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Preface

These notes are about the formulation of the Baum-Connes conjecture in operator
algebra theory and the proofs of some cases of it. They are aimed at readers who
have some prior familiarity with

�
-theory for ��� -algebras (up to and including the

Bott Periodicity theorem). I hope the notes will be suitable for a second course in
operator

�
-theory.

The lectures begin by reviewing
�

-theory and the Bott periodicity theorem.
Much of the Baum-Connes theory has to do with broadening the periodicity theo-
rem in one way or another, and for this reason quite some time is spent formulating
and proving the theorem in a way which is suited to later extensions. Following
that, the lectures turn to the machinery of bivariant

�
-theory and the formulation

of the Baum-Connes conjecture. The main objective of the notes is reached in Lec-
ture 4, where the conjecture is proved for groups which act properly and isometrically
on affine Euclidean spaces. The remaining lectures deal with partial results which
are important in applications and with counterxamples to various overly optimistic
strengthenings of the conjecture.

Despite their length the notes are not complete in every detail, and the reader will
have to turn to the references, or his own inner resources, to fill some gaps. In ad-
dition the lectures contain no discussion of applications or connections to geometry,
topology and harmonic analysis, nor do they cover the remarkable work of Vincent
Lafforgue. For the former see [7]; for the latter see [62, 44].

The notes are based on joint work carried out over a period of many years now
with many people: Paul Baum, Alain Connes, Erik Guentner, Gennadi Kasparov,
Vincent Lafforgue, John Roe, Georges Skandalis and Jody Trout. It is a pleasure to
thank them all. I am especially grateful to Erik Guentner for writing the first draft
of these notes and for his valuable assistance throughout their creation. Both authors
were partially supported by NSF grants during the preparation of this paper.

Nigel Higson
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1 K-Theory

In the first three lectures we shall be developing machinery needed to formulate the
Baum-Connes conjecture and prove some cases of it. We shall presume some prior
familiarity with ��� -algebra

�
-theory, but we shall also develop a ‘spectral’ picture

of
�

-theory from scratch. In Lecture 1 we shall prove the Bott periodicity theorem in��� -algebra
�

-theory in a way which will be suited to generalization in subsequent
lectures.

1.1 Review of K-theory

We begin by briefly reviewing the rudiments of ��� -algebra
�

-theory, up to and
including the Bott periodicity theorem. As the reader knows, �	� -algebra

�
-theory

is a development of the topological
�

-theory of Atiyah and Hirzebruch [4]. But the
basic definition is completely algebraic in nature:

Definition 1.1. Let 
 be a ring with a multiplicative unit. The group
���� 
�� is the

abelian group generated by the set of isomorphism classes of finitely generated and
projective (unital, right) 
 -modules, subject to the relations � ������� ������� ������� .
Remark 1.1. Functional analysts usually prefer to formulate the basic definition in
terms of equivalence classes idempotents in the matrix rings  "!  
�� . This is be-
cause in several contexts idempotents arise more naturally than modules. We shall
use both definitions below, bearing in mind that they are related by associating to an
idempotent #%$& �!  
�� the projective module �%�'#(
 ! .

The group
� �  
�� is functorial in 
 since associated to a ring homomorphism
�)+* there is an induction operation on modules, ��,)+��-(.�* .

Most of the elementary algebraic theory of the functor
���� 
�� is a consequence

of a structure theorem involving pull-back diagrams like this one:
 /10 ///32 ��


 � 4 0��
 � 4 2 // * 
��65 87 �:9 7 � �;$<
 � ��
 �>=@?�� 87 � �>� ?A� 87 � �AB .
Theorem 1.1. Assume that in the above diagram at least one of the two homomor-
phisms into * is surjective. If � � and � � are finitely generated and projective mod-
ules over 
 � and 
 � , and if �DC ?E� � � � ) ?A� � � � is an isomorphism of * modules,
then the 
 -module�6�65 8F � 9 F � �G$H� ��I � � = � JF � -�KL�M� F � -'KNB
is finitely generated and projective. Moreover, up to isomorphism, every finitely gen-
erated and projective module over 
 has this form. OP
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This is proved in the first few pages of Milnor’s algebraic
�

-theory book [49].
The theorem describes projective modules over 
 in terms of projective modules
over 
 � , projective modules over 
 � , and invertible maps between projective mod-
ules over * . It leads very naturally to the definition of a group

� �  *	� in terms of
invertible matrices, but at this point the purely algebraic and the �	� -algebraic theo-
ries diverge, as a result of an important homotopy invariance principle.

Definition 1.2. Let 
 be a �Q� -algebra. Denote by 
Q� R 9 KS� the �Q� -algebra of contin-
uous functions from the unit interval � R 9 KT� into 
 .

We shall similarly denote by 
 JU � the ��� -algebra of continuous functions from
a compact space

U
into a �Q� -algebra 
 .

Theorem 1.2. Let 
 be a �Q� -algebra with unit. If � is a finitely generated and pro-
jective module over 
�� R 9 KT� then the induced modules over 
 obtained by evaluation
at RV$W� R 9 KT� and K($X� R 9 KS� are isomorphic to one another. OP

As a result,
�

-theory is a homotopy functor in the sense of the following defini-
tion:

Definition 1.3. A homotopy of Y -homomorphisms between ��� -algebras is a family
of homomorphisms Z\[]C�
^)_* ( `<$a� R 9 KT� ), for which the maps `b,)_Zc[ 87 � are
continuous, for all

7 $d
 . A functor � on the category of ��� -algebras is a homotopy
functor if all the homomorphisms Z [ in any homotopy induce one and the same map�  Z [ �]Ce�  
��>)+�  *�� .

We shall now define the
�

-theory group
� �  
�� .

Definition 1.4. Let 
 be a � � -algebra with unit. Denote by  f!  
�� the � � -algebra
of g I g matrices with entries in 
 and denote by h(i;!  
�� the group of invert-
ible elements in  �!  
�� . View h(ij!  
�� as a subgroup of each h(ij!lknm  
�� via the
embeddings 
o,) p 
oRRrq�sut
Denote by

� �  
�� the direct limit of the component groups v �w h(i !  
��x� :� �  
��>��y{z}|~ ) v �  h(i>!  
��x� t
Remark 1.2. This is a group, thanks to the group structure in h(i !  
�� , and in fact an
abelian group since

���� ���� � is homotopic to
�� �� � � , and hence to

w�n� ���� � .
Returning to our pullback diagram and Theorem 1.1, it is now straightforward

to derive all but the dotted part of the following six-term ‘Mayer-Vietoris’ exact
sequence of

�
-theory groups:���w 
�� // ���w 
 � ��� ���� 
 � � // ���� *��

��� �  *	�
OO � �  
 � ��� � �  
 � �oo � �  
�� too

(1)
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The diagram is completed (along the dotted arrow) as follows. Consider first the
pullback diagram 
 �� � � / 0 /// 2 ��


 � �� � �4 0��
 � �� � � 4 2 // * �� � �
involving algebras of functions on the circle

� �
. The Mayer-Vietoris sequence asso-

ciated to it,���w 
 �� � �x� // ���� 
 � 8� � �x��� ���� 
 � 8� � �x� // ���� * 8� � �x�
� �  * 8� � �x�

OO � �  
 � 8� � �x��� � �  
 � 8� � �x�oo � �  
 8� � �x� 9oo

(2)

maps to the Mayer-Vietoris sequence (1) via the operation � of evaluation at K�$ � � ,
and in fact this map is the projection onto a direct summand since � has a one-sided
inverse consisting of the inclusion of the constant functions into the various algebras
of functions on

� �
. The complementary summands are computed using the following

two results:

Theorem 1.3. Let 
 be a �Q� -algebra. The kernel of the evaluation homomorphism�\C ���� 
 �� � ���M) ���w 
��
is naturally isomorphic to

� �  
�� . OP
This is a simple application of the partial Mayer-Vietoris sequence (think of
 8� � � as assembled by a pullback operation from two copies of 
Q� R 9 KS� ).

Theorem 1.4. Let 
 be a �Q� -algebra. The kernel of the evaluation homomorphism�\C � �  
 �� � ���M) � �  
��
is naturally isomorphic to

� �  
�� .
This is much harder; it is one formulation of the Bott periodicity theorem.

But granting ourselves the result for a moment, we can complete the diagram
(1) by the simple device of viewing its horizontal reflection (with the

� � -groups
on the top) as a direct summand of the diagram (2). The required connecting
map ��C � �  *	��) � �  
�� appears as a direct summand of the connecting map��C � �  * 8� � �x�>) � �  
 8� � �x� .

The full Mayer-Vietoris sequence is a powerful computational tool, especially
for commutative algebras. For example it implies that the functors

U ,) ���� 
 �U �x�
constitute a cohomology theory on compact spaces (as in algebraic topology). A
simple consequence is the formula
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 8� � �x�M�� ���� 
���� ���w 
��
which is a perhaps more familiar formulation of Bott periodicity.

Let us conclude our review of
�

-theory with a quick look at the proof of Theo-
rem 1.4. The launching point is the definition of a map� C ���w 
��j) � �  
 �� � ���
by associating to the class of an idempotent #�$& f!  
�� the element�E� J� �M� � #��  K ~ #�� (3)

in h(i>!  
 8� � ��� . The following argument (due to Atiyah and Bott [6]) then shows
that this Bott homomorphism is an isomorphism onto the kernel of the evaluation
map �cC � �  
 �� � �x��) � �  
�� . The key step is to show

�
is surjective; the proof

in injectivity is a minor elaboration of the surjectivity argument3 and we shall not
comment on it further.

By an approximation argument involving trigonometric polynomials the proof of
surjectivity quickly reduces to showing that a polynomial loop of invertible matrices� J� �\��� � � � � � �'���S�L� ��� � � 9 � � $< u!  
�� 9
which defines a element of the kernel of the evaluation map must lie in the image of�

. By elementary row operations, the loop � 8� � is equivalent to the ‘linear’ loop� J� �M�����  � � � � tStSt � ��¡ � � �~ � K tStSt R RtLt�tLt�tLtLt�tLt�tLtLt�t¢tLt�tLt�tR£R tStSt ~ � K
¤S¥¥¦ ��
 � �f* 9

for suitable matrices 
 and * . Evaluating at
� �§K and bearing in mind that � is in

the kernel of the evaluation map we see that 
¨�"* is path connected to q (in some
suitable h(ij©  
�� ) and so � is equivalent toª J� �M�  
"�f*�� ¡ �  
 � ��*	�M��� � �  q ~ �(� t
The final step of the argument is for our purposes the most interesting, since in in-
volves in a crucial way the spectral theory of elements in ��� -algebras. Since ª 8� � is
invertible for all

� $ � � the spectrum of � contains no element on the line Re
J� �M� ��

in « . If # denotes the idempotent associated to the part of the spectrum of � to the
right of this line (obtained from the Riesz functional calculus) then ª 8� � is homo-
topic to the path � � J� �M��# � �  K ~ #�� 9
the
�

-theory class of which is of course in the image of
�

. This concludes the proof.
In the following sections we shall recast the definition of

�
-theory and the proof

of Bott periodicity in a way which brings spectral theory very much to prominence.
As we shall eventually see, this is an important first step toward our principal goal of
computing

�
-theory for group ��� -algebras.¬

As Shmuel Weinberger puts it, uniqueness is a relative form of existence.
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1.2 Graded C*-Algebras

To proceed further with
�

-theory we shall find it convenient to work with graded��� -algebras, which are defined as follows.

Definition 1.5. Let 
 be a �Q� -algebra. A grading on 
 is a Y -automorphism  of 

satisfying  � �6K . Equivalently, a grading is a decomposition of 
 as a direct sum of
two Y -linear subspaces, 
®�o
 � �f
 � , with the property that 
�¯8
 �Q° 
�¯ k � , where± 93² $�³�´�µ . Elements of 
 � (for which  87 �	� 7 ) are said to be of even grading-
degree while elements of 
 � (for which  J7 �>� ~ 7 ) are of odd grading-degree.

Example 1.1. The trivial grading on 
 is defined by the Y -automorphism X� id, or
equivalently by setting 
 � �'
 and 
 � ��R .

In fact, we shall require only a very small collection of non-trivially graded �	� -
algebras, among which the following two are the most important.

Example 1.2. Let ¶ be a graded Hilbert space; that is, a Hilbert space equipped with
an orthogonal decomposition ¶·��¶ � �'¶ � . The ��� -algebras ¸  ¶d� of compact
operators and ¹  ¶d� of bounded operators on ¶ are graded. To describe the grading,
think of an operator º on ¶ as a µ I µ matrix of operators. We declare the diagonal
matrices to be even and the off-diagonal ones to be odd.

Example 1.3. Let »���� � J¼ � , the �Q� -algebra of continuous, complex-valued func-
tions on

¼
which vanish at infinity, and define a grading on » by the decomposition»¨��� �w8¼ ���o5 even functions B;��5 odd functions B t

The grading operator is the automorphism ½ �¾ �j,)¿½  ~ ¾ � .
Warning: In

�
-theory it is customary to introduce the ��� -algebra � �w8¼ � in con-

nection with the operation of ‘suspension’. But in what follows the algebra » will
play a quite different role.

Definition 1.6. A graded �Q� -algebra 
 is inner-graded if there exists a self-adjoint
unitary � in the multiplier algebra of 
 which implements the grading automorphism on 
 :  J7 �>�'� 7 � 9 for all

7 $H
 .

Examples 1.5 The trivial grading on a �Q� -algebra 
 is inner: take �Q�ÀK . In addi-
tion the gradings on ¸  ¶d� and ¹  ¶d� are inner: take � to be the operator which is��q on Á � and ~ q on Á � . However the grading on » is not inner.

All the fundamental constructions on ��� -algebras have graded counterparts, and
we shall require below some familiarity with the notion of tensor product for graded��� -algebras. As is the case with ungraded ��� -algebras, tensor products of graded��� -algebras are defined as completions of the algebraic graded tensor product. And
as is the case in the ungraded world, there is not usually a unique such completion.
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Let us introduce the symbol � 7 defined by� 7 �aÂ R 9 if
7 $H
 �K 9 if
7 $H
 � t

An element
7 $f
 is homogeneous if

7 $f
 � or
7 $"
 � . Keep in mind that � 7 is

defined only when
7

is a homogeneous element.

Definition 1.7. Let 
 and * be graded �Q� -algebras. Let 
VÃÄ * be the algebraic ten-
sor product of the linear spaces underlying 
 and * . Define a multiplication, involu-
tion and grading on 
�ÃÄ * by means of the following formulas involving elementary
tensors: J7 � ÃÄ � � � J7 � ÃÄ � � �M�  ~ KL��ÅLÆ 0 ÅLÇ 2 7 � 7 � ÃÄ � � � ��9J7 ÃÄ �T� � �  ~ KL� ÅLÇSÅLÆ 7 � ÃÄ � �� J7 ÃÄ �T�M��� 7 ����� 9 

mod µ�� 9
for all homogeneous elements

7 9 7 � 9 7 � $f
 and � 9 � � 9 � � $f* . (The multiplication
and involution are extended by linearity to all of 
 ÃÄ * .)

The construction of 
VÃÄ * satisfies the usual associativity and commutativity
rules but with occasional twists. For example, an isomorphism 
�ÃÄ *�)È*dÃÄ 
 is
defined by 7 ÃÄ �G, ~ )  ~ KL��ÅLÇSÅLÆÉ��ÃÄ 7 t (4)

Definition 1.8. The graded commutator of elements in a graded �	� -algebra is given
by the formula � 7 9 �É�E� 7 � ~  ~ K¢� Å¢ÇTÅ¢Æ � 7 9
on homogeneous elements (this is extended by linearity to all elements).

Lemma 1.1. If � is a graded �Q� -algebra and if ZQCE
Ê)È� and Ë�CE*¿)Ì� are
graded Y -homomorphisms4 whose images graded-commute (meaning that all graded
commutators � Z 87 � 9 Ë  �T�Í� are zero) then there is a unique graded Y -homomorphism
from 
 ÃÄ * into � which maps

7 ÃÄ � to Z 87 �1Ë  �T� . OP
Example 1.4. Let ¶ be a graded Hilbert space and denote by ¶fÃ-�¶ the ordinary
Hilbert space tensor product, but considered as a graded Hilbert space. The con-
struction of the lemma produces a graded Y -homomorphism from the tensor product
algebra ¹  ¶d�LÃÄ ¹  ¶d� into ¹  ¶o-H¶H� which takes the homogeneous elementary ten-
sor
� ÃÄ º to the operator � - ª ,) � � -  ~ K¢�xÅLÎTÅLÏ�º ª tÐ

A Ñ -homomorphism is graded, or grading-preserving, if it maps homogeneous elements to
homogeneous elements of the same grading-degree.
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Definition 1.9. Let 
 and * be graded ��� -algebras and let 
 ÃÄ * be their algebraic
tensor product. The maximal graded tensor product, which we will denote by 
 Ã-�* ,
or occasionally by 
 Ã- � ÇÓÒ * , is the completion of 
 ÃÄ * in the normÔ�Õ 7 ¯ ÃÄ �Ó¯ Ô ��Öx×eØ Ô�Õ ¯ Z 87 � �ÍË  �Ó¯3� Ô 9
where the supremum is taken over graded-commuting pairs of graded Y -homo-
morphisms, mapping 
 and * into a common third graded �	� -algebra � .

Warning: Our use of the undecorated symbol Ã- to denote the maximal tensor
product (as opposed to the minimal one, which we shall define in a moment) runs
counter to ordinary �Q� -algebra usage. In situations where the choice of tensor prod-
uct really is crucial we shall try to write Ã- � ÇÓÒ .
Remark 1.3. It is clear from the definition that the tensor product Ã- is functorial: ifZ®CE
a)Ù� and ËÀC�*Ú)ÜÛ are graded Y -homomorphisms then there is a unique
graded Y -homomorphism Z Ã-�ËÀCÝ
 Ã-�*Þ)Ü� Ã-�Û mapping

7 Ã-�� to Z J7 � Ã-�Ë  �S� , for
all
7 $d
 and ��$d* .

Example 1.5. If one of 
 or * is inner-graded then the ungraded �	� -algebra under-
lying the graded tensor product 
�Ã-�* is isomorphic to the usual tensor product of
the ungraded �Q� -algebras underlying 
 and * . If say 
 is inner-graded then the
isomorphism 
VÃ-�*%)¿
f-f* is defined by7 Ã-��G,~ ) 7 ��Å¢Æn-"� t

We also note that the graded tensor product of two inner-graded �	� -algebras is
itself inner-graded. Indeed� . Ã-ß�là�$Há  
	Ã-�*��j��á  
f-�*	� t

For the most part we shall use the maximal tensor product of graded �	� -algebras,
but occasionally we shall work with the following ‘minimal’ product:

Definition 1.10. Let 
 and * be graded �Q� -algebras and let 
VÃÄ * be their alge-
braic tensor product. The minimal graded tensor product of 
 and * is the com-
pletion of 
	ÃÄ * in the representation obtained by first faithfully representing 
 and* as graded subalgebras of ¹  ¶d� , and then mapping *  ¶d�:ÃÄ ¹  ¶d� to ¹  ¶XÃ-ß¶d� as
above.

The minimal tensor product is also functorial, but from our point of view it has
some serious shortcomings. These will be explained in the next lecture.

Exercise 1.6 Show that the minimal and maximal completions of 
�ÃÄ ¸  ¶d� and»(ÃÄ 
 are the same.

Exercise 1.1. Describe the tensor product ��� -algebra »�Ã-�» (note that although »
itself is a commutative �Q� -algebra, the tensor product »(Ã-�» is not).

Exercise 1.7 Show that ¸  ¶d� Ã-�¸  ¶�â@�>�� ¸  ¶ Ã-�¶�âã� .
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1.3 Amplification

The graded ��� -algebra »��®� � J¼ � will play a special role for us. Using it we shall
enrich, or ‘amplify’, the category of graded � � -algebras and Y -homomorphisms.

To do so we introduce two Y -homomorphisms, as follows:ä C�»¨)+« and åfC�»¨)æ» Ã-�» t
The first is defined by ä  ½����ç½  Rw� . In the world of ungraded ��� -algebras and

�
-

theory ä is not so interesting since it is homotopic to the zero Y -homomorphism. But
as Y -homomorphism of graded �Q� -algebras ä is definitely non-trivial, even at the
level of

�
-theory (which we will come to in the next section). The defining formula

for å , å�CÝ½ JU �M,)¿½ JU Ã-QKj�'K]Ã- U � 9
is explained as follows. Denote by »cè the quotient of » consisting of functions on
the interval � ~ßé 9 é � (the quotient map is the operation of restriction of functions)
and denote by

U èÚ$�»�è the function
¾ ,) ¾

. If ½§$%» then we can apply the
functional calculus to the self-adjoint element

U è Ã-QKj��K Ã- U è�$d»�è Ã-ß»�è to obtain
an element ½ �U è Ã-QKj��K Ã- U èN�;$�»�è Ã-�»�è .

Lemma 1.2. There is a unique graded Y -homomorphism åfC�»")æ»�Ã-�» whose com-
position with the quotient map »QÃ-�»¨)æ» è Ã-�» è is the Y -homomorphismåfCÝ½d,)ê½ �U è Ã-�Kj�'K Ã- U èN� 9
for every é�ë R . OP
Exercise 1.8 Show that the intersection of the kernels of the maps »	Ã-�»f)+» è Ã-�» è
is zero. This proves the uniqueness part of the Lemma.

Remark 1.4. If the self-adjoint homogeneous elements � and � in » are defined by� J¾ �>� F�¡ Ò 2 9 and � �¾ �j� ¾AF�¡ Ò 2 t
then å  � �M� � Ã- � and å  � �>� � Ã- � � � Ã- � t
Since � and � generate the �Q� -algebra » , formulas involving å and ä can often be
verified by checking them on � and � .
Remark 1.5. Another approach to the definition of å is to use the theory of un-
bounded multipliers. See the short appendix to this lecture.

The Y -homomorphisms ä and å provide » with a sort of coalgebra structure: the
diagrams
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ì
��

» Ã-�»�Síî ìjï
��

»
ì

��

ð
}}{{

{{
{{

{{
{ ð

!!C
CC

CC
CC

CC

» »
» Ã-�» ì íî � // » Ã-�» Ã-�» » Ã-�»ñ íî �aaCCCCCCCC �Síî ñ =={{{{{{{{

(5)

commute, as is easily verified by considering the elements � and � $d» .

Definition 1.11. Let 
 be a graded � � -algebra. The amplification of 
 is the graded
tensor product »j
���»�Ã-�
 .

Definition 1.12. The amplified category of graded ��� -algebras is the category whose
objects are the graded �Q� -algebras and for which the morphisms from 
 to * are
the graded Y -homomorphisms from »j
 to * . Composition of morphisms ZQCÝ
�)+*
and ËbCA*ò)ó� in the amplified category is given by the following composition ofY -homomorphisms: »j
 ì íî � // » � 
õôEö}÷wø // »j* ù // � t
Exercise 1.2. Using (5) verify that the composition law is associative and that theY -homomorphisms »j
§)ú
 obtained by taking the tensor product of the augmen-
tation ä CA»§)û« with the identity map on 
 serve as identity morphisms for this
composition law.

Remark 1.6. Most features of the category of graded � � -algebras pass to the am-
plified category. One example is the tensor product operation: given amplified mor-
phisms from Z � CÝ
 � )ü* � and Z � CA
 � )ú* � there is a tensor product morphism
from 
 � Ã-�
 � to * � Ã-�* � (in other words a Y -homomorphism from »  
 � Ã-�
 � � into* � Ã-�* � ) defined by the composition of Y -homomorphisms»  
 � Ã-�
 � ����»�Ã-�
 � Ã-�
 � ì íî �Síî � // » � Ã-�
 � Ã-�
 � �� »j
 � Ã-ß»j
 � ÷ 0 íî ÷ 2 // * � Ã-�* �
(the formula incorporates the transposition isomorphism (4)).

Exercise 1.3. Show that the tensor product is functorial (compatible with composi-
tion) and associative.

1.4 Stabilization

A second means of enriching the notion of Y -homomorphism is the process of sta-
bilization. This is of course very familiar in

�
-theory: stabilization means replacing

a ��� -algebra 
 with 
VÃ-�¸  ¶d� , its tensor product with the �Q� -algebra of compact
operators.
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If 
 is a trivially graded ��� -algebra with unit then each projection ? in 
	-�¸  ¶d�
determines a projective module over 
 (namely ?  
%-6¸  ¶d��� with the obvious
right action of 
 ) and in fact the set of isomorphism classes of finitely generated
 -modules is identified in this way with the set of homotopy classes of projections
in 
"-u¸  ¶d� . For this reason stabilization is a central idea in

�
-theory.

Let us now return to the graded situation. There are Y -homomorphisms«�)+¸  ¶d� and ¸  ¶d��Ã-�¸  ¶d�>)^¸  ¶d�
defined by mapping ýD$W« to ý F , where

F
is the projection onto a one-dimensional,

grading-degree zero subspace of ¶ , and by identifying ¶fÃ-�¶ with ¶ by a grading-
degree zero unitary isomorphism. These play a role similar to the maps ä and å
introduced in the previous section. There is no canonical choice of the projectionF

or the isomorphism ¶uÃ-ß¶ �� ¶ , and for this reason we cannot ‘stabilize’ the
category of ��� -algebras in quite the way we amplified it in the previous section. But
at the level of homotopy the situation is better:

Lemma 1.3. Let ¶ and ¶Hâ be graded Hilbert spaces. Any two grading-preserving
isometries from ¶ into ¶dâ induce graded Y -homomorphisms from ¸  ¶d� to ¸  ¶Hâ@�
which are homotopic through graded Y -homomorphisms. OP

As as result there are canonical, up to homotopy, maps «þ) ¸  ¶d� and¸  ¶d� Ã-�¸  ¶d�") ¸  ¶d� . We could therefore create a stabilized homotopy cate-
gory, in which the morphisms from 
 to * are the homotopy classes of graded Y -
homomorphisms from 
 to *HÃ-�¸  ¶d� . We could even stabilized and amplify simul-
taneously, and create the category in which the morphisms between �V� -algebras 

and * are the homotopy classes of graded Y -homomorphisms from »j
 to *&Ã-�¸  ¶d� .
We won’t exactly do this, but the reader will notice echoes of this construction in the
following sections.

1.5 A Spectral Picture of K-Theory

We are going provide a ‘spectral’ description of
�

-theory which is well adapted
to Fredholm index theory and to an eventual bivariant generalization. Actually our
definition is a back formation from the bivariant theory described in [13, 14, 27] (it
is also closely related to various other approaches to

�
-theory).

For the rest of this section we shall fix a graded Hilbert space ¶ whose even
and odd grading-degree parts are both countably infinite-dimensional. Unless ex-
plicitly noted otherwise we shall be working with graded ��� -algebras and grading-
preserving Y -homomorphisms between them.

Definition 1.13. We shall denote by � 
 9 *�� the set of homotopy classes of grading-
preserving Y -homomorphisms between the graded � � -algebras 
 and * .

With this notation in hand, our description of
�

-theory is quite simple:
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Definition 1.14. If 
 is a graded ��� -algebra then we define�" 
��M�%� » 9 
	Ã-�¸  ¶d�3� t
For the moment

�f 
�� is just a set, although we will soon give it the structure of
an abelian group. But first let us give two examples of classes in

�" 
�� to help justify
the definition.

Example 1.6. Take 
ÿ�ÿ« . Let Û be an unbounded self-adjoint operator on the
graded Hilbert space ¶ of the formÛa� p RõÛ ¡Û k R"s
(in other words Û is a grading-degree one operator) and assume that Û has compact
resolvent. (For example, Û might be a Dirac-type operator on a compact manifold.)
The functional calculus Ë���CA½d,)¿½  Ûb�
defines a graded Y -homomorphism Ë � C]»¨)^¸  ¶d� and hence a class in

�f «c� .
Example 1.7. Suppose that 
 is unital and trivially graded, so that the

�
-theory

group
� �  
�� of Section 1.1 can be described in terms of equivalence classes of

projections in 
VÃ-�¸  ¶d� . If ? � 9J?�� are two such projections, acting on the even and
odd parts of the graded Hilbert space ¶ �'¶ � �X¶ � , then the formulaË 4 CÝ½H,~ ) p ½  R�� ? � RR ½  R�� ? � s
defines a grading preserving Y -homomorphism from » to 
�Ã-�¸  ¶d� .

The second example is related to the first as follows: if Û is a self-adjoint,
grading-degree one, compact resolvent operator on ¶ then the familyË��ACÝ½H,)¿½ ��l¡ � Ûb� 9 � $W� R 9 KT�
is a homotopy from the Y -homomorphism Ë � at

� �çK to the Y -homomorphism Ë 4
at
� ��R , where ? � ? � � ? � is the projection onto the kernel of Û .
Before reading any further the reader may enjoy solving the following problem.

Exercise 1.9 Prove that
�f «\� �� ³ in such a way that to the class of the Y -

homomorphism Ë�� of Example 1.6 is associated the Fredholm index of Û�k .

Let us turn now to the operation of addition on
�f 
�� . This is given by the direct

sum operation which associates to a pair of Y -homomorphisms Ë � and Ë � the Y -
homomorphism Ë � ��Ë � C�»")¿
VÃ-�¸  ¶§�u¶d� t
(One identifies ¶¨��¶ with ¶ by some degree zero unitary isomorphism to complete
the definition; at the level of homotopy any two such identifications are equivalent.)
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The zero element is the class of the zero homomorphism. To prove the existence
of additive inverses it is convenient to make the following preliminary observation
which will be important for other purposes as well. The proof is a simple exercise
with the functional calculus.

Lemma 1.4. Let Û be any graded � � -algebra and let ËbCÝ»Ú) Û be a grading-
preserving Y -homomorphism. Adjoin units to » and Û , extend Ë , and form the uni-
tary element � ù ��Ë p ¾ ~ ±¾ � ± s
in the unitalization of Û . The correspondence Z�� � ù is a bijection between the set
of Y -homomorphisms Ë�C�»�)õÛ and the set of unitary elements

�
in the unitaliza-

tion of Û which are equal to K modulo Û and which are mapped to their adjoints by
the grading automorphism:  	� �>� � � . OP
Definition 1.15. If Û is a graded � � -algebra then by a Cayley transform for Û we
shall mean a unitary in the unitalization of Û which is equal to the identity, moduloÛ , and which is switched to its adjoint by the grading automorphism.

Returning to the question of additive inverses in
�f 
�� , if

�
is the Cayley trans-

form of Ë then it is tempting to say that the additive inverse to Ë should be repre-
sented by the Cayley transform

� � . But this is not quite right; we must also view
� �

as a Cayley transform for 
VÃ-�¸  ¶ opp � , where ¶ opp is the Hilbert space ¶ but with
the grading reversed. The rotation homotopyp�
� Ö  `x� � Öxz��  `x�1q~ Ö�z��  `x�1q 
� Ö  `x� � � s
is then a path of Cayley transforms for 
 Ã-�¸  ¶ò�®¶ opp � connecting ��� �� ��� � to� ���¡ �>� � , which is in turn connected to the identity.

Remark 1.7. In terms of Y -homomorphisms rather than Cayley transforms, the addi-
tive inverse of Ë is represented by the Y -homomorphismË opp �'Ë��;�C]»")¿
 Ã-ß¸  ¶ opp �
obtained by composing Ë with the grading automorphism on » and also reversing
the grading on the Hilbert space ¶ .

Remark 1.8. In the next lecture we shall give an account of additive inverses using
the comultiplication map å we introduced in the previous section.

Proposition 1.10 On the category of trivially graded and unital �	� -algebras the
functor

�f 
�� defined in this section is naturally isomorphic to the
�

-theory functor���� 
�� introduced at the beginning of this lecture.
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Proof. We have already seen that
�" 
�� is the group of path components of the space

of Cayley transforms for 
<-<¸  ¶d� (we can dispense with the graded tensor product
here since 
 is trivially graded). If �	� � �¨�� ¡ � � is the grading operator and if

�
is a

Cayley transform then � � is a self-adjoint unitary whose ��K spectral projection,#6� ��  � � ��KL� 9
is equal to the ��K spectral projection #��ß�  �>��j� � of � , modulo 
�-(¸  ¶d� . Conversely
if # is a projection which is equal to #�� modulo 
"-�¸  ¶d� then the formula� �'�  µl# ~ qw�
defines a Cayley transform for 
'-�¸  ¶d� . We therefore have a new description of
the new

�f 
�� , as the group of path components of the projections which are equal
to #�� , modulo 
�-�¸  ¶d� . We leave it to the reader to determine that the formula� #��ß,) � #�� ~ � # � � is an isomorphism from this new component space to the usual� �  
�� (the argument involves the familiar stability property of

�
-theory).

Exercise 1.11 Denote by � � the �Q� -algebra «ß�	« with grading operator ý � �Vý � ,)ý � �rý � (this is an example of a Clifford algebra — see Section 1.11). Show that if 

is trivially graded and unital then

�f 
�Ã-�� � � �� � �  
�� .
Exercise 1.4. Show that if a graded ��� -algebra * is the closure of the union of a
direct system of graded �Q� -subalgebras * � then the natural mapy{z}|~ ) �f * � � ~ ) �f *��
is an isomorphism. (Hint: Show that every Cayley transform for *&Ã-�¸  ¶H� is a limit
of Cayley transforms for the subalgebras * � Ã-�¸  ¶H� .)
1.6 Long Exact Sequences

Although it is not absolutely necessary we shall invoke some ideas of elementary
homotopy theory to construct the

�
-theory long exact sequences. For this purpose

let us introduce the following space:

Definition 1.16. Let 
 be a graded �Q� -algebra. Denote by !  
�� the space of all
graded Y -homomorphisms from » into 
�Ã-�¸  ¶d� , equipped with the topology of
pointwise convergence (so that Ë � )^Ë iff Ë �  ½��M)^Ë  ½�� in the norm topology, for
every ½r$b» ). Thus: !  
����#"%$lØ  » 9 
VÃ-�¸  ¶d��� t
Remark 1.9. As it happens, the space !  
�� is a spectrum in the sense of homotopy
theory—see for example [1]—but we shall not need the homotopy-theoretic notion
of spectrum in these lectures.
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The space !  
�� has a natural base-point, namely the zero homomorphism from» into 
 Ã-�¸  ¶d� . It also has a more or less natural ‘direct sum’ operation!  
�� I !  
���)&!  
��
which associates to a pair of Y -homomorphisms Ë � and Ë � the Y -homomorphismZ � �dZ � into 
	Ã-�¸  ¶��b¶d� . (One identifies ¶��b¶ with ¶ by some degree zero uni-
tary isomorphism to complete the definition; at the level of homotopy any two such
identifications are equivalent.) It is of course this operation which gives the addition
operation on the groups

�" 
����Úv �] !  
��É� . By a general principle in homotopy
theory the direct sum operation agrees with the group operations on the higher ho-
motopy groups v !  !  
��É� , for g�'�K .

