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Let A be a unital C*-algebra and let 9 denote the Calkin algebra (the bounded 
operators on a separable Hilbert space, module the compact operators Jr). We 
prove the following conjecture of M. Karoubi: the algebraic and topological 
K-theory groups of the tensor product C*-algebra A 02 are equal. The algebra 
A 01 may be regarded as a “suspension” of the more elementary C*-algebra 
A @IX; thus Karoubi’s conjecture asserts, roughly speaking, that the algebraic and 
topological K-theories of stable C*-algebras agree. t 1988 Academic Press, Inc. 

Let A be a C*-algebra and suppose, for the sake of simplicity, that A is 
unital. The general linear group of A of dimension n, denoted GL,,A, is the 
group of invertible elements in the n x n matrix algebra M,(A) over A. This 
paper is about comparing invariants of GL,,A, considered as a topological 
space (with the norm topology, inherited from A), to invariants of GL,,A 
considered as a discrete group. On the topological side, we are going to 
study the topological K-theory of A, denoted K’.+(A), which is nothing 
more than the homotopy, n,(GL,A), of GL,,A. To be precise, K’,(A) is the 
homotopy of the CL, A, the “limit” as n -+ IX) of the GL,,A: it turns out to 
be a great conveneince to study this “stable” group, rather that the non- 
stable groups CL,,. This has been the object of quite intense scrutiny by 
operator algebraists in recent years. The result of this attention has been 
the development of powerful techniques to compute K:(A) for a great 
variety of C*-algebras A, and numerous applications, both to the theory of 
operator algebras, and perhaps more importantly and more significantly, 
to various other disciplines, notably differential topology. The algebraic 
invariant of GL,A is called the algebraic K-theory of A, denoted K,(A). It 
can be defined for any ring, and from our point of view, it is an analogue of 
the homotopy of GL,A in a purely algebraic context. (Again, to be precise, 
we consider GL, A rather than GL,A.) For instance, in the topological set- 
ting, ;rr,(GL, A) = GL 35 A/GLf,= A, where CL”, A denotes the connected 
component of the identity; in the algebraic setting, the corresponding 
group is GL, A/PGL r A, where PGL T A denotes the maximal perfect sub- 
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group, which plays the role of the connected component of the identity. 
Next is the fundamental group rt ,: in the topological case this is obtained 
from the universal covering group of CL”, A; we obtain the algebraic group 
from the analog of this-the universal central extension of PGL,,A. 

Stated informally, the main theorem of this paper is as follows. (The 
statement is imprecise due to the fact that we will consider not stable 
C*-algebras, but “suspensions” of stable C*-algebras. We do not need to 
go into the details of this immediately.) 

If A is a stable F-algebra then the algebraic K-theory of A is equal to the 
topological K-theory of A. 

This is, we think, an interesting result for the following reasons. First, the 
algebraic K-theory of a ring is in general quite inaccessible. For example, 
the algebraic K-theory of say the integers Z is not yet known (although the 
first several groups K,,(Z) are). Again, the groups K,(C) have only recently 
been determined, as a result of very deep computations. Yet for a stable 
C*-algebra, the algebraic K-theory is the same as the relatively accesible 
topological K-theory. The second, and we think more interesting point 
regards the quite distinct natures of topological and algebraic K-theory. 
Topological K-theory is constructed by considering GL,A solely as a 
topological space; on the other hand, algebraic K-theory is constructed 
from GL,,A, considering it solely as a discrete group, without regard to 
topology at all. Yet these two different approaches lead to exactly the same 
group, in the case of a stable C*-algebra. 

This last point brings us to an interesting parallel with the Brown 
Douglas Fillmore theory of extensions of C*-algebras. Since this is in many 
ways the foundation of our work, we want to spend a few lines now 
acquainting the reader with the broad outlines of it. An essentiall”v normal 
operator N on a Hilbert space is an operator for which the self-com- 
mutator [N, N*] is compact (as opposed to zero, in which case N would 
be normal). It is quite clear from the definition that every compact pertur- 
bation of a normal operator is essentially normal, and the question arises: 
does this exhaust the class? It is not hard to see that the answer is “no.” 
For example, the unilateral shift is essentially normal but not of this form. 
Two operators N,, N, are essentially unitarily equivalent if there exists a 
unitary U such that UN1 U* - N2 is compact. An obvious invariant of this 
equivalence relation is the essential spectrum a,(N), that is, the spectrum of 
the image of N in the quotient C*-algebra 93/X, and the natural question 
to ask is: what are the possibilities (up to essential unitary equivalence) for 
an essentialy normal operator with given essential spectrum X? It turns out 
that they are classified by elements of an abelian group denoted 
Extt’(C(X)). The construction of Ext -‘(C(X)) and the fact that it is a 
group is in itself remarkable, but it is the even more remarkable description 
of Ext ‘(C(X)) given by Brown, Douglas, and Fillmore that we are 
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interested in. Recall for a moment the classification of normal operators up 
to unitary equivalence on a separable Hilbert space. A complete list of 
invariants is: the spectrum X of the operator, an equivalence class of 
measures on X, and a “multiplicity function” X+ { 1, 2,..., co}. (If the 
multiplicity function is constantly 1 then the operator is simply multi- 
plication by x on L’(X); in general it is a direct sum of pieces of this, as 
dictated by the multiplicity function.) In contrast, if N is essentially normal 
then the essential unitary equivalence class of N is the set of all essentially 
normal operators N’ with the same essential spectrum X as N, for which 

index(i - N) = index(i -N’) 

for every complex number i in the complement of X. Thus N is charac- 
terized by X and the “multiplicity function” 3. F+ index(>” - N), defined on 
the complement of X. This is a result of the following beautiful fact: 

Ext ‘(C(X)) is equal to the (odd-dimensional) K-homology qf A’. 

It is not important for us to describe exactly what the K-homology of a 
space X is. The point we want to make is that the purely algebraically 
defined group Ext .‘( C(X)) turns out to be completely topological in 
character. This is a very intriguing and remarkable phenomenon, and the 
results of this paper are offered as another illustration of it. 

Besides the theorem mentioned, we present a number of other results, 
mostly on the same theme of comparing algebraic and topological 
K-theory, but occasionally as minor digressions from it. Most sections 
begin with a brief summary of their contents; however, let us give here an 
outline of the contents of the work as a whole. 

Section I 
Almost the whole of the paper relies in a very crucial way on the 

technical underpinings of extension theory, as developed in its general form 
by Kasparov. These are results on the structure of multiplier algebras and 
the outer multiplier algebras, or as we shall call them, “generalized Calkin 
algebras” J?‘(X@B)/X@ B. The two main results are a separation 
theorem of Kasparov, concerning orthogonal subalgebras of a Calkin 
algebra (Theorem 1.1.1 1 ), and a type of stabilization theorem, which com- 
pares the multiplier algebras ..&‘(X@ B) and .X(XOJ), where J is an 
ideal of B (Theorem 1.3.14). Various other C*-algebra preliminaries are 
also given. 

Section II 
There are basically three topics covered. The first is the introduction of 

topological K-theory, about which we need say nothing here. The second is 
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the introduction of algebraic K-theory. The definition of the higher 
algebraic K-theory groups is due to Quillen; it is a beautiful illustration of 
the interplay possible between algebra and algebraic topology. A certain 
amount of familiarity with topology is necessary to work with it, and in an 
attempt to make the paper accessible to non-topologists we have included 
most of the background needed. The third topic of the section is the exten- 
sion theory of C*-algebras. We have included it partly because of the close 
parallels between our results, as we have described; partly because exten- 
sion theory provides a good illustration of some of the techniques we 
develop; and partly because, by means of these techniques, we are able to 
contribute a little to the simplification of the subject. 

Section III 
The main topic of the section is a homotopy invariance theorem, proved 

in a general context. The techniques in the proof are for the most part 
borrowed from Kasparov’s treatment of the homotopy invariance of the 
extension groups. However, we use ideas due to Cuntz to put Kasparov’s 
work in an abstract setting, and the result is quite surprising: any functor 
from C*-algebras to abelian groups which is “matrix stable” and which 
preserves split exact sequences is homotopy invariant. 

Section IV 

We prove that if A is a stable C*-algebra then the following three objects 
are equal: 

(i) The universal connected covering group of GL:A. 
(ii) The Steinberg extension of the group E, A of elementary 

matrices in GL,,A. 
(iii) The universal central extension of the maximal perfect subgroup 

of GL, A. 

As a result, the algebraic K,-group of A is equal to topological K2. 

Section V 
This is the main section in the paper. We prove the theorem already 

stated that the topological and algebraic K-theory groups for Calkin 
algebras are equal. 

Section VI 
There are two main topics. The first is what might be called non-stable 

K-theory-the study of the group GL, A instead of the stable version 
GL, A. As we mentioned earlier, it is a considerable simplification to work 
with GL, rather than GL, for some fixed n: this section should illustrate 
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the point. However, we are able to show that if B is unital then the non- 
stable algebraic K-theory of &(X @ B)/X@ B is equal to its non-stable 
topological K-theory. By results already known in topological K-theory, 
this implies that the non,stable and stable algebraic K-theories agree for 
these algebras. The other topic is the Karoubi-Villamayor algebraic 
K-theory, which is another possible definition for the homotopy of the dis- 
crete group GLA. We prove that for a stable C*-algebra, this too is equal 
to the topological K-theory. 

This paper is a modification of the author’s Ph.D. thesis (Dalhousie 
University, 1985). He would like to take this opportunity to thank his 
supervisor, Peter Fillmore, for his patience and support, as well as Dick 
Kadison for his encouragement and his interest in this work. 

I. MULTIPLIER ALGEBRAS AND TENSOR PRODUCTS 

1.1. Multiplier Algebras 

Let A be a C*-algebra. There are a number of definitions of the mul- 
tiplier algebra, d(A), of A, of which the following (the original one, due to 
Johnson [28]) is perhaps the most concrete. 

DEFINITION 1.1.1. A (double) centralizer of A is a pair (L, R) of linear 
maps from A to itself, such that: L is a right A-module homomorphism 
(i.e., L(xy) = L(x)y); R is a left A-module homomorphism; and 
R(x) y = XL(JJ) for all x and y in A. The composition of two centralizers 
(L,, R,) and (L2, R,) is given by 

(L,, R,NL,, &I= (L,L,, &RI) (1.1.1) 

(which is easily seen to be a centralizer itself), and the resulting algebra is 
the multiplier algebra of A, denoted ,&‘(A). 

This rather odd definition is made with a simple idea in mind: if A is an 
ideal in an algebra B, and if b E B, then b defines a multiplier (L, R), by 

L(x) = bx, R(x) = xb. (1.1.2) 

We note that the composition law (1.1.1) corresponds to multiplication of 
elements in B. Of course, A is contained as a trivial ideal in itself, and since 
for any x E A there is some y E A (namely y = x*, for example) such that 
xy # 0, the element of &‘(A) corresponding to x is non-zero. Thus A is 
embedded as a subalgebra of &‘(A), and it is easily verified that A is in fact 
an ideal in d(A). (From this we see that every element (L, R) of ,+&‘(A) is 
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obtained in the manner of (1.1.2), namely take b = (15, R) and B=&(A).) 
Continuing along these lines, we arrive at the following useful (and, of 
course, well known) characterization of .&(A). 

THEOREM 1.1.2. If B is any algebra containing A as an ideal then there is 
a unique homomorphism from B to A(A) which extends the inclusion of A 
into &I( A). 

The algebra &2’(A) is in fact a C*-algebra, for it turns out that L and R 
are both bounded linear maps, of equal norm (see [ 141) and we may set 

ll(L R)Il = IILII (= IIRIIL (1.1.3) 

which makes .&‘(A) into a Banach algebra. We define an involution 
on .#(A) by (L, R)* = (L*, R*), where L*(x)= (R(x*))* and R*(x)= 
(L(x*))*. With respect to this and the norm (1.1.3), ,&(A) is a C*-algebra. 
In Theorem 1.1.2, if A is a closed ideal in a C*-algebra B then the 
canonical homomorphism from B to ,&(A) is a *-homomorphism. 

Apart from obtaining elements of &‘(A) via algebras containing A as an 
ideal, the main source of supply is from certain limits. For this it is useful 
to introduce the strict topology on .&‘(A), which is characterized by the 
following: a net i-u,} in .&(A) converges in the strict topology to ,YE ,X(A) 
if and only if for every a E A the nets { x,a} and {ax,} converge in the 
norm topology to xa and a.x, respectively. For details, see [14]. The 
following simple fact is very useful: the strict topology on ,&(A) is com- 
plete, in the sense that if for every aE A, the sequences (x%a} and {ax,} 
are Cauchy (in the norm topology), then {?c,} converges in the strict 
topology. 

EXAMPLE 1.1.3. Denote by x the C*-algebra of compact operators on 
a separable Hilbert space. Then the C*-algebra B of all bounded operators 
on the Hilbert space contains Z” as an ideal, and so by Theorem 1.1.2 there 
is a canonical *-homomorphism ~8 -+ &(xX). This map is in fact a 
*-isomorphism since it follows from elementary representation theory that 
&I enjoys the universal property described in Theorem 1.1.2. The notations 
58’ and % for bounded and compact operators on a separable Hilbert space 
will be used throughout the rest of the paper without further explanation. 

There is an interesting genralization of this, which is useful to bear in 
mind (for counterexamples, and so on). If C(X, X) denotes the C*-algebra 
of norm continuous functions from a compact space X to x then 
Jz’(C(X, ,X)) is equal to C,,,(X, g), the C*-algebra of bounded functions 
A(x) from X to g which are continuous in the *-strong topology (i.e., both 



AuxBR~rc K-THEORYOF P-ALGEBRAS 7 

A(x) and A*(x) are strongly continous; the *-strong topology on 9J is 
equal to the strict topology on bounded subsets); see [l]. Note that 
C(X, X) and C,,,(X, 9) are, respectively, the (pointwise) compact and the 
bounded endomorphisms of the trivial field of Hilbert spaces over the space 
X. In general, it is very convenient to regard elements of A as “compact 
operators” and elements of e g(A) as “bounded operators.” 

We consider now the functorial properties of the multiplier algebra, 
beginning with what we shall call “restriction.” Suppose that A’ is an ideal 
in A. Then from the fact that A’. A’ = A’, it follows that A’ is also an ideal 
in J!(A). 

DEFINITION 1.1.4. The restriction homomorphism r: ..&‘( A ) + =M( A’) is 
the unique *-homomorphism that extends the inclusion of A’ into .&(A’). 

Notice that if A’ is an essential ideal of A. in other words, if the 
annihilator ideal 

Ann(A’)= (aEA / aA’=A’a=O). (1.1.4) 

is zero, then the restriction homomorphism is injective. Because of this, 
whenever Ann(A’) = 0 we will regard &‘(A) as a C*-subalgebra of .&(A’). 
It is useful to have the following characterization of this subalgebra: if 
x E m K( A’) then x E ,.N( A ) if and only if 

x.AcA and A..rc A. (1.1.5) 

Indeed, if x satisfies ( 1.1.5) then .Y defines a double centralizer of A, as in 
Definition 1.1.1. and the image of this centralizer in .&‘(A’) under restric- 
tion returns .Y. 

Let us turn from the restriction homomorphism to a discussion of the 
covariant functoriality of .&‘(A). Unfortunately it is not true that every 
*-homomorphism f: A, -+ A, extends to a *-homomorphism from .&‘(A,) 
to J?‘(A?). However, by means of the next three results we are able to get 
by. 

LEMMA 1.1.5. (See [43, Proposition 3.12.121.) Q” f[A,] contains an 
approximate unit for A, therz the map j A, + A, extends uniquel~~ to a 
*-homomorphism f: -U( A, ) -+ -.k!( AZ). 

All the approximate units that we deal with in this paper are assumed to 
be positive and increasing. The condition that f[A,] contain an 
approximate unit for A, is equivalent tof[A,] A, being dense in A,, or in 
the other words, it is equivalent to the hereditary subalgebra generated by 
./-[A,] in A, being equal to AI. 
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Proof. First, if an extension f: &!(A,) -+ &(Az) exists, then it is cer- 
tainly unique because, for x E .&‘(A,) and a E A, we have 

f(x) a =f(x) j,l&fM a 

= lim f(xuJ a, j. + cc 

and similarly, 

of(x) = lim (uf(-x))f(ud i. - rl 

= lim uf(x~,), 
i. -+ r 

(1.1.6) 

(1.1.7) 

where {U;. jj.E n is an approximate unit for A, (and so {f(uj,)} is an 
approximate unit for A,). In other words, f(x) is the limit in the strict 
topology of the net {~(xu;.)}. Since xu,~A,, the bottom lines of (1.1.6) 
and ( 1.1.7) do not depend on the extension off: On the other hand, it is 
readily verified that the limits (1.1.6) and (1.1.7) always exist: if 
a E~[A, ] A 2 then this is clear, while the case of a general a E A z is dealt 
with by approximating with elements off[A ,] AZ. It is easily seen that the 
limits define an extension off from J$‘(A ,) into &!(A,). 1 

The following definition gives a class of *-homomorphisms which is large 
enough for our purposes, and all of whose elements are extendible. 

DEFINITION 1.1.6. A quasi-unitul *-homomorphism f from A i to A, is a 
*-homomorphism with the property that the hereditary subalgebra of A, 
generated by fC.4 i] is of the form pA,p, where p is a projection in .,4!(A2). 

Notice that the projection p in this definition is unique, if it exists at all, 
since, for example, 1 -p may be recovered from f as the unit of the 
C*-algebra of x E &+‘(A2) such that xf[A i] = 0 =f[A i] x. 

PROPOSITION 1.1.7. A quasi-unitul map f: A, + A, extends to a 
*-homomorphism from &?(A,) to &(A,). 

Proof. Let {uj,> be an approximate unit for A,. Define 
J ,&‘(A,) + &2’(A2) by the formulas 

f(x)u=/~~f(x%)u, 
(1.1.8) 

Uf(X) = lim Uf(XUj,), 
i. + cc 
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where a E A, and x E &‘(A ,). By writing a as pa + (1 -p) a, with p the pro- 
jection of Definition 1.1.6, since ~(xu~)( 1 -p) = 0, we see from Lemma 1.1.5 
that the limits exist and define a *-homomorphism from .&Z(A,) to &(A,) 
as required. 1 

Of course, the extension off! A, -+ A, is not necessarily unique, for we 
can add to the map defined by (1.1.8) any *-homomorphism from the 
quotient ,&‘(A,)/A, to (1 -p) &‘(A?)(1 -p). However, when we speak of 
the extension of a quasi-unital map we will always mean the one given by 
( 1.1.8); we will denote it simply by,f: 

PROPOSITION 1.1.8. (i) The composition of t~‘o quasi-unital maps is 
quasi-unital. 

(ii) Extension of quasi-unital maps to multiplier algebras is functorial. 

Proof (i) Suppose that f, : A, + A, and fi: A, + A, are quasi-unital. 
Let pAzp be the hereditary subalgebra of A, generated by f,[A,], and let 
qA,q be the hereditary subalgebra of A, generated by f2(A2). If {uj,JiE,, is 
an approximate unit for A, then { fi(ui))- j.En is an approximate unit for 
pA2 p. Therefore, if {u;., >,.,E ,1, is an approximate unit for (1 -p) A,( 1 -p) 
then Cfi(uj.) + Di,l (>,.,.‘)E.j %.I’ is an approximate unit for A,, and so 
{f2fi(u1)+fZ(U1,)}(~,i,,E.,rA’ is an approximate unit for qA,q. Finally, 
from the fact that f2(p)f2(t);.,) =O, it follows that (f2 f,(u,)),,, is an 
approximate unit for f?(p) A,f,(p). Hence ,f2 f, [A, ] generates 
f2(p) A, f,(p) as a hereditary subalgebra. 

(ii) We have to show that the extension off2 f, is equal to the exten- 
sion off, composed with the extension of fi. Thus if x E .&‘(A,) we must 
show that f2 fi(x) andf,(f,(.u)) are the same element of dl(f,(p) A, f,(p)). 
Since f2 f,[A,] generates f2(p) A3,f2(p) as a hereditary subalgebra, it suf- 
fices to show that f2,fi(.u) h=,fi(f,(x)) b for any bEfif,[A,]. But if 
b=f2 f,(a) then 

f;fi(,x) b=f,f,(xa) (since fi f, is a homomorphism) 

=.fdf,(-xa) (since xa E A 1 ) 

=f2(fi(*x)fi(a)) (since f; is a homomorphism) 

=f?(fi(-x))fAf1(a)) (since fi is a homomorphism). 1 

We close our discussion of functioriality properties by making note of 
a theorem of Akemann, Pedersen, and Tomiyama [l]. The following 
terminology is due to Pedersen [44]. 

DEFINITION 1.1.9. A C*-algebra is said to be o-unital if it possesses a 
countable approximate identity. 
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THEOREM 1.1.10. If A is a a-unital C*-algebra then any surjective 
*-homomorphism A -+ A/J extends to a surjective *-homomorphism 
,4’(A) + ,X( A/J). 

Actually, the original version of this is for separable C*-algebras A only; 
the extension to o-unital algebras is carried out by Pedersen in [44]. 

Next, we state a separation theorem for subalgebras of J%‘(D) which will 
be used a great deal in the sequel. 

THEOREM 1.1.11. Let D be a C*-algebra; let E, and E, be 
C*-subalgebras of .4?(D), E, o-unital and E, separable; let E be a (closed, 
two-sided) ideal in E, ; and let 9 be a separable, linear subspace of A(D). Zf 
E,.EZcE, [F,E,]cE, and DcE,+E 2, then there exists an element 
NE,&(D) such that l>,N>O, (1-N).E,cE, N.E,cE, and 
[N, S] c E. 

(The symbol [S, E,], for example, denotes the set of all commutators 
[IF, e] =fe - ef, wherefE 9 and e E E, .) This extremely useful result is due 
to Kasparov [35] (for a shorter proof, see [26]). It is a basic tool 
in Kasparov’s bivariant K-theory, where it is the principal technical 
component in the construction of the Kasparov product map 
KK(A,,B,OD)xKK(A,OD,B,)~KK(A,OA,,B,OB?): the operator 
N, together with its “complement” M= (1 -N) appear as weights in the 
averaging of two operators, and the theorem asserts that these weights can 
be chosen as to produce an average with certain desirable properties 
(which, for example, make it amenable to study from the point of view of 
index theory). For details, see Kasparov’s papers (see [33; 35, especially 
Remark 3, p. 7731 for a motivation of the construction). Our uses of 
Theorem 1.1.11 will on the whole be more algebraic in nature. We will 
appeal to it in Section 1.3 when we discuss exact sequences related to mul- 
tiplier algebras. In Section 3.5 we will use it to prove various excision 
properties of extension groups, and in Section 5.2 we will use it to deduce 
the existence of local units in certain C*-algebra ideals (see Theorem 5.2.1). 
Finaly, it makes an appearance in a technical result in Section 6.1. 

1.2. Tensor Products 
Let A and B be C*-algebras, and denote by A 0 B the (algebraic) tensor 

product of A and B. We put a C*-norm on A 0 B as follows. Pick faithful 
representations pa and pB of A and B, on Hilbert spaces Y& and ~8’~. Using 
PA and pe we embed A 0 B in B’(yic,) 0 a(~&), and since 
B(yic4) 0 .B(&$) embeds in an obvious way into a(%” @ %B), we obtain a 
faithful representation of A Q B in !B(;ci”A 0 XB): the operator norm on 
a(~?~ @ ZB) then gives the C*-norm on A 0 B. It is not hard to show that 
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the norm does not depend on which particular representations, pa and pe, 
are used in its definition. In fact, the norm is given by the formula 

(1.2.1) 

where the supremum is taken over all states cp of A and $ of B, and all 
J’E A 0 B. (For a survey of the theory of C*-algebra tensor products the 
reader is referred to [36].) The completion of A 0 B in this norm is called 
the spatial tensor product of A and B. We will denote it by A 0 B and refer 
to it simply as thr tensor product, since we will not be using any others. 

EXAMPLE 1.2.1. The tensor product of C,(X) with a C*-algebra A is 
*-isomorphic to C,(X, A), the C*-algebra of A-valued functions on X 
which vanish at infinity. There is a canonical *-isomorphism from 
Co(X)@,4 to C,(X, A), namely that which maps f@a to the function 
.K Hf(.K) a. 

EXAMPLE 1.2.2. A C*-algebra A is said to be stable if it is *-isomorphic 
to the tensor product X”@O. Most of the paper will be devoted to the 
study of these algebras. The C*-algebra X is stable. Indeed X@X is 
canonically isomorphic to the C*-algebra of compact operators on the ten- 
sor product Hilbert space X0X, and a unitary isomorphism 
2 2 X @ X induces a *-isomorphism X z X 0 X. By forming the ten- 
sor product with the identity map on A (see below) we get that NOA z 
XOX@A: thus X@A is stable. 

We stated earlier that J(D) should be thought of as “bounded 
operators,” and the ideal D in L d(D) should be thought of as the ideal of 
“compact operators.” This is especially profitable for stable C*-algebras. 
The algebra X8.4 is the algebra of compact operators on the standard 
Hilbert module /‘A (see [34] for a proof, together with an explanation of 
in what sense “compact” is to be taken-roughly speaking it is “closure of 
finite rank”). The algebra of all bounded operators is indeed ,K(X 0 A). 
We note that ,,&‘(X) @ ,J%!(A ) is contained in ,&‘(X @ A) (because X 0 A 
is an essential ideal in JJ(X)OJY(A)), but it is not equal to it. If we think 
of elements in L&‘(;T @A) as infinite matrices with entries in A, then the 
elements in -K(X) 0 &“(A) correspond to those matrices whose entries are 
selected from a finite dimensional linear subspace of A. For more infor- 
mation on the difference between &‘(A) 0 -X(B) and ,&‘(A @ B), see [ 11. 

We turn to the functorial properties of the tensor product. Ifj A, + A, 
and g: B, + B, are *-homomorphisms then the map fog: A, 0 A? -+ 
B, 0 Bz extends to a *-homomorphism fog: A, 0 A, -+ B, 0 B,. This is 
clear from the representation description of the tensor product if f and g 
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are injective, and it is clear from the formula (1.2.1) for the norm iff and g 
are surjective. Since we can factor any f and g into surjections followed by 
injections the result follows. The tensor product of two injective maps is 
injective; the tensor product of two surjective maps is surjective. 

LEMMA 1.2.3. The tensor product of two quasi-unital *-homomorphisms 
is quasi-unital. 

Proof. If f[Ai] contains an approximate unit {Uj,,> j.,,,,, for piBip, 
(i= 1, 2), then f[A, @A,] contains an approximate unit for 
PIOP~(BIOB~)PIOP~, namely {ui.~OUj.~}(i.~.i.~)t,l~x,~~. I 

The most important application of this lemma will be in the case of the 
map 1 Of: X @ A --f X 0 B. For example, if A is unital then f: A + B is 
certainly quasi-unital (the projection p in Definition 1.1.6 is just f( 1)) and 
so the tensor product 1 Of is quasi-unital. 

1.3. Completely Positive Mappings 

DEFINITION 1.3.1. A linear map f: A + B between two C*-algebras is 
completely positive if it is positive, that is, f (x*x) > 0 for every x E A, and if 
for every n the map 1 Of: M, Q A + M, @ B is positive, where M,, denotes 
the n x n complex matrices. 

This definition is due to Stinespring, as is the following result, the first in 
the subject. 

THEOREM 1.3.2. (See [Sl].) A linear map f: A + g(X) is completely 
positive if and only if it has the form 

f(a) = V*s(a) V (aEA), (1.3.1) 

where g is a representation of A on a Hilbert space 2,) and V is a bounded 
operator from 2 to Ix,. 

Let us make a few comments on this. To begin with, any completely 
positive mapf: A -+ B is bounded, for otherwise there would exist elements 
a,20 in A (n= 1,2,...), such that say Ila,ll ~2~” and f(a,)an: but then 
since f (C,“= , a,) > f (C,“= r a,,) B N(N+ 1)/2 for all N, the value of f at 
C,“=, a, would be infinite. Second, Stinespring proved Theorem 1.3.2 for 
unital C*-algebras A. That is true in general is an observation of Lance; 
the following lemma suffices (compare [ 16, Lemma 3.91). 

LEMMA 1.3.3. Let f: A + B be a completely positive map and denote by 
T A” + fi the map ,from the F-algebra obtained.from A by adding a unit, to 
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the C*-algebra obtained from B by adding a unit, which is equal to f on A, 
and for which f( 1) = ilfll . 1. Then 7 is completely positive. 

Proof We must show that if a EM,@ A then 1 @T(a*a) 2 0. Write 
a=a,+a,@l,wherea,EM,@Aanda,@lEM,@C,andlet {e,jj,,,,be 
an approximate unit for A. Then 

1 @T(a*a) = 1 @f( a,*a,+a,*(a,Ol)+(a:Ol)a,+a:a,Ol) 

=lOf(UxUo+Uo*(U,Ol)+(U:Ol)U,+U:U,Oe;) 

+ aTul 0 (llfll -f(e,)) 

But as J -+ CQ, the argument of 1 @Son the last line converges in norm to 
zero. Hence 1 @y(u*u) 3 0. 1 

Returning to Theorem 1.3.2, we may extend f to a completely positive 
map from 2 to 9?(X). Note that if Il,fil = 1 then T(l)= 1 and so from 
(1.3.1) we obtain 

1= V*g(l) V. (1.3.2) 

If we define V’ = g( 1) V then ( 1.3.1) remains true with v’ replacing V, 
and from (1.3.2) we obtain v’*v’= 1, or in the other words, v’ is an 
isometry. Thus every completely positive map from f into 98(P) such that 
llfll = 1 may be dilated to a representation g of A on a larger Hilbert space 
Zj (we may use the isometry v’ to identify LX? as a subspace of q), and 
conversely all maps which can be so dilated are completely positive 
contractions. 

The first example of a completely positive map is a state p: A -+ C on A. 
The fact that p can be dilated to a *-homomorphism into some g(&) 
follows also from the Gelfand-Naimark-Segal (GNS) construction of a 
representation from a state. Thus Stinespring’s theorem is a generalization 
of the GNS construction (and the same can be said of the proof). 

We will be using completely positive maps for two purposes. First, they 
play an important role in C*-algebra extension theory (as was first pointed 
out by Arveson [3]): they are used to answer the question of when an 
extension is invertible. We will discuss this in Section II. Second, there is a 
close relationship between the theories of tenor products and of completely 
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positive maps. For our purposes it suffices to deal only with the elementary 
aspects of this, beginning with 

LEMMA 1.3.4. A linear mapf: A -+ B is completel,v positive if and only if 
for every C*-algebra C, the tensor product f 0 1: A 0 C -+ B 0 C extends to 
a positive map f@ I: ABC-+ BBC. 

Remark. We note that, given this, iff is a completely positive map then 
the map f@ 1: A 0 C -+ B 0 C is not only positive but completely positive, 
since if we form the tensor product off with the identity map on C@ M,, 
then by the lemma, we obtain a positive map. 

Proof. In view of the definition of complete positivity, the “if’ part of 
the lemma is trivial. For the other half we will use Stinespring’s theorem. 
Embed B in some .@I( 2,) so that f may be written in the form 
f(a) = V*g(a) V, where g: A -+99(X,) is a *-homomorphism and V is an 
operator in &I(s). Since B@ C embeds in B(&) 0 C it suffices to show 
that f  Q 1: A 0 C -+ B(yi”l) 0 C extends to a positive map on A 0 C. 
However, we can extend fo 1: A 0 C + B(& ) 0 C by the formula 

,fOl(X)=(V*01)g01(.u)(VOl) (xEAOC). 

It is clear that f@ 1 so defined is positive. 1 

Our interest is in the relationship between completely positive maps and 
exactness properties of the tensor product. Suppose that 

is a short exact sequence of C*-algebras and *-homomorphisms. That is, j 
is injective, p is surjective, and the kernel of p is equal to the image of j. 
Consider the sequence 

O+A,QCs A2@C=!+ A,@C+O. (1.3.3) 

Under what conditions is it, too, a short exact sequence? Certainly j@ 1 is 
injective and p 0 1 is surjective, and also, the image of j@ 1 is contained in 
the kernel of p @ 1. However, the kernel of p @ 1 need not equal the image 
of j@ 1 (for a counterexample see [2]). The following positive result is 
suitable for our purposes. 

THEOREM 1.3.5. If there exists a complete1.v positive map s:A, + A, such 
that the composition ps: A, -+ A, is the identity on A, then the sequence 
(1.3.3) is exact for every F-algebra C. 
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Proof The map s@ 1: A,@C + A2 @ C is defined, by Lemma 1.3.4, 
and te composition (p @ 1 )(s 0 1) = ps @ 1 is the identity on A 3 @ C. Also, 
the map 

(1 -sp@l):A*OC+A~@C 

takes A, @ C into the image of A, @ C (this is verified on A, 0 C and then 
on all of A2 0 C by continuity). Thus if x E kernel(p 0 1) then 

x=x-(SO l)(p@l)(.u)=(l -sp@l)(x), 

and so, x E image(j@ 1). l 

Remarks. Effros and Haagerup have recently show that the converse of 
Theorem 1.3.5 holds if A, is a nuclear C*-algebra and A, is separable (this, 
is, needless to say, a much deeper result). Nuclearity, that is, the condition 
on a C*-algebra A that there be a unique C*-norm on A 0 C for all C, 
gives another sufficient condition: if A, is nuclear then (1.3.4) is exact. The 
reason is that A, 0 C embeds densely in A, @ C/A, 0 C, and so if there is a 
unique completion of A, Q C to a C*-algebra then A, 0 C/A, 0 C must be 
it. However, some of the algebras we consider will not be nuclear. 

Let us give a simple illustration of conditions under which the 
hypotheses of the theorem are satisfied. The following two results are more 
or less a diversion and will only be used in remarks (or future diversions). 

THEOREM 1.3.6. If X is a second countable, locally compact space then 
any *-homomorphism p from a F-algebra A onto C,(X) has a completeI}> 
positive contractive section. 

Sketch of Proof: Let {f;, fz,... ) be a dense subset of C,(X), and for 
each k = 1, 2 ,..., choose non-negative functions (Pi, ,..., qk,,i and points 
x, ,..., ,ynk in X such that: 

0) C?= , (Pi,, 6 1 and 
(ii) IIf,-CZ= ,.I+,,) (~~~11 < l/n (j= l,..., k). 

