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A Primer on K K-Theory

NIGEL HIGSON

Introduction. The purpose of this article is to acquaint the reader with G.
G. Kasparov’s K K-theory for C*-algebras. I have tried to avoid writing for
the C*-algebra specialist, and I hope that the paper will serve as a useful
introduction to the subject for mathematicians from other areas, particularly
those with some familiarity, or at least interest in, the index theory of elliptic
operators.

The prerequisites for reading the article are roughly as follows. Not much
C*-algebra theory beyond the very basics (say, the first chapter of [38]) is
needed. One or two additional topics are rapidly introduced at the beginning
of Section 1. (Of course, to develop all the details of the theory somewhat
more background in functional analysis is required.) I shall assume that the
reader is familiar with K-theory for compact spaces. The first two chapters of
Atiyah’s book [1], together with the appendix, cover the necessary material.
In Section 2 of this paper I shall outline the basic properties of C*-algebra
K-theory, using [1] as a guide of what to expect. The other main requirement
is some knowledge of the theory of pseudodifferential operators, as it relates
to index theory for elliptic operators. The reader familiar with, say, Sections
5 and 6 of [4] will have all the necessary background. Pseudodifferential
operators will not make any explicit appearance in the theory we develop
(they appear only in the examples), but all of the techniques are motivated by
the constructions involving pseudodifferential operators which appear in the
proof of the Atiyah-Singer Index Theorem. In fact one can regard K K-theory
as a generalization of these constructions to situations where the underlying
space is no longer a smooth closed manifold but is some sort of “singular
space,” represented by a C*-algebra (say, for example, the C*-algebra of a
discrete group, representing the space of representations of the group).
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The key idea in KK-theory is that (families of) elliptic operators give rise
to maps between K-theory groups. This basic principle is due to Atiyah (see
for example [2] and [3]), and has been broadly extended by Kasparov to
what might be called “generalized elliptic operators”. The construction alone
is a very powerful tool in the computation of K-theory groups, but the full
power of Kasparov’s theory lies in a remarkable “composition formula” for
generalized elliptic operators. Thus given generalized operators F; and F,
giving rise to maps K(A4) — K(B) and K(B) — K(C) in K-theory, Kasparov
gives a formula for an operator F\#F, which induces the composition map
K(A) — K(C). The formula for Fi#F, is rather complicated, but it is nev-
ertheless possible to work it out in many important cases, and so to deduce
results in K-theory. For example, in many situations one has 4 = C, and by
computing Fi#F> and F>#F), one can show that the maps between K(A4) and
K(B) induced by F; and F; are inverse to one another. The bulk of the arti-
cle is devoted to explaining these things. In Section 3 I give a description of
K-theory (which is also due to Kasparov) in terms of “generalized Fredholm
operators.” This is a fairly simple context in which to introduce the basic
technical devices in Kasparov’s theory (Hilbert modules, Fredholm operators,
tensor products). Following this, Kasparov’s generalized notion of elliptic
operator is given in Section 4, and the product construction is described in
Section 5. In Section 6 I briefly describe the theory for selfadjoint operators.

My lecture at the New Hampshire meeting was concerned with the ho-
mological properties of KK-theory, and in particular with what Paul Baum
calls my “polemic against K K-theory.” The point, roughly speaking, is that
although Kasparov’s theory is a powerful calculus for solving questions in
K-theory, there are some important applications in which it fails. Some dis-
cussion of this, along with speculation on the possibility of improving Kas-
parov’s theory, is given in Section 7. I have also included a brief discussion
on how to characterize K K-theory from a homological point of view, since
this is a question often asked by newcomers to the subject.

Although it is not possible to include many details in an article such as
this (and it would not really be desirable to do so anyway), I have tried to
write a paper which could be used as a framework for learning the subject
fully. Results marked as “Propositions” are more or less straightforward, and
the interested reader can probably find the proofs for himself or herself. In
any case, references are given for these as well as the harder results (labelled
“Theorems”). I have included a number of examples of the basic construc-
tions of Sections 3, 4, and 5; my hope is that the reader who works through
these will come to have a good grasp of what the theory is about. However,
this is only a primer, and in particular I have not discussed in any detail at all
any of the serious applications of the K K-machinery. The notes in Section
7 are intended to guide the reader who wants to venture into the literature.

I would like to thank the great many people with whom I have had dis-
cussions and seminars on K K-theory. In particular I thank the participants
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(victims) of the seminar on KK-theory at the University of Warwick in the
Fall of 1986, especially my host David Evans. This article is, in parts, a
revision of the notes [23] produced from those lectures.

1. C*-algebras. There are one or two constructions involving C*-algebras
which will come up in the course of these notes. Although they are quite
elementary they go beyond the basics of the subject as mentioned in the in-
troduction, and so for the reader’s benefit we shall say something about them
here. Following these brief remarks we will describe some of the families of
C*-algebras which are of interest from the point of view of K-theory and its
applications. We should mention right away that all of the C*-algebras A4,
B, etc., that we consider will be assumed to be separable. This is a necessary
assumption at one or two points later on in the theory.

1.1 Tensor products. The tensor product 4; ® A, of two C*-algebras (to be
precise, the minimal tensor product) is constructed as follows. Represent 4,
and A, as algebras of operators on Hilbert spaces H; and H,. There is then
a representation of the algebraic tensor product 4, ® 4, on the Hilbert space
tensor product H, ® H,, and 4, ® A, denotes the completion with respect to
the operator norm on H; ® H,. This is independent of the initial choice of
representations (see for example [31] for details). If 4; = Co(X) then 4, ® 4,
is isomorphic to the C*-algebra of continuous functions on X, with values in
A,, vanishing at infinity. If 4} = Cy(X)) and 4, = Cp(X3) then 4; ® A, is
isomorphic to Co(X; x X3). We shall frequently make these identifications.

1.2 Multiplier algebras. If A is any C*-algebra then the multiplier algebra
of A, denoted M (A), is the C*-algebra which is characterized by the following
two properties:

(i) M(A) contains A4 as a (closed, two-sided) ideal; and
(ii) if B is any C*-algebra containing A4 as an ideal then there is a unique
*-homomorphism from B to M(A4) which is the identity on A.

To obtain M(A4) more concretely, faithfully, and nondegenerately, represent
A as operators on a Hilbert space H; then M(A) is (canonically isomorphic
to) the largest C*-algebra of operators on H which contains 4 as an ideal.
(When we say that an operator “determines” an element of M(A), we shall
mean via this characterization.)