As for the higher groups v !  !  
��É� , they may be identified as follows. There is
an obvious homeomorphism of spaces!  � � 8¼ ! ��-f
�� ��)( ! !  
�� t
Indeed by evaluation at points of

¼ ! we obtain from an element of !  � � J¼ ! ��-�
��
a map from

¼ ! to !  
�� which converges to the zero homomorphism at infinity, or in
other words a pointed map from the one-point compactification

� ! of
¼ ! into !  
�� ,

which is to say an element of ( ! !  
�� . It follows thatvÝ!  !  
�������v �  ( ! !  
��É���� �f � � J¼ ! ��-f
�� t
Definition 1.17. Let 
 be a graded �Q� -algebra. The higher

�
-theory groups of 


are the homotopy groups of the space !  
�� :� !  
��>��v !  !  
��x� 9 g*'�R t
The space !  
�� , and therefore also the groups

� !  
�� , are clearly functorial in
 . They are well adapted to the construction of long exact sequences, as the follow-
ing computation shows:

Lemma 1.5. If 
§)Ü* is a surjective homomorphism of graded �	� -algebras then
the induced map from !  
�� to !  *�� is a fibration.

Recall that a map
U ),+ is a (Serre) fibration if for every map from a cube (of

any finite dimension) into + , and for every lifting to
U

of the restriction of ½ to a
face of the cube, there is an extension to a lifting defined on the whole cube.

Proof. Think of !  
�� as the space of Cayley transforms for 
�Ã-�¸  ¶d� , and thus as
a space of unitary elements. The proof that the map !  
��H)-!  *�� is a fibration
is then only a small modification of the usual proof that the map of unitary groups
corresponding to a surjection of ��� -algebras is a fibration.

The fiber of the map !  
��<).!  *	� (meaning the inverse image of the base-
point) is of course ! 0/ � where the ideal

/
is the kernel of the surjection. So elemen-

tary homotopy theory now provides us with long exact sequences
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�� // � !lk �  *	� // � ! 1/ � // � !  *	� // tSt�t
(ending at

�f *�� ) as well as Mayer-Vietoris sequencestStSt ~ ) � !lk �  *	� ~ ) � !  
�� ~ ) � !  
 � ��� � !  
 � � ~ ) � !  *	� ~ ) t�tSt
associated to pullback squares of the sort we considered in the first part of this lecture.

1.7 Products

A key feature of our spectral picture of
�

-theory is that it is very well adapted
to products. Recall that in the realm of ungraded ��� -algebras there is a product
operation � �  
���- � �  *��M) � �  
"-�*	�
defined for unital �Q� -algebras by the prescription � ? ��-%� 2L���+� ? -#2L� . This is the
first in a sequence of more and more complicated, and more and more powerful,
product operations, which culminates with the famous Kasparov product in bivariant�

-theory.
In our spectral picture the product is defined using the ‘comultiplication’ map å

that we introduced during our discussion of graded ��� -algebras. Using å we obtain
a map of spaces !  
�� I !  *	��)&!  
�Ã-	*��
by associating to a pair

 Ë . 9 ËNà;� the composition» ì~ )æ»(Ã-�» ù43 íî ù45~Ó~ ~ ~e~ ) � 
	Ã-ß¸  ¶d� � Ã- � *dÃ-�¸  ¶d� � �� 
	Ã-�*dÃ-�¸  ¶d�
(in the last step we employ a transposition isomorphism and we also pick an isomor-
phism ¶ Ã-�¶ �� ¶ ). Taking homotopy groups we obtain pairings� ¯  
���- �V�� *��M) � ¯ k �� 
	Ã-(*�� 9
as required.

Example 1.8. Suppose that 
 �ç*Þ�ç« and that Ë � and Ë � are the functional cal-
culus homomorphisms associated to self-adjoint operators Û � and Û � , as in Exam-
ple 1.6. Then the product of Ë � and Ë � is the functional calculus homomorphism
for the self-adjoint operator5 Û � Ã-�q(�"qEÃ-�Û � . This type of formula is familiar from
index theory; in fact it is the standard construction of an operator whose Fredholm
index is the product of the indices of Û � and Û � . It is this example which dictates
our use of the comultiplication å .

The various features of the product are summarized in the following two results.6
To be accurate, the formula defines an essentially self-adjoint operator defined on the alge-
braic tensor product of the domains of 7 � and 7 � .
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Proposition 1.1. The
�

-theory product has the following properties:

(a) It is associative.
(b) It is commutative, in the sense that if

¾ $ �f 
�� and 8æ$ �f *	� , and if9 C 
 Ã-�*%)ê* Ã-�
 is the transposition isomorphism, then 9 � �¾ I 8 �M�:8 I ¾ .
(c) It is functorial, in the sense that if Z�C�
^)_
�â and Ë�C�*ÿ)_*�â are gradedY -homomorphisms then

 Z Ã-�Ë;� � J¾ I 8 �M��Z � J¾ � I Ë �  8 � . OP
Remark 1.10. In item (b), if we take

¾ $ � ¯  
�� and 8b$ �V�� *�� then the appropriate
formula is 9 � J¾ I 8��M�  ~ K¢� ¯ � 8 I ¾ .

Proposition 1.2. Denote by K�$ �f «N� the class of the homomorphism which maps
the element ½&$�» to the element ½  R��x#%$d¸  ¶d� , where # is the orthogonal projec-
tion onto a one-dimensional, grading-degree zero subspace of ¶ . If 
 is any graded��� -algebra and if

¾ $ �f *�� then under the isomorphism «�Ã-V* �� * the class K I ¾
corresponds to

¾
. OP

1.8 Asymptotic Morphisms

We are now going to introduce a concept which can be used as a tool to compute�
-theory for �Q� -algebras. Other tools are available (for example Kasparov’s theory

or the theory of �Q� -algebra extensions) but we shall work almost exclusively with
asymptotic morphisms in these lectures.

Definition 1.18. Let 
 and * be graded ��� -algebras. An asymptotic morphism from
 to * is a family of functions Z\[VCc
 )û* , `�$6� K 9<; � satisfying the continuity
condition that for all

7 $<
`N, ~ )+Z [ J7 �;Ce�{K 9<; �M)+* is bounded and continuous

and the asymptotic conditions that for all
7 9 7 � 9 7 � $H
 and ý&$d«Z [ J7 � 7 � � ~ Z [ 87 � �1Z [ 87 � �Z [ J7 � � 7 � � ~ Z [ J7 � � ~ Z [ J7 � �Z [  ý 7 � ~ ýeZ [ J7 �Z [ J7 � � ~ Z [ 87 � �

= >>>?>>>@ )+R 9 as `M) ; t
If 
 and * are graded we shall require that in addition  Z [ J7 ��� ~ Z [   J7 ���j)+R as `N) ;'9
where  denotes the grading automorphism. We shall denote an asymptotic mor-
phism with a dashed arrow, thus: Z�C�
BAADC�* .

In short, an asymptotic morphism is a one-parameter family of maps from 
 to* which are asymptotically Y -homomorphisms.
We shall postpone for a little while the presentation of nontrivial examples of

asymptotic morphisms (the main ones are given in Sections 1.12 and 2.6). As for
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trivial examples, observe that each Y -homomorphism from 
 to * can be viewed as
a (constant) asymptotic morphism from 
 to * .

It is usually convenient to work with equivalence classes of asymptotic mor-
phisms, as follows:

Definition 1.19. Two asymptotic morphisms Z � , Z � C�
EAAFCd* are (asymptotically)
equivalent if for all

7 $H
 y{z}|[HGJILKK Z �[ 87 � ~ Z �[ J7 � KK ��R t
Up to equivalence, an asymptotic morphism Z�C�
MANADC'* is exactly the same

thing as a Y -homomorphism from 
 into the following asymptotic algebra associated
to * .

Definition 1.20. Let * be a graded ��� -algebra. Denote by z  *	� the �Q� -algebra of
bounded, continuous functions from �{K 9N; � into * , and denote by z �  *�� the ideal
comprised of functions which vanish at infinity. The asymptotic � � -algebra of * is
the quotient �Q� -algebra O  *��>�'z  *���´:z �  *	� t

If Z�Ce
�) O  *	� is a Y -homomorphism then by composing Z with a set-theoretic
section of the quotient mapping from z  *	� to

O  *�� we obtain an asymptotic mor-
phism from 
 to * ; its equivalence class is independent of the choice of section.
Conversely an asymptotic morphism can be viewed as a function from 
 into z  *�� ,
and by composing with the quotient map into

O  *	� we obtain a Y -homomorphism
from 
 to

O  *	� which depends only on the asymptotic equivalence class of the
asymptotic morphism.

Suppose now that we are given an asymptotic morphismZ�Ce
	Ã-�¸  ¶H�PANADCV*dÃ-�¸  ¶d� t
If Ë�C�»¨)+
 Ã-�¸  ¶d� is a graded Y -homomorphism then the composition» ù // 
 Ã-�¸  ¶d� ÷ //___ * Ã-�¸  ¶d� (6)

is an asymptotic morphism from » into * Ã-�¸  ¶d� .
Lemma 1.6. Every asymptotic morphism from » into a graded ��� -algebra Û is
asymptotic to a family of graded Y -homomorphisms from » to Û .

Proof. We saw previously that a Y -homomorphism from » to Û is the same thing as
Cayley transform for Û — a unitary in the unitalization of Û (equal to K modulo Û )
which is switched to its adjoint by the grading automorphism. In the same way, by
making use of the asymptotic algbra

O  Û�� we see that an asymptotic morphism from» to Û is the same thing, up to equivalence, as a norm continuous family of elementsU [ in the unitalization, equal to K modulo Û , which are asymptotically unitary and
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asymptotically switched to their adjoints by the grading automorphism. But such an
‘asymptotic Cayley transform’ family can, for large ` , be altered to produce a family
of actual Cayley transforms: first replace

U [ by+ [ � Kµ �U [ �� �U �[ ���
(this ensures that the grading automorphism switches the element and its adjoint) and
then unitarize by forming � [ �Q+ [  + �[ + [ � ¡ 02
(note that + [ is invertible for large ` ). Since

U [ and
� [ are asymptotic we have shown

that every asymptotic morphism from » into a ��� -algebra is asymptotic to a family
of Y -homomorphisms (corresponding to

� [ ), as required.

Definition 1.21. Two asymptotic morphisms Z � and Z � from 
 to * are homotopic
if there is an asymptotic morphism Z from 
 to *b� R 9 KS� from which Z � and Z � can
be recovered by evaluation at R 9 K�$W� R 9 KT� . Homotopy is an equivalence relation and
we shall use the notation� � 
 9 *�� ���65 homotopy classes of asymptotic morphisms from 
 to *çB t

There is a natural map from � 
 9 *(� into � � 
 9 *(� � since each Y -homomorphism can
be regarded as a constant asymptotic morphism. It follows easily from the previous
lemma that:

Proposition 1.3. If Û is any graded �Q� -algebra then the natural map� » 9 ÛV� // � � » 9 ÛV� �
is an isomorphism. OP

Returning to the composition (6), it gives rise to the following diagram:� » 9 
 Ã-�¸  ¶d�3� composition with ÷ // � � » 9 * Ã-�¸  ¶d�3� �
� » 9 *dÃ-�¸  ¶d�3�RðOO

We arrive at the following conclusion: composition with ZQCA
�Ã-ß¸  ¶d�PAAFC�*dÃ-�¸  ¶d�
induces a homomorphism Z � C �f 
��M) �" *	� .
1.9 Asymptotic Morphisms and Tensor Products

The construction of maps Z � C �f 
��>) �f *	� from asymptotic morphisms has sev-
eral elaborations which are quite important. They rely on the following observation:



156 Nigel Higson and Erik Guentner

Lemma 1.7. Let Û be a �Q� -algebra and let ZQCe
BASAFC�* be an asymptotic morphism
between ��� -algebras. There is an asymptotic morphism Z Ã-�K�C�
 Ã-�Û-ASAFC6* Ã-�Û
such that, on elementary tensors, ZßÃ-�KL� [ C 7 Ã-UT	,)+Z [ 87 ��Ã-UT t
Moreover this formula determines Z Ã-�K uniquely, up to asymptotic equivalence.

Proof. Assume for simplicity that * and Û are unital (the general case, which can be
attacked by adjoining units, is left to the reader). There are graded Y -homomorphisms
from 
 and Û into the asymptotic algebra

O  *<Ã-�Ûb� , determined by the formulas7 ,)ÿZ [ 87 ��Ã-�K and Tb,)ÜK]Ã-�T . They graded commute and so determine a homomor-
phism ZßÃ-�K�Ce
	Ã-�Û ) O  *dÃ-�Ûb� . This in turn determines an asymptotic morphismZ�Ã-�K�Ce
	Ã-�ÛVANADC�*dÃ-�Û , as required. Two asymptotic morphisms which are asymp-
totic on the elementary tensors

7 Ã-UT determine Y -homomorphisms into

O  *<Ã-�Ûb�
which are equal on elementary tensors, and hence equal everywhere. From this it
follows that the two asymptotic morphisms are equivalent.

Remark 1.11. It is clear from the argument that it is crucial here to use the maximal
tensor product.

Here then are the promised elaborations:

(a) An asymptotic morphism ZQCn
WASAFC§* determines an asymptotic morphism
from 
	Ã-�¸  ¶H� to *HÃ-�¸  ¶d� by tensor product, and hence a

�
-theory mapZ � C �f 
��M) �" *�� .

(b) An asymptotic morphism Z�CA
XAADCX*HÃ-�¸  ¶d� determines an asymptotic mor-
phism from 
VÃ-�¸  ¶H� to *dÃ-�¸  ¶d�LÃ-�¸  Ár� by tensor product. After identifying¸  ¶H� Ã-�¸  ¶H� with ¸  ¶H� we can apply the construction of the previous section
to obtain a map Z � C �f 
��M) �" *�� .

(c) An asymptotic morphism Z�C » Ã-�
YAAFCH* determines an asymptotic morphism
from » Ã-�
 Ã-�¸  ¶d� to * Ã-�¸  ¶H� Ã-�¸  ÁD� by tensor product. If Ë�C�»¨)+
 Ã-�¸  ¶d�
represents a class in

�f 
�� then by forming the composition» ì // »�Ã-�» �Síî ù // » Ã-�
 Ã-�¸  ¶d� ÷ íî � //___ * Ã-ß¸  ¶d�
we obtain a class in

�" *	� , and we obtain a
�

-theory map Z � C �" 
��j) �f *�� .
(d) Combining (b) and (c), an asymptotic morphism Z�C » Ã-�
 )Ü* Ã-�¸  ¶H� deter-

mines a
�

-theory map Z � C �" 
��j) �f *�� .
1.10 Bott Periodicity in the Spectral Picture

We are going to formulate and prove the Bott periodicity theorem using the spectral
picture of

�
-theory, products, and a line of argument which is due to Atiyah [5]. In

the course of doing so we shall introduce many of the ideas which will feature in our
later discussion of the Baum-Connes conjecture.
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In this section present an abstract outline of the argument; in the next three sec-
tions we shall fill in the details using the theory of Clifford algebras to construct
suitable

�
-theory classes and asymptotic morphisms.

Definition 1.22. Let us say that a graded � � -algebra * has the rotation property if
the automorphism � � Ã-�� � ,)  ~ K¢� Å¢Æ 0 Å¢Æ 2 � � Ã-�� � which interchanges the two factors
in the tensor product *HÃ-�* is homotopic to a tensor product Y -homomorphism KG-Z Ce*HÃ-�*%)+*dÃ-�* .

Example 1.9. The trivially graded ��� -algebra *ç�o� � 8¼ � ! � has this property (withZ ��K ).6
Theorem 1.12. Let * be a graded �Q� -algebra with the rotation property. Suppose
there exists a class ��$ �" *	� and an asymptotic morphism�C�»(Ã-�*%)+¸  ¶d�
with the property that the induced

�
-theory homomorphism  � C �f *��V) �" «\�

maps � to K . Then for every �Q� -algebra 
 the maps � C �f 
VÃ-�*��M) �" 
�� and
� � C �" 
��j) �f 
	Ã-�*��

induced by  and by multiplication by the
�

-theory class � are inverse to one an-
other.

Proof. From our definitions it is clear that the diagram�f �(��- �" 
 Ã-�*��� î � � ��

[
-theory product // �" � Ã-�
 Ã-�*	�� ����f �(��- �f 
�� [
-theory product

// �f ��Ã-�
��
commutes. Let us express this by saying that the maps  � C �" 
	Ã-�*	�&) �f 
��
are multiplicative. It follows directly from the multiplicative property that  � is left-
inverse to the map

� � C �f 
��>) �f 
VÃ-�*�� : �  � � �¾ ���>�� � �¾ I �T�M� ¾ I  �  �T�M� ¾ I K�� ¾ t
To prove that  � is also left-inverse to

� � we introduce the isomorphisms\ Ce
	Ã-�*%)ê*dÃ-�

and 9 C * Ã-�
 Ã-�*%)+* Ã-�
 Ã-�*
which interchange the first and last factors in the tensor products. Note that]

So does ^`_ba�ced�f �	gehE�i , but Theorem 1.12 does not apply in the odd-dimensional case.
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 Ã-�*�� 9 � $ �f *�� t
Since * has the rotation property, 9 is homotopic to the tensor product Z Ã-�K]Ã-QK , whereZ is as in Definition 1.22. Therefore, setting

� ��� above, we get\ �  8 � I ��� 9 �  � I 8 �M� Z �  �T� I 8 t
Applying  � we deduce that\ �  8 �>�' �  \ �  8�� I �T�M�� �  Z �  �T� I 8��M� Z �  �T� I  �  8 �
(the first and last inequalities follow from the multiplicative property of  � ). Ap-
plying another flip isomorphism we conclude that 8u�a �  8 � I Z �  �T� . This shows
that multiplication by Z �  �T� is left-inverse to  � . Therefore  � , being both left and
right invertible, is invertible. Moreover the left inverse

� � is necessarily a two-sided
inverse.

Remark 1.12. It follows that Z �  �T�<�ê� . This fact can be checked in the example
presented in the next section.

1.11 Clifford Algebras

We begin by venturing a bit further into the realm of graded �	� -algebras. We are
going to introduce the (complex) Clifford algebras, which are a familiar presence in�

-theory and index theory.

Definition 1.23. Let k be a finite-dimensional Euclidean vector space (that is, a real
vector space equipped with a positive-definite inner product). The complex Clifford
algebra of k is the graded complex �Q� -algebra generated by a linear copy of k ,
whose elements are self-adjoint and of grading-degree one, subject to the relations� � � Ô � Ô � ��K for every � $lk .

Remark 1.13. The Clifford algebra can be concretely constructed from the complex-
ified tensor algebra º  k�� be dividing º  k�� the ideal generated by the elements� - � ~ Ô � Ô � ��K .

It follows immediately from the definition that if
F � 9 tStSt 9 F ! is an orthonormal

basis for k then regarded as members of mjy}zon  k�� these elements satisfy the relationsF �� ��K and
F ¯ FS� � FS�SF ¯ �'R if

±qp� ² t
The monomials

F ¯ 0 � �S���e� F ¯or , where K%s ± �lt �S�S� t ± 4 s g span mjy{z�n  k	� as a
complex linear space. In fact these monomials constitute a basis for mjy{z�n  k�� . The
monomial

F ¯ 0 �l�S���l� F ¯ r has grading-degree ? (mod µ ).
Example 1.10. The � � -algebra mjy{z�n J¼ � is isomorphic to «���« , with

F � correspond-
ing to

 K 9 ~ KL� . The grading automorphism transposes the two copies of « .
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Example 1.11. The �Q� -algebra mjy}zon 8¼ � � is isomorphic to  �  «N� in such a way thatF � � p R�KK�R�s and
F � � p R ±~ ± Rls t

The (inner) grading is given by the grading operator ��� ± F � F � � � � �� ¡ � � .
Remark 1.14. More generally, each even Clifford algebra mjy{z�n J¼ � m � is a matrix al-
gebra  �vu  «\� , graded by �f� ± m F � tStSt F � m�� � �"�� ¡ � � ; each odd Clifford algebramjy{z�n J¼ � mTk � � is a direct sum  � u  «N�:�� � u  «\� , graded by the automorphism which
switches the summands.

Definition 1.24. Let k by a finite-dimensional Euclidean vector space. Denote by�  kQ� the graded �Q� -algebra of continuous functions, vanishing at infinity, from k
into mjy{z�n  k�� . (The grading on �  kQ� comes from mjy}zon  kQ� alone—thus for example
an even function is a function which takes values in the even part of mjy}z�n  k�� .)
Example 1.12. Thus � J¼ � � is isomorphic to � �]J¼ ���o� �w8¼ � (and the grading au-
tomorphism switches the summands) while the ��� -algebra � J¼ � � is isomorphic to �  � �]J¼ � �x� , graded by � �f�� ¡ � � .

Suppose now that k and w are finite-dimensional Euclidean vector spaces. Each
of k and w is of course a subspace of k��xw , and there are corresponding inclusions
of mjy}z�n  kQ� and mjy}zon  w6� into mjy}zon  k��yw6� . They determine a Y -isomorphismmjy}z�n  k	� Ã-�mjy{z�n  w6�>�� mjy{z�n  k��yw6�
(this can be checked either by computing with the standard linear bases for the Clif-
ford algebras, or by checking that that the tensor product mjy}zon  k	�:Ã-�mjy{z�n  w6� has
the defining property of the Clifford algebra mjy{z�n  k��zw6� ).
Proposition 1.13 Let k and w be finite-dimensional Euclidean spaces. The map½ � Ã-�½ � ,)ÿ½ , where ½  � � ª �G��½ �  � �x½ �  ª � determines an isomorphism of graded��� -algebras �  k��yw6�M�� �  k�� Ã-��  w6�
Proof. This follows easily by combining the isomorphism mjy}z�n  kQ� Ã-{mjy}zon  w6����mjy{z�n  k Ã-|w6� above with the isomorphism � �] k���-f� �w w6�>�� � �] k��yw6� .
Proposition 1.4. Let k be a finite-dimensional Euclidean vector space. The �	� -
algebra �  kQ� has the rotation property.

Proof. Let }jC�w � )~w � be an isometric isomorphism of finite-dimensional Eu-
clidean vector spaces. There is a corresponding Y -isomorphism } � C|mjy}zon  w � ��)mjy{z�n  w � � and also a Y -isomorphism} � � C��  w � �M)��  w � �
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defined by
 } � � ½��  ª � �M�:} �  ½  } ¡ � ª � �x� . Under the isomorphism�  k�� Ã-��  kQ�>�� �  k��zkQ�

of Proposition 1.13 the flip isomorphism on the tensor product corresponds to theY -automorphism 9 � � of �  k§�)k�� associated to the map 9 which exchanges the
two copies of k in the direct sum k%��k . But 9 is homotopic, through isometric
isomorphisms of k���k , to the map

 � � 9 � � �;,)  � � 9 ~ � � � , and so 9 � � is homotopic
to K Ã- Z �É� , where Z C�k�)Mk is multiplication by ~ K .

Of course, as we noted earlier, the algebra � �  k�� has the rotation property too.
The virtue of dealing with �  kQ� rather than the plainer object � �  kQ� is that with
Clifford algebras to hand we can present in a very concise fashion the following
important element of the group

�f �  k��x� .
Definition 1.25. Denote by �WC�k�),mjy{z�n  k�� the function �  � �>� � which includesk as a real linear subspace of self-adjoint elements in mjy}z�n  kQ� .

This is a continuous function on k into mjy}zon  kQ� , but�  � � � � Ô � Ô � �lK
so � does not vanish at infinity (far from it) and it is therefore not an element of�  kQ� . However if ½<$d» then the function ½  �(� defined by� ,)�½  �  � ��� 9 � $lk 9
where ½ is applied to the element �  � �G$*mjy{z�n  k�� in the sense of the functional cal-
culus, does belong to �  k�� and the assignment

� Ce½H,)¿½  �(� is a Y -homomorphism
from » to �  k�� .
Definition 1.26. The Bott element �¨$ �f �  k���� is the

�
-theory class of the Y -

homomorphism
� C »f)��  kQ� defined by

� Ce½H,)¿½  �(� .
Remark 1.15. The function � is an example of an unbounded multiplier of the �V� -
algebra �  k�� . See the appendix.

Example 1.13. Bearing in mind the isomorphisms of Examples 1.10 and 1.11, we
have � �¾ �>� J¾ 9 ~ ¾ � 9 ¾ $ ¼ �
and � J� �M� p R ��� R s 9 � $<« �� ¼ � t

We can now formulate the Bott periodicity theorem.

Theorem 1.14. For every graded ��� -algebra 
 and every finite-dimensional Eu-
clidean space k the Bott map� C �" 
��M) �f 
 Ã-��  k��x� 9
defined by

� J¾ �>� ¾ I � , is an isomorphism of abelian groups.
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We shall prove the theorem in the next two sections by constructing a suitable
asymptotic morphism  and proving that  �  �S�M�6K .
Remark 1.16. To relate the above theorem to more familiar formulations of Bott pe-
riodicity we note, as we did earlier, that if gu�%µ�� is even then the Clifford algebra� ! is isomorphic to  �<u  � �]J¼ ! ��� , from which it follows that if 
 is trivially graded
then �f 
	Ã-q� J¼ � m �x�>�� �f 
"-f� � J¼ � m �x� t
The ‘graded’ theorem above therefore implies the more familiar isomorphism�f 
"-f� �wJ¼ � m �x�M�� �f 
�� t
1.12 The Dirac Operator

We are going to construct an asymptotic morphism as in the following result. (The
actual proof of the theorem will be carried out in the next section.)

Theorem 1.15. There exists an asymptotic morphism�C�» Ã-��  k���ANADC	¸  ¶d�
for which the induced homomorphism �C �f �  k����>) �f «c� maps the Bott element��$ �f �  kQ��� to K($ �f «N� .
Definition 1.27. Let k be a finite-dimensional Euclidean vector space. Let us pro-
vide the finite-dimensional linear space underlying the algebra mjy{z�n  k�� with the
Hilbert space structure for which the monomials

F ¯ 0 ���S� F ¯ r (associated to an or-
thonormal basis of k ) are orthonormal. The Hilbert space structure so obtained is
independent of the choice of

F � 9 t�tSt 9 F ! . Denote by ¶  k�� the infinite-dimensional
complex Hilbert space of square-integrable mjy}z�n  kQ� -valued functions on k , Thus:¶  k	�M��i �  k 9 mjy{z�n  k��x� t
The Hilbert space ¶  kQ� is a graded Hilbert space, with grading inherited frommjy{z�n  k�� .
Definition 1.28. Let k be a finite-dimensional Euclidean vector space and let

F 9 ½&$k . Define linear operators on the finite-dimensional graded Hilbert space underlyingmjy{z�n  k�� by the formulas F]�¾ �j� F � ¾Ã½ �¾ �j�  ~ K¢� ÅLÒ ¾ ��½ t
Observe that the operator

F CUmjy}zon  kQ��)�mjy{z�n  k�� is self-adjoint while the op-
erator Ã½�C�mjy}zon  kQ�M)�mjy}z�n  kQ� is skew-adjoint.
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Exercise 1.5. Let
F � 9 tSt�t 9 F ! be an orthonormal basis for k . Show that if

± ��t �S�S� t± 4 then the ‘number’ operator � � !Õ ¯ ð �q�F ¯ F ¯
maps the monomial

F ¯ 0 ���S� F ¯ r in mjy{z�n  k�� to
 µ ? ~ g�� F ¯ 0 �S��� F ¯ r .

Definition 1.29. Let k be a finite-dimensional Euclidean vector space. Denote by�  k�� the dense subspace of ¶  kQ� comprised of Schwartz-class mjy{z�n  k�� -valued
functions: �  kQ�M� Schwartz-class mjy}z�n  kQ� -valued functions t
The Dirac operator of k is the unbounded operator Û on ¶  kQ� , with domain �  k�� ,
defined by  Ûb½��  � �;� !Õ � Ã F ¯  ��½� ¾ ¯  � ��� 9
where

F �¢9 tStSt 9 F ! is an orthonormal basis of k and
¾ �l9 tSt�t 9 ¾ ! are the corresponding

coordinates on k .

Since the individual Ã F ¯ are skew-adjoint and since they commute with the partial
derivatives we see that Û is formally self-adjoint on �  k�� .
Lemma 1.8. Let k be a finite-dimensional Euclidean vector space. The Dirac opera-
tor on k is essentially self-adjoint. If ½r$b» , if �H$��  kQ� and if  z� is the operator of
pointwise multiplication by � on the Hilbert space ¶  k	� , then the product ½  Ûb�� ��
is a compact operator on ¶  kQ� .
Proof. The operator Û is a constant coefficient operator acting on a Schwartz space
of vector valued functions on k%�� ¼ ! . It has the form Ûa�L� !¯ ð � � ¯ ÅÅLÒF� , where the
matrices � ¯ are skew adjoint. Under the Fourier transform (a unitary isomorphism)Û corresponds to the multiplication operator �Û+��� ~ K � !¯ ð � � ¯H�S¯ , and from this
we see that �Û , and hence Û , is essentially self-adjoint. Moreover from the formula�Û � ��� � ~ K !Õ ¯ ð � ��¯ � ¯ � � � Ô � Ô � 9
for all � $ ¼ ! , it follows that if say ½ �¾ �;� F ¡ ÇÓÒ 2 then ½  �Ûb� is pointwise multipli-
cation by

F ¡����F� 2 , and therefore the inverse Fourier transform ½  Ûb� is convolution byF ¡ 0� � Ò � 2 (give or take a constant). It follows that �X${�  kQ� is compactly supported
then ½  Û��x � is a Hilbert-Schmidt operator, and is therefore compact. The lemma
follows from this since the set of ½D$H» for which ½  Ûb�� � is compact, for all � , is
an ideal in » , while the function

F ¡ Ò 2 generates » as an ideal.

We are almost ready to define our asymptotic morphism  .



Group C*-Algebras and K-theory 163

Definition 1.30. Let k be a finite-dimensional Euclidean space. If �W$*�  k�� and if`j$X� K 9<; � then denote by �e[>$��  k�� the function �e[  � �>�#�  ` ¡ � � � .
Lemma 1.9. Let k be a finite-dimensional Euclidean space with Dirac operator Û .
For every ½r$�» and �H$��  k�� we havey{z}|[HGJILKK�� ½  ` ¡ � Ûb� 9  �D�	� KK ��R 9
where  b� � $+¹  ¶  kQ�x� is the operator of pointwise multiplication by �Ý[ and½  ` ¡ � Ûb� is defined using the functional calculus of unbounded operators.

Remark 1.17. The commutator � 9 � here is the graded commutator of Definition 1.8.

Proof. By an approximation argument involving the Stone-Weierstrass theorem it
suffices to consider the cases where ½ J¾ ��� �¾ � ± � ¡ � and where � is smooth and
compactly supported. We compute�  ` ¡ � Û � ± q]� ¡ � 9  �D� �H��` ¡ �  ` ¡ � Û � ± q]� ¡ � �  �D� 9 ÛV�  ` ¡ � Û � ± q]� ¡ � 9
which has norm bounded by ` ¡ � Ô �  b� � 9 ÛV� Ô . But the commutator of  z� � with Û is
the operator of pointwise multiplication by (minus) the function� ,)+` ¡ � !Õ ¯ ð � �F ¯ ����� ¾ ¯  ` ¡ � � ��� t
So its norm is ¡  ` ¡ � � , and the proof is complete.

Proposition 1.5. There is, up to equivalence, a unique asymptotic morphismn[�C » Ã-��  kQ�M)+¸  ¶  k	�x�
for which, on elementary tensors, [  ½NÃ-|�Ý�M��½  ` ¡ � Ûb�x �F� t
Proof. For `j$X�{K 9<; � define a linear map c[jC:» ÃÄ �  k��M)^¹  ¶  k��x� by the formula [  ½NÃ-|�Ý�M��½  ` ¡ � Ûb�x �F� t
Lemma 1.9 shows that the maps  [ define a homomorphism from »�ÃÄ �  k�� into
O  ¹  ¶  k��x��� . By the universal property of the tensor product Ã- this extends to
a Y -homomorphism defined on »(Ã-��  k�� . Now, although neither of the operators½  ` ¡ � Ûb� or  y� � are compact it follows from elementary elliptic operator theory
that their product is compact. So our Y -homomorphism actually maps » Ã-��  k�� into
the subalgebra

O  ¸  ¶  k	�x��� ¢ O  ¹  ¶  kQ�x�x� . Therefore we obtain an asymptotic
morphism as required.

Remark 1.18. The presence of �A[ , instead of the plainer � , in the definition of  is
not at this stage very important. The ‘ ` ’ could be removed without any problem. But
later on it will turn out to have been convenient to have used � [ .
Exercise 1.6. Show that if

/
is an ideal in a ��� -algebra 
 then there is a short exact

sequence of asymptotic algebrasR //

O 0/ � //

O  
�� //

O  
�´ / � // R t
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1.13 The Harmonic Oscillator

In this section we shall verify that  �  �T�ß� K , which will complete the proof of the
Bott periodicity theorem. Actually we shall make a more refined computation which
will be required later on.

We begin by taking a second look at the basic construction of Section 1.11.

Definition 1.31. Let k be a finite-dimensional Euclidean vector space. The Clifford
operator is the unbounded operator on ¶  k�� , with domain the Schwartz space �  kQ� ,
which is given by the formula �(½��  � �>� !Õ ¯ ð � ¾ ¯ F ¯  ½  � �x� 9
where

¾ ¯ are the coordinates on k dual to the orthonormal basis
F ¯ of k (the defini-

tion of � is independent of the choice of basis).

The Clifford operator is essentially self-adjoint on the domain �  k�� . So if ½r$b»
we may form the bounded operator ½  �(�;$H¹  ¶  k��x� by the functional calculus.