(The qkn’s are a subselection of an appropriately chosen partition of unity 
for X.) Choose elements @‘kn in A such that 4kn 3 0 and ~(4~~) = qkn, and 
define maps (Pi: C,(X) -+ A by 

4 

(Pklf) = c fb,,) 4kn (fe CdJ3). 
n = 1 

These are certainly completely positive, since each component 
f++fbn) @Jkn = e:!f(-~n, @/x2 of (Pi is completely positive. Consider the 

607:67.‘1-2 
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compositions po (Pi (k= 1, 2 ,... ). By condition (i), IIpocpkll < 1 and, by this 
and condition (ii), p 0 (Pk converges pointwise to the identity on C,(X). 
This is verified first for theh, and then for arbitrary f by an approximation 
argument. We now appeal to a result of Arveson [4, Theorem 61 that if 
p: A + B is a surjective *-homomorphism, and B is separable, then the set 
of completely positive, contractive maps ~1: B + B which factor-N =p 0 bi, 
with E completely positive and contractive-is closed in the topology of 
pointwise convergence. It follows that the identity C,(X) -+ C,(X) factors, 
or in other words, p has a completely positive section. 1 

The next result is a simple extension, the proof of which is left to the 
reader. 

THEOREM 1.3.7. Let C,(X) and B be separable and let p: A + C,(X) @ B 
be a surjective *-homomorphism. Suppose that for every x E X the composite 
*-homomorphism 

AP’C,(X)QBa B (E 1[ = evaluation at x) 

has a completely positive section. Then p has a completely positive section. 

We turn now to our main application of Theorem 1.3.5, which concerns 
multiplier algebras and exact sequences. Let B be a a-unital C*-algebra 
and let J be a (closed, two-sided) ideal in B. By Theorem 1.1.10, the exten- 
sion M(B) --t J%‘( B/J) of the canonical projection B + B/J is surjective. The 
kernel of this map is the ideal given by the following notation. 

DEFINITION 1.3.8. Let J be an ideal in a C*-algebra B. The ideal 
k’(B; J) in d(B) is the set of those elements x E &Z(B) for which xb E J 
and bx E J for every b E B. 

Thus we have a short exact sequence 

0 + A( B; J) + .X(B) -+ &!‘(B/J) + 0. (1.3.4) 

Actually, we are not so much interested in .4?‘(B) -+ &(B/J) as in the 
induced map p: &?(B)/B --+ &!(B/J)/B/J.’ Since B, of course, maps onto B/J, 
the kernel of p is the image of &(B; J) in &Z(B)/B. Thus 

kernel(p)=A(B; J)+B/Bg&(B; J)/(Bn.&(B; J)), 

and since B n J&t(B; J) = J, we obtain the short exact sequence 

0 + &?(B; J)/J+ &(B)/BA k’(BfJ)/B/J+O. (1.3.5) 
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LEMMA 1.3.9. Let d be a separable C*-subalgebra of A!(BJJ)/B/J 
(where B is a o -unital C*-algebra). There exists a completely positive map 
s: d + &(B)/B such that the composition p OS: d + .A(B/J)JB/J is the 
identity on d. 

Proof Let d’ be a separable C*-subalgebra of A?(B) which maps onto 
d via the obvious projection (we use Theorem 1.1.10 to ensure that this 
projection is surjective). Define C*-subalgebras of A’(B) as 

E, = B, E=J, 9 = d’. 

Let E2 be a separable C*-subalgebra of &(B; J) such that 

cd n (A’( B; J) + B) c E2 + B. 

Then the hypotheses of Theorem 1.1.11 are satisfied, and there exists a 
positive operator NE A(B) such that N. Ez c J, (1 - N) . B c J, and 
[N, -Ql’] c J. Now, denote by A? the image of an element XE A’(B) in 
M(B)/B, and define s: d -+ A(B)/B by 

s( p(a)) = I% (a’EA’). 

In other words, given a E d, choose a’ E ,cy” such that p(ri’) = a, and then 
define s(a) = fiti’. To see that this is a well defined, note that the kernel of 
the map x HP(.~) from A’(B) to .W( B/J)/B/J is equal to c&‘( B; J) f B. 
Therefore, if p(ri;) =p(&) then 

a;-al,E&“n(k!(B;J)+B)cE,+B. 

But if .X E E, + B then fii = 0, by definition of N. So &‘(h’, - ri;) = 0. To see 
that p 0 s is the identity on d, note that 1 - NE ,X(B; J), because 1 - N 
multiplies E, = B into J, Andy so p( 1 - l?j) = 0. Therefore 

ps(p(ti’))=p(Aqp(d-‘)=p(l)p(h’)=p(ri’). 

Finally, s is completely positive: given XE M,@d with x 2 0 we may 
choose x’ E M, @ d’ with x’ 2 0 and p(2) =x (a simple application of 
functional calculus), and then 

(note that N is so chosen that fi commutes with 2’). 1 

It is quite a remarkable fact (or so the author thinks) that no hypothesis 
concerning the liftability of B + B/J is needed in the above lemma. The 
next result is proved in the same way. 
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LEMMA 1.3.10. Let d be a separable C*-subalgebra of A(B/J). There 
exists a completely positive map s: 22 -+ A’(B)/J, such that the composition 
p 0 s: d -+ A(B/J) is the identity on d, where p is the surjection in the 
short exact sequence 

O+A’(B; J)/J-+.H(B)/JA A!(B/J)+O. (1.3.6) 

THEOREM 1.3.11. The tensor product of the short exact sequence (1.35) 
with any C*-algebra C is again a short exact sequence. 

Proof. Let x E (A(B)/B) 0 C. Since x is the limit of some sequence of 
the form {Cix, 0 tin>:= I, it is contained in some a@ C, where B is a 
separable C*-subalgebra of A(B)/B (the one generated by the xin, for 
example). Applying the lemma to the image d of $8 in A’(B/J)/B/J, and 
then applying Theorem 1.3.5 to the short exact sequence 

0 + A’( B; J)/J -+ 33 + A?‘( B; J)/J -+ d -+ 0, 

we see that if p @ l(x) = 0 then x is in the image of (A(B; J)/J) 0 C. 
Consequently the sequence (1.3.5) tensored with C, is exact. 1 

Similarly, using Lemma 1.3.10 we obtain 

THEOREM 1.3.12. The tensor product of the short exact sequence (1.3.6) 
with any F-algebra C is exact. 

The next theorem again concerns A(B; J). It is a sort of stabilization 
result, along the lines of [ 10, 341. For this particular formulation, see [25]. 

THEOREM 1.3.13. Let B be a C*-algebra and let J be an essential a-unital 
ideal in B. There exists an isometry v E A’(X 0 J) such that 

v~(X Q J) v* c &?(A’- 0 B; X 0 J). 

(We remind the reader that we are regarding &(X 0 B) as a subalgebra 
of J&(X @J).) We will need a somewhat technical strenghtening of this 
theorem. 

THEOREM 1.3.14. Let J be a a-unital, essential ideal in a a-unital C*- 
algebra B and let d be a separable C*-subalgebra of A(X Q B; X @ J). 
There exist isometries v, E M(KQ J) and v2 E ,X(3? 0 B) such that: 

(i) v,Af(X@J)v~cA(X@B; XOJ). 
(ii) If ae& then v,avf is equal to v,av:, module X@ J. 
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Prooj We begin by constructing various isometries to be used in the 
construction of u1 and v2. Let ~a,,~, where n = 1, 2 ,... and m = 0, 1, 2 ,..., be a 
collection of isometries in g = J%!(X) with pairwise orthogonal final 
spaces. Let {d,);=, be a sequence in X@J such that C;=, dzd,= 1, 
where the convergence is in the strict topology of j H(.X @J). We may con- 
struct {dm};=, by starting off with an approximate unit {e,,,l;=, for 
X @J-a sequential one exists because X @J is o-unital- and then 
defining d,, = (e,, - e,,, , )I” (we let e, = 0). We claim that the series 

converges in the strict topology of c .4’(X @.I) to some isometry S,,, and 
furthermore, that (X 0 II). S, c 3’” @.I. Note first that the partial sums 

are bounded by 1, since 

s’M)*S’nf’= 
, ,  I ,  :  d,*,d,,, 6 1. 

m,= I 

If xEX@J, then 

and so, since C,“= ,dzd,,,x converges in norm (to x), we see that 
{Spf’x);,, is a Cauchy, and hence convergent, sequence. We must show 
also that {xS~“‘)$= I is norm-convergent for x E X @J. Actually, this is 
true for x E X @ B (and this will show that (X @ B) . S, c X OJ). To see 
this, note that the set of those x E ~$7 @ B for which .x(u),, 0 1) = 0, for all 
but finitely many m, is dense in 3’” 0 B. For such .Y as these, [xSjzM)); =, 
certainly converges, and since they are dense in X@ B, and since 
{ Si”)M’)z= I is bounded, the general case may be obtained by the obvious 
approximation argument. It follows that { S~“)}~=, converges in the strict 
topology, and since multiplication is continuous on bounded subsets in the 
strict topology it follows from the computation 
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that the limit S, is an isometry. Now, let (zn};= r be a sequence in X @ B 
such that C,“= r zzz, = 1 (convergence in the strict topology of 
A(X 0 B)). The same arguments as those above show that the series 

converges in the strict topology of A!(X 0 B) to an isometry 
v2 E A’(X 0 B). The construction of vr E A’(X @J) is a little more com- 
plicated. Let Jr and AZ!, be compact subsets of the unit balls of X @J and 
d respectively such that: 

(i) J, . X @.I is dense in X 0 J (note that J, exists because X 0 J 
is cr-unital). 

(ii) &r is self-adjoint, and the closed linear span of A& is d. 

Choose an approximate unit { un};=, for X 0 J such that: 

(a) For every n, and every XEJ, u &,, Il.~z~z,,--.xz~z~uJ < 2-“+I, 
and ~(~,‘,I*z~x-z,~.x(/ <2-“+I. 

(p) For every n and everyjEJ,, lI~!/~z,,j-z~jl( <2-“. 
(y) For every n, IIu,z,-zz,u,I/ ~2~“+I. 

We can satisfy (CI) because the elements xz,*z, and z,x are in X 0 J, by 
the definition of A!(X 0 B; X @J). That condition (y) may be satisfied 
follows from the existence of quasi-central approximate units (see [4 or 
431). Consider now the expression 

(1.3.7) 

where 

rn = (z,* z, - z,* u,z,)“*. 

Both series are convergent in the strict ‘topology of .M(X 0 J). Let us con- 
sider the first series first: the partial sums are bounded in norm by 1, and if 
jEJ, then 

f, (wno 0 1) u~‘2zn j= i (w,O@l)z,j- f (w,0@1)(1-u~i2)z,j, 
n=l n=l 

where the first series is norm-convergent by the definition of {z,,};= r, while 
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the second is (absolutely) norm-convergent by (fl). It follows by an 
approximation argument that the first term of (1.3.7) is norm convergent 
when multiplied on the right by any j E ~4’” 0 J. As for the multiplication of 
c,“= , (w,o 0 1) qy2 2, on the left, the same argument that we used for S,, 
shows that when multiplied on the left by any element of .X 0 B the series 
becomes norm-convergent. We argue that the series C S,,Y,, is convergent 
similarly, using the fact (which follows from (a) and (y)) that IIr,,jli < 2-“” 
if j E J, . Using continuity of multiplication, the limit L:, E 5 .4’( X @J) is an 
isometry and, since (X @ B) u, c .X @ J, we have 

as required. Now, the estimates (a) and (y) imply that if LZE .d, then 
llr,all <rn, and we see that 

which is the sum of two norm-convergent series with terms in X @J. 
Hence ZJ, a - v,a E X 0 J. However, we also have au: -au* E X 0 J, since 
S&l is self-adjoin& and so v, UP: - v,av: E X @J. i 

Finally, we wish to make note of a certain relation involving the ideals 
,t$‘(B; J). Note first, that if I and J are disjoint ideals in B, then the ideals 
,.t%‘(B; I) and .&‘(B; J) of ,zY(B) are disjoint. Indeed, if .Y E .K(B; I) n 
,K(B; J) then .Y’ Bc In J=O and so x=O. What we will need is the 
equality 

.iF(B;Z+J)=,K(B;Z)+.Jr’(B;J). (1.3.8) 

The inclusion 

.k’(B; Z+J) ~,ift’( B; I) +A’(B; J) 

is obvious. For the reverse containment, suppose that s E A’(B; I+ J), 
which we regard as a double centralizer (L, R). Define pairs of maps 
(L’, R’) and (LJ, RJ) by the conditions 

Lb = L’h + LJb, where L’b El and LJbE J 

and 

Rb = R/b + RJb, where R’b El and RJbE J. 
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It is easy to verify that both pairs are double centralizers, and of course 
(L’, R’) defines an element of .A’(& I), while (LJ, RJ) defines an element of 
A’( B; J). 

II. K-THEORY OF C*-ALGEBRAS 

This section is largely expository. Its purpose is to introduce the various 
K-theory groups that can be associated with a C*-algebra. We begin with 
the usual topological K-theory groups in Section 2.1. These are by now well 
known to operator algebraists, and our goal is mainly to fix notations and 
definitions, since we will be viewing K-theory from a point of view which is 
a little different from the usual one. We give a new proof of the Bott 
periodicity theorem, using a simple computation in C*-algebra extension 
theory, in Section 2.2. Fredholm modules (closely related to extensions) are 
the subject of Section 2.3. We discuss the basic facts about the algebraic K, 
and K, groups in Section 2.4. The material is again well known (almost all 
that we have to say can be found in Milnor’s book [40]), so we will be 
brief and focus on our particular interest, which is the relationship between 
topological and algebraic K-theory. The final topic is the introduction of 
the higher K-theory groups of Quillen. Since some familiarity with 
algebraic topology is necessary to understand the definition, in Section 2.5 
we give a survey of those concepts that we are going to need; we have tried 
to present them in a manner as accessible as possible to the non-specialist. 
Our algebraic K-theory/algebraic topology primer will be continued in 
Section V. 

2.1. Topological K- Theor) 
Let A be a C*-algebra and denote by A’ the C*-algebra obtained by 

adjoining a unit to A (thus if A happens to be unital already then 
2 = A @C). We define GL,A (n = 1, 2,...), to be the group of invertible 
elements in the n x n matrix algebra M,,A” which are equal to the identity 
matrix, modulo the ideal M,A of M,a. (Note that if A is unital then 
GL,, A so defined is isomorphic to the group of invertible elements in M, A, 
via the map which sends x E M, A to x + (1 -_e) E M,d, where _e denotes 
the diagonal matrix with diagonal entries equal to the unit e of A.) We 
embed GL,, A into GL, + , A as 

x 0 
-xH 0 1 ( > 

(2.1.1) 

and denote by GL,, A the union, or direct limit of the GL,A, over all n. 
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This is the stable general linear group of A. In order to compress notation a 
bit, we will usually drop the symbol “a” and write GL for GL, 

Any *-homomorphism f: A -+ B induces a group homomorphism from 
GLA to GLB, which we will also call j: Indeed, ,j’ induces mifal 
a-homomorphisms from M,,A to M,,B for every n, and from these we 
obtain homomorphisms .f: GL,, A + GL,, B which are compatible with the 
inclusions (2.1.1). In this way we make GL into a functor from C*-algebras 
(or for that matter, rings in general) to groups. 

Observe that GLA is, in fact, a topological group: each G&A is a 
ropological group in the norm topology given by A, and we topologize 
GLA as the direct limit of the GL,,A. Thus, a subset X of GLA is open 
(resp. closed) if for every n, the intersection Xn GL,, A is an open (resp. 
closed) subset of GL,,A. This topology, while being rather odd from some 
points of view (e.g., it is not metrizable), has a useful property: 

LEMMA 2.1. I. Jj’ X is u contpacr .space fhen the image of’attj’ cotzfitmous 
map jiortl X into GLA is contained in some GL,, A. 

The following fact is also sometimes useful. 

LEMMA 2.1.2. The space GLA is paracotnpacf. 

The proof of both of these lemmas are straightforward exercises in 
general topology. In any case, we will need neither of them in any essential 
way. 

Of course, by its definition, the direct limit topology on GLA also has 
the property that a map GLA --f X is continuous if and only if each of the 
restrictions GL,,A -+X is continuous. Using this, we see that the 
homomorphism ,f: GLA + GLB induced from a *-homomorphism ,f. A + B 
is continuous. 

DEFINITION 2.1.3. For n = 1, 2,..., the topological K-theory groups K:, of 
a C*-algebra A are the homotopy groups of the topological space GLA: 

K:,(A)=z,,-,(GLA). (2.1.2) 

So, for example, the group K’,(A) is equal to the set of path components 
of GLA. This is isomorphic to the quotient group GLAJGLOA, where GL’A 
denotes the path-connected component of the identity in GLA. For the 
higher groups, the base point of GLA is taken to be the identity of the 
group; it is reassuring to note that because of Lemma 2.1.1, 
nk(GLA) = lim,, _ r xJGL,,A). 
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By a well-known argument, KLA is abelian: given two elements 
X, y E GLA (or maps into GLA) we have 

where (;, T ) is rotated to (” , I ‘) to obtain the above homotopies. 
Recall the following notion from topology (see [SO, p. 661). 

DEFINITION 2.1.4. A (continuous) map p: E + B between topological 
spaces is a fibration if it has the homotopy lifing property with respect to 
every space X. That is, given maps F: Ix X + B (where I denotes the unit 
interval) and f: X+ E, such that plf(+u)= F(x, 0), there is a map 
F: Ix X -+ E such that pF= F and F( X, 0) =f( x). 

Thus, the definition asserts the existence of the map F in the com- 
mutative diagram 

(2.1.3) 

Now, if J is a (closed, two sided) ideal in a C*-algebra A, then the map 
GLA -+ GLA/J is a tibration. In fact it is not difficult to show that 
somewhat more is true. 

THEOREM 2.1.5. Let B denote the image of GLA in GLAIJ under the map 
p (this is an open and closed subgroup of GLAIJ). Then the map p: GLA + B 
is a locally trivial principal GLJ-bundle. 

For the definition, see, for example, [27]; for the proof see [41, 
Proposition 2.41. Now, a theorem of Hurewicz (see [SO, 2.8.141) asserts 
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that a locally trivial fibre bundle over a paracompact base space is a 
libration. It follows that the map p: GLA + GLA/J is a libration, but rather 
than appeal to these results, we prove a weaker result which is sufficient for 
our purposes. The main reason for doing this is that we will want to com- 
pare the topological constructions given now with algebraic analogues to 
be discussed in later sections. 

DEFINITION 2.1.6. (See [SO, p. 3741.) A map p: E + B is a WY& 
fibration if it has the homotopy lifting property as in (2.1.3) with respect to 
any cube X = r’. 

LEMMA 2.1.7. Let /3’ he a map ,from I’” to GLA’lJ’. [f/j”(e) = 1, where e 
denotes the point (0, O,.... 0)~ I, then there exists a map IX’: I”’ + GLA’ such 
that p( a’) = /I’. 

Proqf: By Lemma 2.1.1, the image of Z?’ is contained in some CL, A//J’. 
Now, the space of maps from I”’ into CL, Al/J’ is equal to GL, C(r”, Al/J’). 
Deforming I’” to the point e, and using the hypothesis j’(e) = 1, we see that 
/J’ is contained in the identity component of this group. So by standard 
Banach algebra theory, fl’ lifts to some 2’ E GL,C(I”‘, A’). 1 

THEOREM 2.1.8. TZie map p: GLA -+ GLA/J is a weak ,fihration. 

Proq/: Note, first, that we may improve the previous lemma by choos- 
ing c( such that z(e)= 1. Indeed, replace 2 with the map .YHCL(.Y) z(e) ‘. 
Now, suppose we have a map 8: I” x Z-t GLA/J and a lifting zO: Z” + GLA 
of the map /I( ., 0): I” -+ GLA/J. Apply the case nz = 1 of Lemma 2.1.7 to the 
algebras A’= C(Q’, A), J’ = C(Z”, J), and the map /Y: I+ GLA’/J’ given by 
/I’(t)(s) = b(s, t) p(x, 0) ‘. If 2’: I+ GLA’ is a lifting such that x’(O) = 1 
then the map cr(t) = r’(t) LYE, considered as a map x: I” x I+ GLA, is the 
desired homotopy lifting. 1 

Now, from any weak tibration p: E + B, with libre F (which is by 
definition the space F=p ~’ [e 1, where e E B is the base point), we obtain a 
long exact homotopy sequence 

. . -+ n,,(F) + 7c,,( E) + 7c,,( B) & 
(2.1.4) 

n,, ,(F)+n,, ,(E)+ .... 

For the purpose again of a later comparison with algebraic constructions, 
we recall the definition of the boundary map 8, beginning with the simplest 
case: n = 1. Given a loop y: S’ + B defining an element I of rc,( B), lift it to 
a path 7 in E such that F(O) is equal to the base point of E. Since y is a 
loop, 3l)v’( e); we define a(x) to be the path component of F contain- 
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ing qp( 1). For higher n we can reduce to this case by introducing the loop 
space QX. Recall that this is the space of all (base point preserving) loops 
S’ + X, equipped with the compact open topology (see [SO, p. 371). There 
are obvious canonical isomorphisms 

and if p: E + B is a fibration then so is p: QE -+ SZB; the definition of 
S: rc,,( B) --f n,, ~ ,(F) corresponds under these isomorphisms to the definition 
of 8: rr,, ,(QB) + 7(,,+ 2(&V). 

Returning to the spaces GLA, if J is a closed two-sided ideal in A then 
from the long exact homotopy sequence (2.1.4) we obtain the long exact 
K-theory sequence 

. . . + K;,(J) + K;,(A) + K;( A/J) rl, 
(2.1.6) 

K;,- ,(J)+K;,+,(A)-, .... 

Also, if C,( (0, 1 ), A) denotes the C*-algebra of continuous functions from 
[0, l] into A, which vanish at the endpoints of [0, 11, then by 
Lemma 2.1.1, SZGLA = GLC,((O, 1 ), A). We follow convention and identify 
(0, 1) with R, and then from (2.1.5) we obtain the isomorphism 

K:,, ,(A 12 K:,(A 0 C,,(R)) (2.1.7) 

Next we list three well-known and fundamental properties of K-theory 
that will be of importance to us. See [46 or 203. 

DEFINITION 2.1.9. Two *-homomorphisms fO, f, : A + B are homotopic 
if there is a *-homomorphism from A to B@ C[O, 1 ] which gives back f0 
and ,f’, by composing with evaluation at the points 0 and 1 in [0, 11. A 
functor F on C*-algebras is homotopy inoariant if F(f,) = F(f,), whenever 
f0 and f, are homotopic *-homomorphisms. 

It is clear from the definition that the functors KA are homotopy 
invariant. 

DEFINITION 2.1.10. Let e be a rank-one projection in X, and if A is any 
C*-algebra then denote also by e the *-homomorphism from A to X @ A 
defined by e(a) = e@ a. A functor F on C*-algebras is stable if 
F(e): F(A) -+ F(X 0 A) is an isomorphism for every A. 

THEOREM 2.1.11. The functors K; are stable. 

For an outline of the proof, see [46]. 
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DEFINITION 2.1.12. A functor F from C*-algebras to abelian groups is 
said to be half e.uact if for every short exact sequence of C*-algebras and 
*-homomorphisms, 

O+A+B-+C-+O, 

the sequence of abelian groups F(A) + F(B) + F(C) is exact at F(B). 

Given the long exact sequence (2.1.6) it is clear that the functors K; are 
half exact. We want to remind the reader that if F is a half-exact functor 
which is in addition homotopy invariant, then we can build a natural long 
exact sequence 

F,,(A)~F,,(B)-~F,,(C)~F,~~,(A),F,, mI(B)-+F,,+,(C), (2.1.8) 

where n = 1, 2,..., and F, = F. The technique is borrowed from topology and 
for a detailed description of it, see [35, Sect. 71. The functors F,, are defined 
by F,,(A)= F,,+ l(A@ C,(R)) (compare with (2.1.7)). The definition of ir 
involves the construction of the following auxiliary algebra. 

DEFINITION 2.1.13. The mapping cone of a *-homomorphism$ D + E is 
the C*-algebra 

C,=(~@~ED@C,,(O, l]@El.~(ti)=~(l,). 

Consider the mapping cone C, of the surjection p: B + C. There are 
short exact sequences 

O+A+C,+C,(O, l]@C+O 

and 

o+C,(R)@C+C,+ B+O, 

where, for example, the inclusions of A and C,(R)@ B in C, are given by 
a H a@ 0 and 1’ H 00 y. respectively. Now it turns out that the map 
F(A) + F(C,) is an isomorphism (this is very plausible, in view of the fact 
that the quotient C’,,/A z C’,(O, l] 0 C is’contractible). The boundary map 
is given by the composition of the inverse of this map with 
F(C,(R)O Cl + F(C,), 

F(C,(R) 0 C) 2 F(A) 

(2.1.9) 

F(C,,) 
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We note that if K’ n+,(C) is identified with K;(C,(R) 0 C) via the boundary 
map in the long exact sequence for the “path fibration” 

O-+C,(R)@C+C,(O, l]@C-,C-,O, 

then the two available definitions for the boundary map K;, ,(C) -+ K:(A) 
agree (compare [ 35, Lemma 7.61). 

To complete our discussion of topological K-theory, we state the main 
theorem of the subject-the Bott periodicity theorem. 

THEOREM 2.1.14. If A is any P-algebra then for every n, the group 
KL( C,( R2) @ A) is naturally isomorphic to K:(A). 

The following remarkable generalization of the Bott Periodicity Theorem 
was discovered by Cuntz [20]. 

THEOREM 2.1.15. Let F be a homotopy invariant, stable, and half-exact 
functor from P-algebras (or separable P-algebras, or a-unital 
C*-algebras) to abelian groups. Then F(C,(R’) @ A) is naturally isomorphic 
to F(A). 

This will be proved using extension theory in the next section. We finish 
this section by describing the isomorphism F( C,(R’) 0 A) E F(A). It will, 
in fact, be the boundary map associated with a short exact sequence of the 
form 

O-tXOA-+T,OA~C,(R)OA-,O, (2.1.10) 

which is constructed as follows. Let T be the universal C*-algebra 
generated by an isometry. In other words, T contains a canonical isometry 
v, and the pair (T, 21) is characterized by the property that if v’ is any 
isometry in a C*-algebra A, then there exists a unique *-homomorphism 
f: T+ A such that f (v) = v’. It is easy to establish the existence of (T, v) by 
category theory methods (we can realize T as a subalgebra of the gigantic 
product of all (up to isomorphism) C*-algebras generated by an isometry). 
On the other hand, Coburn [ 171 showed that all C*-algebras generated by 
(non-unitary) isometries are isomorphic, and so any one will do for T. In 
particular, for example, we may take T to be the Toeplitz algebra-the 
C*-algebra generated by the unilateral shift. Given (T, v), since the 
canonical unitary in C(S’) is in particular an isometry, we obtain a surjec- 
tion T -+ C(S’) mapping v to this unitary. The kernel is, of course, 
generated as an ideal by the projection 1 - uv*, and it is not hard to show 
that the kernel is *-isomorphic to S, with e = 1 - uv* representing a rank 
one projection (see [ 171). Thus we have a short exact sequence 

O-+X+T+C(S’)+O. 
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Identifying C,(R) with the ideal in C(S’) of all functions which vanish at 
some fixed point, and letting T,, be the pre-image of this ideal in T, we 
obtain the short exact sequence we want 

O-‘X-‘T,+C,(R)-,O. (2.1.11) 

We will call T, the reduced Toeplitz algebra. Let us verify “half’ of 
Theorem 2.1.15. 

LEMMA 2.1.16. The boundary map 

d: F(C,,(RS)OA)+F(XOA) 

associated with rhe short exact sequence (2.1.10) is surjecfive. 

The following definition, and the next lemma, will prove to be very 
useful. 

DEFINITION 2.1.17. We shall call a functor F from C*-algebras to 
abelian groups additive if for every pair of C*-algebras B, and B,, the 
natural projections 

B, 0 B2 -, B, and B,O&+B? 

induce an isomorphism F(B, ) @ F( B2) z F( B, @I B2). 

LEMMA 2.1 .18 (Compare [20, Proposition 4.11). Let F be an additive 
functor and let f,, f2: A --+ B be tti’o *-homomorphisms such that 
.f,CAIj2C~I=0. Then F(S,)+F(f,)=F((f,+.fi). 

Proof: Let B, =f;[A], for i = 1,2. We may considerf, ,fi, andf, +fi as 
maps into B, 0 B,, and it suffices to prove the equation 

F(f, I+ F(f,) = F(.f, +fi 1 

in this context. But by additivity, it suffices to prove that the two sides of 
the above equation are equal after we compose with the projection onto B, 
or B,, and this much is obvious. 1 

Proof of Lemma 2.1.16. It follows from the portion, 

F(C,(R’)@A)L F(X@A)+ F(T,,@A), 

of the long exact sequence (2.1.8) that it suffices to show the map 
F(X @A) + F( T,, 0 A) is zero. Furthermore, because of stability, and since 
(by virtue of the long exact sequence applied to 0 -+ T,, -+ T s C + 0) the 
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group F(T,OA) is a summand of F( TO A), it suffices to show that the 
composite map 

F(A)+F(X@A)-+F(T,@A)-,F(T@A) 

is zero. A final simplification: we may embed TO A in M2( TO A) and need 
only show that the resulting composition is zero. This map, call it 2, is 
given by 

F(a) = 
e@a 0 ! ) 0 0 (aEA). 

We may write this as .?= i -Ad(V) i, where V is the isometry (P$’ y), and 
where the *-homomorphism i: .4 + Mz( T@ A) is given by 

i(a)=( ‘:a i) (aEA). 

Now, rotate V to the isometry v’= (A ,.&,). Since Ad( v’) i = i, it follows 
from homotopy invariance that F(Ad( V) i) = F(i). Therefore, by the 
preceding lemma, 

F(r)=qi)-F(Ad(v) i)=qi)-qi)=o. 1 

2.2. P-Algebra Extensions 
We will start off with a number of definitions, follow with some dis- 

cussion, and finish off with a proof of Theorem 2.1.15. For further infor- 
mation and references on the theory of C*-algebra extensions, the reader is 
referred to the survey article of Rosenberg [47]. 

A F-algebra extension is a short exact sequence of C*-algebras and 
*-homomorphisms. 

O+A’BAC+O. (2.2.1) 

We say that (2.2.1) is an extension of C by A; the goal of extension theory 
is to classify such extensions (with A and C fixed) up to a suitable notion 
of equivalence. The extension (2.2.1) is said to be degenerate (also split) if 
there exists a *-homomorphism s: C -+ B such that ps = 1 c. The sum of two 
extensions 

O+A+B;-f-!+C+O (2.2.2) 

(where i = 0, 1 ), is the extension 

O+M,(A)+BA C-+0, (2.2.3) 
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where 

&E B,; 6, E B,; u12, uzl EA; andp,(h,) =p,(b,) , 

and the *-homomorphism p: B+ C is given by 

ho a12 
P ( > azl h, 

= P”(h) ( = P,(b, )). 

Of course, the sum is no longer an extension of C by A, but rather an 
extension of C by Mz(A). Two extensions (2.2.2) are said to be z&tar@> 
equivalent if there is a unitary UE A(A) and a *-homomorphism B, + B, 
such that the diagram 

O-A-B,-C-O 

ml 1 I= 
0-A-B,-C-O 

commutes. Returning to the addition of extensions, we see that if A is 
replaced by jr@ A, then since there is, up to conjugation by unitaries, a 
canonical isomorphism X 0 A -+ Mz(X @I A) (namely, the tensor product 
of an isomorphism X z M2(.X) with id,), the set of unitary equivalence 
classes of extensions of C by X@ A has the structure of a commutative 
semigroup. 

Before going on, we introduce the following important alternative point 
of view. Given an extension (2.2.1), since B contains A as an ideal, there is 
a canonical map from B into &2’(A). Passing to quotients, we obtain a map 
from B/A = C-+ Ji’(A)/A, and it is not hard to show (see [ 141) that this 
sets up a one-to-one correspondence between extensions and maps from C 
into A!(A)/A, as long as we identify extensions (2.22) for which there is an 
isomorphism B, + - B, fixing A and C. For most purposes it is technically 
more convenient to work with the map C -+ -&(A)/A than with the exten- 
sion it came from. Let us note that an extension cp: C + ,k’(A)/A is 
degenerate if cp lifts to a *-homomorphism from C into ,&‘(A); that the sum 
of two extensions cp 0, cp, is the extension 

: A -+ c/ti(Mz A )/Ml A; 

and that ‘pO and ‘p, are unitarily equivalent if there exists a unitary 
u E ,@(A) which intertwines them. 

607/67’1-3 
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DEFINITION 2.2.1. Let Ext(C, A) denote the quotient of the semigroup 
of unitary equivalence classes of extensions C --) .X(X @ A)/%? @A by the 
sub-semigroup of unitary equivalence classes of degenerate extensions. 
(Thus Ext(C, A) is a commutative monoid, consisting of classes [q], where 
cp is an extension; and [q,,] = [cp ]] if and only if there exist degenerate 
extensions $O and $ i such that cpO @ $O is unitarily equivalent to ‘p, @ + I .) 
Denote by Ext -‘(C, A) the group of invertible elements in Ext(C, A). 

If the extensions ‘pO and cp, determine the same element of Ext(C, A), 
then we say that ‘p,, and ‘p, are stably unitarily equivalent Let us note that 
the zero element of Ext(C, A) is the one represented by a degenerate exten- 
sion (it is clear that all degenerate extensions represent the same element of 
Ext(C, A)). Thus an extension cp determines the zero element if and only if 
there is a degenerate extension Ic/ such that cp @ rc/ is degenerate, in which 
case we say that cp is stably split. It follows that an extension cp determines 
an invertible element of Ext( C, A)-an element of Ext ~ ‘(C, A)-if and 
only if there is an extension cp’ such that ~009’ is degenerate. 

The group Ext - ‘( C, A) is the principal object of study in extension 
theory. Because Ext-‘(C, A) is a group it has an obvious advantage over 
the set of unitary equivalence classes, which is merely a semi-group. So it is 
remarkable fact that in many cases these two objects are essentially the 
same, and thus unitary equivalence classes of extensions are classified by 
the group Ext - ‘(C, A). Let us sketch this. Following Arveson [3], we con- 
sider the question of when an element [ cp] E Ext( C, A) is invertible. If [ cp] 
is invertible then there exists an extension cp’ such that the map 

lifts to some *-homomorphism $ from C into M,(Jz’(X @ A)). The com- 
pression of II/ by the projection (A ~)EM~(JV(X@ A)) is a completely 
positive, contractive map which lifts cp. Suppose, on the other hand, that cp 
is an extension which lifts to a completely positive contractive map 
8: C + J%‘(X @ A). Kasparov [34] proves the following generalization of 
Stinespring’s theorem. 