Here are the two basic examples. If A = Co(X) then M(A) is isomorphic
to the C*-algebra of all bounded continuous functions on X. If A4 is the C*-
algebra of compact operators on a Hilbert space then M (4) is the C*-algebra
of all Hilbert space operators. It is generally useful (in K-theory at least)
to think of elements of M(A4) as being “bounded” operators in some sense,
and elements of A4 as being “compact” (compare for example Paragraph 3.14
below). The C*-algebras M(A) violate the one rule we have made so far:
they are not separable. See [9] and [38] for further details.
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1.3 Stable C*-algebras. Denote by Z the C*-algebra of compact operators
on a separable Hilbert space. A C*-algebra A is said to be stable if it is
isomorphic to 4 ® Z. Since it is easily checked that ¥ ® # = .7, every
C*-algebra of the form 4 ® % is stable. The process of passing from 4 to
A®Z is often referred to as stabilization. This turns out to be an operation
of intrinsic importance in K-theory. (It is also very closely related to a C*-
algebraic notion of Morita equivalence, which in turn is of importance in
analysing the structure of C*-algebras, particularly those C*-algebras related
to actions of groups on spaces. We shall not make any use of this here, but
the reader is referred to [39] for a survey.)

1.4 Homotopy. We shall use the following standard notion of homotopy
for C*-algebras. Two *-homomorphisms fy, fi: 4 — B are said to be ho-
motopic if there exists a family of *-homomorphisms f;: 4 — B (¢ € [0, 1]),
connecting fo and f), which is continuous in the sense that for each a € 4
the map ¢ — fi(a) is norm-continuous. This agrees with the usual notion of
homotopy if 4 = C(X) and B = C(Y) (recall that a *-homomorphism from
A to B corresponds here to a continuous map from Y to X).

These brief preliminaries dispensed with, we turn to some examples.

1.5 Families of smoothing operators. Let X be a smooth, closed manifold
and denote by 2 the algebra of smoothing operators acting on L2(X) (we
must specify some smooth measure on M). These are operators of the form

Kf(x)= [X Je(ox, x) £(x') dx

where k(x, x') is a smooth function on X x X. The algebra 2 is not complete
(in the operator norm on L2(X)). The completion is nothing more than the
C*-algebra of compact operators on L2(X).

We can generalize this example to include a parameter space, as follows.
Let Z be a compact fibre bundle with base space Y and fibre a smooth closed
manifold X (as described in [5]). Denote by G the “graph” of Z:

G={(z1,22) € Z x Z|n(z,) = n(z3)},

where n: Z — Y is the projection onto the base space. A smooth function &
on G corresponds to a smooth family of smooth kernels {k,(x,x’) | y € Y}
on the fibres of Z, from which we obtain a family K = {K, | y € Y} of
smoothing operators, acting on the family of Hilbert spaces {L%(X,) | y € Y}.
These families form an algebra, and the completion of it with respect to the
norm

Kl = sup |,
yeyY

is a C*-algebra Zy. It might at first seem that #Zy depends in some interesting
way on the topology of the fibration, but this is not so: %y is in fact *-
isomorphic to the C*-algebra C(Y)®.% . The basic reason is that the bundle
of Hilbert spaces {L?(X,) | y € Y} over Y is trivializable (the appropriate
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structure group is the group of unitary Hilbert space operators in the strong
operator topology, and this is easily seen to be contractible). The details are
left as an interesting exercise for the reader.

The C*-algebra %y is of interest from the point of view of index theory
because if D = {D, | y € Y} is a continuous family of order zero elliptic
pseudodifferential operators as in [5, Section 1] then D determines an element
of the multiplier algebra of Zy (as can be seen by representing Zy on the
large direct sum @,y L?(X})). In fact, by virtue of ellipticity, D is invertible
modulo Zy, in the sense that there exists a “parametrix” Q € M(Zy) such
that 1 —- QD € #y and 1 — DQ € F#y. As we shall see in the next section,
it follows that D determines an element of the C*-algebra K-theory group
K(Zy). We shall also see that since Zy = C(Y) ® %, the K-theory group
K(Zy) is isomorphic to the topological K-theory group K(Y); the element
of K(Y) so obtained from D is the analytic families index of D = {D,} as in
[5].

In this example, and in the next two, we could equally well consider oper-
ators acting on sections of bundles, rather than scalar differential operators,
by replacing L2-spaces of functions with L2-spaces of sections of the vector
bundles. The C*-algebras involved would be the same, up to isomorphism
(canonical at the level of K-theory).

1.6 Smoothing operators and foliations. There is a generalization of the
above construction which leads to rather more interesting C*-algebras. (The
reader is referred to [10] for details as well as to the recent survey article [42].)
Let M be a compact foliated manifold, and for simplicity let us suppose that
the foliation has no holonomy (see [20]; for example, this is so if M is foliated
by the orbits of a free action of a connected Lie group, or if the foliation is
analytic). The graph G of the foliation, consisting of all pairs (m,m’) €
M x M such that m and m’ are in the same leaf L € M/ of the foliation,
has a natural smooth manifold structure. A smooth, compactly supported
function k& on G gives rise to a family of operators K = {K, | L € M/F}
acting on the family of Hilbert spaces {L%(L) | L € M/} by the formula

Kuf(m)= [ klm,m) () dnr.
m'el
(We are supposing that we have fixed a smoothly varying (in the appropriate
sense) family of smooth measures on the leaves of the foliation.) These
families form an algebra, and the completion with respect to the norm || K|| =
sup; ||K¢| is a C*-algebra, denoted C*(M,5 ). It is the foliation C*-algebra
of A. Connes. If the foliation is obtained from a fibre bundle as in Paragraph
1.2, then the graph G is exactly the graph of the fibre bundle as above and
C*(M,%) is equal to the C*-algebra Zy = C(Y) ® Z. However, if the
leaves L are not closed subsets of M, then the operators K; will no longer be
necessarily compact, and more interesting C*-algebras arise. For example, in
the case of the Kronecker foliation of the Torus R2/Z2 by lines of irrational
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slope 8,C*(M,5) is *-isomorphic to 4y ® & where Ag is the C*-algebra
generated by two unitaries U and V which satisfy the relation UV = 2?0y U
(this is called the “irrational rotation algebra”).

The C*-algebra C*(M,5) plays a role in index theory analogous to the
role of Zy above. Thus an order zero pseudodifferential operator D operating
in the leaf direction and leafwise elliptic (see [10]) determines an element of
the multiplier algebra of C*(M, %) which is invertible modulo C*(M, %),
and so determines an element of the K-theory group K(C*(M,¥)). This
is the analytic index of D; the Longitudinal Index Theorem of [11] gives a
topological formula for it in the spirit of the proof of the Index Theorem in

[4].