Lemma 1.10. Let k be a finite-dimensional Euclidean vector space and let
� C]»¨)�  kQ� be the homomorphism of Definition 1.26. If �  kQ� is represented on the Hilbert

space ¶  kQ� by pointwise multiplication operators then the composition» £ // �  kQ� ¤ // ¹  ¶  k��x�
maps ½&$�» to ½  �(�;$d¹  ¶  k���� . OP

We shall compute the compostion  �  �T� by analyzing the following operator:

Definition 1.32. Let k be a finite-dimensional Euclidean vector space. Define an
unbounded operator * on ¶  k	� , with domain �  kQ� , by the formula *	½��  � �>� !Õ � ¾ ¯ F ¯  ½  � ����� !Õ � Ã F ¯  ��½� ¾ ¯  � �x� t
Thus *%���'�fÛ , where � is the Clifford operator and Û is the Dirac operator.

Example 1.14. Suppose k�� ¼ . Then*%� p R ¾ ~ T�´¥T ¾¾ �bT�´¥T ¾ R s 9
if we identify ¶  k�� with i � 8¼ �>��i � 8¼ � in the way suggested by Example 1.10.

Observe that the operator * maps the Schwartz space �  kQ� into itself. So the
operator ÁÚ��* � is defined on �  kQ� .
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Proposition 1.16 Let k be a finite-dimensional euclidean vector space of dimensiong , let *%������Û as above. There exists within �  kQ� an orthonormal basis for ¶  kQ�
consisting of eigenvectors for * � such that

(a) the eigenvalues are nonnegative integers, and each eigenvalue occurs with finite
multiplicity, and

(b) the eigenvalue R occurs precisely once and the corresponding eigenfunction is¦S§ Ø  ~ �� Ô � Ô � �
Proof. Let us consider the case k�� ¼ first. Here,* � ��¨ ¾ � ~ª© 2© Ò 2 ~ K RR ¾ � ~«© 2© Ò 2 �'KS¬ 9
and so it suffices to prove that within the Schwartz subspace of i � 8¼ � there is an
orthonormal basis of eigenfunctions for the operatorÁò� ¾ � ~ T �T ¾ � 9
for which the eigenvalues are positive integers (with finite multiplicities) and for
which the eigenvalue K appears with multiplicity one. This is a well-known com-
putation, and is done as follows. Define

� � ¾ � ©© Ò and i � ¾ ~ ©© Ò , and let½ � J¾ �>� F ¡ 02 Ò 2 . Observe thatÁò� � i ~ q��'i � ��q
and that

� ½ � �ÙR , so that Ár½ � �ó½ � . It follows that Á&iÿ�ÙijÁ¿�çµ�i andÁ&i ! �'i ! Á%�Dµlg�i ! . So if we define ½l!lk � ��i ! ½ � then Ár½:!�k � �  µ:gQ�fKL�x½l!lk � .
The functions ½l!lk � are orthogonal (being eigenfunctions of the symmetric operatorÁ with distinct eigenvalues), nonzero, and they span i � 8¼ � (since, by induction,½:!lk � is a polynomial of degree g times ½ � ). So after i � -normalization we obtain the
required basis.

The general case follows from the (purely algebraic) calculation* � ��� � �fÛ � � � � !Õ ¯ ð � ¾ �¯ � !Õ ¯ ð � ~ � �� ¾ �¯ �  µ ? ~ g�� on ¶ 4  kQ� 9
where

�
is the number operator introduced in Exercise 1.5 and ¶ 4  k�� denotes the

subspace of ¶  kQ� comprised of functions ka)Wmjy{z�n  k�� whose values are combi-
nations of the degree ? monomials

F ¯ 0 ���S� F ¯ r . From this an eigenbasis for * � may
be found by separation of variables.

We shall use the following consequences of this computation:

Corollary 1.1. Let k be a finite-dimensional Euclidean vector space. Let * �%*®
be the Bott-Dirac operator of k , considered as an unbounded operator on ¶  kQ�
with domain �  kQ� . Then
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(a) * is essentially self-adjoint
(b) * has compact resolvent.
(c) The kernel of * is one-dimensional and is generated by the function ¦§ Ø  ~ Ô � Ô � � .
Theorem 1.17. Let k be a finite-dimensional Euclidean vector space. The composi-
tion » ì // »(Ã-�» �Síî £ // »(Ã-��  kQ� � //___ ¸  ¶  k	�x�
is asymptotically equivalent to the asymptotic morphism ¯�C]»QANAeC	¸  ¶d� defined by¯][  ½��>��½  ` ¡ � *��  `°'oKL� t

The idea of the proof is to check the equivalence of the asymptotic morphisms�� � and ¯ on the generators� J¾ �>� F�¡ Ò 2 9 and � �¾ �j� ¾AF�¡ Ò 2 t
of the ��� -algebra » . Since for example¯][  � �M� F ¡ [²± and n[  �  � ���>� F ¡ [ � 2 F ¡ [²³ 2
(the latter thanks to Lemma 1.10) we shall need to know that

F ¡ [²± is asymptotic toF ¡ [ � 2 F ¡ [²³ 2 . For this purpose we invoke Mehler’s formula:

Proposition 1.6 (Mehler’s Formula). Let k be a finite-dimensional Euclidean space
and let � and Û be the Clifford and Dirac operators for k . The operators Û � , � �
and � � �¨Û � are essentially self-adjoint on the Schwartz space �  k�� , and if

� ë R
then F ¡ � ö ³ 2 k�� 2 ø � F ¡ 02 � 0 ³ 2 F ¡ � 2 � 2 F ¡ 02 � 0 ³ 2 9
where

� � �  
S� Öµ´  µ � � ~ K¢��´\Ö�z��¶´  µ � � and
� � ��Ö�z��¶´  µ � ��´lµ . In addition,F ¡ � ö ³ 2 k�� 2 ø � F ¡ 02 � 0 � 2 F ¡ � 2 ³ 2 F ¡ 02 � 0 � 2 9

for the same
� � and

� � . OP
See for example [16]. Note that the second identity follows from the first upon

taking the Fourier transform on i � 8¼ � , which interchanges the operators Û � and � � .
Lemma 1.11. If

U
is any unbounded self-adjoint operator then there are asymptotic

equivalences F ¡ 02e· 0 � 2 � F ¡ 02 [	¸ 2 � 2 9 F ¡ · 2 � 2 � F ¡ [	¸ 2 � 2
and ` ¡ � UrF�¡ 02D· 0 � 2 � ` ¡ � UrF�¡ 02 [	¸ 2 � 2 9 ` ¡ � UDF�¡ · 2 � 2 � ` ¡ � UrF�¡ [	¸ 2 � 2
where 9 � �  
� Ö¹´  µ:` ¡ � � ~ KL�É´\Öxz��¶´  µ:` ¡ � � and 9 � ��Ö�z��¶´  µl` ¡ � ��´lµ .
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Remark 1.19. By ‘asymptotic equivalence’ we mean here that the differences be-
tween the left and right hand sides in the above relations all converge to zero, in the
operator norm, as ` tends to infinity.

Proof (Proof of the Lemma). By the spectral theorem it suffices to consider the same
problem with the self-adjoint operator

U
replaced by a real variable

¾
and the oper-

ator norm replaced by the supremum norm on � � J¼ � . The lemma is then a simple
calculus exercise, based on the Taylor series 9 �¢9 9 � ��` ¡ � �yº  ` ¡ � � .
Lemma 1.12. If ½ 9 }b$�»¨��� � J¼ � theny{z}|[HGxI KK � ½  ` ¡ � �(� 9 }  ` ¡ � Ûb� � KK ��R t
Proof. For any fixed ½'$"» , the set of }�$"» for which the lemma holds is a � � -
subalgebra of � �]J¼ � . So by the Stone-Weierstrass theorem it suffices to prove the
lemma when } is one of the resolvent functions

J¾�� ± � ¡ � . It furthermore suffices
to consider the case where ½ is a smooth and compactly supported function. In this
case we have KK � ½  ` ¡ � �(� 9  ` ¡ � � ± � ¡ � � KK s KK � ½  ` ¡ � �(� 9 ` ¡ � Û � KK
by the commutator identity for resolvents. But thenKK � ½  ` ¡ � �(� 9 ` ¡ � Û � KK s"` ¡ � � constant � Ô¼»¾½ $¾¿  ½  �(��� Ô t
This proves the lemma.

Proof (Proof of Theorem 1.17). Denote by

� Ce¶  k��G)ê¶  kQ� the ‘number opera-
tor’ which multiplies the degree ? component of ¶  k�� by µlg ~ ? . We observed in
the proof of Proposition 1.16 that* � ��� � �fÛ � � � 9
and let us observe now that the operator

�
commutes with � � and Û � . As a result,F [	¸ 2 à 2 � F [	¸ 2 ö ³ 2 kÀ� 2 ø F [	¸ 2 ©

and therefore, by Mehler’s formula,F�¡ [	¸ 2 à 2 � F�¡ 02e· 0 ³ 2 F�¡ · 2 � 2 F�¡ 02F· 0 ³ 2 F�¡ [	¸ 2 © 9
It follows from Lemma 1.11 thatF�¡ [	¸ 2 à 2 � F 02 [	¸ 2 ³ 2 F�¡ [	¸ 2 � 2 F�¡ 02 [	¸ 2 ³ 2 F�¡ [	¸ 2 © 9
and hence from Lemma 1.12 thatF ¡ [	¸ 2 à 2 � F ¡ [	¸ 2 ³ 2 F ¡ [	¸ 2 � 2
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(since the operator

�
is bounded the operators

F ¡ [	¸ 2 © converge in norm to the
identity operator). Now the homomorphism

� C]»¨)æ»QÃ-��  k�� maps � J¾ �>� F ¡ Ò 2 to� Ã- �  �(� , and applying  [ we obtain [  �  � �x�>� �  ` ¡ � �(� �  ` ¡ � Ûb�M� F�¡ [	¸ 2 ³ 2 F [	¸ 2 � 2 9
as we noted earlier. But ¯ [  � �H� F ¡ [	¸ 2 à 2 , and so we have shown that  [  �  � �x�
and ¯ [  � � are asymptotic to one another. A similar computation shows that if � �¾ �j�¾ÝF ¡ Ò 2 then  [  �  � ��� and ¯ [  � � are asymptotic to one another. Since � and � generate» , this completes the proof.

Corollary 1.2. The homomorphism  � C �f �  k��x��) �" «N� maps the element ��$�f �  k��x� to the element K($ �" «N� .
Proof. The class  �  �S� is represented by the composition of the Y -homomorphism

�
with the asymptotic morphism  . By Theorem 1.17, this composition is asymptotic
to the asymptotic morphism ¯ [  ½��M��½  ` ¡ � *	� t
But each map ¯][ is actually a Y -homomorphism, and so the asymptotic morphism¯ is homotopic to the single Y -homomorphism ½6,) ½  *�� . Now denote by ? the
projection onto the kernel of * . The formula

½H,~ ) Á>Â >Ã ½ Ä� ¡ � Ûb� 9 if
� $  R 9 KS�¨ ½  Rw� ? RR R ¬ 9 if
� ��R ,

defines a homotopy proving that  �  �T�M��K .
Appendix: Unbounded Multipliers

Any ��� -algebra 
 may be regarded as a right Hilbert module over itself (see the
book [45] for an introduction to Hilbert modules). An unbounded (essentially self-
adjoint) multiplier of 
 is then an essentially self-adjoint operator on the Hilbert
module 
 , in the sense of the following definition:

Definition 1.33. (Compare [45, Chapter 9].) Let 
 be a �	� -algebra and let Å be a
Hilbert 
 -module. An essentially self-adjoint operator on Å is an 
 -linear map º
from a dense 
 -submodule Å Ï ¢yÅ into Å with the following properties:

(a) Æ�º � 9 ªUÇ �)Æ � 9 º ª�Ç , for all � 9 ª $�Å Ï .
(b) The operator q��uº � is densely defined and has dense range.

If º is essentially self-adjoint then the closure of º (the graph of which is the
closure of the graph of º ) is self-adjoint and regular, which means that the operators



Group C*-Algebras and K-theory 169 º � ± q]� are bijections from the domain of º to Å , and that the inverses
 º � ± q]� ¡ �

are adjoints of one another. See [45, Chapter 9] again.
If º is essentially self-adjoint then there is a functional calculus Y -homomorphism

from »'�®� �]J¼ � into the bounded, adjoinable operators on Å . It maps
�¾�� ± � ¡ � to º � ± q]� ¡ � .

In the case where ÅX�®
 , if the densely defined operators
 º � ± qw� ¡ � are given

by right multiplication with elements of 
 , then the functional calculus homomor-
phism maps » into 
 (acting on 
 as right multiplication operators). If 
 is graded,
if the domain 
 Ï of º is graded, and if º has odd grading-degree (as a map from the
graded space 
 Ï into the graded space 
 ) then the functional calculus homomor-
phism is a graded Y -homomorphism.

Example 1.15. If 
Ê�§» then the operator
U C�½ �¾ �Q,) ¾ ½ �¾ � , defined on say the

compactly supported functions, is essentially self-adjoint.

Lemma 1.13. If
U � is an essentially self-adjoint multiplier of 
 � and if

U � is essen-
tially self-adjoint multiplier of 
 � , then

U � Ã-�KM�¨K Ã- U � , with domain 
 � 0 ÃÄ 
 � 2 , is
an essentially self-adjoint multiplier of 
 � Ã-�
 � . OP
Example 1.16. Using the lemma we can define åfC »")æ»�Ã-�» by å  ½��>��½ JU Ã-QKe�K]Ã- U � .
2 Bivariant K-Theory

We saw in the last section that asymptotic morphisms between �	� -algebras deter-
mine maps between

�
-theory groups. In this lecture we shall organize homotopy

classes of asymptotic morphisms into a bivariant version of
�

-theory, whose pur-
pose is to streamline the computation of

�
-theory groups via asymptotic morphisms.

In doing so we shall be following the lead of Kasparov (see [39, 37, 38]), although the
theory we obtain, called � -theory [13, 14, 27], will in fact be a minor modification
of Kasparov’s

�D�
-theory.

2.1 The E-Theory Groups

Definition 2.1. Let 
 and * be separable, graded ��� -algebras. We shall denote by�  
 9 *�� the set of homotopy classes of asymptotic morphisms from »�Ã-�
	Ã-�¸  ¶d� to*dÃ-�¸  ¶d� . Thus: �  
 9 *��>�%� � »�Ã-�
	Ã-�¸  ¶d� 9 *dÃ-�¸  ¶d�3� � t
Example 2.1. Each Y -homomorphism Z from 
 to * , or more generally from» Ã-�
 Ã-�¸  ¶H� to * Ã-�¸  ¶d� , determines an element of �  
 9 *�� . This element de-
pends only on the homotopy class of Z , and will be denoted � Z��n$H�  
 9 *�� .

The sets �  
 9 *	� come equipped with an operation of addition, given by direct
sum of asymptotic morphisms, and the zero asymptotic morphism provides a zero
element for this addition.
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Lemma 2.1. The abelian monoids �  
 9 *	� are in fact abelian groups.

Proof. Let ZQCÝ» Ã-�
 Ã-�¸  ¶d�xANADCD* Ã-�¸  ¶H� be an asymptotic morphism. Define an
asymptotic morphism Z opp C�»(Ã-�
	Ã-�¸  ¶d�PANAeCV*dÃ-�¸  ¶ opp �
by the formula Z opp[ J¾ �;�'Zc[   �¾ �x� , where  is the grading automorphism. We shall
show that Z opp defines an additive inverse to Z in �  
 9 *�� .

For a fixed scalar
� '¨R the formulaÈ �[ Ce½MÃ- ¾ ,)¿½ p R �� R s p Z [ �¾ � RR Z opp[ J¾ � s ½&$d» 9 ¾ $�»(Ã-�
	Ã-�¸  ¶H�

defines an asymptotic morphism
È � from » Ã-�» Ã-�
 Ã-�¸  ¶d� into * Ã-�¸  ¶a�"¶ opp � .

By composing
È � with the comultiplication åfCA»a)û» Ã-�» we obtain asymptotic

morphisms» Ã-�
 Ã-�¸  ¶H� ì íî � // » Ã-�» Ã-�
 Ã-�¸  ¶d�-É�Ê //___ * Ã-�¸  ¶ç�u¶ opp �
which constitute a homotopy (parametrized by

� $u� R 9<; � ) connecting Z��<Z opp to R .
Remark 2.1. The above argument provides another proof that the

�
-theory groups

described in the last lecture are in fact groups.

If
F

is a rank-one projection in ¸  ¶d� then by composing asymptotic morphisms
with the Y -homomorphism which maps the element ½jÃ- 7 $®»(Ã-�
 to the element½NÃ- 7 Ã- F $d»(Ã-�
VÃ-�¸  ¶d� we obtain a map (of sets, or in fact abelian groups)� � »(Ã-�
	Ã-�¸  ¶d� 9 *dÃ-�¸  ¶H�3� � ~ )·� � »(Ã-�
 9 *dÃ-�¸  ¶d�3� � t
Lemma 2.2. The above map is a bijection.

Proof. The inverse is given by tensor product with the identity on ¸  ¶d� . Details are
left to the reader as an exercise.

The groups �  
 9 *�� are contravariantly functorial in 
 and covariantly functo-
rial in * on the category of graded �Q� -algebras.

Proposition 2.1. The functor �  « 9 *�� on the category of graded �	� -algebras is nat-
urally isomorphic to

�" *�� .
Proof. This follows from Proposition 1.3 and Lemma 2.2.



Group C*-Algebras and K-theory 171

2.2 Composition of Asymptotic Morphisms

The main feature of � -theory is the existence of a bilinear ‘composition law’�  
 9 *���-f�  * 9 �(�j)+�  
 9 �(�
which is associative in the sense that the two possible iterated pairings�  
 9 *��c-��  * 9 �(��-f�  � 9 Ûb�>)¿�  
 9 Ûb�
are equal, and which gathers the � -theory groups together into an additive category
(the objects are separable graded ��� -algebras, the morphisms from 
 to * are the
elements of the abelian group �  
 9 *�� , and the above pairing is the composition
law).

The � -theory category plays an important role in the computation of �	� -algebra�
-theory groups, as follows. To compute the

�
-theory of a �	� -algebra 
 one can,

on occasion, find a �Q� -algebra * and elements of �  
 9 *�� and �  * 9 
�� whose com-
positions are the identity morphisms in �  
 9 
�� and �  * 9 *�� . Composition with
these two elements of �  
 9 *�� and �  * 9 
�� now gives a pair of mutually inverse
maps between �  « 9 
�� and �  « 9 *	� . But as we noted in the last section �  « 9 
��
and �  « 9 *	� are the

�
-theory groups

�f 
�� and
�f *�� . It therefore follows that�f 
��	�� �" *�� . Therefore, assuming that

�f *�� can be computed, so can
�f 
�� .

This is the main strategy for computing the
�

-theory of group �	� -algebras.
In this section and the next we shall lay the groundwork for the construction of

the composition pairing. The following sequence of definitions and lemmas presents
a reasonably conceptual approach to the problem. The proofs are all very simple, and
by and large they are omitted. Details can be found in the monograph [27].

We begin by repeating a definition from the last lecture.

Definition 2.2. Let * be a graded � � -algebra. Denote by z  *�� the � � -algebra of
bounded, continuous functions from �{K 9N; � into * , and denote by z �  *�� the ideal
comprised of functions which vanish at infinity. The asymptotic �	� -algebra of * is
the quotient �Q� -algebra O  *��>�'z  *���´:z �  *	� t

Observe (as we did in the last section) that an asymptotic morphism ZQCA
BANADCV*
defines a Y -homomorphism Z�C�
·) O  *�� in the obvious manner and that two
asymptotic morphism from 
 to * define the same Y -homomorphism from 
 to
O  *�� precisely when they are asymptotically equivalent.

The asymptotic algebra construction *æ,) O  *	� is a functor, since a Y -homo-
morphism from * to � induces a Y -homomorphism from

O  *�� to

O  �(� by compo-
sition.

Definition 2.3. The asymptotic functors

O � 9 O � 9 tSt�t are defined by

O �  *	�>��* andO !  *	�M� O  O ! ¡ �  *	�x� t



172 Nigel Higson and Erik Guentner

Two Y -homomorphisms Z � 9 Z � CE
 ) O !  *�� are g -homotopic if there exists an Y -
homomorphism

È Cw
o) O !  *b� R 9 KT��� from which the Y -homomorphisms Z � and Z �
are recovered as the compositions
 //

O !  *b� R 9 KT��� evaluate at
�

,
�

//

O !  *	� t
Lemma 2.3. [27, Proposition 2.3] The relation of g -homotopy is an equivalence re-
lation on the set of Y -homomorphisms from 
 to

O !  *�� . OP
Definition 2.4. Let 
 and * be graded � � -algebras. Denote by � � 
 9 *�� � ! the set ofg -homotopy classes of Y -homomorphisms from 
 to

O !  *�� :� � 
 9 *�� � ! �o5fg -Homotopy classes of Y -homomorphisms from 
 to

O !  *��GB t
Example 2.2. Observe that � � 
 9 *�� � � is the set of homotopy classes of Y - homomor-
phisms and � � 
 9 *(� � � is the set of homotopy classes of asymptotic morphisms.

Remark 2.2. The relation of g -homotopy is not the same thing as homotopy: homo-
topic Y -homomorphisms into

O !  *�� are g -homotopic, but not vice-versa, in general.

There is a natural transformation of functors, from

O !  *�� to

O !lk �  *�� , defined
by including

O !  *	� as constant functions in

O !�k �  *��D� O  O !  *���� . A second
and different natural transformation from

O !  *	� to

O !�k �  *	� may be defined by
including * into

O  *	� as constant functions, and then applying the functor

O ! to
this inclusion. Both natural transformations are compatible with homotopy in the
sense that they define maps � � 
 9 *(� �@! ~ )ü� � 
 9 *(� �@!lk � t
Lemma 2.4. [27, Proposition 2.8] The above natural transformations define the
same map � � 
 9 *�� � ! ~ )ü� � 
 9 *(� � !lk � OP .

With the above maps the sets � � 
 9 *�� ��! are organized into a directed system� � 
 9 *(� � � )ü� � 
 9 *(� � � )ü� � 
 9 *�� �ÌË�)ü�S�S�
Definition 2.5. Let 
 and * be graded ��� -algebras. Denote by � � 
 9 *(� � I the direct
limit of the above directed system.

Proposition 2.2. [27, Proposition 2.12] Let Z�CÝ
a) O !  *�� and Ë�CÝ*Ú) O �  �(�
be Y -homomorphisms. The class of the composite Y -homomorphism
 ÷ //

O !  *���ÍÏÎ ö ù ø // O !lk �  �(� t
in the set � � 
 9 ��� �²I depends only on the classes of Z and Ë in the sets � � 
 9 *(� �ÄI and� � * 9 ��� �ÐI . The composition law� � 
 9 *�� �²I I � � * 9 ��� �ÐI )ü� � 
 9 ��� �²I
so defined is associative. OP
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Exercise 2.1. Show that the identity Y -homomorphism from 
 to 
 determines an
element of � � 
 9 
�� �²I which serves as an identity morphism for the above composition
law.

Thanks to Proposition 2.2 and the exercise we obtain a category:

Definition 2.6. The asymptotic category is the category whose objects are the graded��� -algebras, whose are elements of the sets � � 
 9 *(� � I , and whose composition law
is the process described in Proposition 2.2.

Observe that there is a functor from the category of graded �	� -algebras and Y -
homomorphisms into the asymptotic category (which is the identity on objects and
which assigns to a Y -homomorphism Z�Ce
�)¿* its class in � � 
 9 *�� � I ).

Exercise 2.2. Show that
�

-theory, thought of as a functor from graded �V� -algebras
to abelian groups, factors through the asymptotic category.

2.3 Operations

We want to define tensor products, amplifications and other operations on the asymp-
totic category. For this purpose we introduce the following definitions.

Definition 2.7. Let � be a functor from the category of graded �	� -algebras to itself.
If * is a graded �Q� -algebra and if ½®$��  *b� R 9 KT��� then define a function �½ from� R 9 KT� into �  *	� by assigning to `�$¨� R 9 KT� the image of ½ under the homomorphism�  � [ �]Ce�  *�� R 9 KS�@�M)+�  *�� , where � [ is evaluation at ` . The functor � is continuous
if for every * and every ½&$H�  *�� R 9 KS�@� the function �½ is continuous.

Example 2.3. The tensor product functors 
ê,)þ
 Ã-�* (for both the minimal and
maximal tensor product) are continuous.

Definition 2.8. A functor � from the category of graded ��� -algebras to itself is exact
if for every short exact sequenceR // / // 
 // 
�´ / // R
the induced sequenceR // � 1/ � // �  
�� // �  
�´ / � // R
is also exact.

Exercise 2.3. The maximal tensor product functor 
�,)+
�Ã- � ÇÓÒ * is exact.

Remark 2.3. In contrast the minimal tensor product functor 
ò,) 
 Ã- � ¯ ! * is not
exact for every * . See [66] for examples (and also Lecture 6).
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If � is a continuous functor then the construction of �½ from ½ described in Defi-
nition 2.7 determines a natural transformation�  *�� R 9 KT���M)+�  *��T� R 9 KT� t
The same process also determines natural transformations�  z  *��x�j)^z  �  *	� and �  z �  *	�x�>)+z �  �  *	�x�
(recall that z  *�� is the ��� -algebra of bounded and continuous functions from �{K 9N; �
into * and z �� *�� is the ideal of functions vanishing at infinity). So if � is in addition
an exact functor then we obtain an induced map from �  O  *���� into

O  �  *���� , as
indicated in the following diagram:R // �  z �  *��x� //

��

�  z  *	�x� //

��

�  O  *	�x� //

���
�

�
R

R // z �  �  *��x� // z  �  *	�x� //

O  �  *	�x� // R t
Proposition 2.3. [27, Theorem 3.5] Let � be a continuous and exact functor on
the category of graded �Q� -algebras. The process which assigns to each Y -homo-
morphism ZQCÝ
�) O !  *�� the composition�  
���Ñ ö}÷wø // �  O !  *	�x� //

O !  �  *	�x�
defines a functor on the asymptotic category. OP

Applying this to the (maximal) tensor product functors we obtain the following
result.

Proposition 2.1 [27, Theorem 4.6] There is a functorial tensor product Ã- � ÇÓÒ on
the asymptotic category. OP

With a tensor product operation in hand we can construct an amplified asymptotic
category in the same way we constructed the amplification of the category of �	� -
algebras and Y -homomorphisms in Definition 1.12.

Definition 2.9. The amplified asymptotic category is the category whose objects are
the graded ��� -algebras and for which the morphisms from 
 to * are the elements
of � � »�Ã-�
 9 *�� � I . Composition of morphisms ZQCn
ÿ) * and Ë�C�*Ù) � in the
amplified asymptotic category is given by the following composition of morphisms in
the asymptotic category:»(Ã-�
 ì íî � // »�Ã-�»(Ã-�
 �Síî ÷ // »(Ã-�* ù // � t
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2.4 The E-Theory Category

The main technical theorem in � -theory is the following:

Theorem 2.2. [27, Theorem 2.16] Let 
 and * be graded ��� -algebras and assume
that 
 is separable. The natural map of � � 
 9 *(� � � into the direct limit � � 
 9 *(� � I is a bi-
jection. Thus every morphism from 
 to * in the asymptotic category is represented
by a unique homotopy class of asymptotic morphisms from 
 to * . OP

Unlike the results of the previous two sections, this is a little delicate. We refer
the reader to [27] for details.

It follows from Theorem 2.2 and Definition 2.1 that the group �  
 9 *�� (for 

separable) may be identified with the set of morphisms in the amplified asymptotic
category from 
VÃ-ß¸  ¶d� to *dÃ-�¸  ¶d� . As a result we obtain a pairing�  
 9 *��n-f�  * 9 �(� ~ )+�  
 9 �(�
from the composition law in the asymptotic category. We have now reached the main
objective of the lecture:

Theorem 2.3. The � -theory groups �  
 9 *	� are the morphism groups in an addi-
tive category Ò whose objects are the separable graded ��� -algebras. There is a
functor from the homotopy category of graded separable �	� -algebras and gradedY -homomorphisms into Ò which is the identity on objects. OP
Remark 2.4. If Z�CE
ç)Ü* is a Y -homomorphism and if Ë�CA*VANAeCr� is an asymp-
totic morphism then Z and Ë determine elements � Zn��$d�  
 9 *�� and � ËM��$<�  * 9 �(� .
In addition the (naive) composition Ëb�GZ is an asymptotic morphism from 
 to � ,
and so defines an element � Ë{�>Zn��$<�  
 9 �(� . We have that � Ë*�;Zn�E��� ËM�4��� Zn� . The
same applies to compositions of Y -homomorphisms and asymptotic morphisms the
other way round, and also to compositions in the amplified category.

The tensor product functor on the asymptotic category extends to the amplified
asymptotic category (compare Remark 1.6), and we obtain a tensor product in � -
theory:

Theorem 2.4. There is a functorial tensor product Ã- � ÇÓÒ on the � -theory category
which is compatible with the tensor product on ��� -algebras via the functor from the
category of graded separable �Q� -algebras and graded Y -homomorphisms into the� -theory category. OP

The minimal tensor product does not carry over to � -theory, but we have at least
a partial result. First, here is some standard ��� -algebra terminology.

Definition 2.10. A (graded) �Q� -algebra * is exact if, for every short exact sequence
of graded � � -algebrasR // / // 
 // 
�´ / // R
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the sequence of minimal tensor productsR // / Ã- � ¯ ! * // 
	Ã- � ¯ ! * // 
�´ / Ã- � ¯ ! * // R
is exact.

In other words, * is exact if and only if the functor 
�,)+
�Ã- � ¯ ! * is exact.

Theorem 2.5. Let * be a separable, graded and exact � � -algebra. There is a functor
�,)+
 Ã- � ¯ ! * on the � -theory category. In particular, if 
 � and 
 � are isomorphic
in the � -theory category then 
 � Ã- � ¯ ! * and 
 � Ã- � ¯ ! * are isomorphic there too.OP

We shall return to the topic of minimal tensor products in Lecture 6.

2.5 Bott Periodicity

Our proof of Bott periodicity in Lecture 1 may be recast as a computation in � -
theory, as follows.

Definition 2.11. Let k be a finite-dimensional Euclidean vector space. Denote by� $§�  « 9 �  k��x� the � -theory class of the Y -homomorphism
� CE»æ)~�  kQ� in-

troduced in Definition 1.26. Denote by %$'�  �  kQ� 9 «N� the � -theory class of the
asymptotic morphism �C�» Ã-��  k��°ANADC	¸  ¶  k	�x� introduced in Proposition 1.5.

Proposition 2.4. The composition« £ // �  kQ� � // «
in the � -theory category is the identity morphism «')+« .

Proof. This follows from Remark 2.4 and Theorem 1.17, as in the proof of Corol-
lary 1.2.

A small variation on the rotation argument we discussed in Section 1.10 now
proves the following basic result:

Theorem 2.6. The morphisms �CÏ�  k���) « and
� CE« ).�  k�� in the � -theory

category are mutual inverses. OP
2.6 Excision

The purpose of this section is to discuss the construction of Ó -term exact sequences
in � -theory. First, we need a simple definition.

Definition 2.12. Let 
 be a �Q� -algebra. The suspension of 
 is the ��� -algebraÔ 
��®5\½<$H
Q� R 9 KS��C>½  Rw�\��½  K¢�M�'RGB t
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In other words
Ô 
 is the tensor product of 
 with

Ô ��� �] R 9 KL� . If 
 is graded
then so is

Ô 
 (the algebra
Ô

itself is given the trivial grading).

Theorem 2.7. The suspension map�  
 9 *�� ~ )¿� �Ô 
 9 Ô *��
is an isomorphism. Moreover there are natural isomorphisms�  
 9 *	�>�� � �Ô � 
 9 *	� and �  
 9 *��>�� �  
 9 Ô � *�� t
Proof. It follows from Bott periodicity that

Ô �
is isomorphic to « in the � -theory

category, and this proves the second part of the theorem. With the periodicity isomor-
phisms available, we obtain an inverse to the suspension map by simply suspending
a second time.

Here then are the main theorems in the section:

Theorem 2.8. Let * be a graded ��� -algebra and let q be an ideal in a separable� � -algebra 
 . There is a functorial six-term exact sequence�  
�´:q 9 *	� // �  
 9 *	� // �  q 9 *��
���  q 9 Ô *��OO

�  
 9 Ô *	�oo �  
�´:q 9 Ô *	�oo

Theorem 2.9. Let 
 be a graded ��� -algebra and let
/

be an ideal in a separable��� -algebra * . There is a functorial six-term exact sequence�  
 9 / � // �  
 9 *	� // �  
 9 *V´ / �
���  
 9 Ô *	´ / �OO

�  
 9 Ô *	�oo �  
 9 Ô / �oo

For simplicity we shall discuss only the second of these two theorems (the proofs
of the two theorems are similar, although the second is a little easier in some re-
spects). For a full account of both see [27, Chapters 5 and 6].

The proof of Theorem 2.9 has two parts. The first is a construction borrowed
from elementary homotopy theory, involving the following notion:

Definition 2.13. Let v�C�*·)þ� be a Y -homomorphism of (graded) ��� -algebras.
The mapping cone of v is the �Q� -algebra�°Õ��)Ö;�N�f½&$H*��"�V� R 9 KS��CNv  �T�M��½  Rw� and ½  K¢�M�'R�× t
Proposition 2.5. Let v�C�*�) � be a Y -homomorphism. For every �	� -algebra 

there is a long exact sequence of pointed setst�tSt // � � 
 9 Ô *(� � // � � 
 9 Ô ��� � // � � 
 9 � Õ � � // � � 
 9 *(� � // � � 
 9 ��� � t



178 Nigel Higson and Erik Guentner

The proposition may be formulated for homotopy classes of asymptotic mor-
phisms, as above, or for homotopy classes of ordinary Y -homomorphisms (compare
[59]). The proofs are the same in both cases. There are Y -homomorphisms�S�S� // Ô * // Ô � // �°Õ // * // � 9
which supply the maps in the proposition, and since the composition of any two
successive Y -homomorphisms in this sequence is null-homotopic, the composition
of any two successive maps of the sequence in the proposition is trivial. Let us prove
exactness at the � � 
 9 *�� � term. If the composition
 ÷ //___ * Õ // �
is null homotopic then a null homotopy gives an asymptotic morphism fromÈ C�
ØANADC¨�V� R 9 K¢� . The pair comprised of Z and

È
now determines an asymptotic

morphism from 
 into �PÕ , as required. For more details see [27, Chapter 5].