THEOREM 2.2.2. If C is separable and ;4 is a-unital then every contrac- 
tive, completely positive map from C to &?(X @ A) can be dilated to a 
*-homomorphism from C to M,(+M(.X @A)). 

Therefore, assuming that A is a-unital and that C is separable, we can 
dilate 8 to a *-homomorphism (& $;). It is easy to check that 8,, is a 
*-homomorphism, modulo X 0 A (since 0 is) and also that O,, and 02i are 
zero, modulo X @A. It follows that [0] is invertible, with OZ2 determining 
the inverse. Hence 
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THEOREM 2.2.3. Let A be a-unital and C separable. An extension cp is 
invertible (that is, it determines an invertible element of Ext(C, A)) if and 
only if it has a completely positive, contractive lfting to .k’(X 0 A). 

We remark that an observation of Haagerup-see [21]-shows that the 
hypothesis that the lifting be contractive can be dropped. In terms of short 
exact sequences, the existence of a completely positive contractive lifting 
amounts to the existence of a completely positive contractive section 
s: C-t B (i.e., sp = lc). So, for example, it follows from Theorem 1.3.6 that 
every extension of C(X) by X 0 A (where C(X) is separable and A is 
o-unital) is invertible. More generally, Choi and Effos [16] show that if C 
is any separable, nuclear C*-algebra then completely positive, contractive 
lifting always exist, and so for such C, if A is cr-unital then Ext(C, A) = 
Extt’(C, A). 

Let us turn briefly to the relationship between unitary equivalence and 
stable unitary equivalence. First, they are not the same, since the kernel of 
a *-homomorphism cp: C-+ -#X(X @ A)/X 0 A is an invariant under 
unitary equivalence, but not under stable unitary equivalence. Also, if C 
happens to be unital then whether or not cp is unital is a unitary invariant 
but not a stable invariant. However, at least in the special case where 
A = C, these are the only two “obstructions.” The following theorem 
expresses this fact; it is due to Brown, Douglas, and Fillmore in the case 
where C is abelian (see [ 121) and to Voiculescu [53] in the general case; 
see also [4]. For a generalization to more or less arbitrary C*-algebras C, 
where unfortunately as good a result is not possible, see [34]. 

THEOREM 2.2.4, Let C be a separable P-algebra and let (pO, 
cp I : C + 991% be extensions of C by the compact operators which are injec- 
tive (as maps into g/X) and unital, if A is unital. They are unitarily 
equivalent if and only if they are stably unitarily equivalent. 

The groups Ext ~ ‘(C, A) are contravariantly functorial in the first 
variable: given a *-homomorphism ,f: C -+ C’ we define a homomorphism 

f *: Ext-‘(C’, A)-+Ext-‘(C,A) 

by f*[q] = [vJ]. Similarly, they are covariantly functorial in the second 
variable, with respect to quasi-unital maps f: A -+ A’, since these induce 
*-homomorphisms f: J&(X 0 A)/S @ A -+ .&‘(X 0 A’)/X 0 A’ by 1.1.7. 

We turn to some illustrations of extension theory, beginning with the 
relationship between extensions and the topological K-theory of the 
previous section. Any extension of C by X 0 A determines a map 
K;+ ,(C) -+ K:(A), namely the boundary map in the corresponding long 
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exact sequence. It is a fact that this map only depends on the stable unitary 
equivalence class of the extension, and we obtain a group homomorphism 

Extt’(C, A)-+Hom(K\(C), K:-,(A)). 

We shall use this result only to the following extent. 

LEMMA 2.25 Let F be a stable, half exact, and homotopy invariant 
functor from C*-algebras to abelian groups. If an extension is stably split 
then the boundary map (2.1.9) from F,,(C) to F,, ~ ,(A) is zero. 

ProoJ: If the extension 

is stably split then we may add some degenerate extension 

O+A+B,&C+O 
PI 

to it and obtain a degenerate extension as the result. The sum is given by 
the extension (2.2.3). In view of the commuting diagram 

O- A -B,* C-O 

I’ I 
O-M,(A)- Bc---C P __f 0, 

wheref(b) = (i F,Pi,h, ) (and s: C + B is some splitting of the sum), it follows 
from the naturality of the boundary map in the long exact sequence that 8 
for the top sequence is zero, since it is zero for the bottom sequence 
(because it is degenerate), and since F(A) + F(M, A) is an isomorphism 
(because F is stable). 1 

Actually, it is useful for us to strengthen this result a bit. 

LEMMA 2.2.6. If the extension 

is stably split then 

0 -+ FAA I+ r;,( B,) -+ F,(C) + 0 

(2.2.4) 

(2.2.5) 

is a split exact sequence of abelian groups. 
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Note that if (2.2.4) is actually split exact then it follows from the long 
exact sequence (2.1.8) that (2.2.5) is split exact. If (2.2.4) is only stably split 
then it follows from the long exact sequence, and Lemma 2.2.5, that (2.2.5) 
is exact everywhere except perhaps at F(C). So all that needs to be proved 
is that the homomorphism pO*: F(B,) + F(C) has a right inverse 
q: F(C) -+ F(B,). 

Proof: We will use the notations of the previous proof. Define two 
auxiliary C*-algebras by 

L)={(ii ‘;1:> / a,,EA andh.EB,} 

and 

a,EAandh,EBO } 
There is a split exact sequence 

O-+J+D&C-rO, n (2.2.6) 

where the maps cr and n are defined as 

and 7~ =p,(h,). 

Now, rcs = id, = rcc~, where s: C -+ B is a splitting of the sum (2.2.3) of the 
extensions 

O+A+B,+C-+O (i=O, 1). 

(We are regarding B as a subalgebra of D.) It follows that the image of the 
map s* - 6, : F(C) -+ F(D) is contained in the kernel of rc*, which, since 
(2.2.6) is a split exact sequence, is equal to the isomorphic image of F(J) in 
F(D). Denote by j: J + M,(B,) the inclusion map, and then define 
q: F(C) -+ F( B,) to be the composition 

F(C) x F(J)h F(M2(B,)) *F(B,). 

(Here and later on, an algebra is embedded in the ring of 2 x 2 matrices in 
the upper left-hand corner; by stability, if we apply the functor F to this 
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embedding, then we obtain an isomorphism.) We claim that q is right 
inverse to p,,* : F(B,) + F(C). The crucial observation is that the diagram 

F(C)U F(D) 
=I I 

n’* 
F(C) - F(M,(C)) (2.2.7) 

commutes, where rc’: D -+ M,(C) is defined by 

Given this, from the commuting diagram 

F(C)=-% F(D) + F(J) i. F(M,(Bo)) 
= 

I 
ni 

I I n; I PO* 

F(C) - F(M,(C)) yF(MAC)) y F(M,(C)) 

it follows immediately that po,q = id,(,-,. As for the commutativity of the 
above square, it follows from the definitions of rr and s that the maps rc’s, 
x’c C -+ M2( C) are 

n’s(c) = 
c 0 

( j 
n’o(c) = 

0 0 
0 c’ ( > 0 c’ 

By Lemma2.1.18, 7~I*~*--n;o,=(n’s--‘a)*, and since (n’s-n’a) is 
equal to the canonical embedding of C into M,(C), this equation asserts 
that (2.2.7) commutes. 1 

We close this section by proving, the Bott Periodicity Theorem 
(Theorem 2.1.15). The particular proof given here is an interesting example 
of how a topological result may be deduced from more or less purely 
C*-algebraic considerations. 

LEMMA 2.2.7. Any extension of the reduced Toeplitz algebra To by a 
stable F-algebra is stably split. 

Proof: An extension To -+ &‘(X Q A)/X @A corresponds to a unital 
map from T into 4(X@ A)/X@ A, and hence to an isometry 
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u E %&(Xx A)/X@O. We must show that there exists an isometry 
u, EJY(X@O)), such that the isometry 

lifts to an isometry in M2(~&‘(X@A)/X@A). Choose ui such that the 
projection 1 - u, u: is equivalent to 1. Then since the projection (i 7) is 
equivalent to the identity (h y), it follows that the projection (i i &.;) is 
equivalent to (A T). In other words, there exists an isometry 
UEM~(~JX(XO A)) such that 

Now, if W is any lifting of (;; E) to M,(,&(X@O)) such that 11 WI1 6 1 (for 
the existence of such a W see [43, (l.S.lO)]), then the element 

(1 - UU*) ws U( 1 - w*(l - uu*) W)’ 2 

is an isometry in M,(,&‘(X 0 A)) whose image in the quotient is (6 ty). [ 

Proof of Theorem 2.1.15. We see from the portion 

F,,(T,OA)~F,,(C,(R)OA)~F,,~,(.~OA)~F,,.,(T,OA), 

of the long exact sequence (2.1.8) that in order to show that the boundary 
map is an isomorphism, it suffices to show that F,( T, @ A) = 0 for all n. It 
is convenient to suppress that C*-algebra A for the moment: let us show 
that F*( T,) = 0. Consider the commuting diagram 

0- X@C,(R)@ T,- E -To-0 

O-~~CC,(R)OT,-~OC,(O,l]OT,-XOT,-O, 
(2.2.8) 

where E is the pullback: the C*-subalgebra of X 0 C,(O, 1 ] 0 T, which 
maps onto e @ T, c X 0 T,. According to the previous lemma, the top 
sequence is stably split, and so it follows from Lemma 2.2.6 that the 
corresponding sequence with F, applied is also split exact. In particular, 
F,(E) maps onto F,,(T,). It follows from this, and the commutativity of 
(2.2.8) that F,,(XO C,(O, l] @ T,) maps onto F,,(X@ T,). But 
F,(X @ C,(O, l] @ T,) = 0, since the argument of F,, is contractible; hence 
F,(X 0 T,) = 0, and so by stability, F,( T,) = 0. For the case of a general 
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A, we can take the tensor product of the C*-algebras and 
*-homomorphism in diagram (2.2.8) with A and id,, and then repeat the 
argument (the tensor product of a stably split sequence is again stably 
split). Alternatively, we may repeat the argument as above, but apply it to 
the functor F,( .@ A). 1 

Remarks. The idea behind the proof is illustrated by considering the 
task of showing that K;( r,) = 0, or in other words, that the group GLT, is 
connected. The group GLC,(O, l] @ To is precisely the set of based paths in 
GLT,, and so what we want to show is that the homomorphism 
GLC,(O, 1 ] 0 T, + GLT,, given by evaluation at the endpoint of a path, is 
onto. The obvious way to guarantee this is to show that the map 
p: C,(O, 1 ] @ T, -+ T, has a right inverse S: T, + C,(O, l] @ T,,. Unfor- 
tunately such a map s does not exist (as far as we know), but Lemma 2.2.7 
shows that if we throw in the qualification “up to stability” where 
necessary, then it is very easy to find a suitable s. Because of the stability 
properties of K-theory, this lesser construction is sufficient. 

Let us point out that instead of Lemma 2.2.6, we could have appealed to 
Lemma 2.1.16: indeed it follows from this lemma that the boundary map 3 
is onto, while Lemma 2.2.5, in conjunction with Lemma 2.2.7, is sufficient 
to show that F,,(A @ T,) = 0 for n > 0 and hence that the boundary map 8 
is one to one. 

2.3. Fredholm Modules 
DEFINITION 2.3.1. Let A be a C*-algebra. A Fredholm A-module is a 

triple (cp + , cp ~, F), where cp + and cpP are *-representations of A on a 
Hilbert space 2, and F is a Fredholm operator on X which is unitary, 
modulo compact operators (in other words, FF* - 1 and F*F- 1 are com- 
pact), and which essentially intertwines cp+ and cp-, in the sense that if 
a E A then Fcp+(a) - q-(a) F is a compact operator on Xx. 

There are a number of variations on this definition (we will encounter 
one below) all of which are equivalent for most practical purposes. The 
idea behind the definition is due to Atiyah [S]; the term “Fredholm 
module” is due to Connes [lS]. 

Let us digress for a moment and make note of the close relationship 
which exists between Fredholm modules and C*-algebra extensions. A 
Fredholm module of the form (cp, cp, F) determines an extension 
‘pF: C(S’) @ A --+ a/X by mapping f@ a to f(p) @(a). By Theorem 1.3.7, 
this extension is invertible, since (pP has a completely positive lifting over 
each point of S’, namely the map cp: A + g. It is in fact possible to obtain 
in this manner every element of Ext -‘(C,(R)@ A, C). (But note that not 
every element of Ext -‘(C(S’ ) @ A, C) can be so obtained, since if CI comes 
from a Fredholm module then t( is mapped to 0 by the homomorphism of 
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extension groups induced from A + C(S’) @ A.) Furthermore; one can 
describe the equivalence relation on extensions of C,(R) @ A by ,X in 
terms of Fredholm modules (see, e.g., [6]). 

It is usual to denote Ext(C,(R)@A, C) by Ext’(A, C). 

PROPOSITION 2.3.2. Let A be a separable C*-algebra. Jf eaery surjection 
B + A has a completely positive contractive section then Ext”(A, C) is a 
group. 

Proof: We must show that any extension 

O+X+E-+C,(R)@A-+O 

has a completely positive, contractive section S: C,,(R) 0 A -+ E. This 
follows from Theorem 1.3.7 since by hypothesis each of the surjections 
E-r C,(R)@A -+‘:I A (where .X E R and E, denotes evaluation at X) has a 
completely positive, contractive section. 1 

The proposition applies, for instance, to the (non-reduced) C*-algebra of 
a free group, and so it answers affirmatively a question of Rosenberg (see 
[22]) concerning whether or not Ext’(C*F,,, C) is a group. 

We turn now to another form of Delinition 2.3.1. 

DEFINITION 2.3.3. A Fredhoim pair for a C*-algebra A is a pair of 
*-representations (cp + , cp ) of A on a (separable) Hilbert space such that 
for every a E A, the operator cp + (a) - cp (a) is compact. 

A Fredholm pair is, of course, a Fredholm module, where the operator F 
is taken to be the identity. We will close this section by indicating how to 
go the other way and obtain a Fredholm pair from a Fredholm module 
(u, + , tp ~, F). For the sake of simplicity, we will assume for now that the 
Fredholm operator F is a partial isometry. The idea of reducing a 
Fredholm module is due to Cuntz, who uses it in his “quasi- 
homomorphism” description of KK-theory (see [ 19,201). The utility of this 
construction, as we will see in Section III, is that since a Fredholm pair is 
just a pair of *-homomorphisms, it is relatively easy to construct a pairing 
between the set of Fredholm pairs and a functor on C*-algebras, whereas 
general Fredholm modules are somewhat harder to deal with here. 

Let (cp + , cp ~. , F) be a Fredholm module such that F is a partial isometry. 
We begin by manufacturing a Fredholm module with unitary operator. 
The construction is simply 
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The essential features of the old and new modules are the same. For exam- 
ple, they determine the same element of Ext’(A, C). Also, if F was unitary 
to start with then the manufactured Fredholm module is a “direct sum” of 
(cp + , cp ~, F) with the “trivial module” (0, 0, F*). Let us denote the new 
module by (cp!+ , cp’- , F). Then the Fredholm pair we wish to associate 
with (cp’+, cp’-, F) is (cp’+, Ad(F*) cp-). 

2.4. LOW Dimensional Algebraic K-Theory 
In this section we introduce the algebraic K-theory functors K, and K2, 

for which there exist elegant, conceptual, and (as opposed to the higher 
K-theory functors) simple definitions. Our point of view, a reasonably stan- 
dard one, is that the algebraic K-theory groups provide an algebraic analog 
of the homotopy theory of the stable general linear group of a ring. This is 
obviously convenient for our purposes since it allows for a direct com- 
parison with topological K-theory, as defined in Section 2.1. Furthermore it 
is consistent with, and strengthened by, Quillen’s definition of higher 
K-theory, to be discussed in Section 2.6. 

Most of the material presented here is available in Milnor’s book [40], 
except that Milnor treats, for the most part, only the case of unital rings. 
We will indicate what modifications are necessary as we go along. Usually 
only very minor changes need be made to the proofs, but we will encounter 
some rather more delicate points in Section IV. 

Throughout the section, unless otherwise specified, A, B, C,... will denote 
discrete rings (i.e., rings with no topological structure assumed), not 
necessarily with units. The stable general linear group, GLA, of A is defined 
just as in the C*-algebra case considered in Section 2.1. 

DEFINITION 2.4.1. Let a E A and let i and j be distinct indices. The 
elementary matrix e; is the element of GLA which is equal to the identity, 
except for the element a in position (i,j). Denote by EA the subgroup of 
GLA generated by all the elementary matrices. 

Thus, for example, e& = o , (l “). It is a simple matter to verify the relations 
amongst the elementary matrices, 

e; et. = et+ ‘, (2.4.1) 

Ce;, e$] = ezb if i#I, (2.4.2) 

Ce;, 4,1= 1 if j#k and iff. (2.4.3) 

(Here, [x, y] denotes the multiplicative commutator xyx-‘y-i.) Relation 
(2.4.1) shows that each et is indeed an invertible matrix, since (e;)-’ = e,;O. 
Relation (2.4.2), along with (2.4.1), shows that if A2 = A then EA is equal 
to its commutator subgroup [EA, EA]. 
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The following very useful result is known as the Whitehead lemma. 
(Actually, the usual Whitehead lemma deals with unital rings: for the proof 
of the marginally stronger result given here see [52].) 

THEOREM 2.4.2. Let A be a ring such that A” = A. 

(i) Every element of the form 

is contained in EA. 
(ii) The group EA is equal to the commutator subgroup [GLA, GLA] 

of GLA. 

DEFINITION 2.4.3. The group K,(A) is the quotient GLA/[GLA, GLA]. 

All the rings that we deal with will meet the requirement A* = A, and so 
by the Whitehead lemma, K, A = GLA/EA. From our point of view, the 
idea behind Definition 2.4.3 is as follows. First, the e; should be thought of 
as being in some sense “algebraically connected to the identity”-for 
instance, if t is an indeterminate then e:; forms a “path” from et to the iden- 
tity. (This idea is considered in more detail in Section Vi, where the 
Karoubi-Villamayor K-theory is discussed.) More importantly, it follows 
from the Whitehead lemma that EA is the maximal perfect subgroup of 
GLA: 

DEFINITION 2.4.4. A group G is said to be perfect if it is equal to its 
own commutator subgroup 

G = [G, G]. 

If G is any group then the subgroup of G generated by the union of all the 
perfect subgroups of G is itself a perfect group. It is denoted PG, and called 
the maximal perfect subgroup of G. 

The terminology “maximal” is standard but a bit misleading since the 
maximal perfect subgroup PG of a group G is by definition the 
largest-that is, maximum, not maximal-perfect subgroup of G. 

This concept is very important in K-theory, particularly in the Quillen 
K-theory to be discussed presently. It is very profitable to think of PG as 
the algebraic analog of the connected component of the identity in a 
topological group. This will become clearer when we discuss K,, in a 
moment; we might note now that the maximal perfect subgroup has a 
number of advantages over say the commutator subgroup when it comes to 
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playing this role: for example, the “connected component” so defined will 
be connected. 

The group K,A is obviously abelian, and functorial in A. It is also half- 
exact. 

PROPOSITION 2.4.5. Zf 0 -+ A + B --f C + 0 is a short exact sequence of 
rings and if C2 = C then the sequence 

K,A+K,B+K,C 

is exact at K, B. 

Proof (Compare [40, Sect. 43). If XE GLB, and if X maps to the zero 
element of K,(C), then the image of X in GLC is a product of com- 
mutators, and so, by the Whitehead lemma it is a product of elementary 
matrices. Since EB clearly maps onto EC, we may modify X, without alter- 
ing the element in K, B it defines, so that X projects to the identity element 
in GLC. But then X so altered is an element of GLA 1 

Now, let A be a C*-algebra. Then every elementary matrix e; is path 
connected to the identity, and so EA c GL’A. It follows that there is a 
canonical map 

a: GLAJEA + GLAIGL’A, 

or, in other words, a canonical map LX: K, A + K{ A. This map is, of course, 
always onto, but it need not be one to one: for example, K,C = C* (the 
multiplicative group of C) but K’, C = 0. However, CI is an isomorphism if A 
is a stable C*-algebra. The result is due to de la Harpe and Skandalis [24], 
although various similar results predate it (see, for example, [ 131). 

THEOREM 2.4.6. Zf A is any C*-algebra then the homomorphism 

~1: K,(X@A)-+K’,(X-@A) 

is an isomorphism. 

The theorem follows immediately from the following computation. 

THEOREM 2.4.7. Zf XE GL,(X@ A) and x is connected to the identity 
then the matrix (i y) E GL,,(X Q A) is a product of commutators. 

Proof Since M,(X @ A) E X @ A, we may as well assume that n = 1 
(which simplifies the notation a bit). Also, since x is connected to the iden- 
tity, it follows from elementary Banach algebra theory that it is a product 
of exponentials eY. It s&ices to show that an exponential x = ey, where 
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y E A’” 0 A, is a product of commutators. For the proof of this we use the 
following infinite dimensions trick, due to Pearcy and Topping [42]. Write 
(z 7) as an infinite sum of orthogonal projections, each equivalent to (i 7). 
Then we may express (; y) as the product of two matrices, X, , X2, both 
infinite diagonals with respect to this decomposition of (i y), where the 
diagonal of X, is the sequence 

and where the diagonal of X2 is the sequence 

( 1, X”2, .X’iZ, LX 1’4, .Y “4, .Y ‘s4, s “4, X1/** x1’* )...) X1/8, X “I6 ,... ). (2.4.5) 
4 times 8 times 

Now, both Xl and X, are of the form 

after suitable rearrangement. It follows from the Whitehead lemma that 
both Xl and X2 are products of commutators. 1 

Let us pass on to the definition of the algebraic K,-group of a ring. Con- 
sider first the topological K-theory group K;(A) (where A is a C*-algebra). 
By definition, this is the fundamental group of GLA. We may obtain this as 
the kernel of the projection from the universal covering group, =A, onto 
GL’A. Recall that, as a topological space b&??A is the connected, simply 
connected cover of GL’A, elements of which are fixed endpoint homotopy 
classes of paths in GL’A, based at the identity element 1 E GL’A; the 
projection GTA -+ GL’A maps a class of paths to its endpoint. The group 
structure on GTA is inherited from GL’A: multiplication of paths is 
carried out pointwise, and this passes to homotopy classes. By construc- 
tion, the kernel of the projection from GTA to GL’A is the set of 
homotopy classes of paths in GL’A which begin and end at 1 E GL’A or, 
other words, it is the fundamental group xl(GLoA) (= TC~(GLA)). It is well 
known that the group structure on xL(GLA) given by pointwise mul- 
tiplication of loops, is the same as the usual one on YE, given by con- 
catenation of loops. So we obtain the extension of groups 

1 + n,(GLA) + GL,A + GL,A --+ 1. (2.4.6) 
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(For a detailed discussion of covering spaces, the reader is referred to 
[ 50, Chap. 23.) 

DEFINITION 2.4.8. An extension of groups 

is said to be a central extension if N is contained in the center of G. 

It is easy to see that (2.4.6) is a central extension. The definition of the 
algebraic K,, due to Milnor, produces K, as the kernel of a central exten- 
sion analogous to (2.4.6). 

DEFINITION 2.4.9. The Steinberg group StA is the group generated by 
the symbols x;, where i and j are distinct natural number indices, and 
a E A; subject to the Steinberg relations 

x”x” = XO.fb ‘I ‘1 
[x$ xf/] = x;b 

(2.4.7) 

if i#l, (2.4.8) 

[x;, x:,1 = 1 if j#k and i#l. (2.4.9) 

The generators x; are obviously intended to correspond to the elemen- 
tary matrices e;. In view of relations (2.4.1), (2.4.2), and (2.4.3), there is a 
group homomorphism XC: StA + EA such that n(x;) = e;. Just as e; can be 
thought of as a matrix “algebraically connected to the identity,” we can 
think of x; as representing the “canonical path” ey connecting e; to the 
identity. Indeed, suppose that A is a C*-algebra. Then of course EA is con- 
tained in GL’A, and we may lift this to a map from StA to GL’A, to 
obtain the commuting diagram 

StA a EA 

I I 
GL’A - GL’A 

The map is given by sending x; to the path t H ey, where t E [0, 11. It is 
ready verified that for each of the Steinberg relations, the right-hand side of 
the relation gives a path which is homotopic to that given by the left-hand 
side; so we obtain a group homomorphism. Seen in this light, an element of 
the kernel of 7~: StA --f EA is a “loop” based at 1 EEA, and so the following 
definition is natural. 

DEFINITION 2.4.10. The group K, A is defined to be the kernel of the 
homomorphism z: StA + EA. 
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By the above, if A is a C*-algebra then we obtain a canonical 
homomorphism CI: K, A -+ K; A: 

K,A- StA - EA 
u 
I J I 

(2.4.10) 

K;A - GL,A- GL,A 

This map is, in general, neither onto nor one to one: for example, K,C is a 
rational vector space (of uncountable dimension), but K;C = Z. Therefore 
r=O in this case. 

PROPOSITION 2.4.11. If A is a C*-algebra then the Steinberg extension 

K,A+StA+EA (2.4.11) 

is a central extension, and in fact K,A is the center of StA. 

Proof The proof of Theorem 5.1 in [40], which treats the same result 
but for a unital ring, may be applied, mutatis mutandis. The hypotheses of 
our proposition are much stronger than necessary. What we need is that 
A’=A and for every aEA, ifa#O then a.AZ0fA.a. 1 

DEFINITION 2.4.12. A central extension U + G is universal if, for every 
central extension H + G, there is a unique homomorphism f: U -+ H over 
G; that is, such that the diagram 

U-G 

II I= 
H-G 

is commutative. 

Clearly, there is a unique universal central extension up to canonical 
isomorphism, assuming that one exists at all. (It turns out that it exists if 
and only if G is perfect-see [40, Theorem 5.73.) 

Having made the link between covering groups in the topological 
category and central extensions in the discrete case, the following impor- 
tant theorem, due to Kervaire and Steinberg, obviously greatly bolsters 
Definition 2.4. IO. 

THEOREM 2.4.13. If A is a unital ring then the Steinberg extension is the 
universal central extension of EA. 
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In Section IV we will prove that the same result is true if A is a 
C*-algebra. Thus in some sense, if A is a C*-algebra, then Definition 2.4.9 
is the “right” one for K,A. 

We finish this section with a discussion of the functoriality of K2A. A 
ring homomorphismf: A -+ B induces, in an obvious way, maps from K2A, 
StA, and EA. to K,B, StB, and EB, respectively: given a generator x; of 
StA, map it to XC(~), and so on. !I 

LEMMA 2.4.14. Let A he a ring such that A2 = A and let 

O+A-+B+C+O 

be a short exact sequence of rings. Then the sequence 

StA -+ StB + StC 

is exact at StB. 

Note that the map StB + StC is onto, since each generator ?c;; of StC has 
a pre-image in StB. 

Proof: (Compare [40, Lemma 6.11.) The kernel of the homomorphism 
StB + StC is equal to the normal subgroup generated by the image of StA. 
This is because by adjoining the relations x; = 1 (a E A) to those for StB, 
we obtain the relations for StC. So we need only show that the image of 
StA in StB is a normal subgroup, and for this, it suffices to show that if X; 
is a generator for StA and xi, is a generator for StB, then .x$;s~~ is an 
element of the image of StA in StB. Unless k =j and i= I, this is clear from 
the Steinberg relations. If k =j and i = I, then choose an index h distinct 
from i, j, k, and 1, and using the fact that A2 = A, write x$ as a product of 
commutators [x2, $1. Since conjugation with .Y& is an automorphism of 
StB, it follows from the fact that each .X:,X$ xib and each ~$9 .xib is in 
the image of StA that the commutator 

is as well. From this we get that x~~x;x~;~ is an element of the image, as 
required. 1 

THEOREM 2.4.15. (Compare [40, Theorem 6.21.) A short exact 
sequence of rings 0 + A 4 B -+ C + 0, all of which satisjjl R2 = R, gives rise 
to a long exact sequence 

K,(A) + K,(B) + KAC) 2 K,(A) -+ K,(B) + K,(C). 
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ProoJ In the diagram 

l-K,A-St/t-GLA-K,A-1 

I I I I 
l- K,B- SIB- GLB- K,B- 1 

I I I I 
I-----+K,C-StC- GLC-K,Ck1 

1 

the rows are exact by the definitions of K, and K,. The rightmost column 
of maps is exact by 2.4.5; the next by definition; the next by Lemma 2.4.14; 
and the final one by the definition of Kz and the exactness of the rest of the 
diagram. The boundary map a: K2C + K, A is defined in the usual fashion 
from a diagram of this sort: given x E Kz C, lift it to x’ E St& map it next to 
X” E GLB; in fact, x” is an element of GLA c GLB, and so it determines an 
element of the quotient GLA/EA = K, A. The usual diagram chasing shows 
that 8 is well defined and that the sequence of K-theory groups is exact. m 

Let us note that if 0 --) A -+ B-r C+ 0 is an exact sequence of 
C*-algebras and *-homomorphism then the diagram 

i K2C-K,A 
(2.4.12) 

K;C;--, K’,A 

commutes, where the maps CI are defined prior to Theorem 2.4.6 and in 
(2.4.11). In both the topological and the algebraic case, d is defined by 
lifting a loop CI in GLC to a path in GLB starting at the identity and then 
taking a([~]) to be the class in K, A of the free endpoint of the path. 

2.5. Some Results from Algebraic Topology 

If G is any topological group then we may associate to it a classifying 
space, BG (see [27]), so called because for any space X, the set of 
homotopy classes of maps from X to BG is in one-to-one correspondence 
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with the set of principal G-bundles over X (modulo technical conditions 
which come into effect if the space X is not paracompact). If G is discrete, 
then the classifying space BG forms an important link between algebra and 
topology, and as such, it plays an important role in algebraic K-theory, 
and also in the comparison of algebraic and topological K-theory. It is 
clear from the definition of BG as a space which classifies G-bundles that 
BG is defined only up to homotopy type. This is sometimes convenient 
since it allows us to choose particular realizations of BG for various par- 
ticular purposes. It will, however, be useful to have a single standard model 
for BG; and so we review the “infinite join model” of BG, due to Milnor 
[38]. For full details the reader is referred to [27, Sect. 4.111. 

Abstractly, if Y is any space and E is a locally trivial principal G-bundle 
over Y which as an ordinary topological space is contractible, then Y is a 
model for the classifying space of G. The correspondence between 
homotopy classes of maps from X into Y and bundles over X takes a map 
f: X + Y to the bundle over X pulled back from the bundle E via the mapf: 
(Strictly speaking, any model for BG should come equipped with a dis- 
tinguished G-bundle over it so that a particular isomorphism of [X, BG] 
with G-bundles over X is specified, and hence a particular homotopy 
equivalence with any other model is determined. When we construct dif- 
ferent models for BG, they will be spaces obtained from a standard model, 
say the one below, by means of some geometric construction, and so this 
requirement is satisfied.) We begin then with a particular contractible 
G-space. This is EC, defined to be the set of all sequences 

x= {h3go, t,g,, t2g*,...), 

where g, E G, tie [0, 11, subject to the conditions that t, be zero for almost 
all i, and C,?50 t, = 1. (If t = 0 then we identify any two rg, th, where g, 
h E G.) We give EC the weak topology from the coordinate maps x H ti 
and ,KH~~ (see [27]), and let G act on the left in the obvious manner: 

g.-x= {klgg,~ t,gg,,...). 

It is not hard to show that EC is contractible, and that the quotient map- 
ping EC -+ G\ EC is a principal G-bundle. So we define BG to be the 
quotient space G \ EC. 

Let us note here one obvious advantage of this construction: it is 
functorial, in the sense that a continuous group homomorphism induces a 
natural map on classifying spaces. 

Consider for a moment the case of a discrete group G. In this case, EG is 
a covering space of BG, with covering group G. Since EC is a contractible, 
it follows from the long exact homotopy sequence for the fibration 
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G -+ EC + BG that the homotopy groups of BG are zero in all dimensions 
except for xi, and x,(BG) = G. In the discrete case it is sometimes con- 
venient to realize EG as an infinite simplicial complex, as follows. The 
p-simplices of EG are all the ordered (p + 1 )-tuples (g,,,..., g,) of elements 
in G. This is a contractible space and the group G acts properly discon- 
tinuously on EC by left multiplication: 

g . (go,..., 8,) = (ggov-~ a,). 

One advantage of this is that it allows us to directly identify the homology 
of BG, H,(BG), with the Eilenherg-MacLane homology, H,(G), of the 
group G. For a treatment of the homology of groups, see, for example, [37, 
Chap. IV]. We do not need to say much about it here; we will frequently 
write H,(G), but if the reader likes he can view this simply as H,( BG) with 
BG constructed say as above (since all models for BG are homotopy 
equivalent they have the same homology). We mention it only to stress the 
purely algebraic nature of H,(BG), and because we will use the following 
two facts, which are perhaps best seen from this point of view. 

LEMMA 2.5.1. If g E G then the inner automorphism Ad(g) of G induces 
the identity map on H,(G). 

LEMMA 2.5.2. If G is the direct limit qf‘a directed system of groups 
then 

iG, 

H,(G) = !~QH,(G,). 

For proofs the reader is referred to [37]. 
Let us make one or two remarks about the classifying space in the 

opposite case of GLA considered as a topological group. First, there is a 
close relationship between the classifying space of a group and the loop 
space SZGLA. Indeed, from the short exact sequence of C*-algebras 

O+C,(R)@A-,C,(O, l]@A+A+O 

we get a principal GM’,(R) @ A bundle 

GLC,(O, I ] @ A -+ GL’A. 

Since the total space is contractible, it follows that GL’A is a model for the 
classifying space of CL&(R) 0 A. But GLC,(R) 0 A = QGLA, and so we 
get that 

BQGLA = GL’A. 
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Similarly, it is not hard to show that 

and so B is more or less inverse to R. This is sometimes a useful point of 
view. Let us note, for example, that by virtue of the above equalities, 
n,(BGLA) = rr,- i(GLA), and so K;(A) = n,(BGLA). 