1.7 Invariant smoothing operators. Suppose that N is a Galois covering
of a compact manifold M, with covering group z. Consider the C*-algebra
of operators on the Hilbert space L?(N) generated by operators given by
kernel functions k(x, x’) which are (i) n-invariant: k(gx, gx') = k(x, x') for
g € m; and (ii) supported within a finite distance of the diagonal in N x N
(as measured by some m-invariant metric on N). It turns out that this C*-
algebra is *-isomorphic to C;(n) ® %, where C;(n) denotes the completion
of the complex group algebra Cx, considered as an algebra of operators on
the Hilbert space ¢2z (this is the “reduced C*-algebra of 7). An order
zero elliptic operator D on M lifts to a z-invariant operator on N, and in
a manner similar to the above examples, D determines an element of the
K-theory group K(C;(n) ® %) = K(C} (n)).

Taking for example N to be the universal covering space of M, we see that
an elliptic operator on M has not only an integer-valued index but also an
“index” in the group K(C;(m; M)). The operation of assigning to an elliptic
symbol the index of the associated elliptic operator gives a homomorphism

Index,: K(T*M) — K(C*(m; M))

(compare the construction of the analytic index map K(7*M) — Z in [4]).
The analysis of this construction is one of the most important applications
of Kasparov’s K K-theory, for the reasons we shall indicate at the end of the
next paragraph.

1.8 Vector A-bundles. Apart from arising as algebras of smoothing oper-
ators, there is an interesting geometric construction which more directly in-
volves C*-algebras (it is however closely related to the discussion above). Let
A be a unital C*-algebra. A vector A-bundle over a space X is a locally trivial
bundle of finitely generated projective right 4-modules (the structure group
is the group of 4-module automorphisms of the fibre). One should think of
such a bundle as being a sort of generalized vector bundle, where the scalars
are now elements of A instead of complex numbers. Their theory is worked
out by A. Mishchenko and A. Fomenko in [36] (see also [35] and [25]). In
particular, if E) and E, are smooth vector 4-bundles over a smooth closed
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manifold then there is a natural notion of “pseudodifferential 4-operator”
D:T™(Ey) —» I'™°(Ey),

mapping smooth sections of E, to smooth sections of E; (reducing to the
usual notion if 4 = C). An elliptic pseudodifferential A-operator has an
index in the group K(A4).

Here is the basic example in the theory. Let 4 = C;(m; M) and let & =
m M act on A by left multiplication; we can then form the bundle

E”=HXRA

(A7 is the universal covering space and E; is the quotient of Mx A by the
diagonal action of #). This is a vector 4A-bundle over M; in fact E, is a flat
bundle over M. Whilst flat vector bundles tend to be topologically trivial,
this “infinite-dimensional” bundle is definitely nontrivial, and we can use it
to construct in a different way the K-theory homomorphism Index, of the
previous paragraph. Indeed, starting with an elliptic operator D on M we can
lift D to act on sections of E,, and taking the index of this elliptic pseudo-
differential C; (n)-operator we obtain the element Index; (D) of K(C;} (7, M)).
Now, if & is any discrete group then there is a canonical map

B: Ko(Bm) — K(C;/ (n))

from the K-homology of the classifying space Bn to the K-theory group
of C; (=), introduced by Kasparov [26] and Mishchenko [35). If Brx is a
manifold M then this is related to the map Index, by a Poincaré duality
isomorphism between Ko(M) and K°(T*M). There are various conjectures
about this map, of which we shall mention two:

Strong Novikov Conjecture. The map f is injective, modulo torsion.
Baum-Connes Conjecture. If @ is torsion free then the map g is an
isomorphism.

See [29], [6]. The Strong Novikov conjecture would imply the generalized
Novikov conjecture on higher signatures [29], [30], whilst the Baum-Connes
Conjecture would have other consequences as well [6], [42].

For an interesting application of these ideas to geometry, which uses in a
direct way the flatness of E,, see [40].

2. K-theory For C*-algebras. We shall begin by introducing K-theory in a
way which is ultimately not the most useful in the study of elliptic operators,
but which is well suited to establishing the basic features of the K-theory
groups. Elegant and concise proofs of most of the propositions of this section
can be found in the survey article [15] of J. Cuntz. See also [7].

Let 4 be a C*-algebra and denote by M (A4) the C*-algebra of k x k matri-
ces over A. We shall regard M;(A) as the subalgebra of M, ,(A) consisting
of those matrices whose (k + 1)st column and row are zero, and we shall
denote the direct limit (J, My (A4) by My (A4).
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2.1. DEFINITION. Let 4 be a C*-algebra with unit. The group K(A) (also
denoted Ko(A)) is the abelian group generated by the symbols [p], where p is
a projection in the algebra M., (A) (that is, a selfadjoint idempotent), subject
to the following relations:

(i) [p] = [q] if there exists an element v of M, (A4) such that p = vv*
and ¢ = v*v; and
(i1) if pg =0 then [p)+[q)=[p +q].
If A does not have a unit then we denote by 4~ the C*-algebra obtained
from A by adjoining a unit, and we define K(A) to be the kernel of the
homomorphism K(A4~) — K(C) induced from the *-homomorphism 4 — C
which maps the unit of 4~ to 1 € C.

2.2. REMARKS. (a) Since in a C*-algebra, every idempotent is similar to
a projection, we could have defined K(A4) using these instead of projections.

(b) If 4 has a unit then K(A) as defined above is isomorphic to the algebraic
Ko-group of A, that is, the Grothendieck group of the category of finitely
generated projective right 4-modules. Indeed, if p is a projection in My, (A4)
then p M (A) is in a natural way a right A-module, and it is finitely generated
and projective, Part (i) of Definition 2.1 corresponds to isomorphism of
modules, whilst part (ii) corresponds to direct sum of modules. The reader
can easily supply the details for himself or herself.

By (b) and by Swan’s Theorem, if Y is a compact space then K(C(Y)) is
naturally isomorphic to the Atiyah-Hirzebruch K-theory group K(Y'). Taking
this as a guide. we shall develop the basic properties of C*-algebraic K-theory
in parallel with, say, [1] (actually it is in some respect easier to work with
C*-algebras and projections than spaces and vector bundles).

First of all, since the image under a *-homomorphism of a projection is a
projection, K(A) is a covariant functor from C*-algebras to abelian groups.

2.3. ProprosITION. The functor K is homotopy invariant. Thus if fy, fi:
A — B are homotopic *-homomorphisms then

Jox = fix: K(4) — K(B) O

2.4. PROPOSITION. Let J be a (closed, two sided) ideal in A. The functor
K is half-exact, meaning that the sequence of abelian groups

K(J)— K(4) — K(A/J)
is exact in the middle. 0O

These are extensions of Lemmas 1.4.3 and 2.4.2 of [1]. Following Section
2.4 of [1], for n > 0 we define groups K,(A4) by

Kn(4) = K(Co(R") ® A).

As in K-theory of spaces, using the above two results we can link the groups
K, together in a long exact sequence.