Corollary 2.1. Let v�CÝ*%)ê� be a Y -homomorphism. For every �	� -algebra 
 there
is a functorial six-term exact sequence�  
 9 �°Õ � // �  
 9 *	� // �  
 9 �(�

���  
 9 Ô �(�OO

�  
 9 Ô *	�oo �  
 9 Ô � Õ �oo

This follows from Proposition 2.5 and Theorem 2.7. To prove Theorem 2.9 it
remains to replace �PÕ with

/
in the above corollary, in the case where v�CÝ*%)¿� is

a surjection with kernel
/

. To this end, observe that there is an inclusion ² ,) ² �"R
of
/

into �°Õ . Using the following construction one can show that this inclusion is an
isomorphism in the � -theory category.

Theorem 2.10. ([27, Chapter 5].) Let
/

be an ideal in a separable graded �	� -
algebra 
 . There is a norm-continuous family 5 � [ B [	Ù4Ú � ï I ø of degree-zero elements
in
/

such that

(a) RÛs � [Üs�K for all ` ,
(b) y{z}|V[HGJI Ô � [ ² ~ ² Ô �'R , for all ² $ / , and
(c) y{z}|V[HGJI Ô � [ 7 ~ 7 � [ Ô ��R , for all

7 $H
 .

If
� Ce
�´ / )+
 is any set-theoretic section of the quotient mapping then the formulaZ [  ½	- ¾ �j��½  � [ � �w�¾ �

defines an asymptotic morphism from
Ô 
�´ / into

/
. OP

Theorem 2.11. ([27, Proposition 5.14].) Let
/

be an ideal in a separable, graded��� -algebra 
 . The asymptotic morphism associated to the extension
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Q� R 9 KL� // � Õ // R
determines an element of � 	Ô �PÕ 9 Ô / � which is inverse to the element of� �Ô / 9 Ô �ÝÕ � which is determined by the inclusion of

/
into ��Õ . OP

In view of Theorem 2.7 it now follows that
/ �� «�Õ in the � -theory category,

and the proof of Theorem 2.9 is complete.

2.7 Equivariant Theory

We are now going to define an equivariant version of � -theory which will be partic-
ularly useful for computing the

�
-theory of group ��� -algebras. To keep matters as

simple as possible we shall work here with countable and discrete groups, although
it is possible to consider arbitrary second countable, locally compact groups.

The following definition provides the main idea behind the equivariant theory:

Definition 2.14. Let h be a countable discrete group and let 
 and * be gradedh - ��� -algebras (that is, graded �Q� -algebras equipped with actions of h by grading-
preserving Y -automorphisms). An equivariant asymptotic morphism from 
 to * is
an asymptotic morphism ZQCÝ
ÞANADCV* such thatZc[  }Q� 7 � ~ }Q�  Zc[ J7 ���M)+R 9 as `N) ;'9
for all

7 $H
 and all }b$dh .

Homotopy is defined just as in the non-equivariant case, and we set� � 
 9 *(� �Ðßf�o5 Homotopy classes of asymptotic morphisms from 
 to *�B t
If * is a h - ��� -algebra then so is the asymptotic algebra

O  *�� , and an equivari-
ant asymptotic morphism from 
 to * is the same thing, up to equivalence, as an
equivariant Y -homomorphism from 
 to

O  *�� .7 Thanks to this observation it is a
straightforward matter to define an equivariant version of the asymptotic category
that we constructed in Section 2.2. The higher asymptotic algebras

O !  *�� are h -��� -algebras; we define � � 
 9 *�� � ß! to be the set of g -homotopy classes of equivariantY -homomorphism from 
 to

O !  *	� ; and we define� � 
 9 *(� � ß I ��y}z{|~ ) � � 
 9 *(� � ß! t
These are the morphism sets of a category, using the composition law described in
Proposition 2.2, and this category may be ‘amplified’, as in Section 1.3. Finally, if
 is separable (and assuming, as we shall throughout, that h is countable) then the
canonical map gives an isomorphism� � 
 9 *(� � ß R ð // � � 
 9 *(� � ß I tà

This is one place where our assumption that á is discrete is helpful: if á is not discrete
then the action of á on â�d²^ i is not necessarily continuous.
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See [27] for details.
To define the equivariant � -theory groups it remains to introduce a stabilization

operation which is appropriate to the equivariant context.

Definition 2.15. Let h be a countable discrete group. The standard h -Hilbert space¶ ß is the infinite Hilbert space direct sum¶ ß ��� I! ð �ã �  h�� 9
equipped with the regular representation of h on each summand and graded so the
even numbered summands are even and the odd numbered summands are odd.

The standard h -Hilbert space has the following universal property:

Lemma 2.5. If ¶ is any separable graded h -Hilbert space8 then the tensor product
Hilbert space ¶�-"¶ ß is unitarily equivalent to ¶ ß via a grading-preserving, h -
equivariant unitary isomorphism of Hilbert spaces.

Proof. Denote by ¶ � the Hilbert space ¶ equipped with the trivial h -action. The
formula � -o� }w�n,)�} ¡ � � � -�� }w� defines a unitary isomorphism from ¶ç- ã �  h�� to¶ � - ã �  h�� , and from it we obtain a unitary isomorphism¶ Ã-�¶ ß Rð // ¶ � Ã-�¶ ß t
Since ¶ � Ã-�¶ ß is just a direct sum of copies of ¶ ß it is clear that ¶ � Ã-�¶ ß �� ¶ ß .
Hence ¶XÃ-ß¶ ß �� ¶ ß , as required.

Definition 2.16. Let h be a countable discrete group and let 
 and * be graded, sep-
arable h - ��� -algebras. Denote by � ß  
 9 *	� the set of homotopy classes of equiv-
ariant asymptotic morphisms from »�Ã-�
VÃ-�¸  ¶ ß � to *dÃ-�¸  ¶ ß � ,� ß  
 9 *	�>�6� � » Ã-�
 Ã-ß¸  ¶ ß � 9 * Ã-�¸  ¶ ß �3� � ß t
Remark 2.5. The virtue of working with the Hilbert space ¶ ß , as in the above def-
inition, is that if ¶ is any separable graded h -Hilbert space and if ZQCE»�Ã-�
,AAFC*dÃ-�¸  ¶d� is an equivariant asymptotic morphism then Z determines an element of� ß  
 9 *	� . To see this, simply tensor Z by ¸  ¶ ß � and apply Lemma 2.5.

Remark 2.6. The construction described in the previous remark has a generalization
which will be important in Lecture 4. Suppose that ¶ is a separable, graded Hilbert
space which is equipped with a continuous family of unitary h -actions, parametrized
by `G$X� K 9<; � . The continuity requirement here is pointwise strong continuity, so that
if }�$<h and ��$d¸  ¶d� then }(� [�� is norm-continuous in ` . Suppose now that 
 and* are h - ��� -algebras and thatä

A graded á -Hilbert space is a graded Hilbert space equipped with unitary representations
of á on its even and odd grading-degree summands.
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ÞANADCV* Ã-�¸  ¶d�
is an asymptotic morphism which is equivariant with respect to the given family ofh -actions, in the sense thaty{z}|[HGxI Ô Zc[  }Q� ¾ � ~ }Q� [  Zn[ J¾ ��� Ô ��R 9
for all }�$<h and

¾ $b»�Ã-�
 . Then Z too determines an element of � ß  
 9 *�� . Indeed,
after we tensor with ¸  ¶ ß � and apply the procedure in the proof of Lemma 2.5 we
obtain an asymptotic morphism into *<Ã-�¸  ¶ � Ã-ß¶ ß � which is equivariant in the
usual sense for the single, fixed representation of h on ¶ � Ã-�¶ ß .

Remark 2.7. One final comment: it is essential that in Definition 2.16 we include a
factor of ¸  ¶ ß � in both arguments. If we were to leave one out then we would obtain
a quite different (and not very useful) object.

By comparing the definition of � ß  
 9 *�� to the construction of the equivariant,
amplified asymptotic category we immediately obtain the following result:

Theorem 2.12. The � ß -theory groups � ß  
 9 *�� are the morphism sets of an ad-
ditive category whose objects are the separable graded h - �	� -algebras. There is
a functor from the homotopy category of graded h - �	� -algebras and graded h -
equivariant Y -homomorphisms into the equivariant � -theory category which is the
identity on objects. OP

The equivariant � theory category has a tensor product Ã- � ÇÓÒ . Moreover there
are six-term exact sequences of � -theory groups associated to short exact sequences
of h - ��� -algebras. The precise statements and proofs are only minor modifications
of what we saw in the non-equivariant case, and we shall omit them here. See [27].

2.8 Crossed Products and Descent

In order to apply equivariant � -theory to the problem of computing �	� -algebra�
-theory one must first apply a descent operation which transfers computations in

equivariant � -theory to computations in the nonequivariant theory. This involves the
notion of crossed product �Q� -algebra, and we begin with a rapid review of the basic
definitions (see [53]) for more details).

Definition 2.17. Let h be a discrete group and let 
 be a h - ��� -algebra. A co-
variant representation of 
 in a �Q� -algebra * is a pair

 Z 9 v�� consisting of a Y -
homomorphism Z from 
 into a �Q� -algebra * and a group homomorphism v fromh into the unitary group of the multiplier algebra of * which are related by the
formulas v  } �1Z J7 �Ív  } ¡ � �j�'Z  }	� 7 � 9 for all

7 $<
 , }�$<h t
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Definition 2.18. Let h be a discrete group and let 
 be a h - ��� -algebra. The lin-
ear space �På  h 9 
�� of finitely-supported, 
 -valued functions on h is an involutive
algebra with respect to the convolution multiplication and involution defined by½ ��æ ½ �  } �M� Õ�çÙ ß ½ �  �A�  �V�  ½ �  � ¡ � } �x�x�½ �  } �M�:}Q�  ½  } ¡ � � � �

Observe that a covariant representation of 
 in a ��� -algebra * determines aY -homomorphism Z I v from � å  h 9 
�� into * by the formula Z I v���½<� Õè Ù ß Z  ½  }����Ív  } � for all ½r$&� å  h 9 
�� .
Definition 2.19. The full crossed product ��� -algebra ���  h 9 
�� is the completion
of the Y -algebra � å  h 9 
�� in the smallest �Q� -algebra norm which makes all theY -homomorphisms Z I v continuous.

Example 2.4. Setting 
���« we obtain the full group �	� -algebra ���  h�� .
If 
 is graded, and if h acts by grading - preserving automorphisms, then���  h 9 
�� has a natural grading too (the grading automorphism acts pointwise on

functions in �På  h 9 
�� ).
Remark 2.8. The �Q� -algebra �Q�  h 9 
�� contains a copy of 
 and the multiplier alge-
bra of ���  h 9 
�� contains a copy of h within its unitary group. Elements of � å  h 9 
��
can be written as finite sums � è Ù ß 7 è �Ä} , where

7 è $<
 and
7 è ��R for almost all } .

It will usually be convenient to use this means of representing elements. For example
the grading automorphism isÕè Ù ß 7 è �N}V,) Õè Ù ß  J7 è �\�N} t

The full crossed product is a functor from h - � � -algebras to � � -algebras which
is (extending the terminology of Section 2.3 in the obvious way) both continuous and
exact. As a result, there is a descent functor from the equivariant asymptotic category
to the asymptotic category,� � 
 9 *�� � ß I ~ )ü� � � �  h 9 
�� 9 � �  h 9 *��Í� � I t
In order to obtain a corresponding functor in � -theory we need the following com-
putation:

Lemma 2.6. Let h be a discrete group, let * be a h - �	� -algebra and let ¶ be ah -Hilbert space on which the group element }�$�h acts as the unitary operator� è C]¶�)^¶ . The formulaÕè Ù ß  � è Ã-|� è �c�S}V,) Õè Ù ß  � è �N} ��Ã-|� è � è
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determines an isomorphism of �Q� -algebras���  h 9 * Ã-�¸  ¶d��� Rð // ���  h 9 *�� Ã-�¸  ¶d� t
Proof. The formula defines an algebraic Y -isomorphism from � å  h 9 *HÃÄ ¸  ¶d��� to� å  h 9 *��LÃÄ ¸  ¶d� . Examining the definitions of the norms for the max tensor product
and full crossed product we see that the Y -isomorphism extends to a Y -isomorphism
of �Q� -algebras.

Combining the lemma with the descent functor between asymptotic categories
we obtain the following result:

Theorem 2.13. There is a descent functor from the equivariant � -theory category to
the � -theory category which maps the h - � � -algebra 
 to the full crossed product��� -algebra ���  h 9 
�� , and which maps the � -theory class of a h -equivariant Y -
homomorphism Z�CA
a)Ù* to the � -theory class of the induced Y -homomorphism
from ���  h 9 
�� to ���  h 9 *�� . OP
Corollary 2.2. Let h be a countable discrete group. Suppose that 
 and * are sep-
arable h - ��� -algebras and that 
 and * are isomorphic objects in the equivariant� -theory category. Then

�f �Q�  h 9 
��x� is isomorphic to
�" �Q�  h 9 *	�x� . OP

2.9 Reduced Crossed Products

We also wish to apply equivariant � -theory to the computation of
�

-theory for re-
duced crossed products. Here the operation of descent works smoothly for a large
class of groups, as the following discussion shows, but not so well for all groups, as
we shall see in Lecture 6.9

In the following definition we shall use, in a very modest way, the notion of
Hilbert module. See [45] for a treatment of this subject.

Definition 2.20. Let 
 be a h - �Q� -algebra and denote by ã �  h 9 
�� the Hilbert 
 -
module comprised of functions � C�hÿ) 
 for which the series � è��  } ��� �  } � is
norm-convergent in 
 . The regular representation of 
 is the covariant representa-
tion

 Z 9 v�� into the bounded, adjoinable operators on ã �  h 9 
�� given by the formulas Z J7 � � �  �A�j�  � ¡ � � 7 � �  �A� 9 � $ ã �  h 9 
�� 9
and  v  }�� � �  �A�>� �  } ¡ � �Ý� 9 � $ ã �  h 9 
�� t

The regular representation determines a Y -homomorphism from the crossed prod-
uct algebra ���  h 9 
�� into the �Q� -algebra of bounded, adjoinable operators onã �  h 9 
�� .é

It should be pointed out here that Kasparov’s ê�ê -theory has no such limitation in this
respect. However it has other shortcomings. Indeed as we shall see in Lecture 6 there is no
ideal bivariant ê -theory for a�ë -algebras.
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Definition 2.21. Let 
 be a h - �Q� -algebra. The reduced crossed product algebra���ì  h 9 
�� is the image of ���  h 9 
�� in the regular representation.

Example 2.5. Setting 
���« we obtain the reduced group ��� -algebra ���ì  h�� .
Like the full crossed product, the reduced crossed product is a functor from

(graded) h - ��� -algebras to (graded) �Q� -algebras. However unlike the full crossed
product the reduced crossed product is not exact for every h (although inexact ex-
amples are hard to come by — see Lecture 6). This prompts us to make the following
definition:

Definition 2.22. A discrete group h is exact if the functor 
§,)Ù���ì  h 9 
�� is exact
in the sense of Definition 2.8.

There is a very simple and beautiful characterization of exact groups, due to
Kirchberg and Wassermann [43].

Proposition 2.6. A discrete group h is exact if and only if its reduced group �	� -
algebra ���ì  h�� is exact.

Proof (Proof (sketch)). Exactness of �Q�ì  h�� is implied by exactness of h since in
the case of trivial h -actions the reduced crossed product �	�ì  h 9 
�� is the same thing
as 
u- � ¯ !����ì  h�� (note that ���ì  h�� is trivially graded, so - � ¯ !V�çÃ- � ¯ ! here). The
reverse implication is argued as follows. If � �ì  h�� is exact then the sequenceR // ���  h 9 / ��- � ¯ ! ���ì  h�� // ���  h 9 
��n- � ¯ ! ���ì  h��

// � �  h 9 
�´ / ��- � ¯ ! � �ì  h�� // R
is exact. But for any h - � � -algebra Û there is a functorial embedding� �ì  h 9 Ûb� ~ )ê� �  h 9 Ûb��- � ¯ !�� �ì  h��
defined by the formulas }�,)í}�-#} and T�,)îT�-ÀK , and moreover a functorial,
continuous and linear left-inverse defined by T�-�K�,)MT , }�-b}V,)�} and }(-z�b,)êR
if } p��� . It follows that the sequenceR // � �ì  h 9 / � // � �ì  h 9 
�� // � �ì  h 9 
�´ / � // R
is a direct summand of the minimal tensor product exact sequence above, and is
therefore exact itself. For more details see Section 5 of [43]

Exercise 2.4. If * is an exact �Q� -algebra and if * � is a ��� -subalgebra of * then *
then * � is also exact.

Thanks to the exercise and to Proposition 2.6 it is possible to show that many
classes of groups are exact. For example all discrete subgroups of connected Lie
groups are exact and all hyperbolic groups (these will be discussed in Lecture 5)
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are exact too. Every amenable group is exact since in this case the reduced and full
crossed product functors are one and the same. For more information on exactness
see for example [67]. We shall also return to the subject in Section 4.5.

By retracing the steps we took in the previous section we arrive at the following
result:

Theorem 2.14. Let h be an exact, countable, discrete group. There is a descent func-
tor from the equivariant � -theory category to the � -theory category which maps ah - ��� -algebra 
 to the reduced crossed product ��� -algebra �Q�ì  h 9 
�� , and which
maps the class of a h -equivariant Y -homomorphism Z�CE
ç) * to the class of the
induced Y -homomorphism from �Q�ì  h 9 
�� to ���ì  h 9 *�� . OP
Corollary 2.3. Let h be an exact, countable, discrete group. Suppose that 
 and* are separable h - � � -algebras and that 
 and * are isomorphic objects in the
equivariant � -theory category. Then

�f ���ì  h 9 
���� is isomorphic to
�f ���ì  h 9 *���� .OP

2.10 The Baum-Connes Conjecture

In this lecture we shall formulate the Baum-Connes conjecture and prove it in some
simple cases, for example for finite groups and free abelian groups. We shall also
sketch the proof of the conjecture for so-called ‘proper’ coefficient � � -algebras. This
result will play an important role in the next chapter. The proof for proper algebras
is not difficult, but it is a little long-winded, and we shall refer the reader to the
monograph [27] for the details.

We shall continue to work exclusively with discrete groups. Our formulation of
the conjecture, which uses � -theory, is equivalent to the formulation in [7] which
uses

�D�
-theory. Indeed there is a natural transformation from

�r�
to � which

determines an isomorphism from the
�r�

-theoretic ‘left-hand side’ of the Baum-
Connes conjecture to its � -theoretic counterpart. The isomorphism can be proved
either by a Mayer-Vietoris type of argument (see for example Lecture 5) or by di-
rectly constructing an inverse. See also the discussion in Section 4.6 which in many
cases reduces the conjecture to a statement in

�
-theory, independent of both � -

theory and
�D�

-theory.10 Our treatment using � -theory is quite well suited to the
theorems we shall formulate and prove in Lecture 4. However a major drawback of� -theory is that it is not well suited to dealing with inexact groups. In any case, the� -theoretic and

�r�
-theoretic developments of the Baum-Connes theory are very

similar, and having studied by himself the basics of
�r�

-theory the reader could de-
velop the Baum-Connes conjecture in

�r�
-theory simply by replacing � with

�r�
throughout this lecture.� c In fact the argument of Section 4.6 can be made to apply to any discrete group, but we

shall not go into this here.
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2.11 Proper G-Spaces

Let h be a countable discrete group. Throughout this lecture we shall be dealing
with Hausdorff and paracompact topological spaces

U
equipped with actions of h

by homeomorphisms.

Definition 2.23. A h -space
U

is proper if for every
¾ $ U there is a h -invariant

open subset
� ¢ U containing

¾
, a finite subgroup Á of h , and a h -equivariant

map from
�

to hQ´:Á .

The definition says that locally the orbits of h in
U

look like hQ´lÁ .

Example 2.6. If Á is a finite subgroup of h then the discrete homogeneous spacehQ´:Á is proper. Moreover if + is any (Hausdorff and paracompact) space with anÁ -action then the induced space
U �¿h I ±B+ (the quotient of h I + by the

diagonal action of Á , with Á acting on h by right multiplication) is proper.

In fact every proper h -space is locally induced from a finite group action:

Lemma 2.7. A h -space
U

is proper if and only if for every
¾ $ U there is a h -

invariant open subset
� ¢ U containing

U
, a finite subgroup Á of h , an Á -space+ , and a h -equivariant homeomorphism from
�

to h I ± + . OP
Many proofs involving proper spaces proceed by reducing the case of a general

proper h -space to the case of the local models h I ±:w , and hence to the case of
finite group actions, using the lemma.

Lemma 2.8. A locally compact h -space
U

is proper if and only if the map fromh I U to
U I U which takes

 } 9 ¾ � to
 } ¾ 9 ¾ � is a proper map of locally compact

spaces (meaning that the inverse image of every compact set is compact). OP
Example 2.7. If h is a discrete subgroup of a Lie group i , and if

�
is a compact

subgroup of i , then the quotient space i;´ � is a proper h -space.

2.12 Universal Proper G-Spaces

Definition 2.24. A proper h -space
U

is universal if for every proper h -space +
there exists a h -equivariant continuous map +Ê) U

, and if moreover this map is
unique up to h -equivariant homotopy.

It is clear from the definition that any two universal proper h -spaces are h -
equivariantly homotopy equivalent. For this reason let us introduce the notation ¦ h
for a universal proper h -space (with the understanding that different models for ¦ h
will agree up to equivariant homotopy).

Proposition 2.15 Let h be a countable discrete group. There exists a universal
proper h -space. OP
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Here is one simple construction (due to Kasparov and Skandalis [36]). Let
U �

be the space of (countably additive) measures on h with total mass K or less. This
is a compact space in the topology of pointwise convergence. Let

U 02 be the closed
subspace of

U � consisting of measures of total mass
�� or less. The set-theoretic

difference
U � U ��ï U 02 is a locally compact proper h -space which is universal.

In examples one can usually provide a much more concrete model. See [7] for
examples (and see also Lectures 4 and 5 below). The following result, which we shall
not prove, gives the general flavor of these constructions.

Proposition 2.7. Let  be a complete and simply connected Riemannian manifold
of nonpositive sectional curvature. If a discrete group h acts properly and isometri-
cally on  then  is a universal h -space. OP
Remark 2.9. The manifold here could be infinite-dimensional.

2.13 G-Compact Spaces

Definition 2.25. A proper h -space
U

is h -compact if there is a compact subset
� ¢U

whose translates under the h -action cover
U

.

If
U

is a h -compact proper h -space then
U

is locally compact and the quotientU ´lh is compact.

Definition 2.26. Let
U

be a h -compact proper h -space. A cutoff function for
U

is
a continuous function ð>C U )·� R 9 KT� such that

(a) Öx×eØ Ø  ðw� is compact, and
(b) � è Ù ß ð �  }�� ¾ �M��K , for all

¾ $ U .

Observe that the sum in (b) is locally finite. Every h -compact proper h -space ad-
mits a cutoff function. Moreover any two cutoff functions are, in a sense, homotopic:
if ð � and ð � are cutoff functions then the functionsð¢[\�òñ `0ð �� �  K ~ `x�1ð �� 9 `j$u� R 9 KS�
are all cutoff functions.

Lemma 2.9. Let ð be a cutoff function for the h -compact proper h -space
U

. The
formula ?  }�� �¾ �j�:ð  } ¡ � ¾ ��ð �¾ � t
defines a projection in � å  h 9 � å JU �x� , and hence in ���  h 9 U � . The

�
-theory class

of this projection is independent of the choice of cutoff function.

Remark 2.10. We are using here the streamlined notation ���  h 9 U � in place of���  h 9 � � �U ��� .
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Proof (Proof of the Lemma). A computation shows that ? is a projection (note that
the sum involved in the definition of ? is in fact finite). If ð � and ð � are cutoff func-
tions then associated to the homotopy of cutoff functions ðl[ defined above there is a
homotopy of projections ? [ , and therefore ð � and ð � give rise to the same

�
-theory

class, as required.

Definition 2.27. We will call the unique
�

-theory class of projections associated to
cutoff functions the unit class:� ? �n$ �" � �  h 9 U �x�>�� �  « 9 � �  h 9 U ��� t
Exercise 2.16 (See [54, Thm 6.1].) Let

U
be a proper h -space. Show that the full

and reduced crossed products �Q�  h 9 U � and �Q�ì  h 9 U � are isomorphic.
Hint: One approach is to show that if ½<$&�qå  h 9 �På �U �x� , and if KA�d½ is invertible in���ì  h 9 U � , then the inverse actually lies in K>�f�qå  h 9 �På �U �x� . It follows that Kj�"½
is invertible in �Q�  h 9 U � too, and therefore, the map ���  h 9 U ��) � ì  h 9 U � is
spectrum-preserving, and hence isometric.

Remark 2.11. As a result of the exercise, we can obviously define a unit class in�f ���ì  h 9 U �x� too.

2.14 The Assembly Map

In this section we shall further streamline our notation and write � ß �U 9 Ûb� in place
of � ß  � � �U � 9 Ûb� . Observe that � ß �U 9 Ûb� is covariantly functorial on the category
of h -compact proper h -spaces

U
.

Definition 2.28. Let h be a countable discrete group and let Û be a separable h -��� -algebra. The assembly mapó Ce� ß �U 9 Ûb�M) �" � �  h 9 Ûb�x�
is the composition� ß �U 9 Ûb� descent // �  � �  h 9 U � 9 � �  h 9 Ûb��� Ú 4<ô

// �  « 9 � �  h 9 Ûb�x�
where the first map is the descent homomorphism of Section 2.8 and the second is
composition with the unit class � ? ��$<�  « 9 �Q�  h 9 U �x� .
Definition 2.29. Let h be a countable group and let Û be a h - �	� -algebra. The
topological

�
-theory of h with coefficients in a h - ��� -algebra Û is defined by� [Hõ 4  h 9 Û��>� y}z}|~ )��öÏ÷ ßß -inv, ß -cpt

� ß �U 9 Ûb� 9
where the limit is taken over the collection of h -invariant and h -compact subspacesU ¢ ¦ h , directed by inclusion.
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To explain the limit, note that if
U ¢ø+ù¢ ¦ h are h -compact proper h -

spaces then
U

is a closed subset of + and restriction of functions defines a h -
equivariant Y -homomorphism from � �� +	� to � ��JU � . This induces a homomorphism
from � ß JU 9 Û�� to � ß  + 9 Ûb� .

If
U ¢:+�¢ ¦ h are h -compact proper h -spaces then under the restriction map

from �  « 9 ���  h 9 +V�x� to �  « 9 ���  h 9 U ��� the unit class for + maps to the unit class
for
U

; consequently the assembly maps for the various h -compact subsets of ¦ h are
compatible and pass to the direct limit:

Definition 2.30. The (full) Baum-Connes assembly map with coefficients in a sepa-
rable h - ��� -algebra Û is the mapó C � [Hõ 4  h 9 Ûb�>) �" � �  h 9 Û��x�
which is obtained as the limit of the assembly maps of Definition 2.28 for h -compact
subspaces

U ° ¦ h .

Definition 2.31. The reduced Baum-Connes assembly map with coefficients in a sep-
arable h - ��� -algebra Û is the mapó ì C � [Hõ 4  h 9 Ûb�>) �f � �ì  h 9 Ûb�x�
obtained by composing the full Baum-Connes assembly map ó with the map from�f ���  h 9 Ûb�x� to

�" ���ì  h 9 Û��x� induced from the quotient mapping from ���  h 9 Ûb�
onto ���ì  h 9 Ûb� .
Remark 2.12. If h is exact and if

U
is a h -compact proper h -space then there is a

reduced assembly map ó CÝ� ß  � �]�U � 9 Ûb�M) �f � �ì  h 9 Ûb�x� 9
defined by means of a composition� ß  � � �U � 9 Û�� descent // �  ���ì  h 9 U � 9 ���ì  h 9 Ûb�x� Ú 4Nô

// �  « 9 ���ì  h 9 Ûb���
involving the reduced descent functor of Section 2.9. The Baum-Connes assembly
map ó ì may then be equivalently defined as a direct limit of such maps.

2.15 Baum-Connes Conjecture

The following is known as the Baum-Connes Conjecture with coefficients (the ‘coef-
ficients’ being of course the auxiliary �Q� -algebra Û ).

Conjecture 2.1. Let h be a countable discrete group. The Baum-Connes assembly
map ó ì C � [Hõ 4  h 9 Ûb�>) �" � �ì  h 9 Ûb�x� t
is an isomorphism for every separable h - ��� -algebra Û .
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Not a great deal is known about this conjecture. We shall prove one of the main
results (which covers, for example, amenable groups) in the next section. Unfortu-
nately, thanks to some recent constructions of Gromov, the Baum-Connes conjecture
with coefficients appears to be false, in general. See Lecture 6.

In the next conjecture, which is the official Baum-Connes conjecture for dis-
crete groups, the coefficient algebra * is specialized to Û �À« and Û �À� �  R 9 KL� .
We shall use the notations

� [Hõ 4�  h�� and
� �  ���ì  h��x� to denote topological and �Q� -

algebra
�

-theory in these two cases (this of course is customary usage in
�

-theory).

Conjecture 2.2. Let h be a countable discrete group. The Baum-Connes assembly
map ó ì C � [Hõ 4�  h��>) � �  � �ì  h���� t
is an isomorphism.

Somewhat more is known about this conjecture, thanks largely to the remarkable
work of Lafforgue [44, 62]. For example, the conjecture is proved for all hyperbolic
groups (we shall define these in Lecture 5). What is especially interesting is that,
going beyond discrete groups, the Baum-Connes conjecture has now been proved for
all reductive Lie and ? -adic groups (this is part of what Lafforgue accomplished using
his Banach algebra version of bivariant

�
-theory, although by invoking a good deal

of representation theory many cases here had been confirmed prior to Lafforgue’s
work). Unfortunately we shall not have the time to discuss either Lafforgue’s work
or the topic of

�
-theory for non-discrete groups.

At the present time, the major open question seems to be whether or not the
Baum-Connes conjecture (with or without coefficients, according to one’s degree of
optimism) is true for discrete subgroups of connected Lie groups. Even the case of
uniform lattices in semisimple groups remains open.

Considerably more is known about the injectivity of the Baum-Connes assem-
bly map, and fortunately this is all that is required in some of the key applications
of the conjecture to geometry and topology. We shall say more about injectivity in
Lecture 5.

Remark 2.13. We shall discuss in Lecture 6 the reason for working with �	�  h 9 Ûb�
in place of �Q�ì  h 9 Û�� .
2.16 The Conjecture for Finite Groups

The reader can check for himself that the Baum-Connes conjecture is true (in fact it
is a tautology) for the trivial, one-element group. Next come the finite groups. Here
the conjecture is a theorem, and it is basically equivalent to a well-known result of
Green and Julg which identifies equivariant

�
-theory and the

�
-theory of crossed

product algebras in the case of finite groups. See [23, 35]. What follows is a brief
account of this.
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Theorem 2.17 (Green-Julg). Let h be a finite group and let Û be a h - �	� -algebra.
The Baum-Connes assembly mapó C � [Hõ 4  h 9 Ûb�>) �" � �  h 9 Û��x�
is an isomorphism for every h - ��� -algebra Û .

Remark 2.14. If h is finite then � �  h 9 Ûb�>��� �ì  h 9 Ûb� for every Û .

If h is a finite group then ¦ h can be taken to be the one point space. So the
theorem provides an isomorphism� ß  « 9 Ûb� Rð ú // �  « 9 ���  h 9 Ûb�x� t
The unit projection ? $%���  h�� which is described in Lemma 2.9 is the function?  } ���çK¢´ = h = , which is the central projection in �Q�  h�� corresponding to the trivial
representation of h (it acts as the orthogonal projection onto the h -fixed vectors in
any unitary representation of h ).

Theorem 2.17 is proved by defining an inverse to the assembly map ó . For this
purpose we note that �Q�  h 9 Ûb� may be identified with a fixed point algebra,���  h 9 Ûb� Rð // � Û�-bûÜ��¿  ã �  h����3� ß 9
by mapping T to � è Ù ß }��<T;- ? è (where ? è is the projection onto the functions sup-
ported on 5S}AB ) and by mapping } to Kj-yü  } � , where ü is the right regular represen-
tation (the fixed point algebra is computed using the left regular representation). The
displayed Y -homomorphism can be thought of as an equivariant Y -homomorphism
from ���  h 9 Ûb� , equipped with the trivial action of h , into ÛÚ-Bû���¿  ã �  h��x� . It
induces a homomorphism�  « 9 ���  h 9 Û��x� // � ß  « 9 Û�-bûÜ��¿  ã �  h����x� t
But the left hand side here is

�f ���  h 9 Ûb��� and the right hand side is
� [Hõ 4  h 9 Ûb� ,

and it is not difficult to check that the above map inverts the assembly map ó , as
required. For details see [27, Thm. 11.1].

2.17 Proper Algebras

Theorem 2.17 has an important extension to the realm of infinite groups, involving
the following notion:

Definition 2.32. A h - � � -algebra * is proper if there exists a locally compact properh -space
U

and an equivariant Y -homomorphism Z from � � �U � into the grading-
degree zero part of the center of the multiplier algebra of * such that ZG� � � JU �3�A�S*
is norm-dense in * .
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Remark 2.15. We shall say that * , as in the definition, is proper over ý . Throughout
the lecture we shall deal with proper algebras which are separable.

The notion of proper algebra is due essentially to Kasparov [38], in whose work
proper algebras appear in connection with é �r� -theory, a useful elaboration of�r�

-theory. We shall not develop é �r� here, or even its � -theoretic counterpart.
While this limits the amount of machinery we must introduce, it will also make some
of the arguments in this and later lectures a little clumsier than they need be.

Examples 2.18 If h is finite every h - �Q� -algebra is proper over the one point space.
If ý is a proper h -space then � �  ý�� is a proper h - �Q� -algebra. If * is proper overý then, for every h - �Q� -algebra Û , the tensor product *<Ã-�Û is also proper.