The second point concerns periodicity. It follows from the periodicity 
theorem that 

(where To denotes the reduced Toeplitz algebra) is a principal GLX 0 A 
bundle with contractible total space. Therefore, the base space is a model 
for the classifying space of GLX @A. Now, it follows from the stability of 
topological K-theory that the inclusion GLA -+ GLX 0 A is a homotopy 
equivalence; therefore BGLA + BGLX @ A is a homotopy equivalence, 
and so 

BGLA E (QGLA)‘, 

where ( )’ denotes the connected component of the base point. This shows 
that for GLA, the classifying space depends only on the structure of GLA 
as a topological space. 

Let us move on to the next topic. We will encounter the following 
situation quite frequently: a map f: A’+ Y to which we wish to apply the 
long exact homotopy sequence, as if f were a fibration. Of course, f may 
not be a fibration, but there is a well-known way of making it one, up to 
homotopy (see [SO, p. 993): denote by P,. the space of pairs (x, y ), where 
x E X and y is a free path in Y (i.e., y does not necessarily begin at the base 
point of Y) such that y( 1) = f (x). There is a commutative diagram 

Xd P, 
f 

I. I 

P (2.5.1) 

Y-Y = 

where s maps x to the pair (x,f(x)) (here f(x) denotes the path which is 
constantly equal to f(x)), and p(x, y) = y(0). The map s: X+ Pr is a 
homotopy equivalence-the projection (x, y) H x is a homotopy inver- 
se-and p: P, + Y is a libration. The fiber of p will be denoted by F,; it is 
called the homotopy fiber off: X -+ Y. Let us note some of the properties of 
this construction: 



A~~BRAI~ K-THEORY 0~ C*-ALGEBRAS 51 

(25.2) It is obviously functorial, in the sense that from a commutative 
diagram 

we obtain the commutative diagram 

where C, Y I= (g(x), hy). 

(2.5.3) Given a sequence of spaces and maps Z --tR X -J Y, if the com- 
posite fg: Z -+ Y is homotopic to a constant map, then g: Z-P X factors 
through the homotopy fibre of J Indeed, choose a homotopy H(z, t) con- 
necting fg to the constant map onto the base point of Y. Then we can 
define Z + F, by z H (g(z), H(z, )). We obtain a diagram 

Z----+X-Y 

I >I i= 
Ff---- P,--+ Y 

which commutes up to homotopy. We will say that 

ZAX-LY 

is a fibration, up to homotopy, if Z + F, is a homotopy equivalence for some 
choice of the homotopy H (we note that Z-t F,-may depend on this choice 
of H). 

Next we must say a few words about the type of spaces we are going to 
be dealing with. All spaces will be assumed to be either CW-complexes (see 
[SO]) or spaces with homotopy type of a CW-complex. The advantage of 
working in this category is due mostly to the following well-known, and 
useful fact: if a map f: X -+ Y between such spaces induces isomorphisms of 
all homotopy groups then f is a homotopy equivalence. By a theorem of 
Milnor [39], if X and Y have the homotopy types of CW-complexes, 
and f: X---f Y is any map, then P.( and F,. have the homotopy types of 
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CW-complexes as well. Also, if X is an open paracompact subset of a 
locally convex topological vector space, then X has the homotopy type of a 
(XV-complex (see [39]). This applies to the spaces GLA, where A is a 
C*-algebra, and so justifies the remarks made above in connection with 
classifying spaces. For example, from the fact that GLT, @ A has trivial 
homotopy we can deduce that it is a contractible space. 

Now, getting back to the construction (2.5.1) checking fundamental 
groups reveals immediately that if N + G + G/N is an extension of 
(discrete) groups then 

BN + BG + BGIN (2.5.4) 

is a fibration, up to homotopy (indeed, rcl is the only non-zero homotopy 
group of BN and the homotopy fiber F, and since it is easily checked that 
rc,( BN) + x,(F) is an isomorphism, BN + F is a homotopy equivalence). 

Suppose that F + E + B is a fibration. Recall (or see, e.g., [SO, p. 4761) 
that x,(B) acts on H,(F), as follows: given a loop y: [0, l] + B (i.e., 
y(O) = e = y( 1)) we solve the homotopy lifting problem 

Fx [O,‘]T B m f) = y(t), 

obtaining a map P Fx [0, l] --+ E. Since y” maps F x { 1 } to the base point 
of B, r maps F x { 1) into F. This mapcall it rI : F--t F-is well defined 
up to homotopy, and r,.+ : H,(F) + H,(F) defines the action of y on 
H,(F). Consider, for example, the fibration associated with the fiber 
squence (2.5.4). An extremely useful, and well-known fact (see, e.g., [54, 
p. 3561) is this: 

(2.5.5) Let BN denote the Milnor model of the classifying space (we 
spectfy this so that BN is obviously functorial). The action of 
7~,( BG/N) = G/N on H,( BN) is given by the action of G/N on N (and hence 
on BN) by conjugation: n ~gng-‘. (Zt .is well defined on the level of 
homology.) 

The proof is a straightforward direct verification. Here is a related result 
(also well known, also easy to prove directly): 

(2.5.6) Zf N is a normal subgroup of G then a check of homotopy groups 
reveals that BN is homotopy equivalent to the covering of G, with group G/N. 
The action of GIN on HJBN) by deck transformations is equal to the action 
by conjugation. 
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We will define the algebraic K-theory of a ring R to be the homotopy of 
a certain space associated with R. It is preferable to work with homotopy 
(rather than homology) because decomposing R tends to lead to fibrations 
of the associated space, and by virtue of the long exact sequence, fibrations 
are quite amenable to study by homotopy groups. However, the space 
associated with R is in many ways more accessible through homology than 
through homotopy. So it is important to have at our disposal theorems 
which compare homotopy and homology. The following famous result is of 
this sort. 

THEOREM 2.5.3 (Whitehead theorem, see [SO, p. 3993). Let X and Y be 
simply connected spaces. If f: X -+ Y is a map which induces an isomorphism 
of homology groups then f induces an isomorphism of homotopy groups (and 
is hence a homotopy equivalence). 

Since most of the spaces we will be dealing with are not simply connec- 
ted, a generalization of this theorem is needed. 

DEFINITION 2.5.4. (See [54]). A space X will be called weakly simple if 
n,(X) acts trivially on the homology of the universal cover z of X. (To be 
specific, n,(X) acts on R by deck transformations, and it is the induced 
action on homology that we are talking about.) 

THEOREM 2.5.5. [9, Lemma 6.21. Let X and Y be weakly simple spaces. 
If j X + Y induces an isomorphism of homology groups, as well as of fun- 
damental groups, then f induces an isomorphism qf all homotopy groups (and 
so it is a homotopy equivalence). 

Recall that an H-space is a space X, equipped with a (base point preser- 
ving) “multiplication” map 

p: xxx-+x 

such that the maps 

p: Xx {e)-X and p: {e}xX-+X 

are both homotopic to the identity (here e denotes the base point of X). 
These are of interest to us because every connected H-space is weakly simple 
[9, Lemma 6.21. Thus Theorem 2.5.5 applies to H-spaces. In fact we may 
simplify the hypotheses somewhat: the fundamental group of an H-space X 
is abelian (see [SO, p. 44]), and so x1(X) = H,(X). Thus the condition that 
f induce an isomorphism on fundamental groups is subsumed under the 
condition that it induce an isomorphism on homology. 



54 NIGEL HIGSON 

Our final topic in this section comes from the theory of spectral sequen- 
ces. 

DEFINITION 2.5.6. (See [SO, p. 4761.) A fibration F + E + B is said to 
be orientable if rc,( B) acts trivially on the homology of F. 

THEOREM 2.5.7. Let 

F, - E, - B, 

A 4 1; 
Fz - E, - B, 

be a commuting diagram, where the rows are orientable fibrations. If any two 
of the maps 

%,c : H,V’, I+ ff,(Fd, 
fi, : H,(E, I+ ff,(E,L 
Y*: ff,(B,) -+ H,(B,) 

are isomorphisms then so is the third. 

For the proof see [37, p. 3551. We do not want to say anything about it 
here, except that the theorem follows from the existence of the Spectral 
Sequence for a fibration over a CW-complexPgiven the spectral sequence 
it is nothing more than an enormous diagram chasing argument. 

Let us give a simple application, which will be made use of in the next 
section (another application is in Sect. 5.1). 

DEFINITION 2.5.8. A mapf: X-+ Y is said to be acyclic if the homotopy 
fiber Ff off is cyclic, that is, if F/- has the same homology as a single point 
space. 

THEOREM 2.5.9. Zf f: X-+ Y is acytlic then f,: H,(X) + H,(Y) is an 
isomorphism. 

Proof: Apply Theorem 2.5.8 to the diagram of tibrations 

pt-X-X 

I d If 
F-P-Y. f f 
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The fibrations are orientable because the fibers have trivial homology. The 
map it + F, induces an isomorphism on homology by hypothesis. 
Therefore, so does f: X-, Y. [ 

2.6. Higher Algebraic K- Theory 
We begin by stating a theorem, due to Quillen [45], which characterizes 

what is known as the plus construction. The goal, roughly speaking, is to 
pass from a space X to a space X+ with more manageable homotopy. but 
without altering the homology. 

THEOREM 2.6.1. Let X be a C W-complex. There exists a space X+, which 
may be chosen to be a CW-complex as MelI, and an acyclic map q: X+ X+, 
which induces an isomorphism 71, X/P7t, XE 71, Xc. Furthermore, (f Y is 
another CW-complex and f: X-+ Y is a map, then there is a map 
f+:x+-+Y+, which is unique up to homotopy, such that the diagram 

commutes up to homotopJ1. In particular, X+ and q: X -+ X+ are unique up to 
homotopy. 

There is no need for us to prove this theorem; the reader is referred to 
[7] for a good exposition. But let us at least sketch how X’ is constructed 
since it is not especially complicated. The idea is simply to adjoin enough 
2-cells to X to kill the maximal perfect subgroup of n,X. Having done this, 
we get the right 7c1, but the homology has been altered. To remedy this, we 
adjoin 3Scells sufficient to kill the new generators of H, created from the 
2-cells. It follows from the van Kampen theorem that adding the 3-cells 
does not alter z, , and so we have obtained a space with the desired proper- 
ties. 

DEFINITION 2.6.2. The algebraic K-theory of a ring A, K,(A), is the 
homotopy of the space BGLA +, where BGLA denotes the classifying space 
of the stable general linear group of A. Thus 

K,(A) = z,(BGLA + ). (2.6.1 ) 

For our purposes it is perhaps best to think of these groups as follows. 
Bearing in mind the situation in topological K-theory, we want to view 
BGLA, appropriately modified, as the “inverse” of some sort of “algebraic 
loop space” of G. Of course, BGLA as it stands is not satisfactory for this; 
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but if we modify it is so that the elements of PGLA, which are supposed to 
be thought of as connected to the identity, do indeed give the trivial 
element in homotopy, then we naturally obtain the space BGLA+, which is 
suitable for our purposes. 

Let us compare Definition 2.6.2 with the low-dimensional definitions 
given in Section 2.4. First, if A2 = A then the maximal perfect subgroup 
of GLA is [GLA, GLA]; so if A satisfies this condition, then according 
to Definition 2.6.2, K,(A) = GLA/[GLA, GLA], which agrees with 
Definition 2.4.3. A more significant result, which lends considerable weight 
to Definition 2.6.2, and which was, in fact, one of the main motivations 
behind the definition (see [45]), is 

THEOREM 2.6.3 (see, e.g., [7, Chap. 83). For any discrete group G, 
n,(BG+ ) is the kernel of the universal central extension of the maximal 
perfect subgroup of G. 

Proof. We will borrow a result from Section V, namely that the exten- 
sion of groups 

gives rise to a fibration 

BPGf --f BG+ d B(G/PG)+ (2.6.2) 

(see Corollary 51.5). The maximal perfect subgroup of GjPG is trivial, and 
so B(G/PG) + = B(G/PG). But q,(B(G/PG)) is zero if n > 1, and therefore 
from the long exact sequence for the fibration (2.6.2) we get that 
~,(BPG+)=TT,(BG+). Now, PG is perfect, and so n,(BPG+)=O. 
Therefore, it follows from the Hurewicz theorem [SO, 7.5.2) that q(BPG+ ) 
is isomorphic to H,( BPG+ ). But by definition of the plus construction, and 
Theorem 2.5.9. 

H2( BPG + ) = H2( BPG) = H2( PG), 

and so the result follows from the fact that the second homology group of a 
perfect group is the kernel of the universal extension (see, e.g., [40, 
Corollary 5.81). 1 

As usual, our interest in algebraic K-theory lies in comparisons with 
topological K-theory. Let A be a C*-algebra and denote by GL’A the 
general linear group considered as a topological group (the unadorned 
GLA will from here on only refer to GLA as a discrete group). The classi- 
fying space BGL’A has an abelian fundamental group, namely 
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n,(BGL’A) = Ki( A), and so the space BGL’A is unaffected by the plus 
construction 

BGL’A FE BGL’A +. (2.6.3) 

Also there is a natural map BGLA + BGL’A (if we are working with, 
say, Milnor’s infinite join model of B, then this is clear from the functorial 
nature of that construction: the map is the one induced from the “identity” 
map GLA + GL’A, which is, of course, continuous). By plussing this map 
and then using (2.6.3) we obtain a canonical (up to homotopy) map 

BGLA + + BGL’A 

Applying the homotopy group functors 7~,, we obtain homomorphisms 

a,,: UA 1 -+ K(A 1 (2.6.4) 

comparing the algebraic and topological K-theory. 
Let us describe now our main result concerning this comparison, which 

concerns the following C*-algebras. 

DEFINITION 2.6.4. Let B be a C*-algebra. The C&kin algebra for B, 
denoted 2(B) is the quotient C*-algebra I &‘(X @ B)/X @ B. 

The terminology is of course derived from the case B= C: 9(C) is just 
the quotient &?/X of bounded operators by compact operators, or in other 
words, the ordinary Calkin algebra. 

We are interested in the K-theory of stable C*-algebras (by reason of, 
e.g., Theorem 2.4.6). However, it is very difficult to approach the K-theory 
of X @ B--even say K2, as we shall see in Section IV-and so we com- 
promise and study 2(B). There is a close relationship between X @ B and 
Z(B), as a result of the following important result. 

THEOREM 2.6.5. Compare [54, Proposition 2.11.) The algebraic and 
topological K-theory groups of ..K(X @ B) are trivial. 

We will prove this in a moment. Let us note now that as a result of the 
long exact sequence in topological K-theory, together with stability, 

K,(%B)) = K:,+ ,(B). (2.6.5) 

Thus Z?(B) plays the role of a suspension of B. A similar result is true in the 
algebraic situation. If B is a unitul ring then denote by 9”(B) the quotient 
of the ring of all infinite matrices over B, whose rows and columns each 
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have only finitely many non-zero entries, by the ideal of finite matrices. 
Then 

(see [54] ). However, it is not clear that the equality (2.6.5) holds with 
algebraic K-theory replacing topological K-theory, and the most we can 
say is that K,@(B)) is a sort of relative K-theory group for X 0 B. 

Our main result, proved in Section V is as follows: 

THEOREM. Let A be a unital P-algebra and let B be a a-unital 
P-algebra. The homomorphism E: K,(A @ 2?(B)) + K’.+(A @2(B)) is an 
isomorphism. 

In particular, by setting B = C, we obtain a conjecture of Karoubi [30] 
that K,(A@d) equals K’..,(A). 

As another consequence, we have, for example, 

H,(BGLI(A)) = H,(BGLY(A)). (2.6.6) 

This is quite remarkable (we think): the left-hand side of (2.6.6) is the same 
as the Eilenberg-MacLane homology H,(GL2(A)), which is purely 
algebraic in character, and depends only on the structure of GL2(A) as a 
group. The right-hand side is the homology of BGL’j(A); but by Bott 
Periodicity, BGL’3(A) is equal to the connected component of the base 
point in QGL’9(A), and so the right-hand side depends solely on the struc- 
ture of GL’S(A) as a topological space. 

The remainder of this section is devoted to establishing the basic facts 
concerning algebraic K-theory that we will need. 

DEFINITION 2.6.6 (cf. [54]). A discrete group G will be called a stable 
group if it has the following properties. 

(i) The commutator subgroup [G, G] c G is perfect (and hence it is 
the maximal perfect subgroup). 

(ii) There is a homomorphism G x G + G, called direct sum, and 
denoted by 0, with the property that for any finitely generated subgroup 
Fc G, there exist elements a and b in G with 

a(e@f) a-’ =f= b(fOe) b-l, 

for every fe F, where e denotes the identity element of G. 

We will find that this is a very convenient class of groups to work with. 
A homomorphism between stable groups will be assumed to commute with 
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the direct sum maps. Let us note that any subgroup G’ of G containing 
[G, G] is itself a stable group (with the same 0 ). To see that G’ is 
invariant under 0, note first that since [G, G] c G’, G’ is a normal sub- 
group of G. It follows then from (ii) above that if g’ E G’ then e @g’ and 
g’ 0 e are in G’, too. Thus if g’, , g> E G’ then g’, @g; E G’. 

Condition (ii) in the definition is designed with the following result in 
mind. 

LEMMA 2.61. Let G he a stable group. 

(i ) The endomorphisms g H g @ e and g t-+ e @ g of G induce the iden- 
tity map on H,(G). 

(ii) !f G’ is a stable normal subgroup of G (by \cAich w’e mean that the 
normal subgroup G’ is a stable group in its own right, and the direct sum on 
G’ is the restriction qf the direct sum on G), then G acts trivially on H,(G’). 

In part (ii), the action is by conjugation, of course. 

Proof: (i) Since the two cases are the same, we consider only the map 
g++ g@ e. By Lemma 2.5.2 it suffices to show that for every finitely 
generated subgroup F of G, the map f’~f@e from F to G induces the 
same map on homology as the natural inclusion FCC G. But according to 
part (ii) of Definition 2.66, these two maps differ by an inner 
automorphism of G. Since by Lemma 2.5.1 inner automorphisms act 
trivially on homology, the result follows. 

(ii) Let ge G. By part two of Definition 2.6.6, there exists an element 
a E G such that g = a(e@g) a-l. Therefore it suffices to show that e@g 
acts trivially on H,(G’). Consider the commutative diagram 

By part (i) of this lemma, applied to G’, the horizontal maps induce the 
identity map on homology. It follows that Ad(e@g), = id as required. 1 

The proof of part (ii) illustrates a useful technique that we will use 
several times. 

The reason for the term “stable group” is that the stable general linear 
group of any unital ring is a stable group. We will in fact need a slightly 
stronger result. 
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LEMMA 2.6.8. Let R be a C*-algebra and suppose that for any finite sub- 
set (r,, r2,..., r,} of R there exists an element u E R such that 1 > u > 0 and 
ur, = ri = riu for every i. Then GLR is a stable group. 

Proof Condition (i) of Definition 2.6.6 follows from the Whitehead 
lemma (Theorem 2.4.2). As for condition (ii), the direct sum is defined by 
mapping a pair of matrices (X, Y) E GLR x GLR to the matrix 

X@ Y= 

(In other words, X@ Y is simply a rearrangement of (z y.), desined so as to 
make sense of it as an element of GLR.) Now, any finitely generated sub- 
group F of GLR is contained in some GL, R, and then for any f E F, e @f is 
equal to ,J modulo conjutation by some 2n x 2n permutation matrix. This 
matrix is a product of single alternations (y A), so it suffices to show that 
conjugation by (7 A) has the same effect on F as conjugation by some 
matrix in GLR. But F being finitely generated, there is some u E R such that 
1 > u 3 0 and ~f,~ =A., =L,u for any matrix element S, of a matrix in F. Then 
( 
@w”( , ~ u,I ? +“‘Uu1.2 t,pujl,2) is the ma 

uni&y ). 1 
trix we are seeking (it is invertible, in fact 

The same sort of proof shows that if R is any unital ring then GLR is a 
stable group. It is convenient to give C*-algebras which satisfy the 
hypotheses of the lemma a name: for want of a better one let us call them 
weakly unital. 

LEMMA 2.6.9. If G, and G2 are discrete groups then the natural map 

B(G,xG2)++BG:xBG; 

is a homotopy equivalence. In particular, the functor K, is additive. 

For the definition, see 2.1.17. 

Proof: Let us first make a remark about the plus construction in 
general. For any two spaces, x,(X, x X2) s rc,(X,) x x,(X2), and also, 
P(x,(X,) x 7cI(X2)) = Prc,(X,) x Px,(X~), as is the case for any two groups. 
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Therefore, since the direct product of two acyclic maps is acyclic (the 
homotopy fibre of the product is the product of the homotopy fibres), it 
follows that XT x X2 = (A’, x X2)+. Now, if G, and Gz are discrete groups 
then the natural map B(G, x G,) + BG1 x BG2 is a homotopy equivalence, 
as a check on fundamental groups immediately reveals. It follows that 
the natural map B( G, x G,) + + BG: x BG+ is indeed a homotopy 
equivalence, and since GL(B, @ B2) = GLB, x GLB,, the result follows. 1 

THEOREM 2.6.10 [54, Proposition 1.21. If G is u stable group then BG+ 
is an H-space. 

Proqj: We will repeat Wagoner’s argument. The first step is to show 
that BG+ is a weakly simple space. Choose a model for q: BG + BG’ 
which is a fibration (see (2.5.1)). Let rr: BT + BG+ denote the universal 
cover and consider the commutative diagram 

x - BG 

where X is defined to be the pullback 

X= {(a,b)EBGx6? 1 q(a)=z(b)j. 

It is easy to see that X is a covering space of BG with n,(X) = PC; hence X 
is homotopy equivalent to BPG. Since q: BG -+ BG’ is a fibration, so is 
A’--+ % (see [SO, 2.8.6]), and furthermore, the fibers of these two 
fibrations are equal. Thus the map X+ E is acyclic and, in particular, 
by Theorem 2.5.9, it induces an isomorphism in homology. Now, by (2.5.6) 
the action of x,(BG) on H,(X) by deck transformations corresponds to the 
action of G on H,(PG) by conjugation. This is trivial by Lemma 2.6.7, and 
since H,(X) + H*(BF) is an isomorphism, it follows that the action of 
x,(BG+ ) on H,(BF) is trivial as well. Thus BG+ is indeed weakly sim- 
ple. By Lemma 2.6.9, the natural map B(G x G) ’ + BG + x BG + is a 
homotopy equivalence. It follows from Theorem 2.5.5 and Lemma 2.6.7 
that the maps 

l=(.@e)+: BG++BG’ 

r=(e@.)+: BG++BG’ 
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are homotopy equivalencess. If we denote by i and i (base-point preser- 
ving) homotopy inverses to these maps then we can construct an H-space 
multiplication 

BGf x BG+ i”‘+BG+xBG+ z , B(GxG)+ 0 BG+. 1 

Here is an important by-product of this reasoning. 

THEOREM 2.6.11. If A is a Mleak1.v unital C*-algebra then the map 
A+M2A, aH(;i z) d m u-es an isomorphism K,(A) z K,(M2A). 

Proof The map A + Mz A induces a map GLA -+ GLM, A, which, after 
identifying GLM,A with GLA in the obvious way, is exactly the map 
(. @ e): GLA + GLA. Passing to BGLA +, this map is a homology 
isomorphism between connected H-spaces. Hence it is a homotopy 
equivalence. 1 

We remark that this result will be used in Section IV in the special case 
of Kz of a unital algebra. In this case, a direct proof using roughly the same 
technique, but avoiding the topology, is possible. The key fact is that the 
conjugation by an element of GLA induces the identity map on K?, which 
follows from the fact that Kz is central. 

LEMMA 2.6.12. Let A he any ring and let v be an invertible element, or 
merely a left-invertible element, in a ring containing A as an ideal. If F is any 
functor and if the map A + M, A given by a H (g i) induces an isomorphism 
F(A) z F(M2A), then Ad(v): F(A) -+ F(A) is the identitlf map. 

Proof. The diagram 

A--+ M,A 

commutes, and since the horizontal maps induce isomorphisms when F is 
applied, it follows from applying F to the diagram that Ad(,!, fr), is the 
identity. Since 
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it follows that Ad(; y), is the identity. So from the commuting square 

it follows that Ad(u), is the identity. 1 

We can now complete some unfinished business. 

Proof of Theorem 2.6.5. We consider only algebraic K-theory, the 
topological K-theory case being entirely similar. Let P,, 0 1 (n E Z) be a 
family of pairwise orthogonal projections in ,d(X 0 B), each equivalent to 
1, via isometries u,, (n E Z ). Define endomorphisms r, r’ x ’ of .X(X @ B) by 

r(x) = Ad( uO) .Y. r” l(s) = c Ad(o,,)(?c). 
,, > 0 

Note that Y* = id, by Lemma 2.6.12; and also (Y + Y” ‘)* = r’,” ‘, by the 
same lemma since r + r’ X ’ and r’ L ’ are unitarily equivalent via a bilateral 
shift. Finally, (r + r( / ‘), = r* + rr i by Lemma 2.1.18. Thus 

=AX) * -ry(x’=O. 1 * 

The final result in this section is of a more technical nature. For the most 
part it is possible to be very lax about the choices of the space X+ and 
mapsf+: X+ -+ Y+, variation within a homotopy equivalence class being 
of no consequence. However, in Section V we will want to compare long 
exact sequences in topological and algebraic K-theory, and in order to do 
this, we will have to produce diagrams of fibrations which commute 
exactly, not merely up to homotopy. Let 

be an extension of topological groups: thus we asssume that N is a closed 
subgroup of G, and that H has the quotient topology. Denote by B’N, B’G, 
and B’H the Milnor classifying spaces of these groups, and denote by BdN, 
BdG, and BdH the Milnor classifying spaces of N, G, and H, considered as 
discrete groups. Suppose that for each of the groups, the maximal perfect 
subgroup is equal to the connected component of the identity (and that 
this is equal to the path-connected component of the identity). As a con- 

607,‘67:1-5 
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sequence, B’N, B’G, and B’H are equal to BIN+, BIG+, and B’H+, respec- 
tively, since, for example, 

x1 (B’N) = N/p = NJPN, 

and so on. Thus we obtain a homotopy commutative diagram 

BdN - BdG - BdH 

I I I 
BdN+ - B”G+ - BdH’ (2.6.7) 

B’N - B’G - B’H 

where the top and bottom rows come from the functoriality of the classify- 
ing space, and the composition, BdN + B’N (and so on for G and H), 
comes, up to homotopy, from the functoriality of B as well. 

THEOREM 2.6.13. We may choose the plussed spaces and maps in (2.6.7) 
in such a way that: 

(i) the diagram commutes exactly, and all maps between classifying 
spaces (including compositions) come from the jiinctoriality of B; 

(ii) there are homotopies contracting the compositions BdN + BdH, 
BdN’ + B”H+ and B’N+ B’H, to constant maps, which are compatible in 
the sense that the diagram 

Ix BAN - BdH 

J. 1 
Ix B”N+ - B”H + 

I I 
Ix B’N - B’H 

commutes. 

We want to make a number of comments before starting on the proof. 
As we have already said, the theorem will be used in the comparison of 
long exact sequences in algebraic and topological K-theory. Suppose that Z 
is an ideal in a C*-algebra A. Associated to the pair (A, I) is an extension 
N + G --+ H of topological groups, where: 

(i) N=GLZ, 
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(ii) G = GLA, 
(iii) H = Image of GLA in GLA/Z 

(the group H is an open and closed subgroup of GLA/Z). Now, choose 
maps and spaces as in Theorem 2.6.13 so that the diagram (2.6.7) com- 
mutes. Passing to the associated fibrations, we have a commuting diagram 

F:+‘- p:“- B”H + 

I I I 
F, - P, - B’H 

where FL+’ and F, are homotopy fibers, and P:+ I and P, are the total 
spaces as in (25.1). Furthermore, in view of part (ii) of the theorem we 
may choose maps 

B”N+ +F:+J and BIN-, F,, 

as in (2.5.3), such that the diagram 

BdN + - F;,+ ) 

(2.6.8) 

I I (2.6.9) 

B’N - F, 

commutes. Now suppose that the maps (2.6.8) induce isomorphisms on n,, 
(n 3 1). Then from the commuting diagram 

. ..- q(B’G+)- q,(B“H+‘, n ,I- ,(F:+‘)- ... 
* 
I 

1 I 1 I 
. ..- n,(B’G) - n,(B’H) d 7TIII...1(F,) - “. 

by identifying the homotopy of the fibers with K.,.(Z) and K’,(Z) by means 
of (2.6.8), and using the elementary fact (to be proved in Sect. 5.1) that the 
maps 

B”H+ + BdGLAJI+ and B’H -+ B’GLAjI 

induce isomorphisms on rc, (n > 1 ), we obtain the commuting diagram 

- K,(A)- K,(A/Z) d K,-,(Z) -K-,(A)- 
a 
I 

a 
I I 

2 
1 
I 

- K;(A) - KWII) 7 K:,+,(Z) - KL- ,(A)------+ 
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The point is that without part (ii) of Theorem 2.6.13 we would not know 
that diagram (2.6.9) commutes, even up to homotopy, and so we would not 
be able to conclude that the transformation t( commutes with the boundary 
map 8 in the above diagram. 

The proof of Theorem 2.6.13 uses certain results concerning the plus con- 
struction which we have not bothered to mention, the reason being that 
they do not shed much more light on the nature of X+. The basic fact is 
that if we consider maps which are cofibrations then the diagram in 
Theorem 2.6.1 can be made to commute exactly, not merely up to 
homotopy. Rather than go into this and other results needed, we simply 
give references. Part (ii) of the theorem, and its proof, are similar to 
constructions of Wagoner in [54]. 

Proof of Theorem 2.6.13. We may choose BdN + BdN’ to be a 
cofibration. Then by [7, (5.2)], since the kernel of the map 
n,( B”N) -+ TC ,( B’N) contains (and is in fact equal to) the kernel of the map 
nr( BdN) + rc,( BdN’ ), there exists a map BdN’ + B’N such that the 
diagram 

B”N- B d + N 

I I 
B’N - B’N = 

commutes. Now, choose BdG -+ B”G+ to be a coftbration. We can similarly 
extend the map BdG + B’G to a map BdG’ + B’G. However, BdG’ will 
not be the space ultimately appearing in diagram (2.6.7). Rather, we use 
the space 

X 1 =BdG+ v tiN BdN+. 

By [7, (4.20)], the natural map from BdG+ into X, is an acyclic 
cofibration. It follows from [7, (4.12)] that the composition 

B”G+ BdG+ -+A’, 

of two acyclic cofibrations is also an acyclic cofibration. A computation of 
the fundamental group of A’, using the van Kampen theorem shows that 
rr, (X, ) z G/PC, and so X, serves as a model for BdG+ (in other words, the 
map BdG+ -+A’, is a homotopy equivalence). We have maps from BdN’ 
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and BdG+ into B’G, which agree on BdN, and so from these we obtain a 
map from X, into B’G, and a commuting diagram 

BN+ - x, 

I I 
B’N ------+ B’G 

Next, it follows from [ 7, (5.11)] that since n, BG -+ 71, BH maps a maximal 
perfect subgroup onto a maximal perfect subgroup, the space 

together with the obvious map B”H + X,, serves as a model for the plus 
construction BdH + B”H+. There is, of course, a natural map from X, to 
B’H, extending BdH + B’H, since there exist natural maps from B“G+ and 
BdH into B’H which agree over B”G. We must, however, still construct the 
map X, + X,, extending B% -+ B”H, such that the diagram 

, - x, 

i i 
B’G- B’H 

commutes. Recalling the definition of X,, it suffices to construct a map 
BdN+ + B”H which agrees with the natural map on B”N. However, with 
part (ii) of the theorem in mind, we should be a little more careful. The 
space BdN is mapped into the subspace BdE of BdH, where E denotes the 
trivial subgroup of H. By [7, (5.2)], the map BdN + B”E extends to 
BdN+ -+ BdE and, in this manner, we define X, + Xz. We have now con- 
structed spaces and maps so that the diagram (2.6.7) commutes, and thus it 
remains to prove (ii). But B’N, B”N+, and B’N map into the subspaces BE 
of BdH and B’H. Note that BE, the subspace of BdH, is mapped 
homeomorphically onto BE, the subspace of B’H. This space BE is con- 
tractible, and using a contraction of BE to a point we obtain compatible 
homotopies. 1 

We note that if we look at only the top two rows of the diagram (2.6.7), 
then the statement of the theorem makes sense for any extension of groups. 
The proof will carry through if we make the assumption that the maximal 
perfect subgroup of G maps onto the maximal perfect subgroup of H. This 
is the case, for example, with stable groups, since for these the maximal 
perfect subgroup is the commutator subgroup. 
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III. A HOMOTOPY INVARIANCE THEOREM 

The main result of this section is a homotopy invariance theorem, 
proved in Section 3.1, which asserts that if a functor E from C*-algebras to 
abelian groups admits a suitable pairing with the set of Fredholm modules 
then E is homotopy invariant. The proof is essentially an adaptation of 
Kasparov’s proof of homotopy invariance for the extension groups 
Extt’(C, A). 

In order to make the theorem applicable it must be modified a little. To 
begin with, we consider in Section 3.1 the business of replacing “Fredholm 
module” with “Fredholm pair.” Having done this, we go on in Section 3.2 
to prove a homotopy invariance theorem whose hypotheses are that E 
satisfies a certain excision property (split exactness) and is stable. The 
machinery used to deduce this result from the former is derived from 
Cuntz’s theory of quasi-homomorphisms. 

It is sometimes useful to have versions of these results for functors of 
quasi-unital maps. The necessary changes are indicated in Section 3.3. 

The final two Sections are applications of the homotopy invariance 
theorems to extension theory. In Section 3.4 we indicate how to construct 
pairings between extension groups and the set of Fredholm modules: this 
amounts to the construction of the Kasparov product from KK-theory. 
Our approach is perhaps a little more conceptual than that of Kasparov 
133, 351. For example, our definition of the pairing does not require the 
Kasparov technical theorem (Theorem 1. I. 11) or anything similar 
(however, we will use this to show that the pairing is well defined). Sec- 
tion 3.5 is devoted to a brief discussion of the excision properties of exten- 
sion groups, followed by a discussion of the Brown-Douglas-Fillmore 
characterization of Ext-‘(A, C). 