A PRIMER ON KK-THEORY 247

2.5. PROPOSITION. Let J be an ideal in A. There is a natural long exact
sequence

= Kpy1(A) = Kpi1(4)T) = Ky(J) — Kn(4) — -
(wheren > 0). O

Continuing the development of C*-algebra K-theory in parallel with topo-
logical K-theory, we come next to the Bott Periodicity Theorem. It is in fact
rather a straightforward matter to extend to extend the proof of the Period-
icity Theorem in [1, Section 2.2] to the present context (see for example [7,
Section 8]). We obtain:

2.6. THEOREM. There is a natural isomorphism K,(A) = K,,2(A). O

There is however a beautiful extension of the Bott Periodicity Theorem,
due to J. Cuntz [13], which is remarkable not only for its generality but also
for the simplicity of its proof. In order to state it we need to make note of
one further property of C*-algebra K-theory. If e is a rank one projection in
the C*-algebra .Z of compact operators then denote by e4: 4 — A ® % the
*-homomorphisma— a®e.

2.7. DEFINITION. A functor F on C*-algebras is said to be stable if the
morphism F(e,4) is an isomorphism for every A.

2.8. PROPOSITION. The functor K is stable. D

This is easily proved from the fact that A® % is the completion of My, (A)
with respect to the (unique) C*-norm on this algebra.

2.9. THEeOREM. If E is any functor from C*-algebras to abelian groups
which is homotopy invariant, half-exact, and stable (as in 2.3, 2.4, and 2.8)
then E(A) is naturally isomorphic to E(Co(R?) ® A). O

The proof of this in [13] is closely related to, but not exactly the same
as, the proof of the Bott Periodicity Theorem in [2]. In fact it is really
even simpler than this proof. It should be mentioned that it is also closely
related to the constructions of the next several sections, via the notion of
quasihomomorphism described in Section 7 below.

As a result of the Bott Periodicity Theorem, the long exact sequence of
Proposition 2.5 becomes a cyclic six-term exact sequence, and the functors
Ky and K, form a sort of Z/2-graded homology theory on the category of
C*-algebras. As with Atiyah-Hirzebruch K-theory, there is a useful concrete
description of K(A).

2.10. ProPosITION. Let A bea C*-algebra with unit and denote by U, (A)
the topological group of unitary k x k matrices over A. The group K,(A) is
naturally isomorphic to the group of connected components of the direct limit
Ux(A) =lim, Up(A4). O
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2.11. REMARKS. (a) In the proposition we could equally well work with
invertible matrices and the stable general linear group GL,(A4), since by polar
decomposition, Uy (A4) is a deformation retract of GLy,(A).

(b) An explicit isomorphism is given by the formula (2.1) below for the
boundary map, applied to the short exact sequence of C*-algebras

0—- CR)®A — Co(RU{+00})®A4 — A4 — 0.

(c) For A = C(Y) the Proposition, and the above isomorphism, is con-
sistent with the definition X~!(Y) in topological K-theory (see [1, Lemma
2.4.6)).

Using Proposition 2.10 one can obtain explicit formulas for the boundary
maps in the K-theory exact sequence of Proposition 2.5. Consider first the
map 3: K,(4/J) — Ko(J). For convenience, suppose that the C*-algebra A
has a unit. A class in K;(A4/J) is determined by the connected component
in Uy(A/J) of some unitary matrix w € Uy(A4/J). The matrix

w 0
(5 o) vatarn
is easily seen to be path connected to the identity in My, (4/J), and so by
a simple exercise in C*-algebra theory it lifts to some unitary matrix U €
U,k (A). We then define d([w]) to be the element

w e[ )[o(3 2)o]

in Ko(J) = kernel(Ko(J~) — Ko(C)). Whilst this “clutching construction” is
rather complicated in general, it boils down to something simple and illumi-
nating in the following case.

2.12. PROPOSITION. Suppose that a unitaryw € Uy (A/J) lifts to a partial
isometry v € My(A). The element 8([w]) of Ko(J) is equal to [1 — v*v] —
[l-vv*]. O

(Note that since the image of v in the quotient C*-algebra is unitary, the
projections 1 — v*v and 1 — vv* are elements of J.) Suppose for example
that A4 is the C*-algebra of all bounded operators on some Hilbert space and
that J is the ideal of compact operators. Then by Atkinson’s Theorem [18,
Theorem 5.17], invertible elements of 4/J correspond to Fredholm operators
in A. It follows from Proposition 2.12 that if F is a Fredholm operator then
the image under 9: K(4/J) — Ky(J) of the class determined by F is the
Fredholm index of F in Ko(J) = Z.

Using the Bott Periodicity Theorem we obtain a boundary map 8: Ko(A4/J)
— K (J). It is given (up to sign) by the formula

0([p]) = exp(2mip™),

where p € M (A/J) is a projection and p~ € M (A) is any lifting of p to a
selfadjoint element.
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2.13. Operations. To complete our treatment of C*-algebra K-theory in
parallel with [1], we might ask what the possibilities are for operations in
C*-algebra K-theory. Unfortunately there are none (no nontrivial ones), for
the following reason. Suppose that a4: K(A) — K(A) is a natural transforma-
tion. It is clear from Definition 2.1 and Proposition 2.8 that a is determined
by the maps a4g.%, Where A is a unital C*-algebra. But for these it is easy to
see that K(4A®.%') is generated by elements of the form [p], where p is a pro-
jection in 4 ® %. Defining a *-homomorphism f: C — 4 ® Z by mapping
1eCtopeA®.%, and using the facts that the diagram

K(C) - K(40.5%)

ch laAGI

K(€) —— K(40.%)

commutes, and that f.([1]) = [p], we see that in fact « is completely deter-
mined by its action on the generator [1] of K(C) = Z. Hence a is trivial.
(This argument uses the assumption that « is additive, but it is not hard to
show that any « is automatically additive.)

It follows from this that, for example, there is a unique Bott Periodicity
isomorphism, up to sign. With only slightly more work one can show that
the boundary maps in the long exact sequence of Proposition 2.5 are unique,
up to sign.

2.14. Indices of elliptic operators. We shall close this section with a quick
description of the way in which an elliptic operator may be assigned an “in-
dex” in a C*-algebra K-theory group, as asserted in the examples in Sec-
tion 1. To pick a specific example, an order zero leafwise elliptic operator
D on a foliated manifold determines an element of the multiplier algebra
M(C*(M,%)) of the foliation C*-algebra, which is invertible modulo the
ideal C*(M,% ). We therefore obtain an invertible element of the quotient
C*-algebra M(C*(M,¥))/C*(M,&) and so an element of the K-theory
group K\M(C*(M,%))/C*(M,5). The boundary homomorphism in the
K-theory exact sequence

o= KM(C* (ML, ) - KKM(C*(M,F))/C* (M, ) = KoC*(M,F)
— KoM(C* (M, &) — -
associated with the exact sequence
0-C*(M,F)—> M(C*(M, %)) - M(C*(M,5F))/C*(M,F) — 0,
maps this element to an element Index(D) € KoC* (M, ).

