) = (VxY)(s).

Here V is the Levi-Cevita affine connection and ¥ denotes an extension of Y to a
vector field defined near p (the formula does not depend on the choice of extension).
Let X;,..., X2, be alocal frame for T B and denote by 7, . . ., 72, the dual frame
for T*B. We define a self-adjoint endomorphism of the exterior algebra bundle of
B by the formula
H, =Y Hy(Xi,X;)e(m)é(n;)

4,7
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(it does not depend on the choice of local frames).

Lemma 1. Let D = d + d* be the de Rham operator. Then
(D + &ds))? = D? + H, + |ds|?,

where |ds|? denotes the pointwise norm of ds, acting as an operator on forms by
pointwise multiplication.

Proof. This follows immediately from the formula

D= Z c(n:) Vx,,

where V is the affine connection on the exterior algebra bundle induced from the
Levi—Cevita connection on B. O

We now specialize to

1
s = 5 log(r),

where r is the defining function for 8B, as in the previous section.
Since s is real-valued we have that |ds|? = 2|3s|?, and we compute:

or or
Z aié;; Zaia—zi

_7--—12(1‘_8_27”_;1. <2\ <9
’az,»azj 7= =

(see the proof of Lemma 1.1). Consequently

2

2
|0log(r)|? = sup {1‘"2 sp2

lds|> < 1. (2.3)

Lemma 2. Let w be a form of type (0,n — q) on B. Then

H,w = —2qw + a form of type(1,n —q—1).

Proof. Recall that a coordinate system is normal if the Hermitian metric on B
has the form

hi; = i + O(]2%))

in that system. Recall also that in a Kahler manifold every point is the origin of a
normal coordinate system. Let z; = z; + v/—1¥; be normal coordinates at p € B.
It is easily checked that if

dz; = dzil .. .dzi"_q (I = {ll <. < in_q})
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then

N\ = Nz —dzr ifi¢ I
cldze) é(dzs) dzr = { a(l,n — g — 1)-form ifie I} at p-

The same holds for ¢(dy;)é(dy;)dz;. Modulo forms of type (1,n — g — 1), we obtain
the formula

a 9 o 8
Hs Zr = — s\ 9 12749 Zr — s\ o 4o Z .
dz; ;H (az,» axi)dzl ;H (ayi Byi) dz; atp

g J a 0 8%s
H (3_%’%) A <8_y,’8—y:> =Y5u0n P

and it follows from the definition of the metric (1.3) that at the origin of any normal
coordinate system we have
82 log(r)
62:1'35]‘

This proves the lemma. O

=45,'j.

Proof of the Proposition. We first prove the related estimate
lowl? + 18* wl® > llwl?, Ve € A% (2.4)
The operator D + é(df) is symmetric, and so
((D+é&ds))w,w) >0

(the angular brackets denote Hilbert space inner products). Applying Lemma 1 we
get
(D*w,w) + (H,w, w) + (|ds]*w, w) > 0.

On a Kéahler manifold such as B we have
(D?w, w) = 2||6w|f? + 2[|0" w|l?,
and so Lemma 2, along with (2.3), gives

2110 wlI? + 216" w|? > 2¢{w, w) = {|ds|? w, w)

; (2 - 1) {w,w), Vw € A%"1, (2:5)

When ¢ = 0 the estimate (2.4) has no content. When ¢ > 0 we have 2¢ — 1 > g,
and so (2.4) follows from (2.5).
To complete the proof, use the Hodge operator * and the identity

10wl + 118" wl|* = |97 w||* + [|0* %wll?,

which is a consequence of (2.1). O
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3. Toeplitz Operators

In this section we shall prove that the Toeplitz operator Tr is Fredholm if the
“symbol” F is invertible on 0B.
Form the twisted Dolbeaut operators

D, =845 @) A~ @ 4™

q even q odd
D=4 @ A~ @ A
q odd q even

and view them as unbounded operators on the Hilbert spaces @geven Ay? and
@®q odda Ay'?. Denote by D the closures of these operators in the sense of unbounded
operator theory [9]. We note that