3.1. Pairings with Fredholm Modules 
Throughout this section and Section 3.2, E will denote a functor from the 

category of C*-algebras and *-homomorphisms to abelian groups. The 
particular class of C*-algebras on which E is defined-all C*-algebras, 
separable C*-algebras, u-unital C*-algebras, nuclear C*-algebras, etc.-is 
not especially important. All we need in this section is that if A is in the 
class, then so is A @ C[O, 11; in Section 3.2 we will require in addition that 
A @X is in the class, and if 0 + A + B -P C + 0 is a degenerate extension, 
with A and C in the class, then so is B. All of the above mentioned families 
of C*-algebras have these properties. 

By a pairing of E with the set of Fredholm modules we mean simply the 
association to each Fredholm B-module (cp + , q _, F) of a homomorphism 

x(v+,v-,F): E(AOB)+E(A) (3.1.1) 
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for each A (the notation is meant to suggest “multiplication with 
(cp + , cp ~, F)“). Before going on we might mention that we are tacitly 
assuming that E is covariant. The treatment for a contravariant E is 
entirely similar (just reverse the arrows); it will be omitted, but made use of 
in Section 3.4 and 3.5. 

We will only need to deal with Fredholm modules for which cp + = cp ~ ; 
we will let (cp, F) be an abbreviation for (cp, cp, J’). 

Now, a general pairing is of course of no interest at all, and so we 
impose the following conditions. 

(3.1.2a) Functoriulity. If (cp, F) is a Fredholm B’-module, and if 
f: B + B’ is a *-homomorphism, then the diagram 

1101). 

I i- 

E( A @ B’) YGT7-+ E(A) 

commutes. 

(3.1.2b) Additivity. If (cp, F) and (q, G) are Fredholm B-modules then 

x(cp, F) + x(cp, Cl = x(cp, W. 

(3.1.2~) Stability. If (cp, F) is a Fredholm B-module and cp’: B + S?(-X) 
is any *-homomorphism then 

(3.1.2d) Non-degeneracy. If (q, F) is a Fredholm C-module for which cp 
maps 1 E C to 1 E g(X), and F is an index one operator, then the map 

x(cp, F): E(A) -+ E(A) 

is the identity. 

Our main theorem is this: 

THEOREM 3.1.1. If the functor E admits a pairing with the set of 
Fredholm modules (cp, F) which satisfies conditions (3.1.2) above, then E is a 
homotopy functor. 
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The first step in the proof is to establish operator homotopy invariance for 
the pairing: 

LEMMA 3.1.2. Let (q, F,), for t E [0, 11, be a family of Fredholm 
B-modules. If the map t H F, is norm continuous then x (cp, FO) = x (cp, F, ). 

Proof. Choose a “parametrix” Pfor F, such that F,F* = 1 - P, where P 
is some finite rank projection. By additivity we have that 

x(cp, l-P)+x(cp, l-P)=x(cp, l-P), 

and so x(q, l-P)=O. It follows from additivity that 
x(cp, F,) = - x(cp, P*), and therefore 

x(cp, Fo) = x(cp. F,) + x(cp, F*Fo). 

Thus it suffices to show that x(cp, p*F,,) = 0. Now, F*F, is an index zero 
operator and so we may find an invertible operator G, unitary modulo the 
compacts, and a finite rank projection P’ such that G(l -P’) = 
F*F,( 1 - P’). By additivity once again, it suffices to show that x(cp, G) = 0. 
Denote by C the C*-algebra of all operators in g(2) which commute with 
(p[B], module compact operators. Since the image of G in the quotient 
C/X is connected by a path of unitaries to the identity (by the path 
t t+pTP,,), for example), it follows that G may be written as a product of 
exponentials erA, where A E C is self-adjoint, modulo X; it suffices to show 
that each x(cp, e’“) is zero. By the stability of the pairing, this will follow if 
we show that x( 10 cp, H) = 0, where (1 @q)(b) = 1 @q(b) E 59(X @ &‘), 
and HE @%@2) is the operator p@eiA + (1 - p)@ 1, p being a rank- 
one projection: in matrix form this is 

H= 

At this point, we appeal to the construction used in Theorem 2.4.7. Decom- 
posing (1 - p) @ 1 into a sequence of pairwise disjoint projections pn @ 1, 
each p,, of rank one, we may write H as a product X,X, of two infinite 
diagonal matrices as in (2.4.4) and (2.4.5): 

diag(X,)=(x,~~~~",s~"~,s1'4,...,,~~~'~ ,... ), 

4 times 

diag(X,) = (1, XI/~, ,x1”, x-Ii4 ,..., X-I/~, ,Y’/~ ,... ). 
4 tlmeS 
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(Here, x denotes eiA.) Note that X, and X, are in 1 + X 0 C, and so 
(1 Q cp, A’,) and (10 cp, A’,) are Fredholm modules. We may write each Xi 
as a product of two matrices of the form 

i w 0 w-l 0 0 0 * 
0 0 1 

1 

where these 3 x 3 matrix decompositions of X 0 S? are given by projec- 
tions of the form Q @ 1 E .&9(X 0 #). Then since 

it follows that H may be written as a product of four commutators 
[H’,“, Hy’], where all the operators are essentially unitary, and commute 
with 10 (p[B] modulo compacts (note that the matrix 

i 0 1 0 1 0 0 
0 0 1 i 

commutes exactly with 10 q[B]). But by additivity, 

x(lQcp, [H\",H:"l) 
=~(l~(~,H~~~)+x(1~cp,H:“)+~(1~cp,H~’~~~)+~(l~cp,H~‘~~) 
= x( 1 Q cp H”‘H”‘~ 1 3 1 I )+ x(1 @q, H$“H:‘‘-I) 

= 0. 

Hence x(l@cp, H)=O. 1 

COROLLARY 3.1.3. If F and G are equal, module the compacts, then 

x(cp. F) = x(cp, G). 

Proof We may connect F to G by a homotopy, namely the straight line 
from F to G, and then apply Lemma 3.1.2. 1 

The remainder of the proof of Theorem 3.1.1 involves the construction 
of a Fredholm C[O, l]-module (cp, F,), for which the map 
x(cp, F,,): E(A@C[O, 11) -E(A) is equal to the homomorphism induced 
from evaluation of a function f E C[O, l] at 0; and which is operator 
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homotopic to a Fredholm module (cp, F,), for which x(cp, F,) is the map 
induced from evaluation at 1. We will follow Kasparov [33, Sect. 51. 

Proof of Theorem 3.1.1. Construct a Fredholm C[O, 1 ]-module (cp, F,) 
as follows. The Hilbert space on which C[O, l] acts is L2( -rc, rc). With 
respect to the decomposition 

L2(-7r,7c)=L2(-7c,0)@L2(0, 1)&P&7), 

a function f~ C[O, l] acts on the first summand by multiplication by the 
scalar f(0); it acts on the second summand by pointwise multiplication; 
and it acts on the third summand by multiplication by the scalar f( 1). 
Denote by P the projection of L*( -7~~ 7~) onto the Hardy space (the closed 
linear span of the functions eine with n 3 0), and let S be the corresponding 
symmetry: S = 2P- 1. It is well known that S commutes, modulo com- 
pacts, with multiplication by any continuous function g on [ -71, X] such 
that g( --71) = g(rc). Now let h be any real-valued continuous function on 
[ -rc, n] such that 

(i) lab> -1; 
(ii) h( -n) = -1; and 

(iii) h(n) = 1; 

and denote by U,, the unitary operator 

Since ,/D, evaluated at both -rc and rc, is zero, it follows that dm 
commutes with S, modulo compacts, and furthermore, JDS com- 
mutes with any continuous function on [ -rc, ~1, modulo compact 
operators. Thus U,, is unitary modulo the compact operators and U,, com- 
mutes with the action cp of C[O, l] on L2( -rc, rc). Any two continuous 
functions h,, h, with the properties (i), (ii), and (iii) above are connected 
by a norm-continuous path of such functions, and so the corresponding 
Fredholm modules (cp, U,,) are operator homotopic, in the sense of 
Lemma 3.1.2. A particular consequence is that all U, have the same 
Fredholm index, and by direct computation in the special case 
h(t) = sin t/2, we find that this index is 1 (cf. [33, p. 7601). We define F, to 
be Uho, where in addition to (i), (ii), and (iii), we require that ho is equal to 
1 on [0, rc]. It follows that Jm is equal to zero on [0, rc], and from 
this it follows easily that U,,, commutes, modulo compacts, with the projec- 
tion Q onto L2( -n, 0). By Corollary 3.1.3, we have 
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In matrix form, the right-hand side is 

x((? ,r,)(““oo” e)). 
By the stability property of the pairing, this is equal to x(cpe, QFOQ); but 
QF,,Q is an index one operator, while qe : C[O, 1 ] -+ 9?(L2( - rt, 0)) is 
obtained from the unital map C + g by composition with evaluation at 
zero, C[O, l] -+ C; so by the non-degeneracy and functoriality properties of 
the pairing, x(cpe, QF,,Q) is equal to the map E(A@C[O, l])+E(A) 
induced from evaluation at 0. Now, (cp, F,,) is operator homotopic to 
(cp, F, 1, where F, = U,,, , and h is a continuous function satisfying (i), (ii), 
(iii) and which is identically equal to - 1 on [ - 71, 11. Just as above, we see 
that x(cp, F,) is equal to the map induced by evaluation at 1. (There is one 
additional point. We get that x(cp, F,) is equal to x((y .,“,)(“2” ),)), 
where R is the projection onto L’( 1, z), and in order to apply the stability 
property we need (“?” y), not (‘2’ !,); but these two operators are 
homotopic, so by Lemma 3.1.2, the latter can be replaced by the former.) 
An application of Lemma 3.1.2 shows that x(cp, F,) = x(cp, F, ), so we are 
done. 1 

In practice, it is easier to work with Fredholm pairs rather than 
Fredholm modules. Suppose then that there is a pairing between the 
functor E and the set of all Fredholm pairs, with the following properties. 

(3.1.3a) Functorialiry. If (cp + , cp ~ ) is a Fredholm pair for B’ and if 
f: B -+ B’ is a *-homomorphism then the diagram 

E(A @B) x”+‘+L’pf’, E(A) 
(10/J* 

I I 
= 

E(A @B’) -.Tc-c+ E(A) 
commutes. 

(3.1.3b) Additivity. If (cp,, cpZ) and (cpZ, (p3) are Fredholm pairs then 

(3.1.3~) Stability. If cp: B + 98(X) is any *-homomorphism then 

(3.1.3d) Non-degeneracy. If e: C+&?(X) maps 1 EC to a rank one 
projection then x(e, 0): E(A) -+ E(A) is the identity. 
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(3.1.3e) Unitary equivalence. If U E B is a unitary then 

x(cp +,cp~)=x(Ad(U)cp+,Ad(U)cp~). 

(3.1.3f) Stability under compact perturbations. If UE B is a unitary 
which is equal to the identity, modulo compact operators, then 

x(cp, Ad(U)cp) = 0. 

Let us note two useful consequences of these properties. First, if U, and 
U2 are unitaries then 

x(cp, Ad(U:)v) + x(cp, Ad(G)cp) = x(cp, Ad(U:U:)cp). (3.1.4) 

This follows from (3.1.3b) and (3.1.3e). Second, if U is equal to V, modulo 
compacts (U and P’ being unitaries), then 

x(cp, Ad(U*)rp)= x(cp, Ad(V*)cp)). (3.1.5) 

This follows from (3.1.4) and (3.1.3f). 

THEOREM 3.1.4. If E admits a pairing with Fredholm pairs which satisfies 
the conditions (3.1.3), then E is homotopy invariant. 

Proof: We will construct a pairing of E with the set of Fredholm 
modules (cp, F), and then apply Theorem 3.1.1. The first step is to associate 
with F an operator matrix 

such that F is unitary, F,, and F,, are compact, and F,, is equal to F, 
modulo compact operators. For example, we could take F,, to be the par- 
tial isometry part of F in its polar decomposition, and then dilate to a 
unitary as in Section 2.3. Then define x(cp, F): E(A @B) + E(A) by 

(3.1.6) 

Our first observation is that this does not depend on the choice of E 
Indeed, suppose that F is another choice; then by (3.1.4) 

x((; &Wi=*)(; ;))-x((lf ;)A@‘*)(; ;)) 
=x((; ;),Ad(PF*)(; ;)). 
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But FF* is equal to (A L), modulo compacts, where U is some unitary. 
Thus it follows from (3.1.5) that 

However, (,!, E) commutes with ($ i), and so the right side of (3.1.7) is 
x(($ 3, (E 8,,, h’ h . w  ic is zero (by (3.1.3f), for example). Hence x( cp, F) is 
well defined. Let us show that the conditions (3.1.2) are satisfied. Property 
(3.1.2a)&functoriality-follows immediately from the functoriality of the 
pairing with Fredholm pairs. For property (3.1.2b)-additivity-given 
Fredholm modules (cp, F) and (cp, G) (with F and G unitary modulo com- 
pact operators) and having chosen F and G as “dilations” for F and G, we -- 
may choose FG as a dilation for FG. Then by (3.1.4) 

=x 

= x(cp, FG). 

Property (3.1.2~) follows easily from the corresponding property (3.1.3~). 
Finally, we consider the non-degeneracy condition (3.1.2d). Let V be an 
index one coisometry and let P= ( i -I’. b *,, $). If cp: C + g(X) is unital 
then the *-homomorphism Ad( V*)(;t z) takes 1 EC to (‘0’ i), where e is a 
rank-one projection. Applying the stability condition (3.1.3~) we get that 

= x((lpg’ ;)>o), 
and this last map is the identity on E(A) by the non-degeneracy condition 
(3.1.3d). It follows that the pairing with Fredholm modules we have con- 
structed satisfies the hypotheses of Theorem 3.1 .l, and so E is a homotopy 
functor. 1 
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3.2. Excision Properties 
In order to apply the previous results, it is of course necessary to con- 

struct pairings between a given functor E and the set of Fredholm modules, 
or Fredholm pairs. Sometimes (as with extension groups-see Sect. 3.4), it 
is possible to do this directly from the definition of the groups E(A). Often 
though, as with algebraic K-theory, it is much easier to deduce the 
existence of a pairing from properties of E as a functor. 

DEFINITION 3.2.1. We shall call a functor E split exact if for every split, 
short exact sequence of C*-algebras 

the sequence of abelian groups 

0 + E(J) iL, E(D) & E(D/J) + 0 P* 
is also split exact. 

Our main result is 

THEOREM 3.2.2. If E is split exact, and if in addition E is stable (see 
Definition 2.1.8), then E is homotopy invariant. 

The proof relies on the construction of split exact sequences associated 
with Fredholm pairs: then by means of these, and the split exactness 
of E, we construct a pairing of E with the set of Fredholm pairs. The 
whole procedure is essentially due to Cuntz [ 19,203, who associates 
with any Fredholm module, or more generally, any KK-element, a 
“quasihomomorphism” (compare (3.2.2) below), and then constructs 
pairings between quasihomomorphisms and functors of the same general 
character as E. 

DEFINITION 3.2.3. If cp: B -+ B(Z) is a *-homomorphism then let B, be 
the C*-algebra 

B,={b@x~B@Z?~~(b)=x,moduloX}. 

Note that B, tits into a short exact sequence 

(3.2.1) 

where p: B, + B is the obvious projection onto the B-summand of B 0 ~8, 
and j: X + B, maps X into the L@ summand of B, in the natural way: 
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j(x) = 0 Ox. Furthermore, (3.2.1) is split by the *-homomorphism 
$5: B + B, defined by G(b) = b 0 q(b). 

We make the important observation that if rp’: B--f 9? is equal to 
cp: B -+ 9?, modulo X, then B, = B,., and furthermore, the exact sequence 
(3.2.1) remains unchanged with B,. replacing B,. However, the section 
@‘: B + B, is different. Now, let E be a stable and split exact functor, let 
(cp + , cp ~ ) be a Fredholm pair, and let A be a C*-algebra. The short exact 
sequence 

(where, for simplicity, we write j and p instead of 1 @j and 1 0 p) is split 
by either of the *-homomorphisms 4,) 4-: A @B-t A@ B,+. Since 
P$+ =idA6B=p(i-, the homomorphism p*(@+*-G-*): E(AOB)+ 
E( A 0 B) is equal to zero or, in other words @i + * - $I _ * maps E(A 0 B) 
into the kernel of p * : E(A @ Bq+) -+ E(A @ B). But by split exactness, 
this kernel is exactly E(A@X) or, to be precise, the isomorphic image 
of E(A @ X) in E(A @ B,+,+). Consequently, from the Fredholm pair 
(cp+,cp-) we obtain a map x(q+,cp-):E(AOB)+E(A), 

E(A@B) ‘+*-‘-* P kernel( E(A@X)L E(A). (3.2.2) 

Proof of Theorem 3.2.2. It suffices to show that the pairing defined by 
(3.2.2) satisfies the hypotheses (3.1.3) of Theorem 3.1.4. The first two-ad- 
ditivity and functoriality-are straightforward, and are left to the reader. 
As for the stability property (3.1.3c), consider the commuting diagram 

O+ A@X -+ A@B,+ -tA@B+O 

I 
p I= (3.2.3) 

O+A@M,(X-)-+A@B(,+ ,)+A@B-a, 
0 P 

wheref(b@x)=bO(; &, ). Note only does (3.2.3) commute, but also, the 
sections 4 + of the top short exact sequence correspond viaf to the sections - 
(2) for the bottom sequence. It follows then from the definition (3.2.2) 
of the pairing that 

xko+A-)=x((~; ;)(qo- Z)). 
The non-degeneracy condition (3.1.3d) is satisfied because for the 
Fredholm C-pair (e, 0), we have C, = C 0 Z; and 6: C + C 0 X is given 
by g(A) = I@;ie, while 6(n) = 100. It follows from Lemma 2.1.18 that 
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” -ij =(&Q 
yt*follo*ws from %e 

and since C - 0: C + X is precisely the canonical map, 
definition (3.2.2) that x(e, 0) =id. Condition (3.1.3e) 

follows from the commuting diagram 

E(A 0 4 $+*-6, kernel( p*) 3 w  oa 

=I I 
Ad(lC3UU), 

I 

Ad(l8 U), 

E(A 0 B) , 
.Wl@UU),(G+.-6,) 

kernel( p’,) 2 E(A 0 X) - 

because by Lemma 2.6.12, Ad( 10 U), : E(A @ Xx) + E(A 0 X) is equal to 
the identity. Similarly, for condition (3.1.3f), if U is equal to the identity, 
modulo compacts, then 10 U is an element of the multiplier algebra of 
A@B,, and so @,-Ad(l@U),@,,=O. 1 

Remark 3.2.4. We point out that in order to prove the above theorem, 
it of course sufficed to know that E was split exact with respect to the split 
exact sequences 

O+X+B,+B+O, 

where B is commutative. We will need the following rather technical obser- 
vation in Section V: the short exact sequence 

0 + Ann(X) + B, + B,/Ann(X) + 0 

has a completely positive section. Indeed, the annihilator ideal of X in B, 
is of the form JO 0, where J is some ideal in B. Since B is commutative, the 
projection map B -+ B/J has a completely positive section s: B/J -+ B; then 
6 0 x H s(d) 0 x is a completely positive section for the above short exact 
sequence. (Another way of dealing with this point: it is easy enough to 
arrange things so that we need only consider short exact sequences where 
X is an essential ideal in Bq.) 

3.3. The Quasi-Unital Case 
As a cursory inspection of the proof of Theorem 3.1.1 reveals, in order to 

establish homotopy invariance of a functor E we need only construct a 
pairing of E with the sets of Fredholm C[O, I]-modules and Fredholm 
C-modules, which satisfies the conditions (3.1.2). Furthermore, in the 
functoriality condition (3.1.2a), we need only consider surjections (indeed, 
in the proof, functoriality is used only with respect to the maps .sO, E, : 
C[O, l] + C given by evaluation at zero and one). Thus the analogs of 
Theorems 3.11 and 3.1.4 for functors from C*-algebras and quasi-unital 
*-homomorphisms to abelian groups are easily proved. 

The theorem below is an analog of Theorem 3.2.2 for functors E from 
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C*-algebras and quasi-unital *-homomorphisms to abelian groups. Since 
we do not need the result in this work, we will not spell out the proof in 
detail. 

THEOREM 3.3.1. Let E be a stable functor from C*-algebras and quasi- 
unital *-homomorphisms to abelian groups. Suppose that E is split exact in 
the weakened sense that associated to every short exact sequence oj 
C*-algebras 

O+ J-r B--% B/J-+0 

which is split by some quasi-unital *-homomorphism, there is a 
homomorphism rc: kernel( p* ) + E(J) such that: 

(i ) The map 7c is natural, in the sense that a commutative diagram 

0 + J, + B, -% B,/J, + 0 

II I 
0 -+ J2 + B, --% B,/J, + 0, 

where the vertical maps are quasi-unital, gives rise to a commuting square 

kernel(p,*) --% E(J,) 
I I 

I I 
kernel( pz, 1 L,I Et J2 ). 

(ii ) In the case of an exact sequence of the ,form 

kernel( p,) is equal to the image of E(J) in E(J@ B/J), and furthermore, 
7~: kernel( p*) -+ E(J) is induced from the projection of J@ B/J onto J. 

Then E is homotopy invariant, in the sense that the maps Q,., Ed.: 
E(A @ C[O, 11) -+ E(A) induced from evaluation at zero and one are equal. 

Proof We construct a pairing with Fredholm B-pairs (cp + , cp ~ ), where 
B is unital, by means of the following analog of (3.2.2): 

E(A@B)ti E(A@B,)L E(A@X)a E(A). (3.3.1) 

Here, n is the projection corresponding to the split exact sequence 

O+A@X+A@B,,,+A@B+O. 
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It is a straightforward matter to check that the conditions (3.13) are 
satisfied (with the necessary restrictions to quasi-unital maps: for example, 
we need only verify that functoriality-condition (3.1.3a)-holds for maps 
between unital algebras). The result then follows from the quasi-unital 
analog of Theorem 3.1.4. 1 

3.4. Application to Extension Groups 
Our goal in this section is to show how Ext -‘(C, A) pairs with 

Fredholm modules. There are a number of possibilities here, for example, 

Extt’(C, A) x {Fredholm B-modules} -+ Ext-‘(CO B, A), (3.4.1) 

Ext ~ ’ (C, A @ B) x { Fredholm B-modules} + Ext - ‘(C, A ), (3.4.2) 

Ext ~ ‘(C, B) x { Fredholm B-modules) -+ Ext ~ ‘(C, C), (3.4.3) 

and furthermore, we may generalize and consider “Fredholm (B,, B,)- 
modules,” or in other words, Kasparov bimodules (see [49], from where 
the terminology originates). All of these are particular cases of the 
Kasparov product-see [35]-and our aim is to indicate that the product 
is quite a natural thing in the context of extension theory. We will consider 
only the pairing (3.4.1) in detail, leaving it to the reader to make the simple 
adaptations to the other cases. 

In the following, A will be assumed to be o-unital and B and C will be 
assumed to be separable. 

It is a little more convenient to work with Fredholm pairs than with 
Fredholm modules. Let us begin by constructing the map 
Ext ~ ‘(C, A ) + Ext ~ ‘(C @ B, A) corresponding to a Fredholm pair 
(cp + , cp-) of the simplest sort, where cp + and cp- are *-homomorphisms 
from B to X. In fact, let us consider first the even simpler Fredholm pair 
(cp + , 0). From cp+ and an extension $: C + 2(A) we obtain an extension 
of COB by X@A@X (gX@A)), 

To obtain the pairing with (0, cp-) we do a natural enough thing: we define 
it to be the negative of the pairing obtained from (cp ~, 0). Putting the two 
together, we define 

X(cp +~cp~)=x(cp+,o)+x(o,cp~) 
=x(cp+,o)--x(cp~,o). (3.4.4) 

Now, for a general pair (cp + , cp ~ ), where cp + : B -+ g do not necessarily 
map into X, it is not possible to define x (cp + , cp ~ ) in this manner. But a 
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closer examination of (3.4.4) shows us what to do. Assuming that Ic/ is an 
invertible extension, we may choose a *-homomorphism 

such that $,,: C+.k’(X@A) is a lifting of $: C+&‘(X@.4))lX@O. 
The extension obtained by applying the pairing (3.4.4) is, by the definition 
of the inverse of an extension, simply the extension determined by the map 

by following with the inclusion 

and then the projection onto the quotient 

Now, the off-diagonal terms of the map (3.4.6) are of no particular 
relevance in the case of a Fredholm module (cp + , cp ), where cp + map B 
into X (anything that maps C into X 0 A 0.X would do). However: 

LEMMA 3.4.1. Zf (q + , cp ~ ) is any Fredholm pair then the map (3.4.6) is a 
*-homomorphism, module X @J A OX, and hence determines an extension 
of COB by X@A@O. 

Proof: This is a simple, direct computation on elementary tensors 
c @ b E C @ B, using the observation that II/ ,z @ cp + and 1//?, 0 cp + are equal 
to $,2@qP and $*I @qP, modulo X@ A @X (which, in turn, follows 
from the fact that $,2 and $?, map C into X 0 A). We extend from C 0 B 
to CO B by using the continuity of the map (3.4.6). 1 

We define the pairing between (cp + , cp ~ ) and an extension $ to be the 
extension obtained from (3.4.6). It must be shown that this passes to a map 
Ext ~ ‘(C, A) + Ext ~ ‘(C’@ B, A); the following lemma is the technical 
result needed to establish this. 

LEMMA 3.4.2. If the extension II/ determines the zero element of 
Extt ‘(C, A) (that is, if + is stably split), then the extension gioen by (3.4.6) 
determines the zero element of Ext -‘(CO B, A). 

607’67 I-6’ 
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Proof. By hypothesis, there exists a *-homomorphism 13: C-P A!(X @A) 
such that the extension b@$: C+ M,(ZI(A)) is degenerate. Since the map 

( 
**1o’p+ ti1*Qcp+ 
**1o’p+ *22o(P- ) 

passes to a stably split extension if and only if the map 

i 

~Qv+ 0 0 
0 ti11Qv+ ti12Q’Pt 
0 *21o(P+ **2ocp- 1 

does, by replacing I++,~ with (t &), $I2 with (&), and $2, with (0, Ic/*,), we 
may assume that the extension I,$ is actually split. Thus we may assume 
that there exists a *-homomorphism $: -+ A(X 0 A) which lifts the exten- 
sion $, and which is therefore equal to II/, 1, modulo X $3 A. Now, let E, , 
E,, and 9 be C*-subalgebras of M,(A’(X @A @Xx)), generated by the 
elements (where b, c, and k denote arbitrary elements of B, C, and X, 
respectively): 

E,: 
( 

h,(cdQk ;) ($“fBk ;), 

E,: 
( 

0 $n(c)Qv+(b) 
$,,(c)Q)cp,(b) Ic122(c)Qc(b) H 

@W-hW)Qcdb) 0 
0 ) 0 ’ 

P-: ( 
Il/,,(c)Q)cp+(b) $lAc)Qv~(b) ib)Ocp-(b) 0 
tiz,(c)Ocp+@) $22(c)Qv-(b) )C 0 > 0 . 

Then E, . E, c M,(X @ A 0 X) (it is helpful to remember that $ 12 and 1,9~, 
map into X@OA) and also ,?,~9~E,cM,(X@A@O). So if we let E, 
be the C*-algebra generated by i?, and ,!?, .F, then 

E,~E,cM,(X@A@O) and 9.E,cE,. 

By Theorem 1.1.11, there exists an operator MEM~(.&‘(X@A@X)) 
such that 1 B M B 0, A4 . E, c M,(X@A@O)), (1-M) . E,c 
M,(X 0 A 0 X), and M commutes with 5, modulo M,(X 0 A 0 X). Let 
N= 1 - M. Then using the computation 

-$fw fill2 c( 0 
&TIP lw2 >( >( 

-&fl/2 p/2 

0 p j-$71/2 ll;r’/2 > 
n;llqw(~ - @) 

> tip+&2 ’ 
(3.4.7) 
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which is valid for LX and /? which commute with A?, we see that the direct 
sum 

is unitarily equivalent to the direct sum 

( 
ti,,ov- *xo(P- 
$21O(P- $zzOcp - 

)qy+ i). 

modulo compacts, via the unitary ( -$‘::,2 ,$$). Since the former is stably 
equal to the extension (3.4.6) we started with, while the latter is a split 
extension, the lemma is proved. 1 

THEOREM 3.4.3. For any Fredholm pair CO = (cp + , cp _ ), the construction 
(3.4.6) passes to a homomorphism 

@*: Ext-‘(C, A)+Extt’(COB, A). 

Proof The construction (3.4.6) of the pairing involves, for a given 
XE Ext-‘(C, A), choosing an extension II/ such that [tj] =x, and then 
choosing a *-homomorphism ($; $;, 2) such that $ ,1 lifts I+!J. We must show 
that @*x depends on neither of these choices. Note, first, that the construc- 
tion is in an obvious sense additive: if we choose for y E Ext - ‘( C, A) an 
extension r~ and *-homomorphism ( ~1; z;;), then we may choose the exten- 
sion $ @ G and the *-homomorphism ($,)O (au) for the element 
x+ ye Ext - ‘(C, A). Having done so, if we define @*.u, @*y, and 
@*(x + y) by means of these choices, then 

@p*x + @*y = @*(x + y). (3.4.8) 

This observation is of importance because we can now bring the lemma to 
bear: choosing y to be -x, we see from the lemma that @*(x + y) is stably 
split, and therefore @*x is invertible by (3.4.8). Furthermore, if we choose 
another construction for @*x-by means of some $’ and some ($&)-then 
since @*(-x), as constructed from G and (gii), is an inverse in 
Ext -‘(CO B, A) for both constructions of @*x, these constructions must 
give the same elements of Ext P’(C@ B, A). 1 

Let us go on to show that the pairing so defined statislies the hypotheses 
(3.1.3) of the homotopy invariance Theorem 3.1.4. We will revert to the 
notation x (cp + , cp _) for the map @* associated with the Fredholm pair 
(cp+, cp-1. 
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LEMMA 3.4.4. If (cp,, cpz) and (cp2, cp3) are Fredholm pairs then 

X((Pl? (P2)+ x(cp2, cp3)= X((PlI 4%). 

Proof. We will show that the direct sum 

( 
IcIllQVI ti12QVl 11/,1Q% ~12Q(P* 
$*1Q(P1 $**Q(P2 @ $*1Q(P2 ) ( ) ti22045 ’ 

of the extensions obtained by applying (cpr, (~2) and (~2, cp3), is unitarily 
equivalent, modulo compacts, to 

( 
$IIQVI ti12Qvl Q tillQ(~2 ti,zQ(~z 
$210~~1 tinQ(~3 I( +210(~2 $2204’2 ) 

which is the direct sum of the extension obtained by applying (cpr, (p3) and 
a trivial extension. This will, of course, prove the lemma. Using 
Theorem 1.1.11, we obtain an element M of M,(JZ(XQOQO)) such 
that: 

(i) 1 >,M>O. 

Il/ll(c)Q)cp,(b) 'h,z(c)Qv~(b) 
0 

is compact for all 

bEB and all CEC. 

(iii) M. 0 0 

0 $22(c)Q (e(b) - cp,(b)) 
is compact for every b E B and 

CE c. 
(iv) M commutes, modulo compacts, with all elements of the form 

( 
ti,1(c)Qv,(b) $n(c)Qvl(b) 

) ( 
Icl,l(c) 0 a(b) tin(c) 0 a(b) 

$x(c) 0 v,(b) rl/,,(c)Q e(b) Or ) $21(c) 0 e(b) \c122(c) 0 cp,(b) ’ 

Then it follows from the properties of M, together with the computation 
(3.4.7) that the unitary ( -,I12 M”2 $$) implements the desired essential unitary 
equivalence. 1 

This establishes the additivity profierty of the pairing. The remaining 
hypotheses of Theorem 3.1.4 are easily verified. Let us, for example, con- 
sider one more: stability under compact perturbations. We must show that 
if U E S? is a unitary which is equal to the identity, modulo the compact 
operators, then the pairing with the Fredholm pair (cp, Ad(U)cp) is trivial. 
Thus we must show that the extension 
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is trivial. But conjugation with the unitary (A , i v) shows that this exten- 
sion is equivalent to the extension 

( 
$llQV *12ovu* 

*21ow > ti22Q(P ’ 

and since U is equal to the identity, modulo the compacts, this is equal, 
modulo the compacts, to the map 

which certainly determines the trivial extension. Thus from 3.1.4 we obtain 
the following well-known result (due to Kasparov [34] in this generality, 
and to Brown, Douglas, and Fillmore [ 11, 121, in the case A = C). 

THEOREM 3.4.5. The functor Extt’(C, A) is homotopy invariant in the 
first variable. 

Now, we do not want to go into the details, but let us mention that 
we may modify the above arguments and constructions so as to obtain a 
pairing between Extt ‘(C, A), in the second variable, and the class of 
quasi-unital Fredholm pairs. We then obtain 

THEOREM 3.4.6. The functor Extt ‘(A, C) is homotopy invariant in the 
second variable. 

3.5. Excision Properties of Extension Groups 
We have two goals in this section. First, we want to point out how 

excision properties for the extension groups may be easily obtained from 
the separation theorem of Kasparov (Theorem 1.1.11). Second, we want to 
remind the reader how the excision properties, together with the homotopy 
invariance results of this section, and the Bott periodicity theorem, may be 
put together to obtain the beautiful result of Brown, Douglas, and Fillmore 
[ 11, 121 that Ext -‘(C(X), C) is equal to the K-homology of X. The reason 
for doing this is that the main results of this paper are of a similar 
type-the equality of an algebraically defined object and a topologically 
defined one-and so it seems worthwhile to present the most outstanding 
result of this kind, since it is easily within our reach. 

Because it simplifies a number of points, we will consider only the 
Brown-Douglas-Filmore group Ext - ‘(A, C), and not the more general 
Kasparov extension groups Ext - ‘(A, B). We will use the abbreviated 
notation Ext -‘(A) = Ext- ‘(A, C). All arguments of the functor Ext-’ 
will be separable C*-algebras. 
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THEOREM 3.51. The functor Ext -’ is split exact. 