Exercise 2.5. Prove that if * is proper then � �  h 9 *��>��� �ì  h 9 *	� .
A guiding principle is that the action of a group on a proper algebra is more or

less the same thing as the action of a finite group on a � � -algebra. With this in mind
the following theorem should not be surprising.

Theorem 2.19. [27, Theorem 13.1] Let h be a countable discrete group and let *
be a proper h - �Q� -algebra. The Baum-Connes assembly mapó C � [Hõ 4  h 9 *	�>) �" � �  h 9 *	�x�
is an isomorphism.

Remark 2.16. Thanks to Exercise 2.5, the assembly map ó ì into
�" ���ì  h 9 *��x� is an

isomorphism as well.

The proof of Theorem 2.19 is not difficult, but with the tools we have to hand it is
rather long. So we shall just give a quick outline. The following computation is key
not just to the proof of Theorem 2.19 but also to a number of results in Lecture 5.

Proposition 2.8. [27, Lemma 12.11] Let Á be a finite subgroup of a countable grouph and let w be a locally compact space equipped with an action of Á by homeo-
morphisms. If Û is any h - �Q� -algebra there is a natural isomorphism� ±  � �  w6� 9 Ûb� �� � ß  � �  h I ± w6� 9 Û�� 9
where on the left hand side Û is viewed as an Á - ��� -algebra by restriction of theh -action.

Proof. The space w is included into h I ±Qw as the open set 5 F B I w , and as a
result there is an Á -equivariant map from � �] w6� into � �� h I ±yw6� . Composition
with this map defines a ‘restriction’ homomorphism� ß  � �  h I ± w6� 9 Ûb��þ ÷0ÿ // � ±  � �  w6� 9 Ûb�
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To construct an inverse, the important observation to make is that every Á -equi-
variant asymptotic morphism from � �] w6� into Û extends uniquely to a h -equi-
variant asymptotic morphism from � �� h I ± w6� into Ûu-V¸  ã �  hQ´:Ár��� . Decorating
this construction with copies of » and ¸  ¶H� we obtain an inverse map� ±  � �  w6� 9 Ûb� // � ß  � �  h I ± w6� 9 Ûb�
as required.

Proposition 2.8 has the following immediate application:

Lemma 2.10. Let h be a countable group. If the assembly mapó C � [Hõ 4  h 9 *	�>) �" � �  h 9 *��x�
is an isomorphism for every h - �Q� -algebra * which is proper over a h -compact
space ý , then it is an isomorphism for every h - ��� -algebra.

Proof. Every proper algebra is a direct limit of h - ��� -algebras which are proper
over h -compact spaces. Since

�
-theory commutes with direct limits (see Exer-

cise 1.4), as does the crossed product functor, to prove the lemma it suffices to prove
that the same is true for the functor ÛÜ,) � [Hõ 4  h 9 Ûb� . In view of the definition
of
� [Hõ 4  h 9 Ûb� it suffices to prove that if ý is a h -compact proper h -simplicial

complex then the functor � ß  � �  ý�� 9 Ûb� commutes with direct limits. By a Mayer-
Vietoris argument the proof of this reduces to the case where ý is a proper homoge-
neous space hQ´:Á . But here we have a sequence of isomorphisms� ß  � �� hQ´lÁr� 9 Ûb�>�� �q±  « 9 Ûb���� �" � �  h 9 Û��x� 9
the first by Proposition 2.8 and the second by Theorem 2.17. Since

�
-theory com-

mutes with direct limits the lemma is proved.

Lemma 2.11. Let h be a countable group. If the assembly mapó C � [Hõ 4  h 9 *	�>) �" � �  h 9 *��x�
is an isomorphism for every h - �Q� -algebra * which is proper over a proper homo-
geneous space ý6��hQ´:Á then it is an isomorphism for every h - � � -algebra which
is proper over a h -compact proper h -space.

Proof. This is another Mayer-Vietoris argument, this time in the * -variable. Observe
that if * is proper over ý then to each h -invariant open set

�
in ý there corresponds

an ideal
/ � � �w	� �;��* of * . Using this, together with the long exact sequences

in � -theory and the five lemma, an induction argument can be constructed on the
number of h -invariant open sets needed to cover ý , each of which admits a h -map
to a proper homogeneous space.
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The proof of Theorem 2.19 therefore reduces to the case where * is proper over
some proper homogeneous space hQ´lÁ . Observe now that if * is proper over hQ´lÁ
then * is a direct sum of ideals corresponding to the points of hQ´:Á , and the ideal *��
corresponding to

F Á is an Á - ��� -algebra . The proof is completed by developing a
variant of the isomorphism in Proposition 2.8, and producing a commuting diagram� [Hõ 4  h 9 *	�Rð

��

ú // �f ���  h 9 *	�x�Rð
��� [Hõ 4  Á 9 *��S� úRð // �f ���  Á � 9 *���� t

See [27, Chapter 12] for details.

2.18 Proper Algebras and the General Conjecture

The following simple theorem provides a strategy for attacking the Baum-Connes
conjecture for general coefficient algebras. The theorem, or its extensions and rel-
atives, is invoked in nearly all approaches to the Baum-Connes conjecture. As we
shall see in Lecture 5 the theorem is particularly useful as a tool to prove results
about the injectivity of the Baum-Connes map.

Theorem 2.20. Let h be a countable discrete group. Suppose there exists a properh - ��� -algebra * and morphisms
� $"� ß  « 9 *�� and o$f� ß  * 9 «N� in the equiv-

ariant � -theory category such that�� � ��K�$<� ß  « 9 «ß� t
Then the Baum-Connes assembly map ó C � [Hõ 4  h 9 Ûb�u) �f ���  h 9 Û��x� is an
isomorphism for every separable h - �Q� -algebra Û . If in addition h is exact then
the reduced Baum-Connes assembly mapó ì C � [Hõ 4  h 9 Ûb�>) �f � �ì  h 9 Ûb�x�
is an isomorphism.

Proof. Let h be a countable discrete group, let Û be a separable h - � � -algebra and
let  and

�
be as in the statement of the theorem. Consider the following diagram:� [Hõ 4  h 9 «�Ã-�Ûb� ú //£ � ��

�f ���  h 9 «�Ã-	Ûb���£ ���� [Hõ 4  h 9 * Ã-�Ûb� úR ð //� � ��

�" ���  h 9 * Ã-�Ûb���� ���� [Hõ 4  h 9 «�Ã-�Ûb� ú // �f ���  h 9 «ßÃ-VÛb��� t



Group C*-Algebras and K-theory 195

The horizontal maps are the assembly maps; the vertical maps are induced from � -
theory classes

� -ÀKf$À� ß  « Ã-	Û 9 * Ã-�Ûb� and �-ÀK¨$%� ß  * Ã-�Û 9 « Ã-	Ûb� . The
diagram is commutative. Since the � � -algebra * is proper, so is the tensor product* Ã-�Û and therefore by the Theorem 2.19 the middle horizontal map is an isomor-
phism. By assumption, the compositions of the vertical maps on the left, and hence
also on the right hand side are the identity. It follows that the top horizontal map is
an isomorphism too. The statement concerning reduced crossed products is proved
in exactly the same way.

2.19 Crossed Products by the Integers

In this section we shall apply the approach outlined in the previous section to just
about the simplest example possible beyond finite groups: the free abelian grouphÊ��³ ! . What follows will serve as a model for the more elaborate constructions
in the next lecture. For this reason it might be worth the reader’s while to study the
present case quite carefully.

Let h act by translations on
¼ ! in the usual way and then let h act on the graded��� -algebra � 8¼ ! � that we introduced in Lecture 1 by

 }���½��  � �>��½  }�� � � .
Exercise 2.6. With this action of the free abelian group ³ ! , the ��� -algebra � 8¼ ! � is
proper.

We are going to produce a factorization

« £ //

�
��� J¼ ! � � // «

in ³ ! -equivariant � -theory. The elements  and
�

are very small modifications of
the objects we defined in Lecture 1 while studying Bott Periodicity.

Definition 2.33. Denote by
� C�»È) � 8¼ ! � the Y -homomorphism that was in-

troduced in Definition 1.26, and for `�' K denote by
� [ C�»ú) � J¼ ! � the Y -

homomorphism
� [  ½��M� �  ½ [ � , where ½ [ �¾ �>��½  ` ¡ � ¾ � .

Thus
� [  ½��M��½  ` ¡ � �(� , where � is the Clifford operator introduced in Lecture 1.

Lemma 2.12. The asymptotic morphism
� C]»QAAFCÛ� J¼ ! � given by the above family

of Y -homomorphisms
� []C]»¨)Ø� J¼ ! � is ³ ! -equivariant.

Proof. We must show that if ½&$�» and }�$<³ ! theny}z{|[HGJI Ô ½  ` ¡ � �(� ~ }  ½  ` ¡ � �(�x�x� Ô ��R t
Since the set of all ½X$D» for which this holds (for all } ) is a ��� -subalgebra of » it
suffices to prove the limit formula for the generators ½r� J¾�� ± � ¡ � of » . For these
we have
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by the resolvent identity. Since the Clifford algebra-valued function � ~ }  �(� is
bounded on

¼ ! the lemma is proved.

Definition 2.34. Denote by
� $À��� Î  « 9 � J¼ ! �x� the class of the asymptotic mor-

phism
� C]»QASAFCÛ� J¼ ! � .

Definition 2.35. If }X$�³ ! and � $ ¼ ! , and if
� $�� R 9 KT� , then denote by }�� � � the

translation of � by
� }X$ ¼ ! . Denote by }�� � ½ the corresponding action of }X$�³ !

on elements of the �Q� -algebra � 8¼ ! � and also on operators on the Hilbert space¶ J¼ ! � that was introduced in Definition 1.27.

To define the class f$r��� Î  � 8¼ ! � 9 «\� that we require we shall use the asymp-
totic morphism �C�»(Ã-�� J¼ ! �°ANAeCV¸  ¶ 8¼ ! �x� that we defined in Proposition 1.5, but
we shall interpret it as an equivariant asymptotic morphism in the following way:

Lemma 2.13. If ½MÃ-��<$�»�Ã-�� 8¼ ! � , }�$H³ ! , and `;$X� K 9<; � theny}z}|[HGJI Ô  [  ½MÃ-q}c�Ð�Ý� ~ }Q� [ ¸ 0  [  ½NÃ-��A� Ô ��R t
Proof. The Dirac operator Û is translation invariant, and so }D� [ ¸ 0 ½  ` ¡ � Ûb���½  ` ¡ � Ûb� for all ` . But }d� [ ¸ 0  b� � �^ ö è�� � ø � for all ` . The lemma therefore fol-
lows from the formula n[  ½ Ã-U�Ý�M��½  ` ¡ � Ûb�� b� �
for the asymptotic morphism  .

Definition 2.36. Denote by Ê$À��� Î  � J¼ ! � 9 «N� the � -theory class of the equiv-
ariant asymptotic morphism �CE»QÃ-�� J¼ ! �zAAFCç¸  ¶ J¼ ! ��� , where ¸  ¶ J¼ ! �x� is
equipped with the family of actions

 } 9 �e�M,)Ø}Q� [ ¸ 0 � (compare Remark 2.6).

Proposition 2.21 Continuing with the notation above, �� � �6K�$<� � Î  « 9 «ß� .
Proof. Let

� $Ê� R 9 KS� and denote by � � 8¼ ! � the � � -algebra � J¼ ! � , but with the
scaled ³ ! -action

 } 9 �A�M,)Ø}\� � � . The algebras � � J¼ ! � form a continuous field of ³ ! -��� -algebras over the unit interval (since the algebras are all the same this just means
that the ³ ! -actions vary continuously). Denote by � Ú � ï � ô J¼ ! � the ³ © - ��� -algebra of
continuous sections of this field (namely the continuous functions from � R 9 KT� into� 8¼ ! � , equipped with the ³ © -action

 }Q�D�A� �� �>�`}�� ��� Ä� � ) . In a similar way, form
the continuous field of ³ © - ��� -algebras ¸ �  ¶ J¼ ! ��� and denote by ¸ Ú � ï � ô  ¶ J¼ ! �x�the ³ © - ��� -algebra of continuous sections. With this notation, what we want to prove
is that the composition « £ // � � J¼ ! � � // «
is the identity in equivariant � -theory.
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The asymptotic morphism �C�» Ã-�� J¼ ! � //___ ¸  ¶ J¼ ! �x� induces an asymp-
totic morphism ��C]» Ã-�� Ú � ï � ô 8¼ ! � //___ ¸ Ú � ï � ô  ¶ J¼ ! ��� 9
and similarly the asymptotic morphism

� C]» //___ � 8¼ ! � determines an asymp-
totic morphism �� C�» //___ � Ú � ï � ô 8¼ ! �
by forming the tensor product of

�
with the identity on �V� R 9 KS� and then composing

with the inclusion »Y¢®»�� R 9 KS� as constant functions. Consider then the diagram of
equivariant � -theory morphisms«ð

��

�£ // � Ú � ï � ô J¼ ! �� Ê��

�� // �V� R 9 KT�� Ê��« £ // ��� J¼ ! � � // «
9

where �¾� denotes the element induced from evaluation at
� $ç� R 9 KT� . Observe that�ç� is an isomorphism in equivariant � -theory, for every
�

(indeed, ��� , considered
as a Y -homomorphism, is an equivariant homotopy equivalence). Set

� � R . In
this case the bottom composition is the identity element of � � Î  « 9 «ß� . This is be-
cause when

� � R the action of ³ ! on
¼ ! is trivial and the asymptotic morphism� C]» //___ � ��8¼ ! � is homotopic to the (trivially equivariant) Y -homomorphism� C�»�)�� J¼ ! � of Definition 1.26. So the required formula  � � �ÀK follows from

Proposition 2.4. Since the bottom composition in the diagram is the identity it fol-
lows that the top composition is an isomorphism too.11 Now set

� �%K . Since, as we
just showed, the top composition in the diagram is the identity, it follows that the
bottom composition is the identity too. The proposition is proved.

3 Groups with the Haagerup Property

3.1 Affine Euclidean Spaces

Recall that we are using the term Euclidean vector space to refer to a real vector
space equipped with a positive-definite inner product. In this lecture we shall be
studying Euclidean spaces of possibly infinite dimension.

Definition 3.1. An affine Euclidean space is a set � equipped with a simply-transitive
action of the additive group underlying a Euclidean vector space k . An affine sub-
space of � is an orbit in � of a vector subspace of k . A subset

U
of � generates �

if the smallest affine subspace of � which contains
U

is � itself.�Í�
It is the identity once a 	 
����� is identified with � via evaluation at any � , or equivalently
once a 	 
����� is identified with � via the inclusion of � into a 	 
����� as constants.
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Remark 3.1. Note that even if � is infinite-dimensional we are not assuming any
completeness here (and moreover affine subspaces need not be closed).

Example 3.1. Every Euclidean vector space is of course an affine Euclidean space
(over itself).

The following prescription makes � into a metric space.

Definition 3.2. Let � be an affine Euclidean space over the Euclidean vector spacek . If
F �:9 F � $u� , and if � is the unique vector in k such that

F � � � � F � , then we
define the distance between

F � and
F � to be T JF � 9 F � �j� Ô � Ô .

Let ý be a subset of an affine Euclidean space � and let �AC�ý I ý ) ¼
be

the square of the distance function: � J� � 9 � � �H��T � 8� � 9 � � � . This function has the
following properties:

(a) � 8� 9 � �N��R , for all
� $*ý ,

(b) � 8� �¢9 � � �M��� 8� �l9 � � � , for all
8� �¢9 � � �G$lý I ý , and

(c) for all g , all
� �:9 t�tSt 9 � !�$%ý , and all

7 �:9 tSt�t 9 7 !�$ ¼ such that � !¯ ð � 7 ¯ �'R ,!Õ¯ ï � ð � 7 ¯ � J� ¯ 9 �S� � 7�� s�R t
(To prove the inequality, identify � with k and identify the sum with the quantity~ µ Ô � !¯ ð � 7 ¯ � ¯ Ô � .)
Proposition 3.1. Let ý be a set and let �AC�ý I ý�) ¼

be a function with the above
three properties. There is a map

È C�ý')+� of ý into an affine Euclidean space such
that the image of ½ generates � and such that� 8� �:9 � � �>�QT � HÈ�8� � � 9 È�J� � �x� 9
for all

� � 9 � � $*ý . If
È â�CÏý�)+�Qâ is another such map into another Euclidean space

then there is a unique isometry ��CÝ� )£�Qâ such that � HÈ�8� ���Q� È â 8� � , for every� $%ý .

Proof. Denote by
¼\� � ý�� the vector space of finitely supported, real-valued functions

on ý which sum to zero:¼ � � ý��E�o5c½&$ ¼ � ý���C Õ ½ 8� �N��RGB
If we equip

¼c� � ý�� with the positive semidefinite formÆ�½ �¢9 ½ � Ç � ~ Kµ Õ� 0 ï � 2 Ù � ½ J� � �x� 8� �:9 � � ��½ J� � �
then the set of all ½o$ ¼ � � ý�� for which Æ8½ 9 ½ Ç � R is a vector subspace

¼ �� � ý�� of¼n� � ýG� (this is thanks to the Cauchy-Schwarz inequality) and the quotient
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has the structure of a Euclidean vector space. Consider now the set of all finitely
supported functions on ý which sum to K . Let us say that two functions in this set
are equivalent if their difference belongs to

¼ �� � ýG� . The set of equivalence classes is
then an affine Euclidean space � over k . If

È C¼ý')¿� is defined by
È�J� �M��� � thenT � HÈ�J� � � 9 È�J� � ���;��� J� �L9 � � � , as required. If

È âSC�ý®)õ��â is another such map then
the unique isometry � as in the statement of the lemma is given by the formula�  ½��M� Õ ½ J� � È â J� �
(note that in an affine space one can form linear combinations so long as the coeffi-
cients sum to K ).
Exercise 3.1. Justify the parenthetical assertion at the end of the proof. Prove that if� is an isometry of affine Euclidean spaces thenÕ 7 ¯ �6K � �  Õ 7 ¯ F ¯ �M� Õ 7 ¯ � 8F ¯ � t
This completes the uniqueness argument above.

Definition 3.3. Let ý be a set. A function �AC�ý I ý') ¼
is a negative-type kernel if� has the properties (a), (b) and (c) listed prior to Proposition 3.1.

Thus, according to the proposition, maps into affine Euclidean spaces are classi-
fied, up to isometry, by negative-type kernels.

3.2 Isometric Group Actions

Let � be an affine Euclidean space and suppose that a group h acts on � by isome-
tries. If

F
is any point of � then the function }d,)M}V� F maps h into � , and there is

an associated negative-type function�  } �:9 } � �M�QT �  } � � F 9 } � � F � t
Since h acts by isometries the function � is h -invariant, in the sense that�  } �L9 } � �M���  }¾} �¢9 } } � � 9 j } 9 } ��9 } � $<h 9
and as a result it is determined by the one-variable function �  } �>�o� JF 9 }�� , which is
a negative-type function on h in the sense of the following definition.

Definition 3.4. Let h be a group. A function �ACAh§) ¼
is a negative-type function

on h if it has the following three properties:

(a) � JF �M��R ,
(b) �  } �M���  } ¡ � � , for all }�$<h , and
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(c) � !¯ ï � ð � 7 ¯3�  } ¡ �¯ } � � 7 � súR , for all g , all } � 9 tSt�t 9 } ! $ U ,
� ¯"$òh and all7 �¢9 tStSt 7 !d$ ¼ such that � !¯ ð � 7 ¯ ��R .

Proposition 3.2. Let h be a set and let � be a negative-type function on h . There is
an isometric action of h on an affine Euclidean space � and a point

F $H� such that
the orbit of

F
generates � , and such that�  } �N�QT � JF 9 }�� F � 9

for all }b$dh .

Proof. Let � be the affine space associated to the kernel �  } � 9 } � �M���  } ¡ �� } � � , as in
the statement of Proposition 3.1. There is therefore a map from h into � , which we
shall write as }V,) �} , whose image generates � , and for which�  } �L9 } � �>�QT �  �} �:9 �} � � t
Fix �d$<h and consider now the map }V,) �¶} . Since�  } � 9 } � �M�#T �  �} � 9 �} � �M�QT �  �4} � 9 �¶} � �
it follows from the uniqueness part of Proposition 3.1 that there is a (unique) isometry
of � mapping �} to �4} . The map which associates to �À$%h this isometry is the
required action, and

F � �F is the required point in � .

Remark 3.2. There is also a uniqueness assertion: if �	â is a second affine Euclidean
space equipped with an isometric h -action, and if

F â�$H� is a point such that �  } �M�T 8F â 9 }	� F âã� � , for all }H$rh , then there is a h -equivariant isometry �ßCÝ�À)���â such
that � JF �M� F â .
Remark 3.3. Proposition 3.2 is of course reminiscent of the GNS construction in �V� -
algebra theory, which associates to each state of a ��� -algebra a Hilbert space repre-
sentation and a unit vector in the representation space.

Exercise 3.2. Let � be an affine Euclidean space over the Euclidean vector spacek . Suppose that a group h acts on � by isometries. Show that there is a linear
representation v of h by orthogonal transformations on k such that}Q� 8F � � �j��}Q� F ��v  } � � 9
for all }b$dh , all

F $d� , and all � $lk .

Exercise 3.3. According to the previous exercise, if k is viewed as an affine space
over itself then for every isometric action of h on k there is a linear representationv of h by orthogonal transformations on k such that}Q� � ��}Q�LR��uv  }�� � t
Show that for every

� $X� R 9 KS� the ‘scaled’ actions }ß� � � � �w }ß�1Rw�]�<v  } �  � � are also
isometric actions of h on � .
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3.3 The Haagerup Property

Definition 3.5. Let h be a countable discrete group. An isometric action of h on an
affine Euclidean space � is metrically proper if for some (and hence for every) pointF

of � , y{z}|è GJI T JF 9 }�� F �M� ; t
In other words,an action is metrically proper if for every é�ë R there are only finitely
many }�$<h such that T JF 9 }�� F �°s é .

Definition 3.6. A countable discrete group h has the Haagerup property if it admits
a metrically proper isometric action on an affine Euclidean space.

In view of Proposition 3.2, the Haagerup property may characterized as follows:

Proposition 3.3. A group h has the Haagerup property if and only if there exists onh a proper, negative-type function �ACAhÞ) ¼
(that is, a negative-type function for

which the inverse image of each bounded set of real numbers is a finite subset of h ).OP
Groups with the Haagerup property are also called (by Gromov [5]) a-T-menable.

This terminology is justified by the following two results. The first is due to Bekka,
Cherix and Valette [8].

Theorem 3.1. Every countable amenable group has the Haagerup property.

Proof. A function ZQCÝh6)¿« is said to be positive-definite if Z JF �>��K ,12 if Z  }��j�Z  } ¡ � � , and if for all } � 9 t�tSt 9 } ! $dh , and all ý � 9 tSt�t 9 ý ! $<« ,!Õ¯ ï � ð � �ý ¯ Z  } ¡ �¯ } � �xý � '¨R t
Observe that if Z is positive-definite then K ~�� ¦ Z is a negative-type function. Now
one of the many characterizations of amenability is that h is amenable if and only
if there exists a sequence 5¢ZN!AB of finitely supported positive-definite functions on h
which converges pointwise to the constant function K . Given such a sequence we can
find a subsequence such that the series � m  K ~�� ¦ Z\! u � converges at every point ofh . The limit is a proper, negative-type function.

The next result is essentially due to Delorme [18].

Theorem 3.2. If h is a discrete group with Kazhdan’s property º , and if h has in
addition the Haagerup property, then h is finite.�8�

This normalization is not always incorporated into the definition, but it is convenient here.
We should also remark that the next condition ��d�� i _���d���� � i is actually implied by the
condition  g!#" $�% �'&( ! ��d�� � �! � $ i ( $�) 
 .
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Proof. If h has property º then every isometric action of h on an affine Hilbert
space has a fixed point (this is Delorme’s theorem).13 But if an isometric action has
a fixed point it cannot be metrically proper, unless h is finite.

Remark 3.4. The reader is referred to [17] for a comprehensive introduction to the
theory of property º groups. We shall also return to the subject in the last lecture.

Various classes of discrete groups are known to have the Haagerup property. Here
is an incomplete list.* Amenable groups (see above),* Finitely generated free groups [30], or more generally, groups which act properly

on locally finite trees.* Coxeter groups [9],* Discrete subgroups of
�,+V g 9 K¢� and

�Ü�V g 9 K¢� [56, 55],* Thompson’s groups [20, 51].

For more information about the Haagerup property consult [12].

3.4 The Baum-Connes Conjecture

The main objective of this lecture is to discuss the proof of the following theorem:

Theorem 3.3. Let h be a countable discrete group with the Haagerup property.
There exists a proper h - �Q� -algebra * and � ß -theory elements  $a� ß  * 9 «N�
and

� $H� ß  « 9 *	� such that  � � �6K($H� ß  « 9 «ß� .
Thanks to the theory developed in the last lecture this has the following conse-

quence:

Corollary 3.1. Let h be a countable discrete group with the Haagerup property and
let Û be a h - � � -algebra. The maximal Baum-Connes assembly map with coeffi-
cients in Û is an isomorphism. Moreover if h is exact then the reduced Baum-Connes
assembly map with coefficients in Û is also an isomorphism

Remark 3.5. The theorem and its corollary are also true for locally compact groups
with the Haagerup property.

Remark 3.6. In fact the final conclusion is known to hold whether or not h is exact,
but the proof involves supplementary arguments which we shall not develop here.
In any case, perhaps the most striking application of the corollary is to amenable
groups, and here of course the full and reduced assembly maps are one and the same
(since the full and reduced crossed product ��� -algebras are one and the same).

In connection with the last remark it is perhaps worth noting that the following
problem remains unsolved:

Problem 3.4 Is every countable discrete group with the Haagerup property �V� -
exact?�J¬

In fact the converse is true as well.
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3.5 Proof of the Main Theorem, Part One

Let � be an affine Euclidean space equipped with a metrically proper, isometric
action of a countable group h . In this section we shall build from � a proper h - �	� -
algebra -  �Q� . In the next section we shall construct equivariant � -theory elements and

�
, as in Theorem 3.3, and in Section 3.7 we shall prove that �� � ��K .

Notation 3.5 From here on we shall fix an affine Euclidean space � over a Eu-
clidean vector space k . We shall be working extensively with finite-dimensional
affine subspaces of � , and we shall denote these by � Ç , � Æ and so on. We shall
denote by k Ç the vector subspace of k corresponding to the finite-dimensional affine
subspace � Ç . If � Ç ¢"� Æ then we shall denote by k Æ�Ç the orthogonal complement of� Ç in � Æ . This is the orthogonal complement of k Ç in k Æ . Note that� Æ ��k Æ3Ç �f� Ç 9
and that this is a direct sum decomposition in the sense that every point of � Æ has a
unique decomposition

F Æ � � Æ3Ç � F Ç .
The following definition extends to affine spaces a definition we previously made

for linear spaces. The change is only very minor.

Definition 3.7. Let � Ç be a finite-dimensional affine Euclidean subspace of � . Let�  � Ç �>��� �  � Ç 9 mjy}zon  k Ç ��� .
Here is the counterpart of Proposition 1.13:

Lemma 3.1. Let � Ç ¢ � Æ be a nested pair of finite-dimensional subspaces of � .
The correspondence �Þ� � � Ã-|� � , where �  � � F �H�M� �  � �¹� � 8F � determines an
isomorphism of graded ��� -algebras�  � Æ �M�� �  k Æ3Ç ��Ã-��  � Ç � t OP

In Lecture 1 we made extensive use of the Clifford operator � . Recall that this
was the function �  � �&� � from the Euclidean vector space k into the Clifford
algebra mjy{z�n  k�� . In the present context of affine spaces the Cliiford operator is not
generally available since to define it we have to identify affine spaces with their
underlying vector spaces, and we want to avoid doing this, at least for now. But we
shall work with Clifford operators associated to various vector spaces which appear
as orthogonal complements.

The following is a minor variation on Definition 1.26.

Definition 3.8. Let k Ç be a finite-dimensional linear subspace of k and denote by� Ç the corresponding Clifford operator. Define a Y -homomorphism� Ç C]»¨)æ»(Ã-�� /.10 �
by the formula � Ç  ½��M��½ JU Ã-QKj�'K Ã-�� Ç � t
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Remark 3.7. The definition uses the language of unbounded multipliers. An alterna-
tive formulation, using the ‘comultiplication’ å , is that

� Ç is the composition» ì // »�Ã-�» �Síî £ // » Ã-�� 2. 0 � 9
where

� C]»")�� 2.10 � is the Y -homomorphism
�  ½��M��½  � Ç � of Definition 1.26.

We are now going to construct a �Q� -algebra -  ��� as a direct limit of �Q� -
algebras »(Ã-��  Å 0 � associated to finite-dimensional affine subspaces � Ç of � .

Definition 3.9. Let � Ç ¢'� Æ be a nested pair of finite-dimensional affine subspaces
of � . Define a Y -homomorphism� Æ ï Ç Cl» Ã-��  Å 0 �M)æ» Ã-��  Å43J�
by using the identification »QÃ-��  Å53J� �� »�Ã-�� 2. 3 0 ��Ã-��  Å 0 � and the formula»(Ã-��  Å 0 �76�5�Ã-®Æ�,~ ) � 3 0  5:��Ã-®Æ"$�»�Ã-�� 2. 3 0 ��Ã-��  Å 0 � �� »(Ã-��  Å53J� 9
where

� Æ3Ç C�»")^» Ã-�� 2. 3 0 � is the Y -homomorphism of Definition 3.8.

Lemma 3.6 Let � Ç ¢ � Æ ¢ ��å be finite-dimensional affine subspaces of � . We
have

� å ï Æ � � Æ ï Ç � � å ï Ç .
Proof. Compute using the generators � �¾ �j� F ¡ Ò 2 and � J¾ �;� ¾ÝF ¡ Ò 2 of » .

As a result the graded �Q� -algebras »�Ã-��  Å 0 � , where � Ç ranges over the finite-
dimensional affine subspaces of � , form a directed system, as required, and we can
make the following definition:

Definition 3.10. Let � be an affine Euclidean space. The ��� -algebra of � , denoted-  �Q� , is the direct limit �Q� -algebra-  ���>� y{z}|~ )8:9�;'8
fin. dim.

affine sbsp.

»�Ã-��  Å 0 � t
An action of h by isometries on � makes -  �Q� into a h - ��� -algebra. To see

this, first define Y -isomorphisms} � � C��  � Ç �M)Ø�  }]� Ç �
by
 } � � ½�� 8F ���)} � x ½  } ¡ � F �x� , where here } � CUmjy{z�n  k Ç ��)Wmjy{z�n  }¶k Ç � is induced

from the linear isometry of k associated to }jCe��)+� (see Exercise 3.2).
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Lemma 3.7 The following diagram commutes:»(Ã-��  Å 0 � £�<>= 9 //�Síî è �¹� ��

»�Ã-��  Å53���Síî è �1���»(Ã-��  BFÅ 0 � £�?@<>= ? 9 // » Ã-��  BDÅ43J� tOP
The lemma asserts that the maps } � � are compatible with the maps in the directed

system which is used to define -  �Q� . Consequently, we obtain a map } �É� on the
direct limit. In this way -  �Q� is made into a h - ��� -algebra, as required.

Theorem 3.8. Let � be an affine Euclidean space equipped equipped with a metri-
cally proper action of a countable discrete group h . Then the �	� -algebra -  �Q� is a
proper h - �Q� -algebra.

Proof. Denote by A  � Ç � the grading-degree zero part of the center of the ��� -algebra» Ã-��  Å 0 � . It is isomorphic to the algebra of continuous functions, vanishing at infin-
ity, on the locally compact space � R 9N; � I � Ç . The linking map

� Æ ï Ç embeds A  � Ç �
into A  � Æ � , and so we can form the direct limit A  ��� , which is a ��� -subalgebra
of -  �Q� , and is contained in the grading-degree zero part of the center of -  ��� (in
fact it is the entire degree zero part of the center). The ��� -subalgebra A  �Q� has the
property that A  �Q�\�B-  �Q� is dense in -  �Q� . The Gelfand spectrum of A  �Q� is the
locally compact space ýo�§� R 9<; � I � , where � is the metric space completion of� and ý is given the weakest topology for which the projection to � is weakly con-
tinuous14 and the function ` � �`T � JF � 9 F � is continuous, for some (hence any) fixedF � $'� . If h acts metrically properly on k then the induced action on the locally
compact space ý is proper.

Remark 3.8. The above elegant argument is due to G. Skandalis.

3.6 Proof of the Main Theorem, Part Two

In this section we shall assume that � is a countably infinite-dimensional affine Eu-
clidean space on which h acts by isometries (this simplifies one or two points of our
presentation). For later purposes it will be important to work with actions which are
not necessarily proper. Note however that if h has the Haagerup property then h will
act properly and isometrically on some countably infinite-dimensional affine space� .

We are going to construct classes u$<� ß  -  �Q� 9 «M� and
� $H� ß  « 9 -  �Q�x� . We

shall begin with the construction of
�

, and for this purpose we fix a point
F � $"� .� Ð

Observe that C is an affine space over the Hilbert space D ; by identifying C as an orbit ofD we can transfer the weak topology of the Hilbert space D to C .
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This point is, by itself, an affine subspace of � , and there is therefore an inclusionY -homomorphism � C]»¨)E-  Åc� t
The image of

�
lies in all those subalgebras » Ã-��  Å 0 � for which

FL� $a� Ç , and
considered as a map into » Ã-��  Å 0 � the Y -homomorphism

�
is given by the formula� Ce½d,)ê½  � Ç ï � � 9

where � Ç ï � Ce� Ç )�mjy{z�n  k Ç � is defined by � Ç ï �w8F �M� F ~ FL� $lk Ç .
Lemma 3.2. If

� C]»QANADCF-  Ån� is the asymptotic morphism defined by� [  ½��M� �  ½ [ � 9
where ½:[ �¾ �>��½  ` ¡ � ¾ � , then

�
is h -equivariant.