3. Generalized Fredholm operators. Our goal is to recast the definition of
K-theory given in the previous section in terms of Fredholm operators. (For
a review of the basic theory of Fredholm operators the reader is referred to
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(18, Chapter 5).) The prototypical result in this direction is the following
theorem of Atiyah and Janich [1, Appendix].

3.1. TueoreM. Let X be a compact space. The group K(X) is isomor-
phic to the group of homotopy classes of maps from X into space of Fredholm
operators on a Hilbert space (topologized using the norm topology on the al-
gebra of bounded Hilbert space operators). O

We shall develop a closely related description of K-theory, although roughly
speaking, we shall consider more general continuous families of Fredholms
than those in the theorem, along with a correspondingly more general notion
of homotopy. In fact the new framework is broad enough to “include” the
definition of K-theory in Section 2, and we shall see (in Proposition 3.27)
that in it, a Fredholm operator becomes actually homotopic to its index!

We begin with a generalization of the notion of Hilbert space, in which
the scalars C are replaced by a C*-algebra 4. The following definition is due
to W. Paschke [37], but most of the subsequent results, along with the idea
of developing K-theory from this point of view, are due to Kasparov [27],
[28] and A. Mishchenko [35].

3.2. DEFINITION. A Hilbert A-module & is a right A-module, equipped
with an 4-valued form (, }: & x& — A which satisfies the following axioms:

(l) (”’él +¢2) = (”361) + (”’62);
(i) (n,ca) = (n,¢)a;
(iii) (7,8)* = (¢, n);
(iv) (n,71) > 0;
(v) (n,n) =0 if and only if n = 0; and
(vi) &€ is complete with respect to the norm |5 = [|(n, n)||'/%.

3.3. REeMARKS. (a) The positivity in (iv) is positivity in the sense of C*-
algebras.

(b) The norm in (vi) does indeed satisfy the triangle inequality. This is a
consequence of the following generalization of the Cauchy-Schwarz inequality
(see for example [27, Lemma 1]).

3.4. ProrosITION. If{(, ) isaformon aright A-module satisfying axioms
(i)=(iv) above then ||(n,&)|I* < l(n, M, &) O

It is not part of the definition that & be a unital 4-module (if 4 is unital),
but it is easy to check that this is a consequence of part (v) of the definition.
More generally, if {u,} is an approximate unit for 4 then considering the u,
as functions on &, {u,} converges pointwise to the identity on &. It follows
from this that & has a natural vector space structure, and is a Banach space
with respect to the norm of part (vi) of the definition.

Like the physicists, we require our inner products to be linear in the sec-
ond variable and conjugate linear in the first variable. This is the choice
most compatible with our choice of right actions of 4, which is in turn most
compatible with the usual convention that linear operators act on the left.



A PRIMER ON KK-THEORY 251

3.5. ExampLES. (a) If A = C then Definition 3.2 reduces to the definition
of a Hilbert space. The reader is warned that only part of the basic theory of
Hilbert space carries over to the theory of Hilbert 4-modules, a circumstance
which can be traced to the fact that the Riesz Representation Theorem fails
for Hilbert modules.

(b) Of course, every C*-algebra 4 can be regarded as a Hilbert module
over itself, with the inner product {(a,a’) = a*a’. We shall make use of this
frequently below in connection with tensor products. (Note that if J is an
ideal in A4 then the same inner product makes J into a Hilbert 4-module,
and note that the Riesz Representation Theorem fails for this module.)

(c) There is a standard Hilbert A-module H,, modelled on the Hilbert
space /2N. It consists of all sequences {a,} in A such that the series }_ a}a,
converges in A4, along with the inner product

({an}, {ba}) = 3 anbn.

The Kasparov Stabilization Theorem [27, 33] which we shall state in a slightly
simplified form, justifies the term “standard.” It is an analogue of the result
that there is a unique separable, infinite dimensional Hilbert space, up to
isomorphism.

3.6. THEOREM. If & is any separable Hilbert A-module (separable as a
Banach space) then the direct sum & & H, (defined in the obvious way) is
isomorphic, as a Hilbert A-module, to Hy. O

From now on, all our Hilbert modules will be assumed to be separable.

3.7. Finitely Generated Modules. If A is unital then any finitely generated
projective module over 4 may be equipped with an inner product so as to
make it a Hilbert 4-module. Indeed, it is easily checked that in the case of a
trivial module A" = A ® A® --- ® A4 the inner product

({ai}, {bi}) Za bi

as in 3.5(c) makes A" into a Hilbert module. A general & can be embedded
as a complemented submodule of such a trivial module, from which it inherits
an inner product.

Here are two simple but useful results. For the first, see [32, Section 1] (the
result follows from Lemmas 1.3 and 1.6 there, together with the Kasparov
Stabilization Theorem). For the second, compare [25], [35], [36].

3.8. PROPOSITION. Let A be a C*-algebra with unit. Every Hilbert A-
module which is finitely generated (in the algebraic sense) is projective. 0O

3.9. ProrOSITION. Let A be a C*-algebra with unit.

(i) Every finite generated projective A-module has a unique Hilbert A-
module structure, up to unitary isomorphism.

(ii) The group K(A) is isomorphic to the Grothendieck group of unitary
isomorphism classes of finitely generated Hilbert A-modules. O
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The reader should compare this result with the fact (which is a special
case of the proposition) that every complex vector bundle over a compact
space has a unique Hermitian structure, up to unitary isomorphism. From
now on all the finitely generated projective modules that we encounter will
be assumed to be equipped with a Hilbert 4-module structure.

3.10. Bundles of Hilbert Spaces. Turning to more geometric examples, let
Y be a locally compact space and let E be a locally trivial bundle of Hilbert
spaces over Y. The structure group here is the unitary group of a Hilbert
space, with the strong operator topology. The space I'(E) of continuous
sections of E vanishing at oo, is a Co(Y)-module, and in fact a Hilbert module
with respect to the inner product

(.S} ) = (n(»),E(»)).

This is really the basic example in the theory, and one should regard Defini-
tion 3.2 as extending this to noncommutative C*-algebras A.

As mentioned in Paragraph 1.5, assuming the fibres of E are infinite di-
mensional, E is isomorphic to the trivial bundle Y x H, and a check of
topologies shows that consequently the Hilbert module I'(E) is unitarily iso-
morphic to I'(Y x H), which is easily seen to be isomorphic to the standard
module H,4. However, there is often no natural trivialization of E, and so it
is not always very convenient to identify I'(E) with H,.