”2):|:“‘J”2 = “5"‘)“2 + ”5* UJ”2, Vw € @q even/odd A™,

So the proposition in the previous section implies that the kernel of D, is concen-
trated in bidegree (n,0). In other words the kernel of D, is precisely the space of
holomorphic square-integrable forms of type (n,0).
The map
f(z) 22 f(2)dz1 d2s . . .dzn

gives a unitary isomorphism from L?(B) (formed using Lebesgue measure on B)
to AZ’O. The Bergman space H2(B) is mapped isomorphically onto the space of
holomorphic forms in .A:’O. It follows that the Toeplitz operator Ty on Bergman
space is unitarily equivalent to the compression to the kernel of D, of the operator
of multiplication by f on @4 even A,'?. For the rest of the paper we shall use the
notation Ty for this latter Toeplitz operator, and work ezclusively with it.

It follows from the proposition in the previous section that the operator D_ is
bounded below (by 1/v/2). So we can form a “generalized inverse”

E: @ Ap? — @ At
q even q odd

by projecting orthogonally onto the range of D_ and then applying D=1, It is a
bounded Hilbert space operator whose range is the domain of D_.

Lemma 1. Denote by

P @ A - @) A

¢ even g even

the orthogonal projection onto the kernel of Dy. Then
P=I-D_E. (3.1)

Proof. The manifold B is complete in Riemannian metric given by (1.3), so by
a well-known result [4] the operator

(0 D4
v=(s )
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is self-adjoint. Consequently D3 = D_, and the lemma follows from the fact
that the kernel of an operator is the orthogonal complement of the range of its
adjoint. O

Since D_ is bounded below and D, is its adjoint we see that D .D_ is also
bounded below. Hence its spectrum is bounded away from 0. Since the spectra of
D_D. and D, D_ coincide, except for 0, it follows that the operators D and

2 (D-Dy O
D‘( 0 DD

are bounded below on the orthogonal complement of their common kernel. This
observation will be needed in the next section.

Lemma 2. If ¢ is any continuous function on B (or more generally, any vector
bundle endomorphism over B) which vanishes on OB then the operators oP and
¢E are compact.

Proof. By an approximation argument it suffices to prove the lemma when ¢
is supported in a compact set. The basic elliptic estimate

CUID-ull + llul) = Hull,

where the triple bars denote the norm in the Sobolev space W1, implies that both
E and P are continuous when viewed as operators from L? into Wy. But Rellich’s
lemma implies that the natural inclusion of W! into L2, followed by pointwise
multiplication with a compactly supported function, is a compact operator. For
further details, see for example [10]. 0

Proposition. If f is a smooth function on B then the commutator fP — Pf is
a compact operator.

Proof. It suffices to show that Pf(I — P) is compact, for every f. Using the
fact that ED_ together with the formula (3.1) for P we get

Pf(I-P)=If,D_]E- D_E[f,D-]E.

But

[f,D-lo=08f Nw+dfaw. (3.2)
By Lemma 1.2, 8 f vanishes at infinity, and so by Lemma 2 the operator [f,D-1E
is compact. Since D_E is a bounded operator the result follows. 0O

Passing to Toeplitz operators, the above proposition implies (in the notation of
the introduction) that

Tr,Tr, = TrF,,» modulo compact operators,
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and also that
Tr is compact if F vanishes on dB.

It follows that if F; is invertible on B then Tp, is invertible modulo compact
operators — an inverse modulo compacts is TF,, where F, is any smooth matrix
valued function such that F; F; = I on 9B. Hence we recover the first part of the
theorem of the introduction:

Theorem. If F is a smooth matriz valued function on B whose restriction to
OB is invertible then the Toeplitz operator Tr is Fredholm. a

4. The Index Theorem

For the rest of the section, fix a smooth, matrix-valued function
F. -B_ - M N((C)

which is invertible on B. In what follows, we shall argue as if F were a scalar
function rather than a vector valued function. Thus, for instance, what are in
fact operators on a direct sum of N copies of a Hilbert space H we shall treat as
operators on a single copy of H. This considerably streamlines the notation.

As a first step towards calculating the index of T we form the operator

F D_
v=(s, %)

acting on &, Ap"?.

Lemma. The operator Dr is Fredholm, in the sense of unbounded operator
theory.! Furthermore Index(Tr) = Index(Dr).