Proof. We must show that if
F �

and
F � are two points in a finite-dimensional affine

space � Ç , then for every ½r$b» ,y{z}|[HGxI Ô ½  ` ¡ � � Ç ï � � ~ ½  ` ¡ � � Ç ï � � Ô ��R 9
where � Ç ï � is as above and similarly � Ç ï � JF ��� F ~ F � . It suffices to compute the
limit for the functions ½ �¾ �>� �¾Û� ± � ¡ � . For these one hasÔ ½  ` ¡ � � Ç ï � � ~ ½  ` ¡ � � Ç ï � � Ô ��` ¡ � Ô � Ç ï � ~ � Ç ï � Ô �'` ¡ � T JFL� 9 F � � t
The proof is complete.

Definition 3.11. The element
� $X� ß  « 9 -  ���x� is the � -theory class of the equiv-

ariant asymptotic morphism
� C]»QANADCG-  Ån� defined by

� [ CÝ½H,) �  ½ [ � .
The definition of  is a bit more involved. It will be the � -theory class of an

asymptotic morphism �CH-  ���PANADC	¸  ¶  �Q��� 9
and our first task is to associate a Hilbert space ¶  �Q� to the infinite-dimensional
affine Euclidean space � . We begin by broadening Definition 1.27 to the context of
affine spaces.

Definition 3.12. Let � Ç be a finite-dimensional affine subspace of � , with associ-
ated linear subspace k Ç . The Hilbert space of � Ç is the space of square integrablemjy{z�n  k Ç � -valued functions on � Ç :¶  � Ç �M��i �  � Ç 9 mjy{z�n  k Ç ��� t
This is a graded Hilbert space, with grading inherited from that of mjy}zon  k Ç � .

The following is the Hilbert space counterpart of Lemma 3.1.
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Lemma 3.3. Let � Ç ° � Æ be a nested pair of finite-dimensional subspaces of the
affine space � and let k Æ3Ç be the orthogonal complement of � Ç in � Æ . The corre-
spondence �l� � � Ã-|� � , where �  � � F �j�B� �  � �¹� � 8F � determines an isomorphism
of graded Hilbert spaces ¶  � Æ �M�� ¶  k Æ�Ç � Ã-ß¶  � Ç � . OP

Following the same path that we took in the last section, the next step is to as-
semble the spaces ¶  � Ç � into a directed system.

Definition 3.13. If w is a finite-dimensional Euclidean vector space k then the basic
vector ½�Iò$d¶  w6� is defined by½ I  ª �>��v ¡ 0�:JBK L ö I ø F ¡ 02 �NM�� 2 t
Thus ½ I maps ª $bw to the multiple v ¡ 0�:JBK L ö I ø F ¡ 02 �NM�� 2 of the identity element
in mjy{z�n  w6� .
Remark 3.9. The constant v ¡ 0�'JOK L ö I ø is chosen so that

Ô ½PI Ô �6K .
Using the basic vectors ½ Æ3Ç $d¶  k Æ3Ç � we can organize the Hilbert spaces ¶  � Ç �

into a directed system as follows.

Definition 3.14. If � Ç ¢£� Æ then define an isometry of graded Hilbert spacesk Æ3Ç C�¶  � Ç �>)æ¶  � Æ � by¶  � Ç �Q6<½H,~ )¿½ Æ3Ç Ã-�½&$�¶  k Æ3Ç ��Ã-�¶  � Ç � �� ¶  � Æ � t
Lemma 3.9 Let � Ç ¢6� Æ ¢6� å be finite-dimensional affine subspaces of � . Thenk å Ç �#k å Æ k Æ3Ç . OP

We therefore obtain a directed system, as required, and we can make the follow-
ing definition:

Definition 3.15. Let � be an affine Euclidean space. The graded Hilbert space ¶  �Q�
is the direct limit ¶  �Q�M� y{z}|~ )8 9 ö 8

fin. dim.
affine sbsp.

¶  � Ç � 9
in the category of Hilbert spaces and graded isometric inclusions.

If h acts isometrically on � then ¶  �Q� is equipped with a unitary representation
of h , just as -  �Q� is equipped with a h -action.

We are now almost ready to begin the definition of the asymptotic morphismQC�-  �Q�PAADCV¸  ¶  �Q�x� . What we are going to do is construct a family of asymptotic
morphisms, \Ç�C »(Ã-��  Å 0 �PANADC	¸  ¶  Ån��� 9
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one for each finite-dimensional subspace of � , and then prove that if � Ç ¢'� Æ then
the diagram » Ã-��  Å 0 � � 9 //___£R< 9 ��

¸  ¶  �Q�x�ð
��»�Ã-��  Å53�� � < //___ ¸  ¶  �Q�x�

is asymptotically commutative. Once we have done that we shall obtain a asymptotic
morphism defined on the direct limit y}z{|~ ) »(Ã-��  Å 0 � , as required.

To give the basic ideas we shall consider first a simpler ‘toy model’, as follows.
Suppose for a moment that � is itself a finite-dimensional space. Fix a point in � ;
call it RX$�� ; use it to identify � with its underlying linear space k ; and use this
identification to define scaling maps

F ,)Ü` ¡ � F on � , for `J' K , with the common
fiexed point RV$H� . If �H$��  � Ç � and if RV$H� Ç then define �e[>$��  � Ç � by the usual
formula �e[ JF �M���  ` ¡ � F � .
Lemma 3.4. Let � Ç be an affine subspace of a finite-dimensional affine Euclidean
space � . Denote by Û Ç the Dirac operator for � Ç and denote by * ÇOS ��� ÇOS �bÛ ÇOSthe Clifford-plus-Dirac operator for �UTÇ . The formula\Ç[ CÝ½\Ã-U�b,)¿½ [  * ÇOS Ã-�Kj�'K�Ã-�Û Ç �  K]Ã-� �F� �
defines an asymptotic morphism Ç C »(Ã-��  Å 0 �PANADC	¸  ¶  Ån��� t
Proof. The operator * Ç S is essentially self-adjoint and has compact resolvent (see
Section 1.13). So we can define Y -homomorphisms ¯ [ C]»¨)^¸  ¶  Å4T0 �x� by ¯ [  ½��M�½ [  * Ç S � . Moreover we saw in Section 1.12 that the formula [ CÝ½MÃ-U�b,)¿½ [  Û Ç �x �D�
defines an asymptotic morphism QC�»QÃ-��  Å 0 �xANADC&¸  ¶  Å 0 ��� . The formula for  Ç
in the statement of the lemma is nothing but the formula for the composition»�Ã-��  Å 0 � ì íî � // »�Ã-�»(Ã-��  Å 0 �WV íî � //___ ¸  ¶  ��TÇ �x��Ã-�¸  ¶  � Ç �x� t
So  Ç is an asymptotic morphism, as required.

Lemma 3.5. Let � Ç ¢¨� Æ be a nested pair of affine subspaces of a finite-dimensional
affine Euclidean space � . Denote by Û Ç and Û Æ the Dirac operators for � Ç and � Æ ,
and denote by Ç C�» Ã-��  Å 0 �°ASAFCV¸  ¶  Ån�x� and  3 C�» Ã-��  Å538�°ANADC	¸  ¶  Ån���
the asymptotic morphisms of Lemma 3.4. The diagram
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¸  ¶  �Q�x�ð
��»�Ã-��  Å53�� � < //___ ¸  ¶  �Q�x�

is asymptotically commutative.

Proof. We shall do a computation using the generators � �¾ �	� F ¡ Ò 2 and � �¾ �V�¾ÝF ¡ Ò 2 of » . Denote by � Æ3Ç the orthogonal complement of � Ç in � Æ , so that����� TÆ ��� Æ3Ç �f� Ç
and ¶  �Q�>�� ¶  � TÆ � Ã-�¶  � Æ3Ç � Ã-ß¶  � Ç � t
To do the computation we need to note that under the isomorphism of Hilbert spaces¶  � Æ ���� ¶  � Æ3Ç ��Ã-�¶  � Ç � the Dirac operator Û Æ corresponds to Û Æ3Ç Ã-QK��®K]Ã-�Û Ç
(to be precise, the self-adjoint closures of these essentially self-adjoint operators cor-
respond to one another). Similarly * Ç S corresponds to * Æ S Ã-�K;��K�Ã-�* Æ3Ç under the
isomorphism ¶  �XTÇ � �� ¶  �XTÆ ��Ã-�¶  � Æ3Ç � . Hence by making these identifications
of Hilbert spaces we get¦§ Ø  ~ ` ¡ � Û �Æ �M� ¦S§ Ø  ~ ` ¡ � Û �Æ3Ç � Ã- ¦§ Ø  ~ ` ¡ � Û �Ç �
and ¦§ Ø  ~ ` ¡ � * �Ç S �M� ¦S§ Ø  ~ ` ¡ � * �Æ S ��Ã- ¦S§ Ø  ~ ` ¡ � * �Æ3Ç � t
Now, applying  Ç[ to the element � Ã-��<$�»�Ã-��  Å 0 � we get¦§ Ø  ~ ` ¡ � * �Æ S � Ã- ¦S§ Ø  ~ ` ¡ � * �Æ�Ç � Ã- ¦§ Ø  ~ ` ¡ � Û �Ç �x b� �
in ¸  ¶  �XTÆ �x�LÃ-�¸  ¶  � Æ3Ç �x�LÃ-�¸  ¶  � Ç ��� , while applying  Æ[ � � Æ3Ç to � Ã-U� we get¦§ Ø  ~ ` ¡ � * �Æ@S � Ã- ¦§ Ø  ~ ` ¡ � Û �Æ3Ç � ¦§ Ø  ~ ` ¡ � � �Æ3Ç � Ã- ¦§ Ø  ~ ` ¡ � Û �Ç �x y� � t
But we saw in Section 1.13 that the two families of operators ¦S§ Ø  ~ ` � * �Æ3Ç � and¦§ Ø  ~ ` ¡ � Û �Æ3Ç � ¦§ Ø  ~ ` ¡ � � �Æ3Ç � are asymptotic to one another, as `�) ; . It follows
that  Ç[  � Ã-��A� is asymptotic to  Æ[  � Æ3Ç  � Ã-|�Ý��� , as required. The calculation for � Ã-|�
is similar.

Turning to the infinite-dimensional case, it is clear that the major problem is
to construct a suitable operator * Ç S . We begin by assembling some preliminary
facts. Suppose that we fix for a moment a finite-dimensional affine subspace � Ç of� . Denote by � TÇ its orthogonal complement in � . This is an infinite-dimensional
subspace of k , but in particular it is a Euclidean space in its own right, and we can
form the direct limit Hilbert space ¶  �UTÇ � as in Definition 3.15.
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Lemma 3.6. Let � Ç be a finite-dimensional affine subspace of � and let �UTÇ be its
orthogonal complement in � . The isomorphisms¶  � Æ �M�� ¶  k Æ3Ç �LÃ-�¶  � Ç �  � Ç ¢¨� Æ �
of Lemma 3.3 combine to provide an isomorphism¶  �Q�M�� ¶  � TÇ � Ã-�¶  � Ç � t OP
Definition 3.16. Let � Ç be a finite-dimensional subspace of an affine Euclidean
space � . The Schwartz space of � Ç , denoted �  � Ç � is�  � Ç �M�®5 Schwartz-class mjy}zon  k Ç � -valued functions on � Ç B t
The Schwartz space �  �Q� is the algebraic direct limit of the Schwartz spaces �  � Ç � :�  �Q�M� y{z}|~ )8 9 ö 8

fin. dim.
affine sbsp.

�  � Ç � 9
using the inclusions k Æ3Ç C �  � Ç �M) �  � Æ � .

We now want to define a suitable operator * Ç S on ¶  ��TÇ � with domain �  �XTÇ � . A
very interesting possibility is as follows. If kY¢"�UTÇ is a finite-dimensional subspace
then the operator *  �ü�  �6Û  acts on every Schwartz space �  w6� , wherekY¢`w : just use the formula * j½��  ª �>� !Õ � ¾ ¯ F ¯  ½  ª ���n� !Õ � Ã F ¯  �E½� ¾ ¯  ª ��� 9
from Lecture 1, where

F �:9 t�tSt 9 F ! is an orthonormal basis for k and
¾ �¢9 t�tSt 9 ¾ ! are

the dual coordinates on k , extended to coordinates on w by orthogonal projection.
The actions on the Schwartz spaces �  w6� are compatible with the inclusions used to
define the direct limit �  �XTÇ �G��y{z}|~ ) �  w6� , and we obtain an unbounded, essentially
self-adjoint operator on ¶  �XTÇ � with domain �  �XTÇ � . Let us now make the following
key observation:

Lemma 3.7. Suppose that �UTÇ is decomposed as an algebraic direct sum of pairwise
orthogonal, finite-dimensional subspaces,� TÇ ��k � �yk � �zk � �'���S� t
If ½<$ �  ��TÇ � then the sum* Ç S ½d��* � ½	�f* � ½V��* � ½V�'���S� 9
where * � �a� � ��Û � is the Clifford-Dirac operator on k � , has only finitely many
nonzero terms. The operator defined by the sum is essentially self-adjoint on �  �GTÇ �and is independent of the direct sum decomposition of �FTÇ used in its construction.
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Proof. Observe that �  � TÇ �M��y{z}|~ ) ! �  k � ���S���L�yk ! � t
Therefore if ½ç$ �  ��TÇ � then ½ belongs to some �  k � �À�S�S� �BkÝ!e� . Its image in�  k � �¨�S���Ó� kÝ!lk�m�� under the linking map in the directed system is a function of the
form½�m  � � ���S��� � !lknml�M� constant �L½  � � ���S���¢� � ! � F�¡ 02 � Î Î Y 0 � � t�tSt � F�¡ 02 � Î Î Y u � 2 t
Since

F ¡ 02 � Î Î Y u � 2 is in the kernel of *�!lk�m we see that *�!lknm:½"� R for all �z'aK .
This proves the first part of the lemma. Essential self-adjointness follows from the
existence of an eigenbasis for * ÇBS , which in turn follows immediately from the
existence of eigenbases in the finite-dimensional case (see Corollary 1.1). The fact
that *XTÇ is independent of the choice of direct sum decomposition follows from the
formula * Ç S ½H��* I ½ if ½r$ �  w6��¢ �  � TÇ � 9
which in turn follows from the formula * I 0 ��* I 2 ��* I 0 Z I 2 in finite dimensions.

Unfortunately the operator * Ç S above does not have compact resolvent. Indeed* �Ç S ��* �� �f* �� �f* �� ���S��� 9
from which it follows that the eigenvalues for * �Ç S are the sumsýb��ý � �"ý � �fý � ���S��� 9
where ý � is an eigenvalue for * �� and where almost all ý � are zero. It therefore
follows from Proposition 1.16 that while the eigenvalue R occurs with multiplicity K ,
each positive integer is an eigenvalue of * �ÇOS of infinite multiplicity.

Because * Ç S fails to have compact resolvent we cannot immediately follow
Lemma 3.4 to obtain our asymptotic morphisms  Ç . Instead we first have to ‘per-
turb’ the operators * ÇOS in a certain way.

Notation 3.10 We are now going to fix an increasing sequence � � ¢6� � ¢6� � ¢�S�S� of finite-dimensional affine subspaces of � whose union is � . We shall denote byke! the orthogonal complement of ��! ¡ � in �ß! (and write k � ��� � ), so that there is
an algebraic orthogonal direct sum decomposition����k � �zk � �yk � �zkÏËj�'���S� t
Later on we shall want to arrange matters so that this decomposition is compatible
with the action of h on � , but for now any decomposition will do.

Having chosen a direct sum decomposition as above, letus make the following
definitions:
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Definition 3.17. Let � Ç be a finite-dimensional affine subspace of � . An algebraic
orthogonal direct sum decomposition� TÇ �#w � �zw � �yw � ���S���
is standard if it is of the form� TÇ �#k Ç �zke!��zke!lk � ���S�S� 9
for some finite-dimensional linear space k Ç and some gQ' K , where the spaces k !
are the members of the fixed decomposition of � given above.

Definition 3.18. Let � Ç be a finite-dimensional affine subspace of � . An algebraic
orthogonal direct sum decomposition� TÇ ��ý � �zý � �zý � �'���S�
into finite-dimensional linear subspaces is acceptable if there is a standard decom-
position � TÇ �#w � �zw � �yw � ���S���
such that w � �'���S�¢�zwD! ¢QýN!(�'���S�:�zýM! ¢`w � ���S���¢�zwr!�k �
for all sufficiently large g .

We are now going to define perturbed operators * Ç S ï [ which depend on a choice
of acceptable decomposition, as well as on a parameter `j$u�{K 9<; � .
Definition 3.19. Let � Ç be a finite-dimensional affine subspace of � and let� TÇ ��ý � �zý � �zý � �'���S�
be an acceptable decomposition of �UTÇ as an orthogonal direct sum of finite-
dimensional linear subspaces. For each `�'ÀK define an unbounded operator * ÇOS ï [on ¶  ��TÇ � , with domain �  �XTÇ � , by the formula* Ç S ï [ ��` � * � �u` � * � �u` � * � ���S���
where ` � ��K\�D` ¡ � ² , where * Æ ���;!��uÛ	! , and where �;! and ÛV! are the Clifford
and Dirac operators on the finite-dimensional spaces ý;! .

It follows from Lemma 3.7 that the infinite sum actually defines an operator
with domain �  �XTÇ � . The perturbed operators * Ç S ï [ have the key compact resolvent
property that we need:
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Lemma 3.8. Let � Ç be a finite-dimensional affine subspace of � and let� TÇ ��ý � �zý � �zý � �'���S�
be an acceptable decomposition of � TÇ as an orthogonal direct sum of finite-
dimensional linear subspaces. The operator* Ç S ï [ ��` � * � �u` � * � �u` � * � ���S���
is essentially self-adjoint and has compact resolvent.

Proof. The proof of self-adjointness follows the same argument as the proof in
Lemma 3.7: one shows that there is an orthonormal eigenbasis for * Ç S ï [ in �  �XTÇ � .As for compactness of the resolvent, the formula* �Ç S ï [ �'` �� * �� ��` � � * �� �u` �� * �� �
implies that the eigenvalues of * �Ç S ï [ are the sumsýb�'` �� ý � �u` � � ý � �u` �� ý � ���S��� 9
where ý � is an eigenvalue for * �� and where almost all ý � are zero. Since the lowest
positive eigenvalue for * � is K , and since ` � ) ; as ² ) ; (for fixed ` ), it follows
that for any é there are only finitely many eigenvalues for * Ç S ï [ � of size é or less.
This proves that * Ç S ï [ has compact resolvent, as required.

We can now define the asymptotic morphisms  Ç C�» Ã-��  Å 0 ��ANAeC�¸  ¶  Ån��� that
we need. Fix a point R in � and use it to define scaling automorphisms �D,) �E[ on
each �  � Ç � for which RV$H� Ç .
Proposition 3.4. Let � Ç be a finite-dimensional affine subspace of � for which R�$� Ç and let * Ç S ï [ be the operator associated to some acceptable decomposition of� TÇ . The formula  Ç[ CÝ½ Ã-U�b,)¿½:[  * Ç S ï [ Ã-�Kj��K Ã-�Û Ç �  K Ã-� b� � �
defines an asymptotic morphism  Ç CE»�Ã-��  Å 0 ��AAFC®¸  ¶  Å4T0 �x��Ã-�¸  ¶  Å 0 ��� , and
hence, thanks to the isomorphism of Lemma 3.6, an asymptotic morphism Ç C » Ã-��  Å 0 �PANADC	¸  ¶  Ån��� t
Proof. This is proved in exactly the same way as was Lemma 3.4.

It should be pointed out that operator * ÇOS ï [ does depend on the choice of ac-
cepable decomposition, and so our definition of  Ç appears to depend on quite a
bit of extraneous data. But the situation improves in the limit as `�) ; . The basic
calculation here is as follows:
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Lemma 3.9. Let � Ç be a finite-dimensional affine subspace of � and denote by*�[b�æ* Ç S ï [ and *Qâ[ �æ*�âÇOS ï [ be the operators associated to two acceptable de-
compositions of � TÇ . Then for every ½&$�» ,y}z}|[HGJI Ô ½  * [ � ~ ½  * â[ � Ô ��R t
Proof. We shall prove the following special case: we shall show that if the summands
in the acceptable decompositions are ý ! and ýßâ! , and ifý � �'���S�L��ý ! ¢Qý â� ���S�S�:�zý â! ¢:ý � ���S���L��ý !lk �
for all g , then y{z}|V[HGJI Ô ½  *�[Í� ~ ½  *�â[ � Ô �aR . (For the general case, which is not
really any harder, see [32] and [34].)

Denote by
U ! the orthogonal complement of ý>! in ý�â! , and by +A! the orthogonal

complement of ý�â! ¡ � in ýM! (set + � �Lý � ). There is then a direct sum decomposition� TÇ �Q+ � � U � �y+ � � U � ���S��� 9
with respect to which the operators * ÇOS ï [ and *�âÇ S ï [ can be written as infinite sums* [ ��` � * ��[ �u` � * �\[ ��` � * � 0 �u` � * � 0 ���S���
and * â[ �'` � * ��[ ��` � * �5[ ��` � * � 0 ��` � * � 0 ���S��� t
Since ` � ~ ` � ¡ � ��` ¡ � it follows that* [ ~ * â[ ��` ¡ � * �\[ �u` ¡ � * � 0 �'���S� 9
and therefore that  * [ ~ * â[ � � ��` ¡ � * ��\[ ��` ¡ � * �� 0 ���S�S� t
In contrast, * �[ �'` �� * �� [ ��` � � * �� [ �u` � � * �� 0 ��` �� * �� 0 �'���S� 9
and since ` �� 'çK it follows that

Ô  *�[ ~ *�â[ �x½ Ô so` ¡ � Ô *�[1½ Ô for every ½�$ �  �XTÇ � .
This implies that if ½ �¾ �>� �¾Û� ± � ¡ � thenÔ ½  * [ � ~ ½  * â[ � Ô � Ô  * â[ � ± � ¡ �  * â[ ~ * [ �  * [ � ± � ¡ � Ô s Ô  * â[ ~ * [ �  * [ � ± � ¡ � Ô sf` ¡ � t
An approximation argument involving the Stone-Weierstrass theorem (which we
have seen before) now finishes the proof.

For later purposes we note the following simple strengthening of Lemma 3.9. It
is proved by following exactly the same argument.

Lemma 3.10. With the hypotheses of the previous lemma, is
� $W�{K 9N; �y{z}|[HGxI Ô ½ Ä� * [ � ~ ½ �� * â[ � Ô ��R 9

uniformly in
�
. OP
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It follows from Lemma 3.9 that our definition of the asymptotic morphism  Ç is
independent, up to asymptotic equivalence, of the choice of acceptable decomposi-
tion of � TÇ (compare the proof of Lemma 3.4).15

Proposition 3.5. The diagram» Ã-��  Å 0 � � 9 //___£ < 9 ��

¸  ¶  �Q�x�ð
��»�Ã-��  Å53�� � < //___ ¸  ¶  �Q�x�

is asymptotically commutative.

Proof. Using the computations we made in Section 1.13, as we did in the proof of
Lemma 3.5, we see that the composition  Æ � � Æ3Ç is asymptotic to the asymptotic
morphism ½ Ã-U�b,)¿½¢[  * â[ Ã-QKj��K Ã-�Û Ç �  K Ã-� b� � � 9
where, if  Æ is computed using the acceptable decomposition� TÆ �#ý � ��ý � ��ý � ���S�S� 9
then *�â[ is the operator of Definition 3.19 associated to the decomposition� TÇ �  � Æ3Ç ��ý � �n�zý � �zý � �'���S� t
But this is an acceptable decomposition for �UTÇ , and so  Æ � � Æ3Ç is asymptotic to  Ç ,
as required.

It follows that the asymptotic morphisms  Ç combine to form a single asymptotic
morphism �CH-  �Q� //___ ¸  ¶  �Q��� t
Our definition of the class  $�� ß  O  �Q� 9 «N� is therefore almost complete. It re-
mains only to discuss the equivariance of  .

Suppose that the countable group h acts isometrically on � . Using the pointR6$a� that we chose prior to the proof of Proposition 3.4, indentify � with its
underlying Euclidean vector space k , and thereby define a family of actions on � ,
parametrized by

� $W� R 9 KT� by}Q� � F � �w }Q�LR�����v  } � � 9  R�� � � F �
(see Exercise 3.3). Thus the action }b� � F is the original action, while }d� � F has a
global fixed point (namely RV$H� ).�Ä6

It should be added however that ]'^ does depend on the choice of initial direct sum decom-
position, as in 3.10.
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Lemma 3.11. There exists a direct sum decompostion���#k � �zk � �zk � �"�f���S�
as in 3.10 such that, if ��!��Qk � �¨�S���Ó� kÝ! , then for every }�$<h there is an

� $`_
for which g ë � � }Q�S�ß!�¢"��!lk �l9 for all

� $X� R 9 KT� t OP
Proposition 3.6. If the direct sum decomposition���#k � �zk � �zk � �"�f���S�
is chosen as in Lemma 3.11 then the asymptotic morphism �CH-  �Q��ANADCb¸  ¶  ���x�
is equivariant in the sense thaty{z}|[HGxI Ô n[  }Q� 7 � ~ }Q� [ ¸ 0  n[ �¾ ��� Ô ��R 9
for all

7 $`-  �Q� and all }b$dh .

Proof. Examining the definitions, we see that on »QÃ-��  Å 0 � the asymptotic morphism7 ,) } ¡ � � [ ¸ 0   [  }�� 7 ��� is given by exactly the same formula used to define  Ç ,
except for the choice of acceptable direct sum decomposition of �FTÇ . But we al-
ready noted that different choices of acceptable direct sum decomposition give rise
to asymptotically equivalent asymptotic morphisms, so the proposition is proved.

Definition 3.20. Denote by u$<� ß  -  �Q� 9 «M� the class of the asymptotic morphismQC�-  �Q�PAADCV¸  ¶  �Q�x� .
3.7 Proof of the Main Theorem, Part Three

Here we show that l� � �ÀK�$&� ß  « 9 «ß� . The proof is almost exactly the same as
the proof of Proposition 2.21 in the last lecture.

Lemma 3.12. Suppose that the action of h on the affine Euclidean space � has a
fixed point. Then the composition« £ // -  ��� � // «
in equivariant � -theory is the identity morphism on « .

Proof. The proof has three parts. First, recall that in the definition of the asymptotic
morphism

�
we began by fixing a point of � . It is clear from the proof of Lemma 3.2

that different choices of point give rise to asymptotically equivalent asymptotic mor-
phisms, so we might as well choose a point which is fixed for the action of h on� . But having done so each Y -homomorphism

� [  ½��D� �  ½ [ � in the asymptotic
morphism

�
is individually h -equivariant. It follows that the equivariant asymptotic
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morphism
� C » AAFCa-  Ån� is equivariantly homotopy equivalent to the equivariantY -homomorphism

� Ce»ç)b-  Ån� . Using this fact, it follows that we may compute
the composition  � � in equivariant � -theory by computing the composition of the
asymptotic morphism  with the Y -homomorphism

�
. But the results in Section 1.13

show that this composition is asymptotic to ¯�C]»¨)^¸  ¶  Ån�x� , where¯ [  ½��M��½ [  * [ � 9
and *�[ is the operator of Definition 3.19 associated to any acceptable decomposition
of � . This in turn is homotopic to the asymptotic morphism ½H,)¿½  *�[1� . Finally this
is homotopic to the asymptotic morphism defining K($H� ß  « 9 «�� by the homotopy½H,) Â ½ Ä� *�[1� � $u� K 9<; �½  Rw�1# � � ;'9
where # is the projection onto the kernel of *�[ (note that all the *�[ have the sameK -dimensional, h -fixed kernel).

Theorem 3.11. The composition �� � $<� ß  « 9 «ß� is the identity.

Proof. Let
� $W� R 9 KT� and denote by -®�  �Q� the ��� -algebra -  �Q� , but with the scaledh -action
 } 9 �A��,) }�� �P� . The algebras -®�  �Q� form a continuous field of h - �Q� -

algebras over the unit interval. Denote by - Ú � ï � ô  �Q� the h - ��� -algebra of continuous
sections of this field. In a similar way, form the continuous field of h - �	� -algebras¸|�  ¶  ���x� and denote by ¸ Ú � ï � ô  ¶  �Q��� the h - ��� -algebra of continuous sections.
The asymptotic morphism �CH-  �Q� //___ ¸  ¶  ���x� induces an asymptotic mor-
phism �QCc- Ú � ï � ô  �Q� //___ ¸ Ú � ï � ô  ¶  ���x� 9
and similarly the asymptotic morphism

� C]» //___ -  �Q� determines an asymp-
totic morphism �� C�» //___ - Ú � ï � ô  �Q� t
From the diagram of equivariant � -theory morphisms«ð

��

�£ // - Ú � ï � ô  ���� Ê��

�� // �V� R 9 KS�� ÊRð
��« £ // - �  �Q� � // «

9
where � � denotes the element induced from evaluation at

� $u� R 9 KT� , we see that if the
bottom composition is the identity for some

� $o� R 9 KT� then it is the identity for all� $"� R 9 KT� . But by Lemma 3.12 the composition is the identity when
� �oR since the

action
 } 9 F �N,)Ø}�� � F has a fixed point. It follows that the composition is the identity

when
� �®K , which is what we wanted to prove.
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3.8 Generalization to Fields

We conclude this lecture by quickly sketching a simple extension of the main theo-
rem to a situation involving fields of affine spaces over a compact parameter space.
This generalization will be used in the next lecture to prove injectivity results about
the Baum-Connes assembly map.

Definition 3.21. Let ý be a set. Denote by dfe  ý�� the set of negative-type kernels�AC¼ý I ý�) ¼
. Equip dfe  ý�� with the topology of pointwise convergence, so that� � )¿� in dfe  ý�� if and only if � � J� �¢9 � � �M)¿� 8� �:9 � � � for all

� �¢9 � � $*ý .

Suppose now that
U

is a compact Hausdorff space and that we are given a con-
tinuous map

¾ ,)þ� Ò from
U

into dfe  ý�� . For each
¾ $ U we can construct a

Euclidean vector space k Ò and an affine space � Ò over k Ò following the prescrip-
tion laid out in the proof of Proposition 3.1 (thus for example k Ò is a quotient of the
space of finitely supported functions on ý which sum to R , and � Ò is a quotient of
the space of finitely supported functions on ý which sum to K ). We obtain in this
way some sort of ‘continuous field’ of affine Euclidean spaces over

U
(we shall not

need to make this notion precise).
The ��� -algebras -  � Ò � may be put together to form a continuous field of ��� -

algebras over
U

. (See [19] for a proper discussion of continuous fields.) To do so we
must specify which sections

¾ ,) ½ Ò $g-  � Ò � are to be deemed continuous, and
for this purpose we begin by deeming to be continuous certain families of isometries
from

¼ ! into the affine spaces � Ò .
Definition 3.22. Let

�
be an open subset of

U
and let �'h>C ¼ ! )ó��h be a family

of isometries of
¼ ! into the affine Euclidean spaces �fh ( � $ � ) defined above. We

shall say that the family is continuous if there is a finite subset � ¢òý and if there
are functions ½ � ï hMC¼ý') ¼ (where ² �6K 9 tSt�t 9 g , and � $ � ) such that

(a) Each function ½ � ï h sums to one, and is supported in � (and therefore each ½ � ï hdetermines a point of ��h ).
(b) For each

� $%ý and each ² , the value ½ � ï h J� � is a continuous function of � $ � .
(c) The isometry � h maps the standard basis element

F �
of
¼ ! to the point of � h

determined by ½ � ï h .
Definition 3.23. Let us say that a function

¾ ,) ½ Ò which assigns to each point¾ $ U an element of the �Q� -algebra -  � Ò � is a continuous section if for every¾ $ U and every � ë R there is an open set
�

containing
¾

, a continuous family of
isometries �ch>C ¼ ! )+��h as above, and an element ½<$d»�Ã-�� J¼ji � such thatÔ �ch ï � �  ½�� ~ ½Rh Ô t � j � $ � t

Here by �ch ï �É� we are using an abbreviated notation for the inclusion of »�Ã-�� J¼ i �
into -  ��h�� induced from the isometry �ch>C ¼ ! )í�chÝ� ¼ ! �J¢ ��h by forming the
composition » Ã-�� J¼ i � � î �Bk = �1� // » Ã-��  ÆNl�� ¼ i �@� ö

// -  �Q� t
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Lemma 3.13. With the above definition of continuous section the collection of �	� -
algebras 5m-  � Ò � B Ò Ù � is given the structure of a continuous field of �	� -algebras
over the space

U
. OP

Definition 3.24. Denote by - �U 9 �Q� the �Q� -algebra of continuous sections of the
above continuous field.

If a group h acts on the set ý then h acts on d�e  ý�� by the formula
 }X��T� 8� �:9 � � ��� �  } ¡ � � �¢9 } ¡ � � � � . In what follows we shall be solely interested in the

case where ý���h and the action is by left translation.

Definition 3.25. Let
U

be a compact space equipped with an action of a countable
discrete group h by homeomorphisms. An equivariant map

¾ ,)_� Ò from
U

intod�e  h�� is proper-valued if for every
� '�R there is a finite set �ò¢¨h such that� Ò  } �:9 } � �°s � � } ¡ �� } � $<� t

The following is a generalization of Theorem 3.8.

Proposition 3.7. If �AC U )nd�e  h�� is a h -equivariant and proper-valued map then
the h - �Q� -algebra - �U 9 �Q� is proper. OP

By carrying out the constructions of the previous sections fiberwise we obtain
the following result (which is basically due to Tu [18]).

Theorem 3.12. Let h be a countable discrete group and let
U

be a compact metriz-
able h -space. Assume that there exists a proper-valued, equivariant map from

U
intod�e  h�� . Then - JU 9 ��� is a proper h - � � -algebra and there are � -theory classes�$H� ß  - �U 9 �Q� 9 � �U �x� and

� $d� ß  � JU � 9 - �U 9 �Q�x�
for which the composition  � � is the identity in � ß  � �U � 9 � JU �x� . OP

By trivially adapting the simple argument used to prove Theorem 2.20 we obtain
the following important consequence of the above:

Corollary 3.2. Let h be a countable discrete group and let
U

be a compact metriz-
able h -space. If there exists a proper-valued, equivariant map from

U
into d�e  h��

then for every h - ��� -algebra Û the Baum-Connes assembly mapó C � [Hõ 4  h 9 Û �U ���>) �" � �  h 9 Û �U ���x�
is an isomorphism. If h is exact then the same is true for the assembly map into�f ���ì  h 9 Û �U �x�x� . OP
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4 Injectivity Arguments

The purpose of this lecture is to prove that in various cases the Baum-Connes assem-
bly map � [Hõ 4  h 9 Ûb�M) �" � �  h 9 Ûb�x�
is injective. A great deal more is known about the injectivity of the assembly map
than its surjectivity. In a number of cases, injectivity is implied by a geometric prop-
erty of h , whereas surjectivity seems to require the understanding of more subtle
issues in harmonic analysis.