Incidentally, every Hilbert Co(Y)-module can be identified with the space
of sections of some bundle of Hilbert spaces, although this bundle is not
necessarily locally trivial.

3.11. L2-sections of vector A-bundles. Let M be a compact manifold with
a fixed smooth measure, let £ be a vector A-bundle over M as described in
Paragraph 1.8, and suppose that the fibres have Hilbert 4-module structures
(which smoothly, or at least continuously, vary from point to point). The
space of continuous sections of E is an A-module, and we can define an
A-valued inner product on it as follows

(n&) = /Mw(m),c(m» dm.

This inner product satisfies all of the axioms of Definition 3.2 except that of
completeness. Thus we define L2(E) to be the completion of the space of
continuous sections with respect to the norm of Definition 3.2(vi).

Note, by the way, that the space of continuous sections of E is also a
Hilbert C(M) ® A-module; it is finitely generated. The reader can formu-
late the appropriate generalization of Swan’s Theorem connecting vector A4-
bundles and projective C(M) ® A-modules.

3.12. Foliations. A careful description in geometric terms of Hilbert mod-
ules over a foliation algebra is given in [10].
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We consider now operators on Hilbert 4-modules. It is very convenient to
consider not all bounded 4-module maps as operators, but only a subclass.

3.13. DEFINITION. Let & and & be Hilbert 4-modules. An operator
from & into & is a function T: & — &, for which there exists an adjoint
T*: & — & such that

{n,TE) =(T"n,¢)
for all n € & and ali & € &. The set of all operators from & to &; is denoted
Z(&, &)

(It is not necessary to mention that 7" be A-linear because that is a sim-
ple consequence of the existence of an adjoint operator 7*. Furthermore,
by the Uniform Boundedness Principle, the existence of T* guarantees that
T is a bounded Banach space operator. Also, the operator T is uniquely
determined by T, and (T*)* =T, so that T* € £ (&, &}).)

3.14. Algebras of operators. The space of operators from a Hilbert module
& into itself is a Banach algebra (under composition of operators), and in
fact a C*-algebra with the *-operation T — T*. If the module & is simply
the C*-algebra A itself then #(&) is isomorphic to the multiplier algebra
M(A) (it is clear that an element of M(A) gives an operator, and a simple
calculation shows that all operators arise this way).

3.15. Polar decomposition. If the range of T: & — & is a closed sub-
module of &, then some of the elementary theory of Hilbert space operators
carries over to 7. For example, T has a polar decomposition T = V|T}, and
there are direct sum decompositions

& = range(T") & kernel(T)

and
& = range(T) & kernel(T™).

If the range of T is not closed then a polar decomposition need not exist (as
the simplest examples show). If T is invertible as a Banach space operator
then T is invertible as an operator; the operator T* is then also invertible
and (T~')* = (T*)~'. Compare [32], [33].

3.16. ExaMPLE. For the Hilbert modules of Paragraph 3.10 there is a
concrete characterization of the operators. For simplicity let us consider
operators on the Hilbert C(Y)-module & of continuous sections of the trivial
bundle over Y. Elements of & are continuous functions on Y with values in
a fixed Hilbert space H. The operators on & are given by bounded functions
T:Y — S (H) such that for each v € H the functions y — T(y)v and
y — T*(y)v are continuous (in the norm topology of H). Such functions are
said to be “bounded and *-strongly continuous” or “strictly continuous.”

We consider next the analogue of the compact Hilbert space operators.
Recall that in the case of Hilbert space, the class of compact operators is
exactly the norm closure of the class of finite rank operators.
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3.17. DEFINITION. An operator T: & — & is of finite rank if it is of the
form

T(n)=>_ &f{min)
1

for vectors 7,,..., 1, in & and vectors &,,...,&, in &. An operator is called a
generalized compact operator if it can be approximated in the norm topology
of Z(&,&) by finite rank operators. The class of all generalized compact
operators (a closed subspace of .Z(&), &;)) is denoted 7 (&}, &).

Since we shall refer to them so often, we shall abbreviate “generalized
compact” to “compact.” As is the case for Hilbert space, the adjoint of a
compact operator is a compact operator, and the composition of an arbitrary
operator with a compact operator is compact. Thus Z(&) is a (closed, two
sided) ideal in £ (&).

3.18. DerINITION. We shall call an operator F: & — & a generalized
Fredholm operator if there exists an operator S: & — & (a parametrix) such
that 1 — SF and 1 — F.S are compact.

This definition is of course in the spirit of Atkinson’s Theorem on Fred-
holm Hilbert space operators.

3.19. ExaMpLEs. (a) If & = A then as pointed out above, (&) = M(A).
The ideal of compact operators in .Z(&’) is simply 4. Thus for example, if 4
is the C*-algebra of continuous functions on a locally compact space which
vanish at infinity, then an operator on A is generalized Fredholm if and only
if it is given by a function f which is bounded away from zero outside of a
compact subset.

(b) In the case of the standard Hilbert module H,, the ideal of compact
operators can be shown to be isomorphic, as a C*-algebra, to 4 ® 7. The
full C*-algebra of operators on H is *-isomorphic to M(4 ® .%'). See [27].

(c) Continuing Paragraph 3.16, an operator T on & is compact if and
only if T is a norm continuous map from Y to the compact operators on
the Hilbert space H. This is not quite the same thing as T being strictly
continuous and compact-operator-valued. Similarly, for F to be a general-
ized Fredholm operator it is not quite sufficient that each F(y) be Fredholm
since there may not exist a strictly continuous parametrix for F. On the
other hand, a norm-continuous family of Fredholm operators (these are the
objects of consideration in Theorem 3.1) is easily seen to be a generalized
Fredholm operator. Thus, for example, a continuous family of order zero
elliptic pseudodifferential operators parameterized by a compact space Y, as
in [S, Section 1], gives rise to a generalized Fredholm operator over C(Y).

(d) If E| and E; are smooth vector 4-bundles over a smooth, closed mani-
fold then an order zero elliptic pseudodifferential A-operator (in the sense of
Mishchenko-Fomenko [36]) from smooth sections of E; to smooth sections
of E, extends to a generalized Fredholm operator from L2(E,) to L%(E,).
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3.20. Operators on finitely generated modules. If A is a unital C*-algebra
and & and & are finitely generated Hilbert modules then it is easily checked
that every operator F: & — & is compact. Therefore every operator from
& to &, even F =0, is a generalized Fredholm operator.