Proof. Decompose Dr as a sum
Dp=D+F

in the obvious way. Denote by P the projection? onto the kernel of D and denote
by @ the complementary projection so that QD = D = DQ. Of course,

Dr=PDr P+ PDrQ+QDr P+ QDrQ.

The compression PDpP is equal to Tr. The operators PDrQ and QDpP are
compact, by the proposition in the previous section. As for the operator QDrQ@,
we calculate that

(QDrQ)*(QDrQ) = QD*Q + Q(DF + F*D)Q + QF QFQ (4.1)

1A closed, densely defined operator is Fredholm if its range is closed and if its kernel and cokernel
are finite dimensional.

2This projection differs in a minor way from the projection called P in the previous section: it is
defined on all of @, .4}, not just Gq even A} 9.
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and

DF + F*D = ([D:’, - [F*bp-]) .

The norms of [F*,D_] and [D4, F] are bounded by a multiple of the sup-norm of
grad(F) (compare Eq. (3.2)). So if the gradient of F is small then the middle term
in (4.1) is small too. Since the first term in (4.1) is bounded below and the last one is
positive semidefinite, we see that (QDrQ)*(QDrQ) is bounded below if the gradient
of F is sufficiently small. A similar calculation applies to (QDrQ)(QDrQ)*. Hence
QDrQ is invertible if grad(F) is sufficiently small.

Thus in this case, decomposing ®,.4;’? into the direct sum of the ranges of P
and @), we have

Dr = Tr & (invertible operator), modulo compacts,

which proves that Dr is Fredholm, with the same index as Tr.

In the general case, since B is complete, and since the gradient of F' vanishes at
infinity, there exists for any ¢ > 0 a smooth, compactly supported function ¢ on
B such that the function

Fl=(1-¢)F

has gradient everywhere less that ¢. For suitable £ the argument above shows that
Dy is Fredholm with Index(Dps) = Index(Tp). But the operator

Drp =Dpr + F

is a relatively compact perturbation of Dg+.2 So by perturbation theory the operator
Dr is Fredholm, with the same index as D/ (see Theorem 5.26 in [9]). Since
Index(Tr) = Index(Tp-) the lemma is proved. a

Now let
K ={p € B: F is singular at p},

and let U be a neighbourhood of K in B which has compact closure in B. Let V
be a neighbourhood of K with compact closure in U, and with smooth boundary.
Thus

KcvVvccUccaB.

There exists

(i) a compact Riemannian manifold B,
(ii) an elliptic partial differential operator Dy : S, — S_ on B (here Sy denote
Hermitian vector bundles on whose sections D, acts),
(iii) an open subset U of B and an isometry U — U, lifting to the appropriate
vector bundles, which identifies the operators D, on U and 75+ onU.

3This means that if v, is a bounded sequence in the domain of Dp+ with Dpsv,, bounded, then the
sequence F v, has a convergent subsequence. The proof follows from the basic elliptic estimate
and the Rellich Lemma—c.f. the proof of Lemma 3.2.
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The details of the construction (which is easily done by “doubling” a suitable
subdomain of B) do not concern us: any manifold B and operator 15+, etc, will do.
Define vector bundles Ei on B as follows:

(iv) E, is the trivial vector bundle, which we equip with the standard inner
product and affine connection.

(v) E_ is the bundle formed by clutching together trivial bundles over V and
B \ V using the restriction of the function F to V. Thus a smooth section
of E_ is a pair s, s’ of smooth vector valued functions, on closure (V) and
B \ 14 respectively, such that s = F's’ on V. We equip E_ with any metric
and connection which restricts to the standard structure over V, where the
bundle is canonically trivialized.

Define a vector bundle homomorphism

F on V,

Fi b, B, F= o
I onB\V.

According to the definition of E_ this is a well-defined and smooth map.
Lift D to an operator

Dy ®Ey: 5, @ By - 5_ 0 E,.
Lift its adjoint to an operator

D_oE :5_ 0FE -85, 0E._.
Define an operator

Dr: (8, ®E)@o(S_ 9 E_)— (5, @ E_) & (S_ ® E,)
by R R R
1“)F=(A F D @*E—),
Dy ® Ey -F

By standard elliptic theory Dy is a Fredholm operator.

Lemma. Index(Dr) = Index(Dp).