In all but the last section we shall work with the full crossed product �	�  h 9 Ûb� ,
but all the results have counterparts for ���ì  h 9 Ûb� . If h is exact then arguments
below applied in the reduced case; otherwise different arguments are needed.

4.1 Geometry of Groups

Let h be a discrete group which is generated by a finite set
�

. The word-length of
an element }�$oh is the minimal length ã  } � of a string of elements from

�
and� ¡ �

whose product is } . The (left-invariant) distance function on h associated to the
length function ã is defined byT  } �¢9 } � �M� ã  } ¡ �� } � � t
The word-length metric depends on the choice of generating set

�
. Nevertheless,

the ‘large-scale’ geometric structure of h endowed with a word-length metric is
independent of the generating set: the metrics associated to two finite generating sets�

and º are related by inequalitiesK� �DTpo  } � } � � ~ �)s`T Ï  } �:9 } � �Ps¨���STqo  } �¢9 } � ���"� 9
where the constant � ë R depends on

�
and º but not of course on } � and } � .

Definition 4.1. Let ý be a set and let T and � be two distance functions on ý . They
are coarsely equivalent if for every é%ë R there exists a constant

� ë R such thatT J� �¢9 � � � t é � � 8� �:9 � � � t �
and � 8� � 9 � � � t é � T � J� � 9 � � � t �

Thus any two word-length metrics on a finitely generated group are coarsely
equivalent. When we speak of ‘geometric’ properties of a finitely generated group we
shall mean (in this lecture) properties shared by all metrics on h which are coarsely
equivalent to a word-length metric. This geometry may often be visualized using
Theorem 4.1 below.
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Definition 4.2. A curve in a metric space
U

is a continuous map from a closed in-
terval into

U
. The length of a curve ¯�C�� 7 9 �É�E) U is the quantityy ¦ � »�r ´  ¯��M� Ö�× ØÇ ð [ [�s [ 0 s �t�t� s [ Î ð Æ !Õ ¯ ð � T  ¯  ` ¯ � 9 ¯  ` ¯ ¡ � ��� t

A metric space
U

is a length space if for all
¾ �:9 ¾ � $ U , T �¾ �:9 ¾ � � is the infimum of

the lengths of curves joining
¾ � and

¾ � .
Theorem 4.1. Let h be a finitely generated discrete group acting properly and co-
compactly by isometries on a length space

U
. Let

¾
be a point of

U
which is fixed

by no nontrivial element of h . Then the distance function�  } �¢9 } � �>�QT  } � � ¾ 9 } � � ¾ �
on h is coarsely equivalent to the word-length metric on h . OP

See [48, 64] for the original version of this theorem and [10] for an up to date
treatment. In the context of the above theorem we shall say that the space h is
coarsely equivalent to the space

U
(see [57, 58] for a development of the notion

of coarse equivalence between metric spaces, of which our notion of coarse equiva-
lence between two metrics on a single space is a special case).

Example 4.1. If h is the fundamental group of a closed Riemannian manifold  
then h is coarsely equivalent to the universal covering space u .

Example 4.2. Any finitely generated group is coarsely equivalent to its Cayley graph.
For example free groups are coarsely equivalent to trees.

4.2 Hyperbolic Groups

Gromov’s hyperbolic groups provide a good example of how geometric hypotheses
on groups lead to theorems in � � -algebra

�
-theory. In this section we shall sketch

very briefly the rudiments of the theory of hyperbolic groups. Later on in the lecture
we shall prove the injectivity of the Baum-Connes assembly mapó C � [Hõ 4  h 9 Ûb�>) �f � �  h 9 Ûb�
for hyperbolic groups.16 The first injectivity result in this direction is due to Connes
and Moscovici [15] who essentially proved rational injectivity of the assembly map
in the case Ûa��« . Our arguments here will however be quite different.

Definition 4.3. Let
U

be a metric space. A geodesic segment in
U

is a curve¯�C�� 7 9 �É�A) U such that T  ¯ Ä� � 9 ¯  `x�x�>� = � ~ ` =
for all

7 s � sf`°s'� .�H]
We shall see that every hyperbolic group is exact; hence the reduced assembly map v:w is
injective too.
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Observe that if ¯ is a geodesic segment from
¾ � to

¾ � then the length of ¯ is
precisely T �¾ � 9 ¾ � � .
Definition 4.4. A geodesic metric space is a metric space in which each two points
are joined by a geodesic segment.

Definition 4.5. A geodesic triangle in a metric space
U

is a triple of points of
U

, to-
gether with three geodesic segments in

U
connecting the points pairwise. A geodesic

triangle is Û -slim for some Û ''R if each point on each edge lies within a distanceÛ of some point on one of the other two edges.

Example 4.3. Geodesic triangles in trees are R -slim. An equilateral triangle of side é
in Euclidean space is x Ëy é -slim.

Definition 4.6. A geodesic metric space
U

is Û -hyperbolic if every geodesic triangleå in
U

is Û -slim and hyperbolic if it is Û -hyperbolic for some Û '�R .
Thus trees are hyperbolic metric spaces but Euclidean spaces of dimension µ or

more are not.
Definition 4.6 is attributed by Gromov to Rips [24]. It is equivalent to a wide

variety of other conditions, for which we refer to the original work of Gromov [24]
or one of a number of later expositions, for example [22, 10]. (The reader is also
referred to these sources for further information on everything else in this section.)

Definition 4.7. A finitely generated discrete group h is word-hyperbolic, or just hy-
perbolic, if its Cayley graph is a hyperbolic metric space.

This definition leaves open the possibility that the Cayley graph of h constructed
with respect to one finite set of generators is hyperbolic while that constructed with
respect to another is not. But the following theorem asserts that this is impossible:

Theorem 4.2. If a finitely generated group h is hyperbolic for one finite generating
set then it is hyperbolic for any other. OP
Examples 4.3 Every tree is a R -hyperbolic space and a finitely generated free group
is R -hyperbolic. The Poincaré disk å is a hyperbolic metric space. If h is a proper
and cocompact group of isometries of å then h is a hyperbolic group. In particular,
the fundamental group of a Riemann surface of genus µ or more is hyperbolic.

If h is a finitely generated group and if
� '¨R then the Rips complex � z{ØÝÖ  h 9 � �

is the simplicial complex with vertex set h , for which a
 ? �oKL� -tuple

 } � 9 tSt�t 9 } 4 �
is a ? -simplex if and only if T  }�¯ 9 } � �qs � , for all

±
and ² . In the case of hyperbolic

groups the Rips complex provides a simple model for the universal space ¦ h :

Theorem 4.4. [7, 47] Let h be a hyperbolic group. If
�{z R then the Rips complex� z{ØÝÖ  h 9 � � is a universal proper h -space. OP

In the following sections we shall need one additional construction, as follows:
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Definition 4.8. A geodesic ray in a hyperbolic space
U

is a continuous function| Ce� R 9<; �M) U
such that the restriction of | to every closed interval � R 9�} � is a geodesic segment. Two
geodesic rays in

U
are equivalent ify}z{|�Öx×eØ[HGJI T  | �  `x� 9 | �  `x�x� t ; t

The Gromov boundary of a hyperbolic metric space
U

is the set of equivalence
classes of geodesic rays in

U
. The Gromov boundary �Eh of a hyperbolic group h is

the Gromov boundary of its Cayley graph.

The Gromov boundary �Eh does not depend on the choice of generating set. It
is equipped in the obvious way with an action of h . It may also be equipped with a
compact metrizable topology, on which h acts by homeomorphisms. Moreover the
disjoint union h��çh�~<�Eh may be equipped with a compact metrizable topology
in such a way that h acts by homeomorphisms, that h is an open dense subset of h ,
and that a sequence of points }�!�$Hh converges to a point

¾ $d�Eh iff }�!V) ; in h
and there is a geodesic ray | representing

¾
such thatÖ�× Ø! T  } ! 9 | � t ; t

From our point of view, a key feature of h6��h�~��Eh is that the action of h on h is
amenable. We shall discuss this notion in Section 4.5.

4.3 Injectivity Theorems

In this section we shall formulate several results which assert the injectivity of the
Baum-Connes map ó under various hypotheses.

Our first injectivity result is a theorem which is essentially due to Kasparov (an
improved version of it, which invokes his é �r� -theory, underlies his approach to
the Novikov conjecture).

Theorem 4.5. Let h be a countable discrete group. Suppose there exists a properh - ��� -algebra * and elements �$6� ß  * 9 «N� and
� $6� ß  « 9 *�� such that for

every finite subgroup Á of h the composition ¯d��Û� � $H� ß  « 9 «ß� restricts to the
identity in � ±  « 9 «ß� . Then for every h - ��� -algebra Û the Baum-Connes assembly
map ó C � [Hõ 4  h 9 Ûb�M) �" � �  h 9 Ûb�x�
is injective.

Proof. We begin by considering the same diagram we introduced in the proof of
Theorem 2.20:
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�f ���  h 9 « Ã-	Ûb���£ ���� [Hõ 4  h 9 *dÃ-�Ûb� úR ð //� � ��

�" ���  h 9 *dÃ-�Ûb���� ���� [Hõ 4  h 9 « Ã-�Ûb� ú // �f ���  h 9 « Ã-VÛb��� t
The middle assembly map is an isomorphism since * Ã-�Û is a proper h - ��� -algebra.
We want to show that the top assembly map is injective, and for this it suffices to
show that the top left-hand vertical map

� � C � [Hõ 4  h 9 Ûb�X) � [Hõ 4  h 9 Û Ã-�*�� is
injective. For this we shall show that the composition� [Hõ 4  h 9 «�Ã-	Ûb� £ � // � [Hõ 4  h 9 *dÃ-�Ûb� � � // � [Hõ 4  h 9 «ßÃ-VÛb�
is an isomorphism. In view of the definition of

� [Hõ 4 it suffices to show that if ý is ah -compact proper h -space then the map¯ � �� � � � � Ce� ß  ý 9 Ûb� ~ )+� ß  ý 9 Ûb�
is an isomorphism. The proof of this is an induction argument on the number g
of h -invariant open sets

�
needed to cover ý , each of which admits a map to a

proper homogeneous space hQ´lÁ . If gr�%K , so that ý itself admits such a map, thený��'h I ± w , where w is a compact space equipped with an action of Á . There is
then a commuting diagram of restriction isomorphisms� ß  h I ±yw 9 Ûb�þ ÷0ÿ Rð�� VF� // � ß  h I ±yw 9 Ûb�þ ÷0ÿRð

��� ±  w 9 Ûb� V � // � ±  w 9 Ûb� 9
(see Proposition 2.8), and the bottom map is an isomorphism (in fact the identity)
since ¯H��K in � ±  « 9 «ß� . If g ë K then choose a h -invariant open set

� ¢:ý which
admits a map to a proper homogeneous space, and for which the space ý � �Bý ï �
may be covered by g ~ K�h -invariant open sets, each admitting a map to a proper
homogeneous space. By induction we may assume that the map ¯ � is an isomorphism
for ý � . Applying the five lemma to the diagram�S��� // � ß  ý �:9 Ûb�VF� Rð�� // � ß  ý 9 Û��VF� ��

// � ß 	� 9 Ûb�VF� R ð�� // �S���
�S��� // � ß  ý � 9 Ûb� // � ß  ý 9 Û�� // � ß 	� 9 Ûb� // �S���

we conclude that ¯ � is an isomorphism for ý too.
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Remark 4.1. The proof actually shows that the assembly map is split injective.

The second result is taken from [10] and is as follows.

Theorem 4.6. Let
U

be a compact, metrizable h -space and assume that
U

is Á -
equivariantly contractible, for every finite subgroup Á of h . Let Û be a separableh - ��� -algebra. If the Baum-Connes assembly mapó C � [Hõ 4  h 9 Û �U ���>) �" � �  h 9 Û �U ���x�
is an isomorphism then the Baum-Connes assembly mapó C � [Hõ 4  h 9 Ûb�>) �" � �  h 9 Û��x�
is split injective.

Proof. The inclusion Z of Û into Û �U � as constant functions gives rise to a commu-
tative diagram � [Hõ 4  h 9 Û �U �x� ú // �" � �  h 9 Û �U ���x�

� [Hõ 4  h 9 Ûb� ú //

� � OO �f ���  h 9 Ûb��� t� �OO

We shall prove the theorem by showing that the left vertical map is an isomorphism.
In view of the definition of

� [Hõ 4 it suffices to show that if ý is any h -compact properh -space then the mapZ � Ce� ß  � �  ý�� 9 Ûb�M)+� ß  � �  ý�� 9 Û JU �x�
is an isomorphism. By a Mayer-Vietoris argument like the one we used in the proof
of Theorem 4.6 it actually suffices to consider the case where ý admits a map to a
proper homogeneous space hQ´:Á . In this case there is a compact space w equipped
with an action of Á such that ý���h I ± w . Consider now the following commuting
diagram of restriction isomorphisms:� ß  � �] h I ±yw6� 9 Ûb�þ ÷0ÿ Rð��

� � // � ß  � �w h I ±bw6� 9 Û �U �x�þ ÷0ÿRð
��� ±  �  w6� 9 Û�� � � // � ±  �  w6� 9 Û U �x� t

The bottom horizontal map is an isomorphism (since Z is a homotopy equivalence ofÁ - ��� -algebras) and therefore the top horizontal map is an isomorphism too.

The last injectivity result is an analytic version of a result of Carlsson-Pedersen
[11]. We will not discuss the proof, but refer the reader to the original paper of Higson
[10, Thm. 1.2 & 5.2]. We include it only because it applies more or less directly to
the case of hyperbolic groups.
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Definition 4.9. Let h be a discrete group, let
U

be a h -compact, proper h -space,
and let

U
be a metrizable compactification of h to which the action of h on

U
extends to an action by homeomorphisms. The extended action is small at infinity if
for every compact set

� ¢ U ,y}z{|è GJI ¿�zÌ$l| ¦ r ¦ ½  } � �M�'R 9
where the diameters are computed using a metric on

U
.

Theorem 4.7. Let h be a countable discrete group. Suppose there is a h -compact
model for ¦ h having a metrizable compactification ¦ h satisfying

(a) the h action on ¦ h extends continuously to ¦ h ,
(b) the action of h on ¦ h is small, and
(c) ¦ h is Á -equivariantly contractible, for every finite subgroup Á of h .

Then for every separable h - �Q� -algebra Û the Baum-Connes assembly mapó C � [Hõ 4  h 9 Ûb�>) �" � �  h 9 Û��x�
is injective. OP
4.4 Uniform Embeddings in Hilbert Space

We are now going to apply the second theorem of the previous section to prove
injectivity of the Baum-Connes assembly map for a quite broad class of groups.

Definition 4.10. Let
U

and + be metric spaces. A uniform embedding of
U

into +
is a function ½�C U )&+ with the following two properties:

(a) For every é '¨R there exists some
� '�R such thatT J¾ �l9 ¾ � �°s é � T  ½ J¾ � � 9 ½ �¾ � �x�°s � t

(b) For every
� '�R there exists é '¨R such thatT J¾ �l9 ¾ � �°' é � T  ½ J¾ � � 9 ½ �¾ � �x�°' � t

Example 4.4. If ½ is a bi-Lipschitz homeomorphism from
U

onto its image in + then½ is a uniform embedding. But note however that if the metric space
U

is bounded
then any function from

U
to + is a uniform embedding (in particular, uniform em-

beddings need not be one-to-one).

Exercise 4.1. Let h a finitely generated group and let Á be a finitely generated sub-
group of h . If h and Á are equipped with their word-length metrics then the inclu-
sion Á�¢�h is a uniform embedding.
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Remark 4.2. In the context of groups, any function satisfying condition (a) of Def-
inition 4.10 is in fact a Lipschitz function. But condition (b) is more delicate. For
example it is easy to find examples for which the optimal inequality in (b) is some-
thing like T �¾ � 9 ¾ � �°' F o � T  ½ J¾ � � 9 ½ �¾ � �x�°' �

If a finitely generated group h acts metrically-properly on an affine Euclidean
space � , and if

F $H� , then the map }V,)�}Q� F is a uniform embedding of h into � .
We are going to prove the following result, which partially extends the main theorem
of the last lecture:

This theorem is due to Tu [18] and Yu [68] (in both cases, in a somewhat dis-
guised form).

Theorem 4.8. Let h be a countable discrete group. If h is uniformly embeddable in
a Euclidean space then for every h - �Q� -algebra Û the Baum-Connes assembly mapó C � [Hõ 4  h 9 Ûb�>) �" � �  h 9 Û��x�
is (split) injective.

The first step of the proof is to convert a uniform embedding, which is something
purely metric in nature, into something more h -equivariant. For this purpose let us
recall the following object from general topology:

Definition 4.11. Let
U

be a discrete set. The Stone-Cech compactification of
U

is
the set

� U
of all nonzero, finitely additive, 5¢R 9 KlB -valued probability measures on the

algebra of all subsets of
U

. We equip
� U

with the topology of pointwise convergence
(with respect to which it is a compact Hausdorff space).

Thus a point of
� U

is a function ó from the subsets of
U

into 5LR 9 KlB which is ad-
ditive on finite disjoint unions and which is not identically zero. A net ó � converges
to ó if and only if ó �  �Q� converges to ó  �Q� , for every �Y¢ U .

Example 4.5. If
¾

is a point of
U

then the measure ó Ò , defined by the formulaó Ò  �Q�>�aÂ K if
¾ $H�R if
¾ ´$H�

is a point of
� U

. In this way
U

is embedded into
� U

as a dense open subset.

Remark 4.3. The fact that the measures ó assume only the values R and K will matter
little in what follows, and we could equally well work with arbitrary, finitely additive
measures for which ó �U �M��K .

If � is a bounded complex function on
U

, and if ó is a finitely additive measure
on
U

, then we may form the integral� � � J¾ �4T ó �¾ �
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as follows. First, if � assumes only finitely many values (in other words if � is a
simple function) then define� � � J¾ �4T ó �¾ �j� Õ ì ý�� ó 5 ¾ C]� �¾ �M��ý�B t
Second, if � is a general bounded function, write � as a uniform limit of simple func-
tions and define the integral of � to be the limit of the integrals of the approximants.

Exercise 4.2. If � is a bounded function then the map ó ,)�� � � �¾ �¶T ó J¾ � is a con-
tinuous function from

� U
into « .

Remark 4.4. The virtue of 5¢R 9 KlB -valued measures is that this integration process
makes sense in very great generality — it is possible to integrate any function fromU

into any compact space.

Suppose now that h is a finitely generated discrete group. The compact space� h is equipped with a continuous action of h by the formula }	� ó �  �Q�>� ó  �|} � t
Let ½�C�h ) � be a uniform embedding into an affine Euclidean space and let�ACeh I h�) ¼ be the associated negative type kernel:�  } �¢9 } � �M�#T �  ½  } � � 9 ½  } � �x� t
According to part (a) of Definition 4.10 the function }	,)¿�  }¾} � 9 }¾} � � is bounded, for
every } � 9 } � $Dh . As a result, we may define negative type kernels � ú , for ó $ � h ,
by integration: � ú  } �¢9 } � �>� � ß �  } } �L9 }¾} � �1T ó  } � t
Observe that � è�� ú  } � 9 } � �(� � ú  } ¡ � } � 9 } ¡ � } � � , so that our integration construction
defines an equivariant map from

� h into the negative type kernels on h .

Lemma 4.1. For every
� 'òR there exists é 'òR so that if T  } � 9 } � �{' é then� ú  } �¢9 } � �°' � , for every ó $ � h .

Proof. This is a consequence of part (b) of Definition 4.10.

Since h is finitely generated, for every é there is a finite set � so that ifT  } �¢9 } � � t é then } ¡ �� } � $6� . The map ó ,) � ú is therefore proper-valued in
the sense of Definition 3.25, and we have proved the following result:

Proposition 4.1. If a finitely generated group h may be uniformly embedded into an
affine Euclidean space then there is an equivariant, proper-valued continuous map
from

� h into the space dfe  h�� of negative-type kernels on h . OP
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It will now be clear that to prove Theorem 4.8 we mean to apply Theorems 3.12
and 4.6. To do so we must replace

� h by a compact h -space which is smaller (sec-
ond countable) and more connected (in fact contractible) than

� h . This is done as
follows.

Lemma 4.2. Let h be a countable group, let
U

be a compact h -space and let�AC U )�d�e  h�� be a continuous and h -equivariant map from
U

into the nega-
tive type kernels on h . There is a metrizable compact h -space + and a h -map fromU

to + through which the map � factors.

Proof. Take + to be the Gelfand dual of the separable �	� -algebra of functions on
U

generated by the functions
¾ ,)¿� è Ò  } �¢9 } � � , for all } 9 } �L9 } � $Hh .

Lemma 4.3. Let h be a countable group, let + be a compact metrizable h -space
and let �AC�+Þ)�d�e  h�� be a proper-valued, h -equivariant continuous map. There
is a metrizable compact h -space ý which is Á -equivariantly contractible, for every
finite subgroup Á of h , and a proper-valued, h -equivariant continuous map from ý
into dfe  h�� .
Proof. Let ý be the compact space of Borel probability measures on + (we giveý the weak � topology it inherits as a subset of the dual of �  +	� ; note that we are
speaking now of countably additive measures defined on the Borel \ -algebra). Ifó $*ý then define � ú $`dfe  h�� by integration:� ú  } � 9 } � �M� � � ���  } � 9 } � ��T ó  8 � t
The map ó ,)¿� ú has the required properties.

Proof (Proof of Theorem 4.8). Proposition 4.1 and the lemmas above show that the
hypotheses of Theorem 3.12 and Corollary 3.2 are met. Theorem 4.6 then implies
injectivity of the assembly map, as required.

4.5 Amenable Actions

In this section we shall discuss a means of constructing uniform embeddings of
groups into affine Hilbert spaces.

Definition 4.12. Let h be a discrete group. Denote by Ø ½ �P�  h�� the set of functions½�C�hú) � R 9 KS� such that � è Ù ß ½  } �r� K . Equip Ø ½ �P�  h�� with the topology of
pointwise convergence, so that ½ � ) ½ if and only if ½ �  } �W) ½  } � for every}�$oh . Equip Ø ½ ���  h�� with an action of h by homeomorphisms via the formula }Q�¢½��  �A�M��½  } ¡ � �A� .
Definition 4.13. Let h be a countable discrete group. An action of h by homeo-
morphisms on a compact Hausdorff space

U
is amenable if there is a sequence of

continuous maps ½l!�C U )^Ø ½ ���  h�� such that for every }b$Hhy}z{|! GJI Ö�× ØÒ Ù � Ô ½:!  }	� ¾ � ~ }Q�  ½:! J¾ ��� Ô � ��R t
Here, if � is a function on h , then we define

Ô � Ô � � � è Ù ß = �  } � = .
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We are going to prove the following result:

Proposition 4.9 If a finitely generated group h acts amenably on a compact spaceU
then h is uniformly embeddable in a Hilbert space.

Remark 4.5. The method below can easily be modified to show that if a countable
group h (which is not necessarily finitely generated) acts amenably on some compact
space

U
then there is an equivariant, proper-valued map from

U
into the negative-

type kernels on h . The methods of the previous section then show that the Baum-
Connes assembly map is injective for h .

Examples 4.10 Every hyperbolic group acts amenably on its Gromov boundary. Ifh is a discrete subgroup of a connected Lie group Á then h acts amenably some
compact homogeneous space Á�´:# . If h is a discrete group of finite asymptotic di-
mension then h acts amenably on the Stone-Cech compactification

� h . See [33] for
a discussion of all these cases (along with references to proofs).

Definition 4.14. Let ý be a set. A function Z�C�ý I ýò) « is a positive-definite
kernel on the set ý if Z 8� 9 � �>�%K for all

�
, if Z 8� � 9 � � �j� Z J� � 9 � � � , for all

� � 9 � � $ý , and if mÕ¯ ï � ð � ý ¯ Z J� ¯ 9 �S� �xý � '¨R
for all positive integers � , all ý � 9 tSt�t 9 ý m $H« and all

� � 9 tSt�t 9 � m $*ý .

Remark 4.6. The normalization Z J� 9 � �W�ÜK is not always made, but it is useful
here. As is the case with positive-definite functions on groups (which we discussed
in Lecture 4), the condition Z J� �¢9 � � �d� Z J� ��9 � � � is actually implied by the last
condition.

Comparing definitions, the following is immediate:

Lemma 4.4. If Z is a positive-definite kernel on a set ý if � ¦ Z denotes its real part,
then K ~�� ¦ Z is a negative type kernel on ý . OP
Proof (Proof of Proposition 4.9). Suppose that h acts amenably on a compact spaceU

, and let ½l!;C U )_Ø ½ ���  h�� be a sequence of functions as in Definition 4.13.
After making suitable approximations to the ½�! we may assume that for each g there
is a finite set � ¢Àh such that for every

¾ $ U the function ½ ! �¾ �	$"Ø ½ ���  h�� is
supported in � . Now let � ! J¾ 9 }��>��½ ! J¾ �  }�� ���É� . Then fix a point

¾ $ U and define
functions Z ! C h I h®)¿« byZ !  } � 9 } � �>� Õè Ù ß � !  } � ¾ 9 } � } �¹� !  } � ¾ 9 } � } � t
These are positive definite kernels on h I h . For every finite subset ��¢ah and
every � ë R there is some

� $�_ such that
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In addition, for every gW$�_ there exists a finite subset �E¢"h such that} ¡ �� } � ´$<� � Zc!  } �¢9 } � �>��R t
It follows that for a suitable subsequence the series � �  K ~�� ¦ Z\!R��� is pointwise
convergent everywhere on h I h . But each function K ~a� ¦ ZM!�� is a negative type
kernel, and therefore so is the sum. The map into affine Euclidean space which is
associated to the sum is a uniform embedding.

Remark 4.7. In fact it is possible to characterize the amenability of a group action
in terms of positive definite kernels. See [2] for a clear and rapid presentation of the
facts relevant here, and [3] for a comprehensive account of amenability. The exis-
tence of a sequence of positive definite kernels on h which have the two properties
displayed in the proof of the lemma is equivalent to the amenability of the action ofh on its Stone-Cech compactification

� h . See [2] again, and see also Section 5.6 for
more on this topic.

Remark 4.8. The theory of amenable actions is very closely connected to the theory
of exact groups. To see why, suppose that h admits an amenable action on some
compact space

U
. Then using the theory of positive-definite kernels it may be shown

that � �  h 9 U �>��� �ì  h 9 U �
and moreover that the crossed product ��� -algebra is nuclear. This means that the for
any � � -algebra Û , � �  h 9 U ��- � ÇÓÒ Ûa��� �  h 9 Ûb�n- � ¯ ! Û t
See [2] for a discussion of these results. It follows of course that the crossed product��� -algebra is exact, in the sense of Definition 2.10. But then it follows that �	�ì  h�� ,
which is a subalgebra of �Q�  h 9 U �M�����ì  h 9 U � , is exact too. Therefore, by Propo-
sition 2.6 the group h is exact. To summarize: if h acts amenably on some compact
space then h is exact. In fact the converse to this is true too: see Section 5.6.

4.6 Poincaré Duality

We conclude this lecture with a few remarks concerning a ‘dual’ formulation of the
Baum-Connes conjecture for certain groups. With an application to Lecture 6 in mind
we shall formulate the following theorem in the context of reduced crossed products.

Theorem 4.11. Let h be a countable exact group and let 
 be a separable properh - ��� -algebra. Suppose that there is a class 6$¨� ß  
 9 «M� with the property that
for every finite subgroup Á of h the restricted class  = ± $D� ±  
 9 «N� is invertible.
Then the Baum-Connes assembly mapó ì C � [Hõ 4  h 9 Ûb�>) �f � �ì  h 9 Ûb�x�
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is an isomorphism for a given separable h - ��� -algebra Û if and only if the map � C �f � �ì  h 9 
	Ã-�Û��x�M) �" � �ì  h 9 Ûb�x�
induced from  is an isomorphism.

Remark 4.9. In the proof we shall identify ó with  � , so that ó will be for example
injective if and only if  � is injective. As usual, analogous statements may be proved
for reduced crossed products, either in the same way if h is exact, or with some
additional arguments otherwise.

Proof. Consider the diagram� [Hõ 4  h 9 
 Ã-�Ûb� ú�� //� � ��

�f ���ì  h 9 
	Ã-�Ûb�� ���� [Hõ 4  h 9 Ûb� ú�� // �f ���ì  h 9 Ûb��� 9
in which the horizontal arrows are the Baum-Connes assembly maps and the vertical
arrows are induced by composition with  in � ß -theory and by composition with
the element descended from  in nonequivariant � -theory. The diagram commutes.
By Theorem 2.20 the top horizontal map is an isomorphism. Furthermore, an argu-
ment like the ones used in Section 4.3 shows that the left hand vertical map is an
isomorphism. Therefore the bottom horizontal map is an isomorphism if and only if
the right vertical map is an isomorphism, as required.

The theorem in effect reformulates the Baum-Connes conjecture entirely in the
framework of

�
-theory (hence the term ‘Poincaré duality’, since we have replaced

the
�

-homological functor
� [Hõ 4 of h with

�
-theory). It has an important applica-

tion to groups which act isometrically on Riemannian manifolds. We shall not go
into details, but here is a rapid summary of the relevant facts. The Clifford algebra
constructions we developed in Lecture 1 may be generalized to complete Rieman-
nian manifolds  . We denote by �   6� the ��� -algebra of sections of the bundle
of Clifford algebras mjy{z�n  º Ò  6� associated to the tangent spaces of  . There is a
Dirac operator on  (an unbounded self-adjoint operator acting on the Hilbert space
of i � -sections of the Clifford algebra bundle on  ), and it defines a class�$H�  �   6� 9 «\�
in almost exactly the same way that we defined  for linear spaces. Moreover if a
group h acts isometrically on  then the Dirac operator defines an equivariant class�$H� ß  �   6� 9 «N� t
Now if  happens to be a universal proper h -space then the hypotheses of Theo-
rem 4.11 are met:
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Proposition 4.12 Let  be a complete Riemannian manifold and suppose that a
countable group h acts on  by isometries. Assume further that  is a universal
proper h -space. The Dirac operator on  defines an equivariant � -theory class� ÛV�n$H� ß  �   6� 9 «N� 9
which, restricting from h to and finite subgroup Á ¢oh , determines invertible ele-
ments � ÛV� = ± $H� ±  �   6� 9 «N� t OP

The proposition applies for example when h is a lattice in a semisimple group
(take  to be the associated symmetric space), and in this case (which is perhaps
the most important case of the Baum-Connes conjecture yet to be resolved) the con-
jecture reduces to a statement which can be formulated purely within

�
-theory.

5 Counterexamples

In this lecture we shall present a miscellany of examples and counterexamples. To-
gether they show that the Baum-Connes conjecture is the weakest conjecture of its
type which one can reasonably formulate. They also point to shortcomings in the
machinery we have developed in these lectures. The counterexamples involve Kazh-
dan’s property º and expander graphs.

5.1 Property T

Definition 5.1. A discrete group h has property º if the trivial representation is an
isolated point in the unitary dual of h .

See the monograph [17] for an extensive discussion of property º . We shall use
the following equivalent formulations of property º :

Theorem 5.1. Let h be a discrete group. The following are equivalent:

(a) h has property º .
(b) Every isometric action of h on an affine Euclidean space has a fixed point.
(c) There is a central projection ? $����  h�� with the property that in any unitary

representation of h , on a Hilbert space ¶ the operator ? acts as the orthogonal
projection onto the h -fixed vectors in ¶ . OP
The projection ? $<�Q�  h�� will be called the Kazhdan projection for the propertyº group h .

Remark 5.1. If h is finite then the Kazhdan projection ? is the sum? � K= h = Õè Ù ß }
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in the group algebra «G� h��N���Q�  h�� (in the formula we are regarding h as a unitary
subgroup of �Q�  h�� ). If h is infinite then ? is a very mysterious object. For example if
we (mistakenly) regard ? as an infinite formal series of group elements, ? � � 7 è �} , then from the easily proved relation }�� ? � ? we conclude that all the scalars7 è are equal, while from the fact that ? acts as K in the trivial representation we
conclude that the scalars

7 è sum to K . Thus we arrive at a formula for ? like the
one displayed above, where the sum is infinitely large and the normalizing constantK¢´ = h = is infinitely small.

It is quite difficult to exhibit infinite property º groups, but they do exist. For
example Kazhdan proved that lattices in semisimple groups of real rank µ or more
have property º . It is also known that there are many hyperbolic groups with propertyº .

Lemma 5.1. If h is an infinite property º group then the quotient mapping from� �  h�� onto � �ì  h�� does not induce an isomorphism in
�

-theory.

Proof. The central projection ? generates a cyclic direct summand of
�" �	�  h����

which is mapped to zero in
�f �Q�ì  h��x� .

It follows immediately that if h is an infinite property º group then the Baum-
Connes assembly maps into

�f �Q�  h���� and
�" ���ì  h���� cannot both be isomor-

phisms. We shall not go into the matter in detail here but in fact it is the assembly
map into

�f ���  h���� which is the problem. This can be seen quite easily in some
examples. For instance it is not hard to show that if h has property º then associated
to each irreducible, finite-dimensional and unitary representation of h is a distinct
central projection in �Q�  h�� (the Kazhdan projection is the one associated to the
trivial representation). So if a property º group h has infinitely many irreducible,
finite-dimensional and unitary representations (this will happen if h is an infinite
linear group) then

�" �Q�  h���� will contain a free abelian subgroup of infinite rank,
whereas

� [Hõ 4  h�� will very often be finitely generated.
Unfortunately the main method we have applied to prove cases of the Baum-

Connes conjecture treats the full and reduced ��� -algebra more or less equally. Hence
property º causes the method to fail:

Proposition 5.1. If h is an exact, infinite property º group then h does not satisfy
the hypotheses of Theorem 2.20.