Given a generalized Fredholm operator F we would like to define the
index of F to be the difference in K(A) of the classes determined by the
A-modules ker(F) and ker(F*). Unfortunately it is not necessarily true that
ker(F) and ker(F*) are finitely generated, and so this does not immediately
make sense (this problem also arises in the proof of Theorem 3.1). However,
it is possible to perturb F in such a way that the perturbed operator does
have a well defined index:

3.21. THEOREM. Let A be a C*-algebra with unit and let F: & — &
be a generalized Fredholm operator between Hilbert A-modules. If the range
of F is a closed submodule of & then both ker(F) and ker(F*) are finitely
generated Hilbert A-modules (and are therefore also projective). In general
there is a compact perturbation F' of the direct sum Fo1: & & H, — & O Hy
such that F' has closed range. 0O

For a proof of this see for example [32, Section 1] (the proof of our theorem
is not quite contained in the results of [32], but follows easily from them).

Given Theorem 3.21, it is more or less clear that in order to obtain a
version of Theorem 3.1 for generalized Fredholm operators all that is needed
is an appropriate notion of homotopy. There are in fact one or two different
solutions to this problem. We shall obtain our definition of homotopy from
an important tensor product construction, which will also be needed for other
purposes in the next two sections.

3.22. DEFINITION. Let & be a Hilbert A-module and let &’ be a Hilbert
B-module which is equipped with a *-representation (not necessarily faithful
or unital) of A as operators on it. The Hilbert B-module & ® 4 &’ is defined
as follows. The algebraic tensor product (over C) of & and &” is a right
B-module. Define a B-valued bilinear form on & &¢ &’ by

(m ®&1,m2 ®&2) = (&, (M, m2)G2)

(note that (n,, n2), being an element of A4, acts on &', so this makes sense).
This satisfies properties (i)-(iv) of Definition 3.2. The quotient of & ©O¢ &”
by the submodule consisting of elements v for which (v,v) = 0 satisfies in
addition the property (v) of Definition 3.2, and the Hilbert B-module &®,&”
is defined to be the completion of this quotient.

This really is a tensor product over 4 as the notation suggests since a
simple computation reveals that elements of the form na® ¢ — n ® a& are in
the submodule that is divided out.

3.23. ExaMmpLEs. (a) Regarding the Hilbert space ¢2N as a Hilbert C-
module, and letting C act on any B as multiples of the identity, we may form
the tensor product £2N ®c B; it is isomorphic to the standard module Hp.
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(b) Let M be a compact manifold and let & be the module of continuous
sections of some Hermitian bundle E over M. With respect to the natural
action of C(M) on L%(M), the Hilbert space & ®csr) L2(M) is isomorphic
to L%(E).

(c) Let M and N be manifolds; let I'(E) be the Hilbert Co(N)-module of
continuous sections (vanishing at infinity) of the trivial Hilbert space bundle

= L>(M)x N as in 3.10. Considering L2(N) as a Hilbert C-module with the
obv1ous action of Co(N), the tensor product I'(E) ®c(y) L2(N) is isomorphic
to L2(M x N). Examples of this type (generalized to include various vector
bundles and families of vector bundles over M and N) are important in
applications of the theory of the next two sections.

(d) If & is any Hilbert 4-module and f: 4 — B is a *-homomorphism,
then f provides a *-representation of 4 as operators on B and so we may
form & ® 4 B. This extension of scalars construction is familiar from algebra.

(e) As an illustration of (d), suppose that 4 = C(X),B = C(Y), and f
is induced by ¢: Y — X, If & = I'(E) for some bundle E over X as in
3.10, then I'(E) ®c(x) C(Y) is isomorphic to the Hilbert C(Y)-module of
continuous sections of the pullback bundle ¢*E over Y.

3.24 Operators on tensor products. An operator T: & — & gives rise to
anoperator T® 1: & ®4 &' — & ®4 &', by the formula

TR1I(neé)=Tnet.

Let us consider the situation of Example 3.23 (e) above. If p: ¥ — X is
an inclusion of Y as a subset of X then the tensor product is obtained from
the restriction of E to Y. An operator T on I'(E) is determined by a family
{T\} of Hilbert space operators on the fibres of E as in Example 3.16. The
operator T ® | on I'(E|y) is the operator determined by the restriction of
{Tx}to Y.

Bearing this example in mind, the following definition is quite natural.
3.25. DEFINITION. (i) Two Fredholm operators Fy: &® — &© and F; :
& (N — & (1) between Hilbert A-modules are said to be unitarily equivalent if
there exist unitary operators Up: &° — & and U;: & — & such that

Fy = Uy FyUp.

(ii) Two Fredholm operators as in (i) are said to be homotopic if there
exists a Fredholm operator F: 33 - é’l between Hilbert 4 ® C[0, 1}-modules
such that F® 1: 87) BaeCl0,1] AD g] ®4eC(0,1) A4 and F;: g(') — g(‘) are
unitarily equivalent for i = 0, 1, where A%) denotes the Hllbert A-module A,
with action of 4 ® C[0, 1] given by evaluation at i € [0, 1].

3.26. ExaMmrLE. If F;: & — & (t € [0, 1]), is a norm-continuous famiLy
of Fredholm operators, then Fy and F, are homotopic. Indeed, the space &
(resp. &) of continuous functions from [0, 1] into & (resp. &}) is in a natural
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way a Hilbert A ® C[0, 1]-module, and F defined by
(Fn)(t) = F(n(1))

is easily checked to be a generalized Fredholm operator on this module, giving
a homotopy between Fy and Fj. In this special situation we say that F and Fy
are operator homotopic. The following result shows that much more drastic
deformations are possible.

3.27. PROPOSITION. Let A be a C*-algebra with unit and suppose that
F: & — & is a generalized Fredholm operator between Hilbert A-modules
which has closed range. Then F is homotopic to the zero operator 0: ker(F) —
ker(F*).

SKETCH OF THE PROOF. First, recall from Theorem 3.21 that ker(F) and
ker(F*) are finitely generated, and so by 3.20, 0: ker(F) — ker(F*) is indeed
a generalized Fredholm operator. Since F has closed range, it has a polar
decomposition, and by deforming | F| to the identity (an operator homotopy)
we easily reduce to the case that F is a partial isometry. Define Hilbert
A ® C[0, 1]-modules as follows:

& ={n:10,11— & | n(1) € ker(F)},

and _
& ={n:[0,11- & | n(1) € ker(F*)}.

Define an operator F: g% — é;] by the obvious formula: (F n() = F(n(1)).

The adjoint of F is obtained bya corresponding formula from the adjoint
of F and so the operators | — F *F and 1 - FF* are the projections onto the
(complemented) submodules of 83 and & consisting of functions taking a//
their values in ker(F) and ker(F*), respectively. These are finitely generated,
and from this it follows that F is a generalized Fredholm operator. It is clear
that F gives the desired homotopy. O

A similar argument shows the following result (which doesn’t require that
A be unital).