Proof. For ¢t > 0 define operators

tF D_ ~ tF D_®E_
Dir (D+ "tF*> and DtF=<75+®E+ —tE* )
These operators are Fredholm (by the previous lemma and discussion) and have
indices independent of ¢ (by the continuity property of the Fredholm index). Let ¢
be a smooth real-valued function, compactly supported in V, such that ¢ =1 on
K. Using the fact that V and V are isometric, and the fact that the bundles Ex
are canonically trivialized over V, we can define an operator

Dir  —ty
G = (tgo DtF*)'



Int. J. Math. 1996.07:501-513. Downloaded from www.worldscientific.com

by PENNSYLVANIA STATE UNIVERSITY on 04/13/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

512 E. GUENTNER and N. HIGSON

This is a relatively compact perturbation of D;r & ﬁtF*, and so it suffices to show
that for large enough t this operator is invertible. We calculate:

Dj Dir +t2¢*  t(¢Dip - D:F¢)>

4.2
t(Dir ¢ — ¢ Dir)  Dir Dip + 1202 (42)

GZ Gt = (
and proceed to analyze the terms in this matrix. The isometry U = U identifies
Dyr and D¢ over U, so

¢Dir — Dipp = 0 Dip — Dip

=< 0 ch_—D_cp)
¢Dy—Dyyp 0 ’

which is a bounded operator, with norm independent of ¢. This, and a similar
calculation, show that the off-diagonal terms in (4.2) are bounded operators, their
norms being multiples of ¢. As for the diagonal terms in (4.2), we have

D_Dy + 2 (F*F +¢?) F*D_— D_F*

: * 2 2 __
Dip Dur +1 “( Dy F-FD, D+D_+t2(FF*+<p2)>' (43)

The off-diagonal terms in this 2 x 2-matrix are bounded uniformly in ¢, while the
diagonal terms are bounded below by a multiple of 2, since

D_Dy +t3(F*F + ¢?) > t*(F* F + ¢?),

and F* F + ¢? > 0, by our choice of ¢. Consequently, for large ¢, the matrix
(4.3) is bounded below by some multiple of t2. Returning to the matrix in (4.2),
the diagonal terms are bounded below by a multiple of t?, for large t, while the
off-diagonal terms are bounded above by a multiple of ¢t. It follows that for large
enough ¢ the entire matrix in (4.2) is bounded below. A similar calculation applies
to GGy, which proves that G; is invertible for large ¢. a

It remains to calculate the index of Dp. This is a simple application of the
Atiyah-Singer theorem which we shall omit. (Note that in our situation, where B
is a domain in C”, the calculation can easily be reduced to the Bott Periodicity
theorem: the full Atiyah—Singer theorem is not really needed.)

5. Remarks
Relative K-Homology

Our calculations fit very well with the Baum-Douglas approach to relative
K-homology [2]. The arguments in Sec. 3 show that the partial isometric part
in the polar decomposition of D, is a cycle for the relative K-homology group
Ko(B,9B). The Baum-Douglas theory then reduces the calculation of Toeplitz
indices to the Atiyah—Singer theorem, much as do our arguments in Sec. 4.

Generalizations

Our methods adapt to more general Toeplitz index problems, in which for ex-
ample the domain B is replaced by a strongly pseudoconvex domain in a general
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complex manifold. A Hermitian metric analogous to (1.3) can be constructed in a
neighborhood W of dB. Since B\ W is compact, a relative compactness argument
(using the basic elliptic estimate and Rellich’s lemma, once more) shows that 0 is an
isolated point in the essential spectrum of the Dolbeaut operator D. This is enough
for the arguments in Secs. 3 and 4 and we obtain an index formula for Toeplitz
operators on the space of square integrable holomorphic sections of the canonical
line bundle on B (the actual formula involves the Todd genus of B, and so is more
complicated than the one in the introduction).

To obtain an index formula for holomorphic functions one generalizes the entire
discussion by introducing, at the beginning, an auxiliary Hermitian holomorphic
bundle V on a neighbourhood of B. Since V is asymptotically flat in the metric
(1.3), the estimate in Sec. 2 carries over (using say the constant g/4 in place of
q/2) for forms with coefficients in V' which are supported near dB. Once again, 0
is an isolated point in the essential spectrum of the Dolbeaut operator, this time
twisted by V, and the remainder of our argument carries through to produce an
index formula.
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