Proof Suppose that 

is a split exact sequence of C*-algebras and *-homomorphisms. We must 
show that the sequence 

O-*Ext-‘(C)+Extt’(B+ Ext-‘(A)+0 (3.51) 

is a split exact sequence of abelian groups. Obviously, j*p* = 0. 
If [q] E Extt’(B) and j*[cp] = 0, then by definition, there exists 
a *-homomorphism $: A + Lo such that cpj@$ lifts to a 
*-homomorphism from A into 99(~?““‘). By extending $ to a 
*-homomorphism from B into 99(H), and then replacing cp with cp@$, 
we may assume that cpj lifts to a *-homomorphism 0: A + g(X). 
Having made this simplification, we proceed as follows. Extend 8 to 
a *-homomorphism from B to g(X). We will show that the extensions 

: B + M2(2(2)) 

and 

: B + M2(2(H)) 

are unitarily equivalent, and since the former gives an element of the image 
of p* in Ext ~ l(B), while the latter is stably equal to the extension cp in the 
kernel of j* that we started with, this will show that the sequence (3.5.1) is 
exact at Ext-l(B). In fact, the two extensions are unitarily equivalent, via 
the unitary ( -N$2 N”2 M1,2), where ME &9(,X) satisfies: 

(i) 1 >M>O. 
(ii) For every element b of B, (1 -&f). (q(b) - 8(b)) = 0. 
(iii) For every a in A, &t. qj(a)=O. 
(iv) & commutes with every element of (p[B]. 

Such an element exists by Theorem 1.1.11; the verification that this unitary 
does the job is a computation using the formula (3.4.7). So it remains 
to show that j* is onto. For this, let cp: A -+ 2? be any invertible extension 
of A by the compact operators, and let (cp,): A + &?(2(*)) be a 
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*-homomorphism such that @,r = 40. Extend (qU) to a *-homomorphism 
from B to &?(Z”‘), and then define 8: B + 99(X’2’) by the formula 

0(b) = v,,(b) vu(b) 
e(b) > vdv(b)) ’ 

Now (pllj and (p22j are *-homomorphisms, module the compact operators, 
and so it follows that if UE A then cp2,j(a) and cpz,j(a) are elements of X. 
Therefore, (P&b) and VI,(b) are equal to cp,,(sp(b)) and (pzl(sp(b)), respec- 
tively, modulo compact operators, and from this it follows easily that 0 is a 
*-homomorphism, modulo compacts. Thus 0 determines an extension of B 
by the compact operators, and since it is clear that 0j determines an exten- 
sion equivalent to cp (because sp kills A), it remains to show that 0 deter- 
mines an invertible extension. This is so because, modulo compact 
operators, 8 is equal to the completely positive map 

where N = (1 - M), and ME G?(GP’~‘) satisfies: 

(1) l>M20. 
(2) (1 - M) . (;$b”; vp ) E M2(X) for every b E B. 
(3) AIf. G q2;(u) ) E M,(X) for every a E A. 
(4) M commutes, modulo compact operators, with (,“;;{:I ;;;{i;) for 

every b E B. 

As usual, M exists thanks to Theorem I. 1.11. m 

Now, it is easy to show that Ext-‘(A) is a stable functor (see, e.g., 
[47]), and so from Theorems 3.5.1 and 3.2.2, we obtain another proof that 
Ext - ’ is homotopy invariant. 

By using the techniques of the above proof, together with Stinespring’s 
theorem, we can prove half-exactness for Ext-‘, at least with respect to 
invertible extensions. See also [35,21]. 

THEOREM 3.5.2. If 0 -+ A -+j B -+ p C + 0 is a short exact of C*-algebras 
for which there exists a completely positive contractive section s: C + B, then 
the sequence of abelian groups 

Ext-‘(C)A Ext-l(B)& Ext-‘(A) 

is exact at Ext - ‘(B). 

Proof. Suppose that [q] ~Extt’(B) and j*([q])=O. Then as in the 
proof of Theorem 3.5.1, we may assume that qj lifts to a *-homomorphism 
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into g(x)), and we can choose a *-homomorphism 0: B + 9$(Z) such that 
6j= cpj. Also, as in the proof of Theorem 3.51, there is a unitary 
U E ?Q%“‘) such that 

The goal of the rest of the proof is to dilate 8s~ and cpsp to 
*-homomorphisms in such a way that above equation, so modified, asserts 
that the sum of cp and a degenerate extension is unitarily equivalent to the 
sum of a degenerate extension and an extension in the image p*. Let 

be a *-homomorphism such that $,r = 8s. (The existence of Y follows from 
Stinespring’s theorem.) If W denotes the unitary 

where (U,) denotes the unitary U, then 

Ad(Ci/)(cp@ !kp)= (3.5.2) 

Since 4 is a *-homomorphism, it follows that the “off-diagonal” terms 
$*I poz, and ti$ tizl p in (3.5.2) are zero. Hence we may rewrite (3.52) as 

Ad(Ci/)(; ip)=(; ip), 
where X is some extension of C by the compacts. Note that this equation 
implies that X is invertible: since the extension on the left-hand side of the 
equation is invertible, so must be the “summand” Xp of the right-hand side. 
Thus Xp has a completely positive lifting, and composing with the com- 
pletely positive section s, we obtain from this lifting a completely positive 
lifting for X. It follows that [q] is in the image of p*, as required. i 

Finally, we turn to the Brown-Douglas-Fillmore characterization of the 
groups Ext - ‘(C(X)). 

THEOREM 3.5.3 (Brown et al. L-121.) For finite complexes X, the group 
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Ext - ‘(C(X)) is naturally isomorphic to the odd-dimensional K-homology 
group of X. 

We only want to sketch the proof. So far we know that Ext -’ is a half- 
exact, stable, homotopy functor. A natural transformation is defined from 
Ext -’ to the K-homology group K’ as follows. (The topologists would 
write K, instead of K’, the former suggesting a covariant functor, the 
latter suggesting a contravariant one. However, we are dealing with 
algebras-the dual of spaces-and so for us the superscript is more 
suggestive.) Correspond to an element CI of Ext -‘(C(X)) and extension 

Then if Y is any space, the element c( determines a map 

r,: K*(C(Xx Y)) + K*-,(C(X)), 
namely, the boundary map associated with the short exact sequence 

Now there is associated to any such map an element of K’(C(X)), by 
Spanier-Whitehead duality (see [S] for a discussion of this) and this is our 
natural transformation. By applying the Bott periodicity theorem, one 
shows that this map is an isomorphism if X happens to be a sphere (the 
point about using the periodicity theorem is that this amounts to checking 
only the case of S’), and then it follows that it is an isomorphism for 
arbitrary polyhedra by decomposing into spheres. 

IV. ALGEBRAIC K2 OF A STABLE C*-ALGEBRA’ 

We prove in Section 4.1 the analog of the Steinberg-Kervaire theorem 
(Theorem 2.4.13) for C*-algebras, namely that if A is a C*-algebra then the 
Steinberg extension for A is the universal central extension of the perfect 
group EA. The whole section is of a very technical nature. We apologize for 
this, and offer the following two-sentence overview. Apart from the techni- 
ques used in the proof of the ordinary Steinberg-Kervaire theorem (for 
which we follow Milnor’s exposition [40]) the main ingredients in the 
proof are some lemmas on the factorization of elements in a C*-algebra. 
Roughly speaking, the condition A* = A (of importance in the theory of 
K,) which states that every element can be factored, must be strengthened 
to the condition that there be, up to a suitable notion of equivalence, a 
unique factorization for every element of A. 

’ Nole added in proof: In a revised version of [31] (which has appeared in J. Operator 
Theory 15 (1986), 109-162), Karoubi proves the main result of the section, Theorem 4.2.7, 
using techniques which are in several respects comparable to ours. 
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In Section 4.2 we prove that the algebraic and topological K,-groups of a 
stable C*-algebra are isomorphic. The method is to verify that the functor 
A H K,(X @ A) satisfies the hypotheses of our homotopy invariance 
theorem (Theorem 3.2.2). From this and the excision properties of the low- 
dimensional K-theory groups (see Theorem 2.4.14), we deduce the result by 
reduction of dimensions from K2 to K,. The technique developed here will 
be applied in the next section to K,(2(A)). 

4.1. The Steinberg-Kervaire Theorem 
We begin by stating the main theorem. 

THEOREM 4.1.1. If A is a P-algebra then the Steinberg extension 

l+K,(A)+StA~EA+l 

is the universal central extension of the perfect group EA. 

The proof has two parts: the bulk of it is simply a modification of the 
proof of the Steinberg-Kervaire theorem as presented in say Milnor’s book 
[40]; the remainder is a pair of factorization results for C*-algebras, 
needed to make the arguments of the first part work in the absence of a 
unit for A. We tackle the functional analysis first. 

For a result related to the following lemmas, see [43, Proposition 1.4.51. 

LEMMA 4.1.2. Let A be a P-algebra. If a, b E A then there exist elements 
c, a,, b, in A such that a=ca, and b=cb,. 

Proof: Define c, a,, and b, as 

c = (aa* + bb*)lj4, 

al=,trn+ (c+t))‘a, 

6, =,“rn+ (c+ t))‘b. 

We will check that the limits exist, and of course that a = ca, and b = cb,. 
Since the cases of a and b are the same, we will consider only that of say a. 
The derivative of (c+ t)-‘a with respect to t E (0, l] is -(c + t)-‘a, and 
this is bounded independently of t: 

/l(c+ t))‘al12= ll(c+ t)-‘aa*(c+ t))‘II 

d Il(c+ t)-2C4(C+ t)y211 (since aa* ,< c4) 

<1 (by the functional calculus). 
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It follows that (c + t) ~ ‘u converges, as t + O+, because we can bound the 
difference (c+~,)~‘u--(c+~~)~‘u by I1l--tz( times a bound for the 
derivative. To see that CI = ca, note that by continuity of multiplication, 

u--u,= lim 1-C a r--o+ ( > c+t 

= lim -J--u 
r+o+c+t ’ 

and since (c + t) ~ ‘u converges to a,, the expression t(c + t)-‘a converges 
to zero as t-+0+. 1 

LEMMA 4.1.3. Let A be a C*-algebra, let UE A, and let S be the set 
of pairs (b, c) E A x A such that a = bc. All elements of S are equivalent 
with respect to the equivalence relation generated by the relation 
(a,a,, a3)-(a,, U2%). 

ProoJ We will show that any factorization a = bc is equivalent to a 
“standard” one. Let b I = lim, +0+ ( (b*l”2 + t)-‘b. The limits exists by 
exactly the computation given in the above proof (in the particular case 
where the element a of Lemma 4.1.2 is zero). As above, b = I b*l “*b,. Next, 
let us show that the limit 

c, = lim b,c(lul’!4+s)p’ 5-o+ (4.1.1) 

exists. We begin by computing the derivative with respect to s E (0, 11, 
obtaining -b, c( Ial ‘I4 + s) p2, which, by the definition of 6, , is equal to the 
expression 

-,lJn+ (~b*~1i’+t)~‘u(~u~1’4+s)-2. (4.1.2) 

In order to show that this is bounded we will need the following facts: 

(i) If x, YE A then ~~,YJ,~~ = Ilxl+~*j 11. Indeed, 

lIxyI12 = IIxyy*x*ll = IIxIy*IZx*Il = Ilxly*l /12. 

(ii) If f is a continuous function then xf(Ixl)= f(lx*l)x, for any 
x E A. (To prove this, approximate f and the square root function by 
polynomials.) 

(iii) If X, y E A and 0 <x < y, then x’12 < y”*. For a proof, see [43, 
Proposition 1.3.81. Our application: because a = bc we have the inequality 
lu*12< llcl12 Ib*12, and so Ia*1 d Ilclllb*l. 
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Putting all this together we have 

Il(lb*I”2+t)-‘a((al”4+S)-211 

= II(lb*l’~2+f)-‘(u(~ul”4+S)-4u*)“2~~ 

= /~(~b*(“*+t)-‘(uu*)“2(lu*~“4+s)-2~~ 

6 ~((~b*~“2+r)-‘lu*I”211 )Ilu*(‘i2(lu*(“4+S)-211. 

The first equality is an application of (i); the second is an application of 
(ii). The first factor in the bottom expression is bounded independently of t 
because 

= II(lb*l”2+ t)-‘lu*( (lb*l”2+ t)-‘11 
6 llcll ~l(lb*~1”+t)~i~b*I(lb*~“2+f)-1/( (by (iii)) 

6 Ilcll. 
By the functional calculus, the second factor is bounded independently of s. 
Hence the derivative (4.1.2) is bounded, and so the limit cl exists. Further- 
more, 

Cl I4 1’4 = h ’ c, 

because by the definition (4.1.1) of cl, 

(4.1.3) 

(cl l~l’/~-~rc)= lim b,c s-O+ ,u,-“+s? 

and since h 1 c( I al ‘I4 + s) ~ ’ converges, sb, c( I al ‘I4 + S) ~ ’ converges to zero, 
as s + 0 + . Finally, 

lb*l”2C, =,hy+ u(lul”4+S)-‘, (4.1.4) 

by the definition of c,, and because 16* I 1’261 = b. Therefore, 

(b, c) - (lb*1 1’2, 6, c) 
=(lb*11’2,c,lu11’4) (by (4.1.3)) 

- (Jb*11’2~l, 1~1”~) 

=(&l+ u(lul”4+S)-‘, lu11’4) (by (4.1.4)) 

and the last factorization is independent of the pair (6, c). 1 
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Before going on, let us note that the two lemmas above amount to the 
following assertion: if A is a C*-algebra then 

240, A=A, (4.1.5) 

where A a.4 A denotes the quotient of A @z A by the subgroup generated 
by elements of the form a 0 hc - ab @ c. (The map from A @,q A to A is the 
natural one, namely a 0 b H ab.) We mention this so that the reader may 
compare Theorems 4.1.1 and 4.2.1 to an obviously related result of van der 
Kallen [29]. He proves that if A is any ring satisfying (4.1.5) and if B is 
any unital ring which contains A as an ideal, then the relative group 
K,(B, A) (see [29] and the references cited there for the definition) is 
independent of B: K,(B, A) = K,(d. A). Theorem 4.2.2 asserts that the 
sequence 

0 -+ K,(J) -+ K2( B) -+ K,( B/J) + 0 

associated with a split exact sequence of C*-algebras is split exact. Van der 
Kallen’s result asserts that this sequence is exact if K,(J) is replaced by 
K2(T, J). 

The proof of Theorem 4.1.1 relies on the following characterization of the 
universal central extension of a perfect group. A central extension P: X+ G 
is said to split if there exists a homomorphism s: G --+ X such that the com- 
position ps: G + G is the identity. 

THEOREM 4.1.1 [40, Theorem 5.33. A centrul e.utension TC: U-t G is 
universal if and or&3 if every central extension p: X + U splits. 

If A is a C*-algebra, then it is clear from the Steinberg relations that StA 
is a perfect group. So it suffices to show that every central extension 
p: X-t StA is split. Define a map .F from the generators of StA to X by the 
formula 

s(.$)= [pm’.uf,, p-h;,]. k # i, ,j, u = he. (4.1.6) 

The notation in (4.1.6), which we will use throughout the proof, means the 
following: choose some x E p ’ (x: i. and some /I E p ‘IX;, 1, and let .Y(.u;.) 
be the commutator [E. /?I. Because p: X + StA is a central extension, the 
elements c( and j3 can vary only up to elements of the center of X, and it 
follows from this that the commutator [r, /I] does not depend at all on the 
choice of c( and /?. However, it is not immediately clear that s(xO,) is 
independent of the choice of factorization a = bc in (4.1.6), or on the choice 
of the index k. In fact, most of the proof of the theorem is devoted to show- 
ing this. 
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LEMMA 4.1.5. If u, v, and w are elements of a group G then: 

0) [u, ulC4 WI = Cu, uw]Cv, Cw ~11. 
(ii) Cu, Cv, ~IlCv, Cw ull[w, Cu, VII ’ IS equal to the identity, module 

the second commutator subgroup G” = [[G, G], [G, G]]. 

Proof: See [40, p. 493. 1 

LEMMA 4.1.6 [40, Lemma 5.11. If j # k and 1 # i then the commutator 
[p ‘x;, p~‘.$,] is equal to the identity. 

Proof: The proof is a minor modification of Muilnor’s (where the 
existence of a unit for A is assumed). Write a = a, a?, and let h be an index 
distinct from i, j, k, 1. Then 

and using the fact that p- ‘.u$ and p ~ ‘x;; both commute with p ~~ ‘xi, 
modulo central elements, it follows from part (ii) of the above lemma that 
[p ‘x;., p ‘$,] IS equal to the identity, modulo the second commutator 
subgroup of the group generated by p- ‘-I$$, p- IX;;, and pi ‘x:~. Using the 
fact that the commutator subgroup of a group is generated, as a normal 
subgroup, by the commutators of the generators, it is easy to check that 
the commutator subgroup of this group is generated, as a group, by central 
elements and elements in p ~ ‘x;;. It follows that the second commutator 
subgroup is trivial. 1 

LEMMA 4.1.7. Let a, b, c E A and let h, i, j, k be distinct indices. Then 

[p-‘x$, p-‘xf!] = [p-‘.Y$, p&.x;l,]. (4.1.7) 

Proof We have that 

[IP Ix>, p~‘.K;j] = [p-*x”,, [p-‘&, p+x;;,]], 

[p-l”.;;, pm $1 = [[p~‘.u~, p~!$J, p--‘x&I, 

and by Lemma 4.1.5(ii) and Lemma 4.k.6, the two expressions on the right- 
hand sides of these equalities are equal, modulo the second commutator 
subgroup of the group generated by p-‘~2, p~‘.xf,,, and p-‘x;;,. However, 
it is easily checked that the first commutator subgroup is generated by 
elements lying in p- ‘x$, p --‘x:;, and p ~ ‘.xtbC; so the second commutator 
subgroup is trivial. 1 

Now, it follows immediately from Eq. (4.1.7) that the definition (4.1.6) is 
independent of the choice of the index k. Also, (4.1.7), together with 
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Lemma 4.1.3, shows that the definition is independent of the factorization 
a = bc. Thus the definition of s(x$) is independent of all choices. Let us go 
on then and show that s so defined on generators determines a 
homomorphism from StA to X or, in other words, that the s(x;) satisfy the 
Steinberg relations. This will complete the proof of Theorem 4.1. I, since the 
s(.u$) certainly satisfy p(s(.u; )) = .Y;;, and so s will be a section for the exten- 
sion p: X -+ StA. 

It follows from the definition (4.1.6) of s, and the fact that the definition 
is independent of all choices, that the s(.x;) satisfy the second Steinberg 
relation (2.4.8), and it follows from Lemma 4.1.6 that the third relation 
(2.4.9) is satisfied. This leaves the first relation: .F(.Y;) .@) =X(X;+ ‘). Using 
Lemma 4.1.2, find a,, b,, and c, such that u = ~a, and b = cb,. If we let 
u=s(.Y;~), v =s(.Y;;), and N‘= s(.Y~;) then part (i) of Lemma 4.1.5, together 
with Lemma 4.1.6, gives the result we want. 1 

4.2. Comparison uyith Topologicul K, 
In this section we prove that the homomorphism XI: K,(XO A) --t 

K;(.A.@ A) defined in (2.4.10) is an isomorphism. The most important step 
in the proof is establishing the homotopy invariance of the functor 
A ++ K,( X‘ 0 A ). For this we will use Theorem 3.2.2. Thus we will begin by 
showing that the hypotheses of this theorem are satisfied. 

THEOREM 4.2.1. [f’O + J + ’ B %; B/J 4 0 is a split short exact sequence 
of C*-algebras und *-lromonlorphtrn?.~, then the sequence qf‘ Kz-groups 

0 + K,(J) -5 K,(B) K,( B/J) -+ 0 (4.2.1 ) 

is also split exact. 

In view of Theorem 2.4.15, all of (4.2.1) is exact, except possibly for the 
injectivity of the homomorphism .i,: Kz(J) + K,(B). We wiII show that 
(4.2.1) is exact even in this last respect by finding a left inverse 
0: Kz( B) -+ KZ(J) for j,. The construction is conceptually very simple, but 
unfortunately the details are a bit long winded. Let us begin with a couple 
of preliminary results. 

&MMA 4.2.2. Any automorphism of the group EA lifts unique(.ll to an 
automorphism of StA. 

Prooj This follows immediately from the fact that n: StA -+ EA is the 
universal central extension of EA, together with the definition of universal 
central extension. 1 
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DEFINITION 4.2.3. Let A be an ideal in B and let fl be an element of 
StB. The corresponding element n(p) of EB acts on EA by conjugation: 
c( H z(b) scrc(/?) ~ ‘, for c( E EA. Denote by Ad(P) the automorphism of StA 
which lifts this automorphism of EA. 

LEMMA 4.2.4. The uutornorphisrn y = Ad(,$) qf StJ acts on generators of 
StJ us follows: 

(i) y(x;) = s;. 

Proqf!f: Let us prove, say, (iv) to illustrate the method: the rest are done 
in the same way and are no harder. Write .Y;;. = [x;;‘, ~$1, where 1 is some 
unused index. We have 

where we obtain the second inequality because by definition of y, 
y(q) = s;;l.uy and :(.Y$) = XY;;, modulo central elements; but the com- 
mutator of two elements is insensitive to perturbations by central elements. 
Computing the commutator by using the Steinberg relations gives the 
result. 1 

Now, we will construct the map 0: K,(B) + K,(J) in several stages. Let S 
denote the free semigroup generated by the symbols (.ul;)“, where .~f, is a 
generator for StB and e = +l. In other words, S is the free semigroup 
generated by the Steinberg symbols and their formal inverses. Let F denote 
the free group on the Steinberg symbols. Recall that this is obtained as the 
quotient of S by the equivalence relation generated by the relation 

y,, .  y.,, , ,  h y; .  q ‘1 q;; .  .  y; if X, = .K~+, and E, = -E,+ , (4.2.2) 

(where the X, denote Steinberg symbols).. We will define a map 0: S + StJ, 
show that it passes to maps 0: F -+ StJ and then 0: StB + StJ, and finally 
show that o restricts to a homomorphism from K,B to K,J left inverse 
to j,. 

The following notation will be used: if h E B then denote by 6 the element 
s( p(h)) E B. Similarly, the homomorphism sp: B -+ B induces endo- 
morphisms of S, F, and StB, and if .Y is an element of one of these, then we 
will denote by .U the image of .K under the endomorphism. Also, we will 
expand the notation of Definition 4.2.3 a little: if Y E S, then of course .Y 
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maps to some element 2 E StB; we will define the automorphism Ad(x) of 
StJ to be Ad(Z). Here, then, is the definition of (T, which is inductive: 

cJ((xp,)E) = Xyy), (4.2.3) 

a(~;’ . .x>) = a(~;’ ..Y;;:;) Ad(x;’ . . ~~>I’,)(cr(~~)). (4.2.4) 

Note that h - 6~ J, so that CC;,‘, ~~ 6r is an element of SrJ: thus g does indeed 
map S into StJ. The motivation behind this is straightforward: informally, 
if .r E StB then we want to define U( ~1) by a(y) = .tj ‘. In order to make 
sense of O(Y) as an element of StJ some rearrangement of terms is 
necessary. Taking a simple example, where J’ is a product of two Steinberg 
symbols .Y:,I,, -YE?,? ~ we have 

Note the following very useful multiplicatkle propert)’ of CJ: 

(4.25) 

LEMMA 4.2.5. The ,function IS: S + StJ is ,tvll dqfined on F. 

Proqf: Applying G to the left-hand side of (4.2.2) and using (4.2.5) we 
get 

where IV, = $1 ’ . . xp ; ) ,c2 = y:‘.y’:I + I I /fl’ and ~~~~ = g’:/+? . /+2 x;;. However, a 
computation using Lemma 4.2.4 shows that a(~‘~) = 1, while Ad(k2) is the 
identity, since u’~ determines the identity of EB. It follows that 

a(~‘,~.*)1.~)=~(~‘,)Ad(~,)(a(,t,,)) 

= u(M’, ,r3), 

so that CJ is well defined on F. 1 

LEMMA 4.2.6. The ,function O: F-t StJ is well defined as a function on 
StB. 

Proof. What we must show is that if IV, and ~1~ are elements of F which 
are in the same coset of the normal subgroup N of F generated by the 
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Steinberg relations then a(~,) = o(w~). So suppose that u’, = w,n, where 
rz~N. From the multiplicative property (4.2.5) we get 

so it suffices to show that g(n) = 1. However, n is the product of elements in 
F of the form UYU ‘, where v E F is arbitrary, but Y E F is one of the Stein- 
berg relations. Now, if we show that C(Y) = 1 for every such r, then it will 
follow that a( IIYV-- ‘) = 1: 

o(tw -~I) = a(u) x Ad(v)(o(v)) x Ad(vr)(a(uP’)) 

= a(u) x Ad(C) Ad(r)((a(u ‘)) 

=a(~)xAd(6)a(u~‘)) 

= a( NJ ~ ’ ) 

=0(l) 

= 1. 

(For the third equality above we use the fact that Ad(Y) = 1 which is true 
because r maps to the identity in EB (and in StB even)). It will then follow 
from another application of the multiplicative property (4.2.5) of rr, that IS 
maps each product n of elements of the form ‘VV to the identity. So we 
have reduced the proof to showing that a(r,) = 1, for i = 1,2,3, where 

Y’ = [A-;. xf,](x$-’ (ifk), 
r2 = [xi;, xi,] (j # k, i # I), 

r3 = x;..$(.Y;+“) - ‘. 

We will consider only the case of rl , which is much the most tedious. Note 
first that Ad( [x;, $1) = Ad(x$‘), and so by Lemma 4.2.4, 

a(r,) = a( [.Y$, xfk]) x Ad([x”,, I~~])(o((.Y$‘-‘)) 

= a( [x;, x;,]) x Ad(k$)(x$P”h) 

= a( [.K$ x,“,]) xpb. (4.2.6) 

Now, by expanding, using the inductive definition of CJ and Lemma 4.2.4, 
we get 
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where 

and 

= .K 6- Qiii <ihey;! ~ uh 
,h 

=.yh h 
/h . 

Multiplying everything together, and noting that the .K,~ commute with the 
-Yjk, we get a( [x;,$~] ) = x$ ~ ir6, which, in view of (4.2.6), completes the 
proof. 1 

Having dealt with all the unsightly computations in the lemmas, the 
remainder of the proof is very easy. 

Proqf qf Theorem 4.2.1. Restrict the function D: StB + StJ to K,(B). 
Because of the fact that Ad(cr) = 1 if c( E K,(B), it follows from the mul- 
tiplicative property of o that the restriction is a homomorphism of groups. 
Furthermore, if each xk is a Steinberg symbol .I$ for which b E J, then it is 
easy to see (by induction, say) that B(.Y, ... s,,) = x, . . x,,. Therefore o is a 
left inverse of the homomorphism j .+,: K,(J) --t K?(B). It follows that j, is 
injective, and as we have remarked earlier, this is all we need to prove. 1 

LEMMA 4.2.6. The .functor A H K,(X @ A) is stable. 

Proof. By identifying X @ X @ A with M,(X @ A) appropriately, the 
natural map X @A -+ X 0 X 0 A can be identified with the map 
3’” @ A -+ M,(X @A) which embeds X @A in the top-left-hand corner of 
the 2 x 2 matrices over X 0 A. However, for any C*-algebra D the map 
D+ MzD gives an isomorphism K,(D) + K,(M, D). Indeed, by 
Theorem 2.6.11, this is true if D is unital, while in the non-unital case, by 
adjoining a unit to D and applying Kz we obtain the diagram 

0- K,(D) - Kz@) - K,(C) -0 

I I I o- Kz(MzD) - K2(M2& A K,(M2C) - 0. 
607 67.1-7 
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The rows are exact by Theorem 4.2.1 (they are split exact, in fact), while by 
Theorem 2.6.11, the two rightmost vertical maps are isomorphisms; it 
follows that the other is an isomorphism too. 1 

We are now in a position to prove the main result of the section. 

THEOREM 4.2.1. For every C*-algebra A the homomorphism 

cc: K,(X’@A)+K;(X@A) 

of (2.4.10) is an isomorphism. 

ProoJ: The functor A H K2(X 0 A) is split exact by Theorem 4.2.1, and 
it is stable by Lemma 4.2.6. It follows from Theorem 3.2.2 that it is 
homotopy invariant. Consider now the “path libration” short sequence 

O~~OAOC,(R)~~XAOC,[O, l)+XOA+O. (4.2.7) 

Apply to this the following diagram, which compares the long exact 
sequences in topological and algebraic K-theory associated with a short 
exact sequence of C*-algebras and *-homomorphisms O+ J-r B+ B/J-+0: 

K,(B) - K2(B/J) L K,(J) - K,(B) 

%I %I I= ix 
K;(B) - K;(B/J) rl, K;(J) - K’,(B). 

From homotopy invariance it follows that the end terms in the diagram are 
zero (since B = X @A @ COIO, 1) is contractible). Therefore the maps 8 are 
isomorphisms, and so the fact that a: K,(X@ A) -+ K;(X@ A) is an 
isomorphism follows from the corresponding fact for c(: K,(X@ A) + 
K{(X @A), which is Theorem 2.4.6. 1 

V. ALGEBRAIC K-THEORY OF CALKIN ALGEBRAS 

The purpose of this section is to prove that if A is a unital C*-algebra 
and B is a a-unital C*-algebra, then the algebraic K-theory of A @ S!(B) is 
isomorphic to its topological K-theory. The plan of the proof is broadly the 
same as that of the last section. However, two difficulties present them- 
selves. First, the higher algebraic K-theory groups do not, in general, have 
good excision properties; and second, Z?(B) is functorial only with respect 
to quasi-unital *-homomorphisms between C*-algebras. Section 5.1 is 
devoted to an exposition of some excision results in algebraic K-theory. 
These results require quite stringent hypotheses, but by applying the 
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separation theorem of Kasparov (Theorem 1.1.11) we are able to show in 
Section 5.2 that they are satisfied in the situations we need. By means of 
this we are also able to get around the problem of the non-functoriality of 
2(B). In the next section we apply the results of Section III to obtain 
homotopy invariance for the algebraic K-theory groups, and then the proof 
of the main theorem is completed by reduction of dimensions as in Sec- 
tion IV. In Sections 5.2 and 5.3, for simplicity, we consider only 1(B) and 
not A@9(B); we remedy this in the last section by showing how to modify 
our theorems so as to get the general result. 

5.1. E.xcision in Algebraic K-Theor) 

Our goal in this section is to prove that if 

N+G+H 

is an extension of groups, then under suitable hypotheses (see 
Theorem 5.1.4), the sequence 

BN+ -+ BG’ --f BH+ (51.1) 

obtained by appiying the classifying space functor, and then the plus con- 
struction, is a tibration, up to homotopy. We will then use this theorem to 
prove an excision result in algebraic K-theory. 

As with the material on topology presented in Section II, the results of 
this section are all well known (they can all be found in [S]; see also 
[54]). However, although we make no claim about the originality of the 
results, our proofs are, we hope, a little simpler than those in the literature, 
due mainly to the fact that we are considering only special cases of more 
general results. 

Let us begin by writing down the mapping path fibration associated with 
themapp+:BG++BH+. Recall from (2.5.1) that this is the libration 

F(+)+p(+l “+’ + BH+, 

where PC+’ is the space of all pairs (x, y), with XE BG+, and y a path in 
BH+ for which y(l)=p+(x). The map p(+) is given by pC+,(x,y)=y(0). 
(We enclose the +‘s in parentheses because it is not clear a priori that all 
the spaces so labelled arise from the plus construction: part of our job is to 
prove that they do.) 

THEOREM 5.1.1. Let p: G -+ H be a map between stable groups. 

(i) There exists an H-space structure on PC+‘, 

pc+ixpc+t,pc+, 
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such that the diagram 
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pc+)xpc+) PI+IxPl+I, BHf xBH+ 

I I 

P (5.1.2) 
p(+) , BH+ PI + I 

commutes (exactly, not merely up to homotopy), where p denotes the 
H-space multiplication on BH+ given by Theorem 2.6.10. 

(ii) F(+l is an H-space. In.fact, there exist homofopy equivalences 

f.F’+’ + F’f’ and ,%F’+‘+F’+’ 

such that the map (x, y) ++ i(x) x i(y) is an H-space multiplication for F’+ ‘, 
where “ x ” denotes the H-space multiplication on P’ + ‘. 

Proof: (i ) If p: BG + x BG + + BG + denotes the H-space multi- 
plication on BG’ given by Theorem 2.6.10 then the diagram 

Pt x Pt BG+ xBG+ - BH+ x BH+ 

BG+ - 
P+ 

commutes up to homotopy. Let 

r,:BG+xBG++BH+ 

be a homotopy such that 

~o(4 Y)=AP+bL P+(Y)) and 

If (x,y)EP(+‘and (y,v)~P(+) thendefine 

! P 
BH+ 

(tE co, 11) 

T,(-? Y)‘P+W, Y)). 

(X,Y) x (YT v)= M-5 4’1, 51, 
where 

{ 
P(W), VW)) 

l(t)= Tzt-,(x y) 
if O<t<+ 

3 if tdtbl. 

Clearly, this multiplication corresponds to the multiplication p on BH+ 
under the map p, + ) (i.e., the diagram (5.1.2) commutes), and so it remains 
to see that PI+) is an H-space. In other words, we must show that the maps 
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x H x x e and x H e x x, where e denotes the base point, are homotopic to 
the identity. But consider the commuting diagram 

pl+l ‘XC) p(+) 

BG+ .XL’I BG+, 

where ~(9, y) =.Y. Beause rr is a homotopy equivalence, it follows from the 
fact that the bottom map is homotopic to the identity that the top map is 
too. Similarly, e x . is homotopic to the identity. 

(ii) Of course, since the diagram (5.1.2) commutes, the multiplication 
on P(+ ’ restricts to one on F’+ ‘. But it is not clear that this is an H-space 
multiplication on F’+ ). However, from the commuting diagram of 
fibrations 

F’+ld PC+, P(+l, BH+ 

it follows from the long exact homotopy sequence that . x e: F’+ ) + F’ + ’ is 
a homotopy equivalence, since the other two maps are. Therefore there 
exists a map i: F’+) + F(+) so that the map .Y H e x i(.u) is homotopic to 
the identity. Similarly, there exists a map i: F’+ ’ + F’+ ) such that the map 
.YH i(x) x e is homotopic to the identity. It follows that the map 
(9, y) H i(s) x i( .r) is an H-space multiplication on F’+ ‘. 1 

THEOREM 5.1.2. If p: G + H is a surjection between stable groups then 
the mapping path fibration 

F(+‘+p(+)a Bffi 

is orientable. 