Proof. If h did satisfy the hypotheses then by Theorem 2.20 the quotient mapping�f ���  h���� to
�f ���ì  h��x� would be an isomorphism.

5.2 Property T and Descent

Proposition 5.1 indicates that our basic strategy for proving the Baum-Connes con-
jecture for a group h , which involves proving an identity in equivariant, bivariant�

-theory, will not work for infinite property º groups (at least if these groups are
exact).
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However one can ask whether it is possible to prove the conjecture for a given
group h by proving an identity in bivariant

�
-theory for crossed product algebras.

We noted in Lecture 5 that if ¦ h is a complete manifold  then the Baum-Connes
conjecture for h is equivalent to the assertion that the map � C � �  � �ì  h 9 �   6�x���>) � �  � �ì  h��x� 9
induced from the Dirac operator class �$�� ß  �   6� 9 «N� , is an isomorphism. One
might hope that in fact the descended class�$H�  � �ì  h 9 �   6�x� 9 � �ì  h����
is an isomorphism. This is not (always) the case, as the following theorem of Skan-
dalis [60] shows:

Theorem 5.2. Let h be an infinite, hyperbolic property º group. Then �V�ì  h�� is not
equivalent in � -theory to any nuclear �Q� -algebra.

Recall from the last lecture that a �Q� -algebra 
 is nuclear if 
VÃ- � ¯ ! Û �
	Ã- � ÇÓÒ Û , for all Û . Since the �Q� -algebra ���ì  h 9 �   6�x� is easily proved to be nu-
clear we obtain the following result:

Corollary 5.1. Let h be an infinite, hyperbolic, property º group and assume that h
acts on a complete Riemannian manifold  by isometries. The Dirac operator class�$H�  � �ì  h 9 �   6�x� 9 � �ì  h����
is not invertible. OP
Remark 5.2. The corollary applies to discrete, cocompact subgroups of the Lie
groups

� ?  g 9 K¢� (  is quaternionic hyperbolic space). See [17]. Despite this, it fol-
lows from the work of Lafforgue [44] that in this case  as above does induce an
isomorphism on

�
-theory. This shows that � -theory is not a perfect weapon with

which to attack the Baum-Connes conjecture.17

To prove Theorem 5.2 we shall use the following result.

Theorem 5.3. Let h be a hyperbolic group and let �Eh be its Gromov boundary.
There is a compact, metrizable topology on the disjoint union h6��h�~��Ah with the
following properties:

(a) The set h is an open, discrete subset of h .
(b) The left action of h on itself extends continuously to an amenable action of h onh .
(c) The right action of h on itself extends continuously to an action on h which is

trivial on h . OP� à
Exactly the same remarks apply here to ê�ê -theory.
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Remark 5.3. Item (c) is essentially the assertion that the natural action on the Gromov
compactification is small at infinity, in the sense of Definition 4.9.

We shall also require a few simple representation-theoretic ideas.

Definition 5.2. Let h be a discrete group. The left regular, right regular and adjoint
representations of h on ã �  h�� are defined by the formulas ý è � �  �Ý�>� �  } ¡ � �Ý� ü è � �  �Ý�>� �  �¶}��  è � �  �Ý�>� �  } ¡ � �4} �
for all } 9 �D$Xh and � $ ã �  h�� . The biregular representation of h I h on ã �  h�� is
defined by the formula   è 0 è 2 � �  �Ý�>� �  } ¡ �� �4} � �
for all } � 9 } � 9 �d$<h and � $ ã �  h�� .

The left and right regular representations determine representations ý and ü of���ì  h�� in ¹  ã �  h��x� . Since these representations commute with one another, together
they determine a �Q� -algebra representation� Ce� �ì  h��n- � ÇÓÒ � �ì  h�� ~ )+¹  ã �  h���� 9
which is of course the biregular representation on h I hY¢¨�	�ì  h���- � ÇÓÒ ���ì  h�� .
Definition 5.3. Denote by

/
the kernel of the quotient homomorphism from���ì  h��n- � ÇÓÒ ���ì  h�� onto ���ì  h��c- � ¯ !����ì  h�� , so that there is an exact sequenceR // / // ���ì  h���- � ÇÓÒ ���ì  h�� // ���ì  h��c- � ¯ ! ���ì  h�� // R t

Lemma 5.2. The �Q� -algebra representation
�

maps the ideal
/

of ���ì  h���- � ÇÓÒ���ì  h�� into the ideal ¸  ã �  h���� of ¹  ã �  h���� .
Proof. Denote by �  ã �  h���� the Calkin algebra for ã �  h�� — the quotient of the
bounded operators by the ideal of compact operators. We are going to construct a Y -
homomorphism from �Q�ì  h��S- � ¯ ! ���ì  h�� into �  ã �  h��x� which makes the following
diagram commute: � �ì  h���- � ¯ !(� �ì  h�� // �  ã �  h����

���ì  h��n- � ÇÓÒ ���ì  h�� ì î�� //

OO

¹  ã �  h��x� t
OO

Here the vertical arrows are the quotient mappings. Commutativity of the diagram
will prove the lemma.
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We begin by constructing a Y -homomorphism from �  �Eh�� into �  ã �  h��x� , as
follows. If ½%$��  �Ah�� then extend ½ to a continuous function on h , restrict the
extension to the open set h ¢ h , and then let the restriction act on ã �  h�� by point-
wise multiplication. Two different extensions of ½�$ �  �Eh�� will determine two
pointwise multiplication operators which differ by a compact operator. Hence our
procedure defines a Y -homomorphism ZQC��  �Eh���)��  ã �  h��x� , as required. Now
let h act on �  �Eh�� via the (nontrivial) left action of h (see Theorem 5.3) and define
a Y -homomorphism Z�CÝ� �  h 9 �Eh��M)��  ã �  h��x�
by the formula Z  Õè Ù ß ½ è �N} �M� Õè Ù ß Z  ½ è ��ý  }��
(we are using ý  } � to denote both the unitary operator on ã �  h�� and its image in
the Calkin algebra). Next, thanks to part (c) of Theorem 5.3 the right regular repre-
sentation commutes with the algebra ZG� �  �Eh��3��¢��  ã �  h��x� . We therefore obtain aY -homomorphism � �  h 9 �Eh���- � ÇÓÒ � �ì  h�� ~ )��  ã �  h���� t
But since the action of h on �Eh is amenable the ��� -algebra ���  h 9 �Eh�� is nu-
clear, so that the maximal tensor product above is the same as the minimal one.
Moreover amenability also implies that ���  h 9 �Eh�� agrees with ���ì  h 9 �Eh�� . See Re-
mark 4.8. It follows that the Y -homomorphism displayed above is the same thing as
a Y -homomorphism � �ì  h 9 �Ah��c- � ¯ !�� �ì  h�� ~ )��  ã �  h���� t
The lemma now follows by restricting this Y -homomorphism to the subalgebra���ì  h��n- � ¯ ! ���ì  h�� of ���ì  h 9 �Eh���- � ¯ ! ���ì  h�� .
Lemma 5.3. The

�
-theory group

�f1/ � is nonzero.

Proof. Let å�CÝ�Q�  h��>)¿���ì  h��A- � ÇÓÒ ���ì  h�� be the Y -homomorphism }	,)Ø}ß-%} .
Let ? $����  h�� be the Kazhdan projection and let 2d��å  ? � . Then 2&$ / . To see
this, observe that the composition���  h�� ì // ���ì  h���- � ÇÓÒ ���ì  h�� // ���ì  h���- � ¯ !����ì  h���¢V¹  ã �  h���- ã �  h��x�
corresponds to the tensor product of two copies of the regular representation, and ob-
serve also that this representation has no nonzero h -fixed vectors. Hence, the image
of the Kazhdan projection in ���ì  h��\- � ¯ !Q���ì  h�� is zero. We shall now prove that� 2L� p��R in

�f0/ � . Note first that the representation� Ce� �ì  h���- � ÇÓÒ � �ì  h�� ~ )^¹  ã �  h����
maps 2 to a nonzero projection operator. Indeed the composition
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is the representation  of �Q�  h�� associated to the adjoint representation of h , which
does have nonzero h -fixed vectors, and

�
maps 2 to the orthogonal projection onto

these fixed vectors. But by Lemma 5.2 the representation
�

maps
/

into the compact
operators, and every nonzero projection in ¸  ã �  h��x� determines a nonzero

�
-theory

class. Hence the map from
�"0/ � to

�f ¸  ã �  h��x��� takes � 2L� to a nonzero element,
and therefore the class � 2L�c$ �"0/ � is itself nonzero.

Proof (Proof of Theorem 5.2). Let us suppose that there is a separable nuclear � � -
algebra 
 and an invertible � -theory element Z�$H�  ���ì  h�� 9 
�� . Since ���ì  h�� is an
exact �Q� -algebra there are invertible elementsZ<- � ÇÓÒ K�$<�  � �ì  h��c- � ÇTÒ � �ì  h�� 9 
¨- � ÇTÒ � �ì  h��x�
and ZH- � ¯ ! K�$<�  � �ì  h��n- � ¯ ! � �ì  h�� 9 
"- � ¯ ! � �ì  h��x� t
We therefore arrive at the following commuting diagram in the � -theory category:���ì  h��n- � ÇÓÒ ���ì  h�� Rð÷ î1� 9�� � //

��


f- � ÇÓÒ ���ì  h��x�
�����ì  h���- � ¯ ! ���ì  h�� Rð÷ î�� � Î � // 
"- � ¯ ! ���ì  h��x�

But since 
 is nuclear the right hand vertical map is an isomorphism (even at the
level of ��� -algebras). It follows that the left hand vertical map is an isomorphism in
the � -theory category too. As a result, the

�
-theory map�" � �ì  h���- � ÇÓÒ � �ì  h���� ~ ) �" � �ì  h��c- � ¯ ! � �ì  h��x�

is an isomorphism of abelian groups. But thanks to the
�

-theory long exact sequence
this contradicts Lemma 5.3.

5.3 Bivariant Theories

In the previous section we showed that it is not possible to prove the Baum-Connes
conjecture for certain groups (for example uniform lattices in

� ?  g 9 KL� ) by working
purely within � -theory (or for that matter within

�D�
-theory). In this section we

shall prove a theorem, also due to Skandalis [61], which points to another sort of
weakness of bivariant

�
-theory. Recall that the bivariant theory we constructed —

namely � -theory — has long exact sequences in both variables but that we could
not equip it with a minimal tensor product operation (since the operation of minimal
tensor product does not in general preserve exact sequences). Kasparov’s

�D�
-theory

has minimal tensor products but the long exact sequences are only constructed under
some hypothesis or other related to �Q� -algebra nuclearity. One might ask whether or
not there is an ‘ideal’ theory which has both desirable properties. The answer is no:
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Theorem 5.4. There is no bivariant
�

-theory functor on separable �V� -algebras
which has both a minimal tensor product operation and long exact sequences in
both variables.

Remark 5.4. By the term ‘bivariant
�

-theory functor’ we mean a bifunctor which,
like � -theory and

�r�
-theory, is equipped with an associative product allowing us to

create from it an additive category. The homotopy category of separable �V� -algebras
should map to this category, and the ordinary one-variable

�
-theory functor should

factor through it.

To prove Theorem 5.4 we shall need one additional computation from represen-
tation theory.

Lemma 5.4. [41] Let h be a residually finite discrete group. The biregular represen-
tation

�
of h I h on ã �  h�� extends to a representation of the minimal tensor product���  h��n- � ¯ ! ���  h�� .

Proof. Let 5Lh ! B be a decreasing family of finite index normal subgroups of h
for which the intersection �\h ! is the trivial one-element subgroup of h . If

¾ $«;� h�� Ä «�� h(� then denote by
¾ ! the corresponding ‘quotient’ element of «G� hQ´lh ! � Ä«;� hQ´:h(!�� and denote by
� ! the biregular representation of hQ´lh�! I hQ´lh(! onã �  hQ´lh(! � . Thanks to the functoriality of - � ¯ ! it is certainly the case thatÔ ¾ Ô ³ � ö ß ø î � � Î ³ � ö ß ø '¨Öx× Ø! Ô ¾ ! Ô ³ � ö ß � ß Î ø î � � Î ³ � ö ß � ß Î ø t

In addition Ô ¾ ! Ô ³ � ö ß � ß Î ø î�� � Î ³ � ö ß � ß Î ø ' Ô � ! �¾ ! � ÔO� ö�� 2 ö ß � ß Î ø�ø
(observe that since �Q�  hQ´:h(!e� is finite-dimensional the minimal tensor product here
is equal to the maximal one). Now, it is easily checked thatÖx×eØ! Ô � ! J¾ !e� Ô�� ö�� 2 ö ß � ß Î ø�ø ' Ô � �¾ � ÔO� ö�� 2 ö ß ø�ø t
Putting together all the inequalities we conclude thatÔ ¾ Ô ³ � ö ß ø î1� � Î ³ � ö ß ø ' Ô � �¾ � Ô�� ö�� 2 ö ß øJø 9
as required.

Lemma 5.5. Let q be the kernel of the quotient map v from � �  h�� onto � �ì  h�� , so
that there is a short exact sequenceR // q // � �  h�� Õ // � �ì  h�� // R t
If there is a bivariant theory �  
 9 *	� which has long exact sequences in both vari-
ables, and if � Õ is the mapping cone of v , then the inclusion q ¢'� Õ determines an
invertible element of �  q 9 � Õ � .
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Proof. Consider the commuting diagramR // q //

��

� �  h��
��

Õ // � �ì  h�� //ð
��

R
R // �°Õ // ý�Õ // ���ì  h�� // R 9

where ý Õ �Ú5 7 ��½�$����  h��M�����ì  h��T� R 9 KS�&C�v J7 �Q� ½  Rw�AB . The inclusion of���  h�� into ý Õ (as constant functions) is a homotopy equivalence, and therefore by
applying � -theory to the diagram and then the five lemma we see that the inclusionq�¢��°Õ induces isomorphisms�  
 9 qw� Rð

// �  
 9 �°Õ � and �  �°Õ 9 *�� Rð
// �  q 9 *��

for every 
 and * . It follows that the inclusion determines an invertible element of�  q 9 �°Õe� as required.

Proof (Proof of Theorem 5.4). If the bivariant ‘ � -theory’ has a minimal tensor prod-
uct then it follows from the lemma above that the inclusionq�- � ¯ !�� �  h��P¢¨�°Õ�- � ¯ !(� �  h��
determines an invertible element in � -theory and therefore an isomorphism on

�
-

theory groups. We shall prove the theorem by showing that the map on
�

-theory
induced from the above inclusion fails to be surjective.

Consider the short exact sequenceR // i // ���  h��n- � ¯ !����  h�� Õ î � // � �ì  h���- � ¯ ! � �  h�� // R 9
where the ideal i is by definition the kernel of the quotient mapping vD-ÀK . The
mapping cone of v<-®K is (canonically isomorphic to) � Õ -����  h�� , and therefore
the inclusion i)¢�� Õ - � ¯ ! ���  h�� induces an isomorphism in

�
-theory. Observe

now that we have a sequence of inclusionsq�- � ¯ !�� �  h��P¢"i`¢'�°Õ�- � ¯ !(� �  h�� t
We wish to prove that the overall inclusion fails to be surjective in

�
-theory, and

since the second inclusion is an isomorphism in
�

-theory it suffices to prove that the
first inclusion fails to be surjective. From here the proof is more or less the same as
the proof of Lemma 5.3, and we shall be very brief. There is a diagonal mapå�CA� �  h��>)¿� �  h��c- � ¯ ! � �  h��
and we denote by 2�$ � �  h��ß- � ¯ !b� �  h�� the image under å of the Kazhdan
projection. It is an element of the ideal i . According to Lemma 5.4 the biregular
representation of h I h on ã �  h�� extends to ���  h��\- � ¯ !����  h�� . From the proof
of Lemma 5.2 we obtain a commuting diagram
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���  h���- � ¯ ! ���  h�� £ //

OO

¹  ã �  h��x� 9
OO

which shows that the �Q� -algebra representation
�

maps the ideal i into the compact
operators. Consider now the sequence of mapsq�- � ¯ ! ���  h�� ö

// i £ // ¸  ã �  h���� t
The composition is zero. But the projection ? is mapped to a nonzero element in¸  ã �  h��x� , and the

�
-theory class of � 2L� is mapped to a nonzero element in the

�
-

theory of ¸  ã �  h���� . This shows that the class � 2L�ß$ �" ij� is not the image of any�
-theory class for q�- � ¯ ! ���  h�� , and this completes the proof of the theorem.

5.4 Expander Graphs

The purpose of this section and the next is to present a counterexample to the Baum-
Connes conjecture with coefficients, contingent on some assertions of Gromov.

Definition 5.4. Let � be a finite graph (a finite, K -dimensional simplicial complex)
and let kÚ��k  ��� be the set of vertices of � . The Laplace operator åfC ã �  kQ��)ã �  k�� is the linear operator defined by the quadratic formÆ8½ 9 åV½ Ç � Õ© ö Î ï Î�  ø ð � = ½  � � ~ ½  � â � = � t
The sum is over all (unordered) pairs of adjacent vertices, or in other words over the
edges of � . We shall denote by ý �  ��� the first nonzero eigenvalue of å .

If the graph � is connected then the kernel of å consists precisely of the constant
functions on k . In this case½&$ ã �  kQ�� Ò Ù  ½  � �>��R ¡ ��� Ô ½ Ô � s Ký �  ��� Æ�åV½ 9 ½ Ç t (1)

Definition 5.5. Let � be a positive integer and let � ë R . A finite graph � is a
 � 9 ��� -

expander if it is connected, if no vertex of � is incident to more than � edges, and ifý �  ���°'f� .
See [46] for an extensive discussion of the theory of expander graphs.
The following observation of Gromov shows that expander graphs give rise to

examples of metric spaces which cannot be uniformly embedded in affine Euclidean
spaces.
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Proposition 5.2. Let � be a positive integer, let � ë R , and let 5�� ! B I! ð � be a se-
quence of

 � 9 ��� -expander graphs for which y}z{| ! GxI = k  � ! � = � ; . Let k be the
disjoint union of the sets k ! � k  � ! � and suppose that k is equipped with a dis-
tance function which restricts to the path-distance function on each k ! . Then the
metric space k may not be embedded in an affine Euclidean space.

Proof. Suppose that ½ is a uniform embedding into an affine Euclidean space � . We
may assume that � is complete and separable, and we may then identify it isometri-
cally with ã �  _\� . By restricting ½ to each kA! , and by adjusting each ½l! by a transla-
tion in ã �  _N� (that is, by adding suitable constant vector-valued functions to each ½w! )
we can arrange that each ½l! is orthogonal to every constant function in the Hilbert
space of functions from kA! to ã �  _N� (we just have to arrange that � Ò Ù � Î ½ �¾ �>��R ).Now the Laplace operator can be defined on ã �  _N� -valued functions just as it was on
scalar functions, and the expander property (1) carries over to the vector-Laplacian
(compute using coordinates in ã �  _N� ). HoweverÆ�åV½ ! 9 ½ ! Ç � Õ© ö Î ï Î   ø ð � = ½ !  � � ~ ½ !  � â � = �s Õ© ö Î ï Î�  ø ð � Ks � µ = ke! = t
It therefore follows from the expander property thatÕÎ Ù  Î Ô ½l!  � � Ô � � Ô ½l! Ô � s K� Æ8åV½:! 9 ½l! Ç s �µ:� = ke! = t
Thus for all g , and for at least half of the points � $ kE! , we have

Ô ½l!  � � Ô � s m � . This
contradicts the definition of uniform embedding since among this half there must be
points � ! and � â! with y}z}|�! GJI T  � ! 9 � â! �M� ; .

In a recent paper [26], M. Gromov has announced the existence of finitely gen-
erated groups which do not uniformly embed into Hilbert space. Complete details of
the construction have not yet appeared, but the idea is to construct within the Cayley
graph of a group a sequence of images of expander graphs. Let us make this a little
more precise, as follows.

Definition 5.6. Let us say that a finitely generated discrete group h is a Gromov
group if for some positive integer � and some � ë R there is a sequence of

 � 9 �l� -
expander graphs ��! and a sequence of maps ZN!GCÏk  ��! �M)êh such that :

(a) There is a constant é , such that if � and � â are adjacent vertices in some graph��! then T  Z\!  � � 9 Z\!  � âã�x�Ps é .

(b) y{z}|�! GJI�¢ |�$ § Ö¤£ ÷ ¸ 0Î Ú èvô ££  ö¦¥ Î ø £ C�}b$dh ×p§ �'R .
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Remark 5.5. The second condition implies that y}z{| ! GJI = k  � ! � = � ; .

It appears that Gromov’s ideas prove that Gromov groups, as above, exist. In any
case, we shall explore below some of the properties of Gromov groups. We conclude
this section with a simple extension of Proposition 5.2, the proof of which is left to
the reader.

Proposition 5.5 If h is a Gromov group then h cannot be uniformly embedded in
an affine Euclidean space. OP
5.5 The Baum-Connes Conjecture with Coefficients

We shall prove that, contingent on the existence of a Gromov group as in the last sec-
tion, there exists a separable, commutative ��� -algebra Û , and an action of a count-
able group h on Û , for which the Baum-Connes mapó ì C � [Hõ 4  h 9 Ûb�>) �f � �ì  h 9 Ûb�x�
fails to be an isomorphism.

Lemma 5.6. Let h be a countable group and let
/

be an ideal in a h - � � -algebra
 . If the Baum-Connes assembly map ó ì is an isomorphism for h , with coefficients
all the separable �Q� -subalgebras 
 and 
�´ / , then the

�
-theory sequence�f ���ì  h 9 / �x� // �f ���ì  h 9 
���� // �" ���ì  h 9 
�´ / ���

is exact in the middle.

Proof. Since exactness of the sequence is preserved by direct limits it suffices to
consider the case in which 
 itself is separable. The proof then follows from a chase
around the diagram of assembly maps� [Hõ 4  h 9 
��

��

// � [Hõ 4] h 9 
�´ / �
���f ���  h 9 / �x� //

��

�f ���  h 9 
���� //

��

�" ���  h 9 
�´ / ���
���f ���ì  h 9 / �x� // �f ���ì  h 9 
���� // �" ���ì  h 9 
�´ / ���

and the fact that the middle row is exact in the middle.

We shall prove that if h is a Gromov group then for a suitable 
 and
/

the
conclusion of the lemma fails.

Definition 5.7. Let 
 be the �Q� -algebra of bounded complex-valued functions onh I _ for which the restriction to each subset h I 5Lg\B is a | � -function. Denote by/
the ideal in 
 consisting of | � -functions on h I _ .
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Thus 
��� ã I  _ 9 | �E h���� and
/ �� | �� _ 9 | �E h��x� .

Now let h act on 
 be the right translation action of h on h I _ .

Lemma 5.7. The (right regular) covariant representation of 
 on ã �  h I _N� deter-
mines a faithful representation of the reduced crossed product algebra �V�ì  h 9 
�� as
operators on ã �  h�� . OP

From here on we shall assume that h is a Gromov group. For simplicity we shall
now assume that the maps ZN!GCÏkÝ!�)+h which appear in Definition 5.6 are injective.
For the general case see [11].

Let k be the disjoint union of the kA! . Let us map kÝ! via Z\! to the g th copy ofh in h I _ , and thereby embed k into h I _ . We can now identify ã �  k�� with a
closed subspace of ã �  h I _N� .
Definition 5.8. Denote by åfC ã �  h I _N��) ã �  h I _N� the direct sum of the Laplace
operators on each ã �  kÝ!e�U¢ ã �  k�� with the identity on the orthogonal complement
of ã �  k��P¢ ã �  h I _\� .
Lemma 5.8. The operator å ~ q belongs to ���ì  h 9 
��P¢¨¹  ã �  h I _\��� (it is in fact
in the algebraic crossed product).

Proof. First, some notation. Let us continue to identify the vertex set k ! �Þk  � ! � ,
via Z ! , with a subset of h . We shall write � } 9 } â �G$f�  � ! � if the group elements }
and }�â correspond to vertices in k ! which are adjacent in the graph � ! . Finally if }
corresponds to a vertex of � ! we shall write � !  }�� for its valence, minus K .

The Hilbert space ã �  h I _N� has canonical basis elements ½ è ! and in this basis
the formula for å isÁ>Â >Ã  å ~ qw�]CE½ è ! ,)��  } �x½ è ! ~ ÕÚ è ï è   ô Ù 8 ö¦¥ Î ø ½ è   ! if }b$lk ! å ~ qw�]CE½ è !V,)¿R if }W´$ kÝ! .
We can therefore write å ~ q as a finite sumå ~ q�� F � 7 � � Õ�q¨ð � �V� 7 � 9
where the coefficient functions

7 è $H
 are defined by7 �  } 9 g��M� Â ��!  } � if }b$lkÝ!R if }W´$lkÝ!
and, for � p� F , 7 �  } 9 g��M� Â ~ K if � }¶� ¡ � 9 }w��$<�  � ! �R if � }¶� ¡ � 9 }w��$<�  � ! � .
(The sum is finite thanks to the first item in Definition 5.6.)
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Since the graphs � ! are
 � 9 ��� -expanders the point R is isolated in the spectrum

of å , and therefore we can make the following definition:

Definition 5.9. Let h be a Gromov group and assume that the maps ZM!;C�ke!W) h
are injective. Denote by �ç$<� �ì  h 9 
�� orthogonal projection onto the kernel of å .

The operator � is the orthogonal projection onto the ã � -functions on h I _ which
are constant on each kÝ! and zero on the complement of k .

Lemma 5.9. The class of � in
�f �Q�ì  h 9 
��x� is not in the image of the map�f ���ì  h 9 / �x�>) �" ���ì  h 9 
���� .

Proof. Let 
�!V� | �  h I 5Lg\B¢� , which is a quotient of 
 , and denote byvA!dC�� �ì  h 9 
��j)¿� �ì  h 9 
�!e�
the quotient mapping. We get mapsvÝ! � C �" � �ì  h 9 
��x�>) �f � �ì  h 9 
�!Ý�x�M��³ t
Since v !  ��� is a rank one projection, we find v !  � ���@�H��K , for all g . Therefore
the
�

-theory class of ? in
�" �Q�ì  h 9 
��x� does not come from

�f �Q�ì  h 9 / �x� (which
maps to the direct sum � ! ÙB©�³ under ��v ! ).
Lemma 5.10. The image of � in �Q�ì  h 9 
�´ / � is zero.

To prove the lemma we shall need some means of determining when elements in
reduced crossed product algebras ���ì  h 9 Ûb� are zero. For this purpose, recall that the��� -algebra ���ì  h 9 Ûb� is faithfully represented as operators on the Hilbert Û -moduleã �  h 9 Ûb� .
Exercise 5.1. If # è denotes the orthogonal projection onto the functions in ã �  h 9 Ûb�
supported on 5S}AB , and if º�$X�Q�ì  h 9 Û�� , then # è º�# � is an operator from functions
supported on 5 F B to functions supported on 5S}AB . If all the elements # è º�# � are equal
to R then º���R .
Exercise 5.2. The operator # è º�# � can be identified with an element º è $HÛ via the
formula  # è º�#5� � �  } �>��º è � � JF � 9 j � $ ã �  h 9 Ûb� t
If º is a finite sum º6� � T è �F} in the algebraic crossed product (where T è $uÛ )
then º è � T è . If Z�CEÛ¿)ÙÛbâ is a h -equivariant Y -homomorphism and if

È
is the

induced map on crossed products then
È� º�� è ��Z  º è � .

By checking on finite sums we see that if an operator º6$D�	�ì  h 9 
�� has matrix
coefficients º è ! ï è   !   for the canonical basis of ã �  h 9 _M� then the functions º è $�

associated to º are defined by º è  � 9 g��M��º � è ! ï � ! t
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Proof (Proof of Lemma 5.10). The projection �XC ã �  h I _N��) ã �  h I _N� is com-
prised of the sequence projections � ! onto the constant functions in ã �  k ! � . The
matrix coefficients of � are therefore described by the formula

Á>Â >Ã �uCe½ è ! ,) Õè   Ù  Î K= ke! = ½ è   ! if }b$lk !�uCe½ è !�,)+R if }W´$lke! .

As a result, the functions � è $<
 associated to the projection � , as in the exercises,
are given by the formula

� è  � 9 g��M� ÁÂ Ã K= k ! = if �4} 9 �d$lke!R if �4}D´$lk ! or ��´$ k ! t
This shows that � è $ / , for all }�$6h . It follows that the elements ��!o$6
�´ /
associated to the image of � in ���ì  h 9 
�´ / � are R , and so the projection � is itselfR in ���ì  h 9 
�´ / � .

The two lemmas show that the
�

-theory sequence�f � �ì  h 9 / �x� // �f � �ì  h 9 
���� // �" � �ì  h 9 
�´ / ���
fails to be exact in the middle. Hence:

Theorem 5.6. Let h be a Gromov group. There is a separable, commutative h - �	� -
algebra Û for which the Baum-Connes assembly mapó ì C � [Hõ 4  h 9 Ûb�>) �f � �ì  h 9 Ûb�x�
fails to be an isomorphism. OP
5.6 Inexact Groups

The following result (see [28, 29, 15]) shows that Gromov groups fail to be exact.

Theorem 5.7. If a finitely generated discrete group h is exact then h embeds uni-
formly in a Hilbert space.

To prove the theorem we shall use a difficult characterization of separable exact��� -algebras, due to Kirchberg [42] (see also [66] for an exposition). It involves the
following notion:

Definition 5.10. Let 
 and * be unital ��� -algebras. A unital linear map
È C�
�)¿*

of ��� -algebras is completely positive if for all ��$`_ the linear map
È m Cw m  
��>) m  *	� defined by applying

È
entrywise to a matrix of elements of 
 is positive

(meaning it maps positive matrices to positive matrices).
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Theorem 5.8. A separable �Q� -algebra 
 is exact if and only if every injective Y -
homomorphism 
�) ¹  ¶d� can be approximated in the point norm topology by
a sequence of unital completely positive maps, each of which factors, via unital,
completely positive maps, through a matrix algebra. OP

Kirchberg’s theorem has the following consequence:

Corollary 5.2. If h is a countable exact group then there exists a sequence of com-
pletely positive maps

È !GCÝ���ì  h��>)+¹  ã �  h���� which converge pointwise in norm to
the natural inclusion of �Q�ì  h�� into ¹  ã �  h���� and which have the property that for
every gW$`_ the operator valued function }V,) È !  } � is supported on a finite subset
of h .

Proof. By Theorem 5.8 there exists a sequence of unital completely positive maps
which converge pointwise in norm to the natural inclusion of �	�ì  h�� into ¹  ã �  h���� ,
and which individually factor through matrix algebras. Let us write these maps as
compositions � �ì  h���ª Î //  m Î  «M� « Î // ¹  ã �  h���� t (2)

Now, a linear map ¬WCE� �ì  h���)û fm  «N� is completely positive if and only if the
linear map ðMCe m  ���ì  h����>)+« defined by the formulað  � ½ ¯ � �@�M� K� mÕ¯ ï � ð � ¬  ½ ¯ � � ¯ �
is a state. Moreover the correspondence ¬ ��ð is a bijection between completely
positive maps and states. In addition, if � � 9 tSt�t 9 � m are finitely supported functions
on h which determine a unit vector in the � -fold direct sum ã �  h��N�o���S��� ã �  h�� ,
then the vector state ð  � ½:¯ � �@�M� mÕ¯ ï � ð � Æ��e¯ 9 ý  ½l¯ � �µ� � Ç
on  m  ���ì  h���� corresponds to a completely positive map ¬ which is finitely sup-
ported, as a function on h , as in the statement of the lemma. But the convex hull
of the vector states associated to a faithful representation of a �	� -algebra is always
weak � -dense in the set of all states (this is a version of the Hahn-Banach theorem).
It follows that the set of those completely positive maps from � �ì  h�� into  m  «N�
which are finitely supported as functions on h is dense, in the topology of point-
wise norm-convergence, in the set of all completely positive maps from �V�ì  h�� into �m  «M� . By approximating the maps ¬�! in the compositions (2) we obtain com-
pletely positive maps from ���ì  h�� into ¹  ã �  h��x� with the required properties.

Proof (Proof of Theorem 5.7). According to Corollary 5.2 there exists a sequence of
unital completely positive maps

È !GCÝ���ì  h��>)^¹  ã �  h��x� which converge pointwise
in norm to the natural inclusion of ���ì  h�� into ¹  ã �  h���� and which are individually
finitely supported as functions on h . Define a sequence of functions
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by Z\!  } �¢9 } � �M�)Æ�� } ¡ �� � 9 È !  } ¡ �� } � �S� } ¡ �� � Ç t
The functions Z ! are positive-definite kernels on the set h , in the sense of Defini-
tion 4.14. (To prove the inequality � ýÝ¯8Z !  }�¯ 9 } � �xý � '�R write the sum as a matrix
product

� } � tStSt }�m �`®¯ ý � È !  } ¡
�� } � ��ý � t�tSt ý � È !  } ¡ �� }�ml�xýAm...

. . .
...ý m È !  } ¡ �m } � �xý � t�tSt ý m È !  } ¡ �m } m ��ý m

°�±² ®¯ } �...} m
°�±²

and apply the definition of complete positivity.) The functions Z>! converge pointwise
to K , and moreover for every finite subset �M¢�h and every � ë R there is some
� $`_ such thatg ë � and } ¡ �� } � $<� � = Z\!  } �:9 } � � ~ K = t � t
In addition, for every gW$�_ there exists a finite subset � ° h such that} ¡ �� } � ´$<� � Z !  } � 9 } � �>��R t
It follows that for a suitable subsequence the series � �  K ~ Z ! ��� is pointwise con-
vergent everywhere on h I h . But each function K ~ Z ! � is a negative type kernel,
and therefore so is the sum. The map into affine Euclidean space which is associated
to the sum is a uniform embedding.

Remark 5.6. This proof is obviously very similar to that of Proposition 4.9. In fact,
according to Remark 4.7 the above argument shows that if a countable group h is
exact then h acts amenably on its Stone-Cech compactification

� h [28, 29, 15]. As
a result: if a countable group h is exact then the Baum-Connes assembly mapó ì C � [Hõ 4  h 9 Ûb�>) �f � �ì  h 9 Ûb�x�
is injective, for every Û .
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14. A. Connes and N. Higson. Déformations, morphismes asymptotiques et ê -théorie bi-
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