Proof: We must show that the group rc,(BH+) acts trivially on the 
homology of the fibre F’+ ‘, where the action is as defined in Section II. 
Sincep,+,,:rr,(P(+)) -+ z,( BH+ ) is surjective (by virtue of p: G -+ H being 
surjective), and since the map z H p(z, e) from BHf to itself is homotopic 
to the identity, it suffices to show that loops in BH+ of the form 
t H p(+ ,(y(t) x e), where y is a loop in PC+‘, act trivially on H,(F’+)), since 
any loop is homotopic to one of these. We may suppose further that the 
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loop y is stationary near the endpoints of [0, 11: y(t) = e, if 0 < t < f or 
$ < t 6 1. Recall how the action is constructed: we solve the homotopy 
lifting problem 

F(+)x (0) - p’+’ 

I 

2 
G / 

I 
PI + 1 

/ 
/ 

F(+‘x [O, i] _I BHf, 
Y  

where 17 in our particular case is the map (x, t)t--+pc+,(y(t) x e). The map 
x H T(x, 1) then maps F’ + ) into itself, and the induced map on homology 
is the action of the loop. In our case we can explicitly write down a suitable 
map ZY It is 

NJ, 3t 1 if 0 d t d f, 
l-(x, t) = y(t) xi(x) if f<t<$ 

R(x, 3-3t) if $6t6 1, 

where R: F(+‘x [0, l] +F”+’ . is a homotopy such that R(x, 1) = e x i(s) 
and R(.q 0) = x (and i is the map in part (ii) of Theorem 5.1.1). It follows 
immediately that this solves the homotopy extension problem above. Since 
T(.x, 1) = x, we see that in fact the loop in BH+ acts trivially on F’+‘, up to 
homotopy, and so it certainly acts trivially on the homology. 1 

LEMMA 51.3. The space F’ +’ is connected. 

Proof: This follows immediately from the long exact homotopy 
sequence for the mapping path fibration, and the fact that the map 
“,(P(f)) + xl(BHf) is onto. 1 

Now, we are in a position to prove the main results. We will consider 
first extensions of groups, and then apply this to short exact sequences of 
rings. Let 

be an extension of stable groups. Recall from Theorem 2.6.13 that we may 
choose plussed spaces and maps so that the diagram 

BN + BG - BH 

q+l q+i lq+ (5.1.3) 

BN+ - BG+ - BH+ 
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commutes, and so that there are compatible homotopies 

IxBN - BH 

I I 
Ix BN+ - BHf. 

We obtain a commutative diagram 

BN ‘+ F 

(51.4) 

BN+ - F’ + ) 
II + 1 

where F is the homotopy fiber of the map p: BG -+ BH, q is the map 
induced by the maps q + in diagram (5.1.3), and j and j, + , are the maps 
induced by the homotopies above, as in (2.53). 

THEOREM 5.1.4. The map j, + , : BN+ + F’+’ is a homotopy equivalence. 

Proof: Since both BNf and F’+ ’ are connected H-spaces (by 
Theorems 2.6.10 and 5.1.1, respectively), in view of Theorem 2.5.5 it suffices 
to show that j, + , induces an isomorphism on homology. For this, it suffices 
to show that the other three maps in diagram (5.1.4) induce isomorphisms 
on homology. The map j: BN -+ F is a homotopy equivalence, and so cer- 
tainly it is a homology isomorphism; the map q: BN + BN+ is a homology 
isomorphism by definition of the plus construction. So it remains to con- 
sider the map @. Consider the commuting diagram of tibrations 

F---,P-BH 
4 I I Y+ 

F’ f’. PC+) ---+ BH+. 

Since H acts trivially on H,(N) (by Theorem 2.6.7), it follows that the top 
tibration is orientable; while by Theorem 5.1.3, the bottom fibration is 
orientable. Since the maps q+ are homology isomorphisms, by definition 
of the plus construction, it follows from the comparison theorem 
(Theorem 2.5.7) that 4: F+ F’+ ’ induces an isomorphism on homology. i 

We need one more simple result which is actually a consequence of the 
above theorem. 
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COROLLARY 5.1.5. Zf 

is an extension of stable groups and A is abelian then the map 

I+*: n,(BN+)-*n,(BG+) 

is an isomorphism for all n > 1, and an injection for n = 1. 

Proof: Since A is abelian, its maximal perfect subgroup is trivial, and 
therefore q: BA + BA + is a homotopy equivalence. It follows that 
7c,,( BA + ) = 0 if n > 1, and so by the long exact homotopy sequence, the 
map from homotopy fiber F’+ ’ of p+ : BG+ -+ BA + into BG+ induces an 
isomorphism on rc, for n > 1, and an injection if n = 1. The corollary 
therefore follows from the homotopy commutative diagram 

BNf I(+) F’+’ 

=I I 
BN+ 7 BG+ 

and the fact proved in the last theorem that the map i, + ) is a homotopy 
equivalence. 1 

Remark. In fact Corollary 5.15 is much easier than we have made it out 
to be: it is very easy to see directly that if the quotient A is abelian then the 
extension of groups passes to a libration, up to homotopy, of plussed 
spaces-see [7, (6.4)]. It is not necessary to assume that the groups 
involved are stable. 

Now, let 

O+Z-+A+A/Z-+O 

by a short exact sequence of weakly unital C*-algebras (see Section II). We 
obtain from it an extension of stable groups 

N+G+H, 

where N = GLZ, G = GLA, and H is the image in GLAIZ of G. Note that H 
is an open and closed subgroup of GLA/Z which contains the commutator 
subgroup (because the commutator subgroup is contained in the connected 
component of the identity). Therefore the quotient (GLA/Z)/H is abelian, 
and Corollary 5.15 applies: 7c,( BH+ ) + zr,(B CL A/Z+ ) is an isomorphism 
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for n > 1 and an injection for n = 1. Identifying BN+ with the fiber F’+ ’ by 
means of the map j, + ), we obtain long exact K-theory sequence 

-K,+,(A)4K,+,(AIZ)jK,(Z)~K,,(A)- (51.5) 

(where n 3 1) which by Theorem 2.6.13, and the discussion following it, is 
compatible with the long exact sequence in topological K-theory via the 
transformation a: K, + Ki 

5.2. Application to Calkin Algebras 
Throughout the rest of this section, B will be a a-unital C*-algebra and J 

will be a a-unital ideal in B. Let us recall from Section I that the kernel 9” 
of the *-homomorphism p: 1(B) + 9( B/J) induced from the projection 
B + BIJ is 

9”=,&!(X@B;X@J)/X@J (52.1) 

(see Definition 1.3.8). Recall also that by Theorem 1.1.10, the map 
&‘(Lx @ B) + A$‘(&! @ B/J) is surjective, and so since the same is true of 
the *-homomorphism p: 1(B) + 9(B/J), we obtain the following short 
exact sequence 

0 + Lf- + i2( B) -% 2,(B/J) + 0. (5.2.2 ) 

THEOREM 5.2.1. If .d is a separable C*-subalgebra of :!?” then there exists 
an element u E 3 such that 1 3 u 3 0 and ua = a = au ,for every a E .d. 

Proof Let E, =X @ B; let E = X Q J; and let E2 be a separable 
C*-subalgebra of ,X(X @ B; X @ J) which maps onto .d c :‘r. It follows 
from the definition of A’(X@ B; X 0 J) that E, . E, c E, and so, by 
Theorem 1.1.11, there exists an element NE .N(X@ B) such that 
13 N30, and 

(i) N.X@BcX@J. 
(ii) (l-N).E,cX@J. 

Condition (i) implies that NEJ#(X @ B; X @ J), while condition (ii) 
states that N acts as a unit for E,, modulo X @J. Therefore, if we let u 
denote the image of N in the quotient X = A(X 0 B; X 0 J)/X @J, then 
ua=a=au for every aE.&. 1 

In particular, % is weakly unital, and so from the long exact sequence 
(5.1.5), we obtain the following result. 
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THEOREM 5.2.2. If W is a unital F-algebra which contains X as an ideal 
then from the exact sequence 

we obtain a long exact sequence 

i. K,(.%++ K,(c4/Xp+ K,-,(X++ K,-,(9)+. I 

Now, the restriction map p: A(x 0 B) + JY(~ 0 J) maps %? 0 J into 
itself, and so passes to a map p: A(%? @ B)/x @J -+ 9(J). 

THEOREM 5.2.3. Zf the annihilator ideal of Jc B is a-unital, then the 
restriction map p: X -+ 9(J) passes to an isomorphism in K-theory. 

Proof Let us consider first the case in which J is an essential ideal of B, 
so that the map p is an inclusion. By Theorem 2.6.10, both BGLX+ and 
BGL9(J)+ are connected H-spaces, and so by Theorem 2.55 it suffices to 
show that the mapping 

p.+: H,(GLX) -+ H,(GL9(J)) (5.2.3) 

is an isomorphism. According to Theorem 1.3.13, there exists an isometry 
u E .X(x 0 J) such that Ad(v) maps 9(J) into X. It follows that (5.2.3) is 
surjective, because the composition 

pvAd(u):ZZ(J)+ZI(J) 

is equal to Ad(u), since p is merely an inclusion. Therefore, passing to 
homology we get Ad(u), op.+ = Ad(v),, and Ad(u), = id, by Lemma 2.6.12. 
So it remains to prove that the map (5.2.3) is injective. By the continuity of 
homology (Lemma 2.5.2), 

H,(GLX) = l&H,(GLd), 

where the direct limit is taken over all separable C*-subalgebras d of X. 
So it suffices to show that for each such &‘, the map p* is an injection on 
the image of H,(GLd) in H,(GLX). However, by Theorem 1.3.14, there 
exist isometries or E &‘(3yr 0 J) and u2 E A(x @B) such that Ad(u,) maps 
4’(x@J) into X, and also Ad(u,) is equal to Ad(o,) on &‘. Thus the 
composition 

H,(GL&) + H,(GLX) -% H,(GL9(J)) Ad(“l)* + H,(GLX), 
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is equal to 

H,(GLd) -+ H,(GLS-) Ad(w)* + H,(GLX)), 

which is in turn equal to simply the inclusion H,(GL,d) + H,(GLF), 
because by Lemma 2.6.12 again, Ad(oz)* = id. Therefore p.+ is injective on 
the image of H,(GLr;S) in H,.GL!E) and so the theorem is proved if J is 
an essential ideal of B. We can reduce the general case to this case by 
introducing the annihilator ideal of .Z into the picture, as follows. To make 
the notation a little less cumbersome, let I= Ann(J), and for any ideal L of 
B let 

F(L) = A?(.X- @ B; X @ L)/X @ L. 

Consider the following commutative square (cf. (1.3.8)) 

By what we have already shown, since Z@J is an essential, a-unital ideal in 
B, the right-hand vertical map is an isomorphism in K-theory. It follows 
that the left-hand vertical map is an isomorphism in K-theory too, and 
since K-theory is additive (see Theorem 2.6.9) it follows that the maps 
X(Z) + 1(Z) and X(J) -+ 2!(J) both induce isomorphisms. The latter one 
gives us the theorem in the general case. 1 

An important consequence of Theorem 5.2.3 is that we are able to make 
the groups K,(S(B)) functorial for arbitrary *-homomorphisms, and not 
simply quasi-unital ones. As in Section II, if B is a C*-algebra then denote 
by fi the C*-algebra obtained by adjoining a unit to B (and if B is unital 
already then B = Be C). Any *-homomorphismf: B, + B2 induces a unital 
map f: B, + B,, and so a quasi-unital map 1 Q f :X 0 B, + X @ B,. Thus 
finduces a *-homomorphism from ,U(X@B,) to .&(X@Bz), and so a 
map from K,(Zi!(B,)) to K,(I(B,)) by means of the diagram 
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The vertical maps, which are given by restriction, are isomorphisms for the 
following reason: from Theorem 5.2.2 and the exact sequence 

it follows that the inclusion of 9” into Jz’(X @ B; X@J) induces an 
isomorphism 

I&(%“) 3 K,(.X(X 63 B)/X @cl), (5.2.5) 

since the quotient A+‘(% 0 B/J) has trivial K-theory (by Theorem 2.6.5). 
Therefore by Theorem 5.2.3, the restriction map from A!(X 0 B)/X @J to 
9(J) induces an isomorphism in K-theory. We note that the annihilator 
ideal of B in B is equal to zero if B is not unital, and equal to C if B is 
unital: in either case it is o-unital. 

LEMMA 5.2.4. If f happens to be quasi-unital already then this definition 
off, agrees with the natural one. 

Proof. Consider first the composition 

,X(X @ B,) 1, ,dt’(X@ &) A A(&- 0 B2). (5.2.6) 

If p~Af(L3~) is the projection such that f[Br] generates pB,p as a 
hereditary subalgebra, then 1 @PE,U(X@ B,) commutes with the image 
of the map (52.6). Thus we may write pf = g + h, where g maps into 
A’(X 0 pB,p) and h maps into .A’(% @ (1 - p) B2( 1 - p)). Consider now 
the induced maps 

ByLemma2.1.18,p,f,=g,+h,.Buth,=O:thereasonisthat~OB,is 
contained in the kernel of h; therefore the induced map on 
,4(X @ B,)/X @ B, factors through A(X 0 Bz), 

and so we get h, =0 from the fact that K,(Jz’(X@&)) =O. So it remains 
to show that g, = f,p,. In fact g =fp: both g and fp map into 
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JZ(X 0 pB2 p), and since f[B1] generates pB2 p as a hereditary sub- 
algebra, it suffices to show that 

g(x)f(b) =fM-~))f(b), (5.2.7) 

for every x E &?(X @ i?,) and every b E X @ B,. Since p is the identity on 
X0 B,, the right-hand side of (5.2.7) is equal tof(xb). The left-hand side 
is equal to g(x)g(b), since g is equal tofon jr@ B, ; this is, in turn, equal 
to g(xb), because xb E X @ B, 1 

Remark. By the same technique we may, for example, make 
Ext -‘(C’, A) functorial in the second variable, as long as C is separable and 
A is a-unital. We leave the details to the reader, but note that the reason 
this works is that conjugation with an isometry gives the identity map on 
extension groups. 

THEOREM 5.2.5. With respect to ideals JC B for which J, B, und Ann(J) 
are a-w&al, the,finctor Bt-+ K,(2(B)) is split exact. 

Proof Suppose that 

Q-,J+B$B/J+O 

is a split exact sequence with J, Ann(J), and B all cr-unital. By 
Lemma 5.2.4, the map p*: K,(9(B)) -+ K,(d(B/J)) has a right inverse. 
Therefore, it follows from the long exact sequence of Theorem 5.2.2, 
together with Theorem 5.2.3, that the sequence 

0 + K,(9(J)) -+ K,(d(B)) -% K,.3(B/J)) --) 0 

is split exact, where the map from K,(9(J)) to K,(9(B)) is equal to 

K,(9(J)) “” * K,(A(X 0 B)/X @ J) + K,(9(B)). (5.2.8) 

(We use the isomorphism (5.2.5) to replace X with .M(X 0 B)/X’@ J in 
Theorems 5.2.3 and 5.2.2.) So the proof is a matter of showing that this 
is the same as the map j .+: K,(S!(J)) -+ K,(k?(B)), defined as in (5.2.4). 
Consider the diagram 
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where the various maps named p are all obtained from restriction, while 
the maps rc are projections into quotients. The left-hand square commutes 
because in the analogous square 

both ways around the diagram, from &‘(X 0 3) to d(.X @.I), are exten- 
sions of the inclusion of the ideal X OJ of M(X @J) into 4(X OJ): 
hence by Theorem 1.1.2 the two maps are equal. The right-hand square 
certainly commutes too, and so since the top map of the diagram gives the 
map j, as in (5.2.4), while the bottom gives (5.2.8), these two maps are 
equal. i 

5.3. Isomorphism with Topological K-Theory 
We begin by proving homotopy invariance for the algebraic K-theory 

groups of generalized Calkin algebras. 

LEMMA 53.1. The functor B’ H K,(2(B’)) is stable, and also half exact 
with respect to split exact sequences of the form 

where B is cr-unital, A is separable, and the sequence 

0 -+ Ann(Z) --P A + A/Ann(Z) -+ 0 

admits a completely positive section. 

Proof. After identifying 9(X Q B’) with M,(2!(B’)) appropriately, the 
canonical map e: L!!( B’) --f 9(X @ B’) is equal to the map embedding 2!(B’) 
in the top-left-hand corner of M,(5!(B’)). By Theorem 2.6.11 this induces 
an isomorphism on K-theory. As for the split exactness part of the theorem, 
it suffices to show that the hypotheses of Theorem 5.2.5 are satisfied. 
Thus we need to show that Ann(B@ I) is o-unital. However, 
Ann( B @ I) = B @ Ann(Z) by the following argument. By Theorem 1.3.5, the 
sequence 

O+B@Ann(Z)+B@A+B@A/Ann(Z)+O 
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is exact. Therefore B@ Ann(Z) is the kernel of the restriction map 

BOA + BOA/Ann(Z)q B@JH(Z)G,&(B@Z). 

In other words, it is the annihilator ideal of B @ I. 1 

THEOREM 5.3.2. The jiinctor B +-+ K,(9( B)) (where B is o-unital) is 
homotopJ1 invariant. 

Proof We apply Theorem 3.2.2 to the functor A ++K*(.L?(B@A)), 
keeping B fixed. As we pointed out in Remark 3.2.4, it suffices to know that 
the functor is split exact with respect to split exact sequences of the form 
described in Lemma 5.3.1. Hence homotopy invariance follows from the 
lemma and Theorem 3.2.2. 1 

THEOREM 5.3.3. For ever)? o-unital C*-algebra B the homomorphism 

a: K,(d(B)) + K$?(B)) 

is an isomorphism. 

Proof Let J’ be a a-unital ideal in a a-unital C*-algebra B’. Let :‘x’ 
denote the kernel of 1(B’) + 9(B’/J’). By Theorem 2.6.13, the diagram 

-+ K(2(B’)) -+ K(2(B’/J’)) r’, K,,- ,(.“x’) + K,,+ ,(9(B’)) + 
% 

I 
1” 

I I 
%-I 

I 
X,-l 

+ 4(9(B’)) + WWW’))~ K;, ,(S’) --f K;,m ,(2(B’)) -+ 

which relates the long exact sequences in algebraic and topological 
K-theory, commutes. Apply this to the short exact sequence 

O-tB@C,(R)-+B@C,,(O, l]-B-+0. 

Since K,(S?(B@Co(O, l]))=O=K’,(9(B@C,(O, l])), we get the com- 
muting square 

K,,(S(B))A K,- ,X’ 

K:(9(B)) -y K:,_ ,5’. 
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But since in the case we are considering, the annihilator ideal Ann(Y) is 
o-unital, (it is trivial, in fact), we also have the commuting square 

where the top map is an isomorphism by Theorem 52.3, and the bottom is 
an isomorphism by applying the arguments of Theorem 5.2.3 to topological 
K-theory. Therefore, under the inductive hypothesis that the map a,_, is 
an isomorphism for every a-unital C*-algebra B, it follows that ~1, is an 
isomorphism for every o-unital C*-algebra. So it remains only to consider 
the case of n = 1 to start off the induction. We know that 
r: K,(2(B)) + &(2!(B)) is onto (this is true for any Banach algebra). We 
must show that any element of GL 2(B) which is connected to the identity 
is actually in the commutator subgroup. For this we can either argue from 
homotopy invariance or more directly, along the lines of the infinite dimen- 
sions argument of Theorem 2.4.7. Since the argument of Theorem 2.4.7 
works, verbatim, we will not bother to repeat it here. 1 

We remark that another way of getting the case n = 1 is to introduce the 
group K, (see [4]). The reduction of dimensions argument may be taken 
one step further, to K,. But the topological and algebraic &-groups are 
the same, so there is no further work to be done. 

5.4. The General Case 

Throughout this section, A will denote a fixed unital C*-algebra. Our 
goal is to indicate how the results of the previous two sections should be 
modified so as to yield the following generalization of Theorem 5.3.1. 

THEOREM 5.4.1. For every o-unital P-algebra B the homomorphism 

a: K,(AO~(B))~K!,(AO$(B)) 

is an isomorphism. 

The only non-trivial point has already been dealt with in Section I: by 
Theorems 1.3.11 and 1.3.12, if J is a a-unital ideal in a a-unital C*-algebra 
B, then we have exact sequences 

O-+AOX-,AO9(B)-rAO~(B/J)~O (5.4.1) 



ALGEBRAIC K-THEORY OF C*-ALGEBRAS 115 

and 

O~AOX~AO(,~(~OB)/~OJ)-,AO~(~XB/J)~O. (5.4.2) 

Here is the analog of Theorem 5.2.1. 

THEOREM 5.4.2. If V is a separable C*-smalgebra of A 0% then there 
exists an element e E A 0% such that 1 > e >, 0 and ec = c = ce ,for every 
CE%?. 

Proof: The P-algebra 9? is contained in some A @d, where & is a 
separable C*-subalgebra of !X. By applying Lemma 5.2.1 we obtain a 
suitable element e of the form e = 1 au. 1 

Thus we can apply the excision results of Section 5.1 to the short exact 
sequences (5.4.1) and (5.4.2), and so obtain the analog of Theorem 5.2.2 for 
A@%. 

Modulo forming the tensor product with A, or with the identity map on 
A, as the case may be, all the remaining results of Sections 5.1 and 5.3 
follow easily. (There is one additional point, and that is the fact that 
K,(A@,K(X@B)) = 0. This is proved exactly as in Theorem 2.6.5, 
modulo the same modifications: form the tensor product of everything with 
A or idA.) Then the proof of Theorem 5.4.1, along the lines of the proof of 
Theorem 5.3.3, follows without further complications. 

VI. FURTHER RESULTS 

We begin by studying the non-stable general linear group GL,S(B). We 
prove that if B is unital then the inclusion of GL,S(B) into GL,, S(B) 
indices a homotopy equivalence BGL,S(B)+ z BGL,9(B)+, and 
therefore also, for example, an isomorphism in homology. The proof is 
rather intricate, which should not be too surprising when one considers 
that the corresponding topological K-theory results are not at all trivial 
either. 

Following this, we will consider the K-theory of unitary, as opposed to 
general linear groups. We find that the algebraic and topological groups for 
the algebras 3(B) are equal; since everything goes through as expected, we 
will be brief 

In Section 6.3 we study the KaroubiiVillamayor K-theory. These groups 
are another solution to the problem of defining the homotopy of the group 
GLR, where R is a discrete ring. Karoubi and Villamayor make use of the 
equation 
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from homotopy theory, where 52 denotes the loop space, by defining an 
algebraic version of 52. In order to make things tick, a suitable notion of 
tibration is needed, and it must be shown that a short exact sequence of 
rings gives rise to a fibration 

GLJ + GLB + GLBIJ. 

This is unfortunately not the case for a general short exact sequence of 
rings, but it is true for stable C*-algebras, and using this we are able to 
show that the Karoubi-Villamayor groups of a stable C*-algebra are 
isomorphic to the topological K-theory groups, using the by now familiar 
technique of proving homotopy invariance and then reducing dimensions. 

Karoubi has quite recently shown that the algebraic modp K-theory 
groups of a stable C*-algebra are equal to the topological mod p K-theory 
groups. We briefly indicate in Section 6.4 how to duplicate this result using 
our techniques. 

We end with a conjecture concerning the algebraic K-theory of stable 
C*-algebras. 

6.1. Non-stable General Linear Groups 

We begin by stating a result which effectively answers in the topological 
context the question about non-stable algebraic K-theory that we are 
addressing. It asserts that the non-stable topological K,-group of S?(B), for 
a unital C*-algebra B, is equal to the usual K-theory. 

THEOREM 6.1.1 [41, Theorem3.7). The group GL,2(B)/GLy2(B) is 
naturally isomorphic to the group K,(B), for unital P-algebras B. 

It is easy to give an explicit description of the above isomorphism: we 
map GL, 22(B)/GLy2?(B) into GL,2?(B)/GLP,Z?(B) in the usual way; the 
latter group is K;(I(B)), and we pass to K,(B) via the boundary map: 

index: K;(Z!(B)) + K,(X 0 B) 

(see [41] for details). 
Theorem 6.1.1 will be of considerable importance to us. We will also 

need computations of non-stable algebraic KI for various C*-algebras A; in 
other words, we will need to compute the maximal perfect subgroup of 
GL,A for these A. We will suppose that A is stable in the following 
weakened sense: there exist pairwise orthogonal projections p,, pz,... in the 
multiplier algebra of A, such that each pi and each 1 -pi is equivalent to 
the identity. Examples are the C*-algebras Z!(B), and the ideals X defined 
in (52.1). 
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THEOREM 6.1.2. (Compare [24, Proposition 7.11.) Zf A is stable in the 
above sense then the group GLYA is perfect. 

Proof We give the argument of [24]. It suffices to show that if 
x E GLYA and if x is sufficiently close to the identity-we shall assume 
that 111 --XII <$-then x may be written as a product of commutators 
in GLYA. With respect to the decomposition of the identity element 
1 = p, + (1 - p,), write x as the matrix (:;; J22 ‘12). Direct computation reveals 
that x = lud, where 

From our assumption 111 - XII < $, it follows that I/ 1 - .x1, II < i, and also 

Ill -~~22+x2,.~,1x,211 d Ill --Al + II-QII I _ 1111,,,11 II-~,*I1 

1 1 1 1 
<~+~xQx2 

so that 1, u, and d are all well defined and connected to the identity. Now, 
both 1 and u are commutators, as are any upper or lower triangular, 
unimodular matrices. For example, 

So it remains to show that d is a product of commutators. However, we 
can write 

d=(x;’ ;)x(’ ’ 0 x22-.x?,x$.q2 ), 
and then the infinite dimensions trick used in the proof of Theorem 2.4.7 
shows that each of the terms on the right is a product of two matrices of 
the form 

i w 0 0 w-l 0 0 0 0 1 1 . 
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These are products of commutators by the Whitehead lemma 
(Theorem 2.4.2). In fact, these are products of commutators of elementary 
matrices, which are of course connected to the identity. 1 

THEOREM 6.1.3. (i) If B is a unital P-algebra then 

GL:A?(B) = [GL,2(B), GL,2(B)]. 

(ii) If B is a unital P-algebra and lfX denotes the kernel of the map 
from d(B@C[O, 11) to S?(B) inducedfrom evaluation at 1 E [0, 11, then 

GL,X = GL’iX = [GL, X, GL, X]. 

Proof: For (i), it follows from Theorem 6.1.2 that GLy2(B) is contained 
in the commutator subgroup. On the other hand, according to 
Theorem 6.1.1, the quotient group GL, S?( B)/GLyS?(B) is isomorphic to 
K,(B); so it is, in particular, abelian. Therefore, the connected component 
of the identity contains the commutator subgroup. As for (ii), it follows 
from Theorem 6.1.1 that the homomorphism 

GL,!I(BO C[O, l])/GLy9(B@ C[O, 11) + GL,2(B)/GL:Z?(B), 

induced from evaluation at 1, is an isomorphism, since the corresponding 
map in topological K-theory is. Therefore, if x E GL, X then x is connected 
to the identity by some path y in GL,J(B@ C[O, 11). If 7 denotes the path 
in GL, Z?( B @ C[O, 1 ] ) which is the image of y under the endomorphism of 
GL, 2?(B@ C[O, 11) induced from the map 

B@C[O, l]+B+B@C[O, 11, 

then yv- ’ is a path in GL,X connecting x to the identity. Thus 
GL, X = GLYX. The rest of the assertion of part (ii) follows from 
Theorem 6.1.2. 1 

From now on we will consider GLI X as a discrete group. We wish to 
show that the space BGL,X 0 + is contractible. By Theorem 6.1.3, together 
with the definition of the plus construction, BGL, X’+ is simply connected. 
Therefore, by the Whitehead theorem (Theorem2.5.3) together with the 
fact that H,( BGL, X) z H,( BGL, X + ), the following result suffices. 

THEOREM 6.1.4. The space BGL, X is acyclic. 

The proof is rather long and complicated, so let us put it to one side for 
the moment and see how we can prove from it the main theorem of the 
section: 
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THEOREM 6.15. Zf B is a unital C*-algebra then the natural inclusion j of 
GL, 9(B) into GL,2(B) induces a homotopy equivalence 

. . J+ . BGL,2?(B)+ --% BGL,9(B)+. 

We will need the following strengthening of the excision results of 
Section 5.1. The theorem is due to Berrick [7, S]. 

THEOREM 6.1.6. Let 

be an extension of groups. Zf PH acts triviahv on H,(N), and zf N is perfect 
then the sequence 

BN+ + BG+ -+ BH+ 

is a fibration, up to homotopy. 

(We remind the reader that PH acts on H,(N) as follows: lift y E PH to 
an element x E G; then the action of y is the automorphism of H,(N) 
induced by the automorphism z H xzx ~ ’ of N.) 

LEMMA 6.1.7. The map BGL,2(B@C[O, 11)’ + BGL9(B)+ is a 
homotopy equivalence. Thus the two maps from BGL,9( B@ C[O, 11)’ to 
BGL2(B)+ induced from evaluation at 0 E [0, l] and 1 E [0, l] are 
homotopic. 

Proof We wish to apply Theorem 6.1.6 to the extension 

1 +GL,$-+GL,2(B@C[O, l])-GL,S(B)+ 1. (6.1.1) 

Since the maximal perfect subgroup of GL,9.(B) is equal to the connected 
component of the identity, and since the connected component of the iden- 
tity is generated by elements of the form e”, where y E Z!( B), in order to 
show that PGL,2?(B) acts triviallly on H,(GL,X), it suffices to show that 
each e.’ acts trivially. Thus it suffices to show that if x E 2(B@ C[O, l]), 
then the automorphism Ad(e”) of GL,% is trivial at the level of homology. 
Using the continuity of homology (Lemma 2.5.2), it suffices to show that 
the map 

Ad(e’), : H,(GL,X) -+ H,(GL, X) 

is trivial on the image of every H,(GL,d) in H,(GL,%), where JXZ 
a separable C*-subalgebra of X. Define C*-subalgebras of 

fsy(X@B@C[O, 11) as follows: 
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(1) E, =~xo@c[o, 11. 
(2) E=sf-@B@C[O, 1). 
(3) E, is a separable subalgebra of JZ(~ 0 BO C[O, 11; 

x @ B @ C[O, 1)) which maps onto d in the quotient X. 

(4) 9 is a separable subalgebra of &!(.Y@ B@C[O, 11) which 
maps onto the C*-algebra generated by x in 9(B@ C[O, 11). 

Then by Theorem 1.1.12, there exists an element MEJ?(G+?@ B@ 
C[O, 11) such that: 

(i) 13MbO. 
(ii) M. E, c E. 
(iii) (l--M).Ez~E. 
(iv) [M, S] c E. 

If u denotes the image of M in Z?(B@ C[O, 1]), then condition (ii) implies 
that u E X; condition (iii) implies that u acts as a unit for d, and condition 
(iv) implies that u commutes with x. It follows that on the image of d in 
X, the automorphism Ad(e”) is equal to Ad(e”“2-‘t”‘2). But eU”2~““‘2 E GL, X, 
and so this last automorphism is inner, which implies by Lemma 2.51 that 
it acts trivially on H,(GL, X), and therefore Ad(@), is trivial on the image 
of H,(GL,d) in H,(GL, X). This shows that PGL, Z?(B) acts trivially on 
H,(GL1 X); by Theorem 6.1.3, PGL,X = GL,X. So we get that the 
sequence 

BGL,X+ +BGL,9(B@C[O, l])++BGL,%B)+ 

is a libration, up to homotopy. Since by Theorem 6.1.4, the space BGL, X+ 
is contractible, it follows that the map 

BGL,S!(B@C[O, 11)’ -+ BGL19(B)+ 

is a homotopy equivalence. 1 

Proof of‘ Theorem 6.15 Define an embedding g of M, 9( B) into .5’(B) 
as follows. Choose pairwise orthogonal projections Pi@ 1 E &(x 0 B), 
each equivalent to the identity, and then embed M,9(B) into S(B), using 
these equivalences, by sending the matrix unit e,,E M,, to the projections 
Pi@ 1 (or, strictly speaking, the image of this projection in the quotient 
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9(B) of &(XQ B)). This passes to a homomorphism of groups from 
GL, 3( B) to GL, 9( B). The composition 

GL,9(B)A GL,9(B)A GL,ir?(B) 

is easily seen to pass to the identity map on &.(9(B)) by the technique 
used in the proof of Lemma 2.6.12. As for the composition 

GL12(B)~GL,,9(B)--g--, GL,S(B), (6.1.2) 

it is given by conjugation with an isometry V@ 1 E ,I(% 0 B) whose final 
space is equal to the projection P, 0 1. Now, by connecting V to the iden- 
tity in B(Z) by a strongly continuous path ( V,} ,E co,ll of isometries, we 
obtain a *-homomorphism from X 0 B to X 0 BO [0, l] which is the 
identity at 0 E [0, 1 ] and which is equal to conjugation with the isometry 
V@ 1 at 1 E [0, 11. It is easily verified that this map is quasi-unital: for 
instance, the projection of Definition 1.1.6 is equal to the tensor product of 
1 E B with the projection { V, VT},, to.,, E k’(X 0 C[O, 11). So we obtain 
from it a *-homomorphism from .9(B) to 9(BO C[O, 11) which is the iden- 
tity over OE [0, 11, and which is the map induced by conjugation with 
V@ 1 over 1 E [0, I]. Therefore, it follows from Theorem 6.1.7 that the 
map 

BGL,S(B)+ 3 BGL,d(B)+ 3 BGL,I(B)+ 

is homotopic to the identity. Thus the map 

g,: BGL,.k?(B)+ -+ BGL,9(B)+ 

is a homotopy inverse toj+: BGL,I(B)+ 4 BGL,,Y(B)+. I 

COROLLARY 6.1.8. The natural map from BGL,9(B)+ to B’GL,S(B) is 
a homotopy equivalence. 

Here B’GL, 9(B) denotes the classifying space of the group considered as 
a topological group. 

Proof Consider the homotopy commutative diagram 

BGL,Z!(B)+ - BGL,9(B)+ 

I I 
B’GL,S(B) - B’GL,9(B). 
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By the theorem we have just finished proving, the top map is a homotopy 
equivalence. It follows from [41] that the bottom map is a homotopy 
equivalence. Finally, Theorem 5.3.3 asserts that the right-hand map is a 
homotopy equivalence. Three maps in the diagram being homotopy 
equivalences, so is the fourth. fl 

It remains then to prove Theorem 6.1.4. The basic idea behind the proof 
is to construct a model for EL,% which is easily comparable to BGL,%, 
this latter space being acyclic by the results of Section V. We will follow 
[23], where the same ideas are used to show that BGL,98(%‘) is acyclic; 
the technique is credited there to a paper of Segal [48]. For simplicity’s 
sake, we will let B’ denote B@ C[O, 11, and let J’ denote the ideal 
B@ C[O, 1). Fix for the rest of this section a maximal set {e,, e,,...} of 
pairwise orthogonal rank one projections in X. 

DEFINITON 6.1.9. Let us say that a projection PE A!(X 0 B’) is stan- 
dard if it is of the form 

where {e,,, ejz,...} is a countably infinite subset of {e I , e2 ,... }. 
It will be convenient to denote also by P the image of the standard 

projection P in the quotient algebra 2(B’). 

LEMMA 6.1.10. Let P, ,..., P, be standard projections and let d be a 
separable C*-subalgebra of X. There exist standard projections P,! 6 Pi 
which are mutually orthogonal, and for which Pj&P/ = 0, if i # j. 

Proof: Write Pi = c;E, pv, where each pq is some ek 0 1. As a first step, 
we may assume that the Pi are orthogonal, that is, that the pii are distinct 
from one another. In order to define Pi observe first that for every pq, and 
any element XE d/(X@ B’; X OJ’), the element pijX is contained in 
X 0 J’, by definition of J%‘(X @ B’; X 0.7). Next, since in particular, 
piiXe X @ B’, it follows that for any index k, the sequence (PijXPkh}hW=O 
converges in norm to zero as h + CQ. It is convenient to use the reverse 
lexicographic ordering on the set of all pairs (i, j) of natural numbers, 
which is defined as 

(a, b) < Cc, 4 
if b>dor 
if b=dand a<c. 

In our case, the first number in the pair will be limited to 1, 2,..., n. It 
follows that any (i, j) has only a finite number of predecessors in this 
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ordering. Now, let {X,, X,,...} be a countable subset of 
&‘(X @ B’; X OJ’) whose image in X is a dense subset of d. Define 
P( = cj p:/, where each p:/ is chosen recursively from among the projections 
(pi, pi2,... > as follows: 

(i) pi1 =pI1. 
(ii) Having chosen projections pb for all (i, j) < (k, I), choose the 

projection pi, such that 

II P:,JhPb,ll < 2 -‘l+“, 

for all (i, .j) < (k, I) and all h = 1 ,..., I + j, 

(Note that we are only asking each p;, to do a finite number of things, and 
so its existence is not in doubt.) To show that P,!dPh =O, it suffices to 
show that PI X, P; E X @ J’ for every h. We have 

p:x,p; =c Pi/X, c p;/ 
/ I 

=c jc PbX,P;,), 
/ 1 

by continuity of multiplication on bounded subsets in the strict topology. 
All of the terms in this double series are elements of X 0 J’, and apart 
from the finitely many terms for which h > j+ 1, the (i, j)th term is 
bounded in norm by 2-“+“. Consequently, the series converges in norm 
(absolutely, in fact), and so the limit, P: X,, Pi., is an element of ,S @J’. m 

Next, we need a generalization of Theorem 1.1. I 1. 

LEMMA 6.1.11. Let .B? be a separable C*-subalgebra of X, and let 
E, ,..., E,, be separable C*-subalgebras of 3 such that ~2. Ei c E, for all i, 
and E,. Ej = 0, if i # j. There exist elements M, ,..., M, of 9 such that 

(i) Each M, commutes with &. 
(ii) Zf i#j, then Mi. E,=O. 

(iii) For every i, (1 - M,) * Ei = 0. 

Proof: We proceed by induction. The case n = 1 follows from the fact 
that we may find M, E X such that Mx = x = xM for every element .Y of d 
and E, (see Theorem .5.2.1). Suppose then that we are given elements 
M; ,..., M:,- 1 in 57 with the required properties for the C*-algebras 
E E,pl. 1 ,..., Apply Theorem 1.1.11 to the C*-subalgebras 8, , EZ, E, and 9 
of ,4(X @ B’), where: 
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(i) B is a separable C*-subalgebra of A!(X@ B’; X@J’)), the 
image of which in X is the C*-algebra generated by M’, ,..., M:, _, , and d. 

(ii) g, is the C*-algebra generated by XXg B’, along with a 
separable C*-subalgebra of J%‘(X OB’; X 0.7) which maps onto the 
C*-subalgebra of 97 generated by E, ,..., E,- 1. 

(iii) ,!?, is a separable C*-subalgebra of A!(X @ B’; X @J’) which 
maps onto E,. 

(iv) B=X@O. 

Then ,!?,.E,cg and S.&,c8,, and so there exists an element 
BE A’(% @ B’) such that: 

(1) ff annihilates E,, modulo X @J’. 
(2) if? commutes with 8, modulo X @J’. 
(3) 1 - k annihilates E,, modulo X OJ’. 

Condition (1) implies that &E A’(X @ B’; X @ J’). If we let M, denote 
the image of li; in 3, then by conditions (l), (2), and (3): M, commutes 
with d and the M:; (l-M,).E,=O; and M;Ei=O for i=l,...,n-1. 
Define M,, for i = l,..., n - 1, to be (1 - M,)Mi. 1 

THEOREM 6.1.12. Let P, ,..., P, be standard projections and let Y ,,..., Y,, 
be elements of GL,%. There exist proper projections P,! 6 P,, for i= l,..., n, 
and an element Y,,E GL,S?” such that Y,P: = Y,P: for all i= I,..., n. 

We are using P to denote not only a proper projection but also its image 
in %(B’). 

Proof. By Theorem 6.1.3, the group GL,X is connected, and so each Y, 
may be written as a product of exponentials 

y, = eA,~. . e4m (i= l,..., n). 

(By adding some A, equal to zero, we may assume that the number m 
of exponentials does not depend on the index i.) Now, let d be the 
C*-algebra generated by the A,, and choose orthogonal projections 
PI < Pi as in Lemma 6.1.10 such that Pi&P; = 0 if i # k. If Ei denotes 
the C*-subalgebra of X generated by &Pi then Ei. E, = 0 if i # k and 
z.s!. Eic Ei. The hypotheses of Lemma 6.1.11 are satisfied, so let Mi,..., M, 
be elements of 55 as in the conclusion of the lemma. Define 

Y,=fi, (F, eA@q 
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(The ordering of the products is from left to right: thus 
njxj=xlx, . . . x, .) If i # k then by expanding eA@‘l as a Taylor series, we 
see that if XE&‘, or X= 1, then 

eAvMIXP; = XP;. (6.1.3) 

On the other hand, 

(6.1.4) 

which again we can verify by expanding the exponential as an infinite 
series. We now compute Y,P;, 

Y,P;= fi fj eAgMfl P; 
i=l ( ) j= I 

= 'fi' (fi e'r,W) fi eAk,P; 

i= 1 /=I j= I 

j= I 

The second equality above follows from (6.1.3) applied repeatedly, once for 
each eAqM1 with i > k. The third equality follows from (6.1.4) applied one for 
each e.4klMk (where j= I,..., m). The last equality follows from another 
application of (6.1.3). By definition of the A,, we have proved the 
theorem. 1 

This completes the analysis part of the proof of Theorem 6.1.4. From 
here on, things are more algebraic in nature, and we are able to follow 
[23] quite closely. To simplify the notation a little bit, let G denote the 
group GL, 2”. 

DEFINITION 6.1.13. A flag is a decreasing sequence .cP = {P, , P1 ,... ) of 
standard projections such that each PipI -Pi is a standard projection. 

DEFINITION 6.1.14. Let P be a standard projection, and denote by G, 
the subgroup of G consisting of those elements x for which XP = P. If 
B = {P,, P2,...} is flag then denote by G, the subgroup of G consisting of 
all elements x for which xP, = Pi = P,x, for sufficiently large i. 

DEFINITION 6.1.15. Denote by H, the subgroup of G, consisting of 
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elements x for which Px = P = xP. Denote by H9 the subgroup of G, con- 
sisting of those elements x for which Pix = Pi = xPj, for sufficiently large i. 

With respect to the decomposition 1 = P + (1 - P), elements of G, are 
matrices of the form 

1 Y ( ) 0 x ’ 

while elements of H, are of the form 

1 0 ( ) 0 x’ 

We note that the groups G, and H, may be expressed in terms of the 
groups H,, and G, as the direct limits 

H, = (j H,,, (6.1.5) 
r=l 

G, = (‘j G,. (6.1.6) 
,=l 

LEMMA 6.1.16. For any flag 9, the space BH, is acyclic. 

ProoJ: It is clear from the description (6.1.5) that the group H, is 
isomorphic to GL,X. By Theorem 5.2.2, GL, !Z has the same homology 
as GL, A?( B@ C[O, I)). But by Theorem 5.3.2, this last group is acyclic. m 

The next result follows from a computation in group homology using the 
Hochschild-Lyndon-Serre spectral sequence. We refer the reader to [23] 
for a proof, pointing out here only the one addition needed to make the 
proof work in the situation we are considering. 

LEMMA 6.1.17. The inclusion H, c G, induces an isomorphism on 
homology. 

Proof: [23, Lemma 4 and Corollary 51. The following result is proved 
in [23]. Let R be a ring and let G(R) be the subgroup of GL,i? consisting 
of matrices of the form 

1 Y ( > 0 x’ 
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where x is equal to 1, modulo the ideal R of i?;, and y E R. If the action 

of the multiplicative group Q* of the rationals Q on G(R) induces the 
trivial action of Q* on homology, then the inclusion of the subgroup of 
matrices of the form 

into G(R) induces an isomorphism on the level of homology. The paper 
[23 J is concerned with unital rings, but cursory inspection shows that this 
restriction is only used to show that the above action is trivial-because it 
is inner. In our case, the action is trivial for the usual reason: for each 
separable C*-subalgebra d of 3, the action may be duplicated on the 
image of H,(G(&)) in H,(G(:Y)) by an inner, and hence trivial, action, 
namely 

where e’ = J. and ME .“x‘ satisfies 

(1 -M)d=O=,&(l -M). 1 

The next result combines these last two lemmas. 

THEOREM 6.1.18. If 9’ is any flag then the space BG,, is acyclic. 

Proof. By Lemma 6.1.16, it suffices to show that the inclusion of H,9 
into G,? induces an isomorphism in homology. But in view of (6.1.5) and 
(6.1.6), together with the continuity of homology (Lemma 2.5.2), this 
follows from the fact that the inclusion of each H,, into G, induces an 
isomorphism in homology, which is the assertion of Lemma 6.1.17. 1 

We are now in a position to construct a suitable model for the classifying 
space of G= GL,X, and to show that it is acyclic. We can follow [23] 
almost verbatim. Denote by EC the contractible complex appearing in the 
Milnor infinite join model of the classifying space BG (see Sect. 2.5). For a 
flag 9 denote by E9 the subcomplex of EC consisting of all simplices 
(g a,..., gk) such that for large enough i, g,P, = gsP, for every Y and s (in 
other words, g, ‘g, E G, for all r and s). Since G acts on EC by left mul- 
tiplication, it is clear that E, is G-invariant; furthermore, the quotient 
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G\E,q is equal to BG, (see [23, Lemma 91). Indeed, the connected com- 
ponent of the base point in E, is equal to the space EG,, while G acts 
transitively on the components of E,. 

Let E, be the union of the E,9 over all hags. 

LEMMA 6.1.19 [23, Lemma lo]. The space E, is contractible. 

ProoJ: Let 6, ,..., oP be simplices in E, and choose flags B ,,..., PP such 
that rr, E E,Y,. Thus there is some k for which if ui = ( gi ,,..., g,,,) then 

gi, P, = gi, P, = . . . = g,, P, 

for all i = l,..., p. We now apply Theorem 6.1.12 to the standard projections 
P, for i= l,..., p, and the elements Y, = g;, , to obtain standard projections 
Pi d Pik and an element g, E G such that g,, PI = g,P; for all i. It follows 
that for every i, the simplex (g,, gi, ,..., g;,,) is contained in E,. Indeed, it is 
contained in E,;, where the initial projection for the flag S: is Pi, and the 
rest of the sequence of projections is irrelevant (but note that a sequence 
exists since PI is a standard projection). Thus for any cl,..., aP, the space 
E, contains the cone over the subspace a, u a2 u .‘. u aP, and so any 
finite subcomplex of E, is contractible in E,. It follows that E, is contrac- 
tible (see [SO, 7.6.241). 1 

COROLLARY 6.1.20 [23, Lemma 111. The inch&on of B, = G\E, into 
BG = G\EG is a homotopy equivalence. 

Proof: This follows from comparing the homotopy sequences for the 
librations G + EG -+ BG and G -+ E, -+ B,. 1 

Finally, we can turn to the proof of Theorem 6.1.4. We need to make 
note of one or two constructions involving flags. Two flags P and &? are 
orthogonal if the projections P, and R, are orthogonal, in which case the 
sum of 9 and 9 is defined to be the flag 

9@&?={P,+R,,P,+R, ,... }. 

If fl = {P,, ) Pi* )... }, are flags then let us write 3 d q if for every k, 
P, < Pjk. It is easy to see that for any collection 9, ,..., Pn of flags there exist 
pairwise orthogonal flags y’, ,..., SL such that S: d 8, for every i. 

Note that if 8 <q then E, c E,; and also, if 3 and 9 are orthogonal 
flags then E, n E, = E, B +. 

Proof of Theorem 6.1.4. (Compare [23, Theorem 131.) By 
Corollary 6.1.20, it suffices to show that the space B, is acyclic. Since 
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where the union is taken over all flags, and since homology is continuous, 
it suffices to show that for any finite set of flags 9, ,..., Pn’,, the space 

BG,?, v ” ’ v BG, 

is contained in an acyclic subspace of B,. Choose flags 9; < q. such that 
.???‘I is orthogonal to .Y,!, if i# j. Since BG,;z BG,, it suffices to show that 

BG,P; v . ‘. v BG,/; (6.1.7,) 

is an acyclic space. This we do by induction on n, the case n = 1 following 
from Theorem 6.1.18. It is convenient to suppose a little more, and so here 
are our induction hypotheses: we suppose that the space (6.1.7,) is acyclic 
for any IZ orthogonal flags, and furthermore, that if B is any flag 
orthogonal to all the 9”:. then the space 

(6.1.8,) 

is acyclic. Note that this vacuously true for n = 1. Given these two 
hypotheses, we prove the acyclicity of first (6.1.8,+ ,), and then (6.1.7,+ 1). 
The two spaces BG,; o /p v . ‘. v BG,9;m, o ,P and BG,,;@ d are acyclic, as is 
their intersection 

BG .~;oc;ip,o.y)u ... uBG,r “e,Q(.P,Q.91. 

It follows from the Mayer-Vietoris sequence that their union is acyclic as 
well. But the union is 

BG .~;o.‘pv ... vBG,~~,,- n 

which is the space (6.1.8,+ ,). The acyclicity of (6.1.7,+ ,), follows from the 
Mayer-Vietoris sequence for the pair of acyclic spaces 

BG,,; u ... v BG,g; 

whose intersection is 

and BG;+, 

BG ,P;oP,+, v ... vBG,;o.p;,+,, 

which is the acyclic space (6.1.8,+,). 1 

6.2. Unitary Groups 

Let A be a C*-algebra. Denote by UA the subgroup of GLA consisting 
of all unitary matrices. We want to make a remark or two about proving 
the following result. 
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THEOREM 6.2.1. If B is a o-unital C*-algebra then the natural map 

a: BdU2(B)+ + B’U2(B)+ = B’U9(B) 

is a homotopy equivalence. 

Here, Bd denotes the classifying space, considering WA as a discrete 
group, and B’ denotes the classifying space, considering UA as a 
topological group in the usual way. We should make a remark about the 
latter construction. The family of maps 

F,: xHXI.YI~‘(t+(l-t)l?Cl) (xEGLA) 

from GLA to itself, parametrized by t E [0, 11, is a homotopy from the 
identity to a retraction of GLA onto UA. It follows of course that the 
inclusion UA 4 GLA is a homotopy equivalence, and from this it follows 
that the natural map B’UA + B’GLA is a homotopy equivalence. In par- 
ticular, xI(BfUA)=K;(A), which is abelian, and so B’IJA? B*UA+, and 
the natural map mentioned in the theorem makes sense. 

The proof begins by identifying the maximal perfect subgroup of U2(B). 
For this we simply appeal to [24], in which is proved a unitary version of 
Theorem 2.4.7: if A is a stable C*-algebra then the connected component of 
the identity in UA is perfect (see [24, Proposition 7.61). On the other 
hand, the quotient UA/@A is equal to K,(A), which is abelian, so that 
VA contains the commutator subgroup. Therefore PA is equal to 
[UA, UA], which is, in turn, equal to PUA. These results are proved for 
stable C*-algebras; they hold, and the same proofs work equally well, for 
C*-algebras of the form 2(B). Hence the maximal perfect subgroup of 
U2(B) is what it should be, and the spaces BdU2(B)+ and B!US?(B) have 
the same fundamental group. From here on, the proof of Theorem 6.2.1 is 
exactly the same as the proof of Theorem 5.3.3: the reader can see for him- 
self that throughout Section V we may substitute US(B) where ever 
GLS?(B) appears, with no ill effect. 

The result of the previous section holds for the unitary group in place of 
GL,. In fact, the proof becomes in one respect a little simpler: the groups 
G, and H, are equal, and so the spectral sequence argument 
(Lemma 6.1.16) is not needed. However, it is somewhat more complicated 
to show that the group US? is perfect (see [24]). 

6.3. Karoubi-Villamayor Theory 
The basic reference for this section is the paper [32] by Karoubi and 

Villamayor. We will use the following notation throughout this section: if R 
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is any ring then R[t i,..., t,] will denote the ring of polynomials in the 
(commuting) indeterminates t, ,..., t,, with coefficients in R. All rings will be 
considered as discrete. 

DEFINITION 6.3.1 [32, Definition 3.51. An element XE GLR is said to 
be connected to the identity if there exists an element .? E GLR[t] such that 
1(O) = 1 and .f( 1) =x. Denote by GL’R the set of all elements connected to 
the identity. 

It is easily verified that GL’R is a normal subgroup of GLR. As we 
pointed out in Section II, every elementary matrix e’, is connected to the 
identity by the part e;,!. Thus, for example, if R is a unital ring, then since 

[GLR, GLR] = ER c GL’R, 

it follows that the quotient GLR/GL’R is abelian. In fact, this last result is 
true for any R (see [32, Theorem 3.6)). 

DEFINITION 6.3.2. Denote by KV,(R) the quotient group GLRIGL’R. 

This is a natural enough algebraic analog of the topological K,-group 
defined in Section II. The higher KV-groups are defined by means of a loop 
space construction, also motivated by topological considerations. 

DEFINITION 6.3.3 [32, p. 2691. Denote by QR the ideal in R[t] 
consisting of all polynomials f such that f(0) = 0 = f( 1). Define WR 
inductively by WR = Q(JY- ‘R), and S2’R = SZR. 

DEFINITION 6.3.4. Denote by IO’,(R) the group KV,(SZHP ‘R). 

The higher KV-groups are related to KV, by means of a long exact 
sequence analogous to the long exact sequence of topological K-theory. As 
in the topological case, we need to introduce a suitable notation of 
fibration. 

DEFINITION 6.3.5 [32, Definition 2.21. A ring homomorphism cp: R -+ S 
is called a CL-fibration if, for every /I E GLS[t, ,..., t,] such that 
b(O ,..., 0) = 1, there exists an element a E GLR[t, ,..., t,] such that cp(a) = 8. 

This definition should be compared with the hypothesis of Lemma 2.1.7. 
Suppose that R is a C*-algebra. Then R[t,,..., t,] embeds in R@ C(F) 
(where I denotes the unit interval) as the subring of all polynomial 

607!67!1-9 
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functions from I” to R. The hypothesis of Lemma 2.1.7 is that any 
continuous function /I from I” to GLS, such that fl(O,..., 0) = 1, lifts to a 
continuous function CI: I” + GLR. If cp: R + S is a GL-fibration then any 
polynomial function p such that fl(O,..., 0) = 1 lifts to a polynomial function 
c(: I” + GLR. Going back to general rings, by following the argument of 
Theorem 2.1.5, we can prove the following result. 

THEOREM 6.3.6. If cp: R + S is a GL-fibration then given any elements 
/? E GLS[t,, t, ,..., t,] and CC,, E GLR[t ,,..., t,] such that ~(a,,) = /?(O, t ,,..., t,), 
there exists an element u E GLR[t,, t, ,..., t,] such that q(u) =/I andfurther- 
more, a(0, t, ,..., t,) = dfl,..., t,). 

In other words, every CL-fibration is an “algebraic Serre fibration.” 
Now, every GL-libration cp: R -+ S is onto (see [32]). If J is the kernel of 
cp, then from the short exact sequence 

O+J-+R+S+O, (6.3.1) 

we obtain a long exact KV-theory sequence 

... -KV,(R)+KV,(S)* KV,p,(J)+KV,_,(R)+ ..’ 

in a manner exactly analogous to the construction of the long exact 
homotopy sequence associated with a Serre fibration. Let us describe the 
boundary map for the case n = 2. As in the topological case, we can get the 
higher boundary maps a: KV,,(S) -+ KV,- 1(J) by identifying KV,,(S) and 
KV,-,(J) with KV,-,(QS) and KV,_,(SZJ), respectively (if R+ S is a 
GL-libration then so is QR + QS-see [32, Proposition 2.101). Given an 
element b E GLSZS c GLS[ t], we lift to an element CI E GLR[ t] such that 
a(O)= 1. Then we define a[j] = [a(O)]. See [32, Sect. 41 for further 
details. Jumping a little bit ahead, suppose that the exact sequence (6.3.1) is 
an exact sequence of C*-algebras. We map the algebraic 52” into the 
topological one as the polynomial functions into the continuous functions, 
and then we obtain the commutative diagram 

KV,(R)-+ KI/,(S)A KV”_,(J)- KV,(R) 

” ;iS) -% K):(J) Ia 

(6.3.2) 

K:(R) - - KL ,(R) 

comparing long exact sequences in KV-theory and topological K-theory. 
This sets the stage for a reduction of dimensions argument to show that 
CX: KV,(X @A) -+ K;(X @ A) is an isomorphism for all n, which is the goal 
of this section. We must do the following: 
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(i) Show that A H KV,(X 0 A) is stable. 
(ii) Show that it is split exact. 

(iii) Show that X 0 A + JK @ A/J is a GL-iibration. 
(iv) Show a: KV,(X 0 A) -+ Ki(3? 0 A) is an isomorphism. 

We will need to use the fact that the functor KV, is homotopy invariant 
in the obvious algebraic sense: 

LEMMA 63.7 [32, Proposition 4.31. The homomorphisms E,,, E, : 
R[t] -+ R, given by evaluation at t = 0 and t = 1, induce the same map from 
KV,(R[t]) to KV,(R). 

The result is neither surprising nor difficult to prove, given the definition 
of KV,. 

THEOREM 6.3.8. If J is an ideal in a ring B and XE GLB, then con- 
jugation with X is an automorphism of GLJ which induces the trivial 
automorphism of KV,(J). 

Proof: We may assume that B is unital. Suppose first that X is an 
elementary matrix et.. Define a map 

GLQ’A -+ GLPA[t] 

byf(t,, f2,..., t,)++e$‘f(t,, t2,..., t,) e,yrh. Then composition with evaluation 
at t =0 gives the identity map on GLWA, whilst composition with 
evaluation at t = 1 gives conjugation with X on GLPA. Therefore, by 
Lemma 6.3.7, conjugation with X gives the identity map on KY*(A). It 
follows that the whole of the commutator subgroup [GLB, GLB] acts 
trivially on KV,(A). Given an arbitrary X and an elementfE GLQ’A, since 
f is contained in some GL,R”A, it suffices to show that X acts trivially on 
the image of each GL,O”A, where k = 1,2,... . But for some I, XE GL,B, 
and we may assume that l> k. Then the action of X on GL,Q”A is equal to 
the action of ({ $ ,) on the same, and by what we have already shown, this 
passes to the trivial action on KV,(A). 1 

THEOREM 6.3.9. The functor A H KV,(X 0 A) is split exact and stable. 

Proof: Suppose that 

is a split exact sequence of C*-algebras and *-homomorphisms. We claim 
that p: A!‘@ A + X @ A/J is a GL-fibration. We must show that if B is an 
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element of GLX @ A/J[ t I ,..., t,], and if b(O ,..., 0) = 0, there is some 
tl E GLX 0 A [t, ,..., t,] such that p(a) = /I. But in fact any /I lifts to some a, 
namely, for example the element a = s(b). As for stability, we apply the 
usual technique: by identifying .%?@&‘-@A with MJX@O) 
appropriately, we see that it suffices to show that the inclusion of a ring R 
into the top-left-hand corner of M,R induces an isomorphism 
KV,(R) -+ z KV,(M,R). Define an isomorphism of groups from 
GLQ’M, R to GLWP by identifying in the obvious manner GLkWM,R 
with GL,,WR. Then the composition 

GLQ”R + GLWM, R a GLQ’R (63.3) 

is the endomorphism of GLWR given by mapping the nth row/column to 
the 2nth row/column. On the subgroup GL,Q”R c GLSZ”R, this coincides 
with conjugation by a 2k x 2k permutation matrix. Consequently by 
Theorem 6.3.8, (6.3.3) gives the trivial map on KV,, and therefore the map 
R + M,R induces an isomorphism from KV,(R) to KV,(MzR). 1 

COROLLARY 6.3.10. The functor A H KV,(XQA) is homotopy 
invariant. 

Next, we turn to the problem of showing that short exact sequences of 
stable C*-algebras are GL-tibrations. 

LEMMA 6.3.11. For any P-algebra A, the maps 

&0,&l: K,(XQA[r,,t, ,..., ~,])-K,(XQA[C~, ,..., t,]), 

given by evaluation at to = 0 and to = 1, are equal. 

Here, K, denotes the ordinary algebraic K, functor, as defined in 
Section II. 

Proof. It is easily verified that the functor 

A -K~(XQAL-C~~,..., t,l) 
is stable, and split exact (the latter fact follows from Theorem 2.4.14; the 
former by the same sort of computation that we have just completed). Con- 
sequently, it is homotopy invariant. Consider then the commuting diagram 

K,(XQAACCCO, llCtl,..., f,l) 

i/‘k 
K,(X@A[t,, tl,..., ‘J)T K,(XXAAlt,w &I), 
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where the map cp: %” 0 A[&,] + X @ A @ C[O, l] sends the indeterminate 
t, to the canonical generator x ++ x of C[O, I], and the maps e, are 
evaluation at i=O, 1. Since e, =el it follows that s0 

l t  
=si 

* t .  
1 

LEMMA 6.3.12. For every C*-algebra A, the map 

O,:K,(XOA[t I,... , t,l)-,K,(XOA), 

is an isomorphism, where l9 is given by evaluation at (t, ,..., t,) = (0 ,..., 0). 

Proof Define a map II/:X@A[t, ,..., t,]+X@A[t,, t ,,..., t,] by 

t;Ht()ti+(l-t()) (i= l,..., n). 

Composition with the map from X @Art,, t, ,..., t,] to X 0 A[t, ,..., t,] 
given by evaluation at t, = 1 gives the identity map on X @ A[t, ,..., t,], 
while composition with evaluation at to = 0 gives the map 

-fOA[t,,..., [,,I -f-+ X@AciXOA[t ,,..., t,]. (6.3.4) 

It follows from Lemma 6.3.11 then, that (6.3.4) passes to the identity map 
on the group K,(X 0 A[t, ,..., t,]), since it is algebraically homotopic to 
the identity. The reverse composition of the two maps in (6.3.4), 

X@A+X-@OAtI,..., t,,]-r, XXA, 

is the identity, and so it follows that 8* is an isomorphism since the 
homomorphism K,(X@A)-tK,(X@A[t,,..., t,]) is an inverse. i 

THEOREM 6.3.13. (Compare [32, theoreme 2.61.) Zf R is any ring then 
any surjection R -+ X 0 A is a GL-fibration. 

ProoJ Suppose that XE GLXO A[t ,,..., t,] and X(0 ,..., 0) = 1. Then, 
of course, X determines the trivial element of K,(X @ A) via the map 8, of 
Lemma 6.3.12. Consequently, X determines the trivial element of 
K,(X@ACt,,..., t,]), since by the lemma, 8, is an isomorphism. Thus we 
may express X as a product of elementary matrices e& and since each 
elementary matrix lifts to GLR (to an element of the form e;, where r maps 
onto a), it follows that X lifts to some element in GLR-the product of the 
liftings for the e;, for example. 1 

THEOREM 6.3.14. The natural homomorphism 

cx: KV,(X@A)+K’,(X@A) 

is an isomorphism. 
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Proof Since c1 commutes with the boundary maps in the long exact 
sequences for Ki and KV,, by examining the long exact sequences for the 
short exact sequence 

0+x@A@C[O, l]+X@OAOC[O, l)+X@A+O 

we see that the result for a: KV,, --f Kf, follows from the result for 
cc: KI/,p, -+ K;-,. So to prove the theorem it suffices to show that the map 
~1: KV,(X @A) + K;(X@ A) is an isomorphism. In other words, we must 
show that GL”X@ A, as given in Definition 6.3.1, is equal to the 
topological connected component of the identity. Clearly it is contained in 
the topological connected component of the identity. On the other hand, 
we have observed that the algebraic CL0 contains the commutator sub- 
group, and since in the case of a stable C*-algebra the commutator 
subgroup is equal to the topological connected component of the identity 
(by Theorem 2.4.6), the result follows. 1 

6.4. Mod p K-Theory 

We wish to indicate very briefly how our techniques may be used to 
prove the following result of Karoubi [313. 

THEOREM 6.4.1 [31, theoreme 2.41. Zf A is any C*-algebra then 

K,(X@A;Z/p)rK’,(X@A;Z/p). 

The functors K,(.; Z/p) and K’,(.; Z/p) denote respectively algebraic 
and topological K-theory with coeffkients in the group Z/p of integers 
modulo p. We do not want to go into the details of this; however, at least 
some words of explanation are in order. For n > 2, the mod p homotopy 
groups n,(X; Z/p) of a space X are defined to be 

Gc Z/P) = CWUP), Xl, 

where [., .] denotes the set of homotopy classes of maps, and P”(Z/p) is 
the space obtained by attaching an n-cell to S”- ’ by a degree p map 
s”-’ + S”-‘. For details the reader is referred to [SS], and the references 
therein. For n 2 2 then, we define for a unitaf C*-algebra A, 

K,(A; Z/p) = z,( BdGLA +; Z/p), 

K;( A; Z/p) = q,( B’GLA; Z/p). 
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For n = 1 a slightly different definition is desirable; we are not going to give 
it here, but at any rate, there is a universal coefficient sequence 

O+K,,(A)OZ/P+KSA; Z/P) -+Tor,(K,- ,(A), Z/p)-+0 

and a similar sequence in topological mod p K-theory, by means of which 
we may compare K,(A; Z/p) with K;(A; Z/p). Again, we refer the reader to 
[55] for details. For our purposes it really suffices to work with indices 
n > 2 anyway. Now, for a non-unital C*-algebra, we define &,(A; Z/p) to 
be the kernel of the map K,(a; Z/p) --t K,(C; Z/p), where A denotes the 
C*-algebra obtained by adjoining a unit to A. The proof of Theorem 6.4.1 
follows almost immediately from our techniques and the following result. 

THEOREM 6.4.2 [55, Theorem 1.21. If 0 -+ A + B -+ C -+ 0 is a short 
exact sequence of C-algebras then there is a long exact mod p K-theory 
sequence 

. ..K.(B;Zlp)-rK,(C;Zlp)-,K,~,(A; Z/p)+~,~,(~;z/p)+ . . . . 1 

Given a fibration there is always a (functorial) long exact mod p 
homotopy sequence. The point of the theorem is that in the case of the map 
BdGLB+ + BdGLC+, the mod p homotopy of the homotopy libre is 
identified. 

Sketch of the Proof of Theorem 6.4.1. It follows from the universal coef- 
ficient sequence and the corresponding fact in ordinary algebraic K-theory, 
that if A is unital then the natural map A + M,A induces an isomorphism 
in algebraic mod p K-theory. By the definition for non-unital A, the result 
is true for these algebras too, and so by the usual argument we see that the 
functor A H K,(X @ A; Z/p) is stable. It follows from Theorem 6.4.2 that 
it is also split exact. Therefore it is homotopy invariant. The theorem now 
follows by reduction of dimensions to either n = 1 or n = 2, where we know 
the result to be true by virtue of the universal coefficient theorem and 
Theorems 2.4.6 or 4.2.7. (We note that in order to be able to reduce dimen- 
sions, the technical Theorem 2.6.12 is needed to ensure that the transfor- 
mation CI between algebraic and topological theories commutes with the 
boundary maps d-compare the proof of Theorem 5.3.3.) 1 

As Karoubi [31] observes, the following result can be proved from the 
above theorem. We denote by H,(.; Z/p) homology with coefficients in 
ZIP. 

THEOREM 6.4.3 [31, corollaire 2.83. Zf A is any C*-algebra then 

H,( BdGLX @ A; Z/p) z NJ B’GLX @ A; Z/p). 
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6.5. A Conjecture 
We end with the following conjecture. 

If A is any F-algebra then for every n = 1,2,... the natural map 

is an isomorphism. 

It is natural enough to expect that this is true, given the results of this 
paper. We have shown in Sections II and IV that it is true for n = 1 and 
n = 2, and we can allow ourselves the case n = 0 as well. The results of Sec- 
tion V assert that the conjecture is true if K,(X @ A) is replaced by a 
suitable relative group. Altogether, this seems to be reasonably substantial 
evidence of its veracity. 

As the reader will have guessed, the proof comes down to proving good 
excision results for the algebraic K-theory of stable C*-algebras. This, 
however, is much easier said than done. The case n = 1 is easy enough, as 
we saw in Section II. The case n = 2 is a good deal more complicated, as we 
saw in Section IV. Further progress along the line we have been taking 
requires a reasonably concrete definition of the group K3. While such a 
definition exists, the computations involved in establishing the results we 
need would appear to be many orders of magnitude more complicated than 
those of the K, case (supposing they are accessible at all). It is clear 
another approach is needed, or at least, the approach used so far must be 
made much more systematic. 
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