3.28. PROPOSITION. If F is an invertible operator then F is homotopic to
the zero operator 0: 0 — 0.

ProoF. Defining g’o, g’,, and F as above (there is no need here for 4 to be
unital or for F to be a partial isometry) we see that F is invertible, and so in
particular Fredholm. It gives the desired homotopy. O

Note that this is a very formal argument, using only “trivial” homotopies.
The reader should compare this with the proof of Theorem 3.1, which re-
quires Kuiper’s Theorem on the contractibility of the unitary group of a
Hilbert space in the norm topology.



258 NIGEL HIGSON

3.29. DerINITION. Denote by K’(A) the set of homotopy classes of gen-
eralized Fredholm operators on Hilbert 4-modules.

Given the above the results, the reader’s first guess might be that K’(A4) = 0!
This is not so however: we shall see very shortly that K’(4) is isomorphic
to the K-theory K(A4) of Definition 2.1. Having done so, we will change
notation from K’(A4) to K(A4). To begin with, K’(4) is indeed an abelian
group.

3.30. PROPOSITION. (i) By forming two generalized Fredholm operators
F:& — & and F': & — &/ their directsum Fo F": &0 & — & 0 &/,
we make K'(A) into an abelian group. The identity element of K'(A) is given
by the zero operator 0: 0 — 0, or by any invertible operator; the inverse of the
element determined by F : & — &, is given by any parametrix S: & — &, for
F.

(ii) The sum of the classes given by the operators F: & — & and F': & —
&, is also given by the composition F'F: & — &. O

The fact that S gives the inverse of F follows from the fact that F @ S is
operator homotopic to an invertible element. For example, F @ S is equal,
modulo compacts (and hence is homotopic to), the following composition of
invertible operators from & @ & to & & &:

G (D9

If f: A — B is a *-homomorphism then f induces a map f*: K'(4) —
K'(B) using the tensor product construction of paragraph 3.23 (d), because if
F: & — & is a generalized Fredholm operator between Hilbert 4-modules
then the operator F ® 1: & ®,4 B — & ®,4 B is also Fredholm (this follows
from the easily verified fact that if X is compact then so is K ® 1). Thus
K'(A) is a covariant functor on C*-algebras.

Now, for unital C*-algebras, define a map J: K(4) — K'(A4) by sending
[E] - [F] (where E and F are finitely generated Hilbert 4-modules) to the
class of the generalized Fredholm operator 0: E — F. It is clear that J is a
natural transformation.

3.31. ProrosITION. The natural transformation J: K — K' is an iso-
morphism, and extends to an isomorphism J: K — K' on the category of all
C*-algebras (unital or not).

SKETCH OF PROOF. The point is that by virtue of Theorem 3.21, we can de-
fine an inverse map Index: K’(A4) — K(A). Starting with a generalized Fred-
holm operator F, obtain from it as in Theorem 3.21 a generalized Fredholm
operator F' for which ker(F’) and ker(F'*) are finitely generated modules,
and then map [F] € K’(A) to the class

Index([F1) = [ker(F')] — [ker(F"*)]
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in K(4). That this is well defined follows from computations similar to
those of [32], together with the following trick: given homotopic Fredholm
operators Fy and Fj, and a homotopy F, _we can find a corresponding F!
as in Theorem 3.21, and so form Index([F]) € K(C[0,1] ® A4). It is then
easily verified that e,.(Index([F])) = Index([F;]), where ¢;: C[0,1]® A — 4
is evaluation at i = 0, 1. Therefore Index([Fp]) = Index([F;]), since epx = €1 *
by the homotopy invariance of K-theory (Proposition 2.3). It is obvious that
the composition
K(4) % K'(4) "5 K (4)

is the identity; the other composition is the identity by Proposition 3.27.

The fact that the isomorphism of K(A4) with K’(A4) extends to non-unital
C*-algebras follows from the computation that K’(4) maps isomorphically
to the kernel of the map K’(,;f) — K'(C), which we omit (see for example
[28]). O

The final topic we want to touch upon in this section is that of products
in K-theory. As with most of the rest of the section, we are simply setting
the stage for the elliptic operator theory to come, and so we shall be rather
brief. If p and g are projections in C*-algebras 4 and B respectively then
p ® q is a projection in A ® B. Given the definition of the K-theory groups
as in Section 2, it is straightforward to show that the construction of p ® ¢
from p and g gives rise to a homomorphism

(3.1 K(A)® K(B) —» K(A® B).

(If A is commutative then the multiplication map A ® 4 — A4 is a *-homo-
morphism and so induces a map K(4 ® A) — K(A4). We obtain then a ring
structure on K(A4), which is of course the same as the ring structure in [1].)
We wish to describe the pairing (3.1) at the level of generalized Fredholm
operators. This is based on the following definition of “external” tensor
product.

3.32. DEerFINITION. Let & be a Hilbert & -module and let &’ be a Hilbert
B-module. Denote by & R&”’ the Hilbert 4® B-module obtained by complet-
ing the algebraic tensor product & ® &' with respect to the norm associated
with the 4 ® B-valued inner product

(m @&, m®&) = (m,m) ®{1,62).

The reader can easily compute some examples, starting with Hilbert mod-
ules as in Paragraphs 3.7, 3.10, and 3.11.

In order to most simply describe the K-theory product, it is necessary to
introduce the following notion.

3.33. DEFINITION. (i) A Z/2-grading on a Hilbert module & is a decom-
position of the module as an orthogonal direct sum & = &, & &,. Elements
of & and & are said to be homogeneous, of grading degree zero and one,
respectively (or to be of even and odd degree, respectively). We write 8n =0
and 9n = 1.



260 NIGEL HIGSON

(ii) The Z/2-graded tensor product £RE' of two Hilbert modules as in
Definition 3.32 is the tensor product £ ® &’ equipped with the grading

ERE = (HREERE ) (ERGoHRE).

(We shall use underlined letters to denote graded modules, as well as op-
erators on graded modules.)

The motivation for this definition is, on one level at least, straightforward.
If £ is finitely generated then think of it as representing the difference [&)] —
[&] in K(A). Then the graded tensor product £K&”’ represents the product
of [&] — [&]] and [&;] — [&]] under the pairing (3.1).

Now, given a generalized Fredholm operator F: & — & we can form the
operator

(3.2) E= (2 ’3)

on the graded Hilbert module & = & & &)|. This is itself a generalized
Fredholm operator. We wish to describe K(A4) and the product map in terms
of these gadgets, and in order to do so it is convenient to introduce the
following notion.

3.34. DEFINITION. An operator F on & is said to be homogeneous of
degree O F if for every homogeneous element 7 of &,

8(Fn)=0F +8n (mod 2).

Thus the operator F above is homogeneous of degree one (or just “degree
one,” for short). On the other hand, suppose that F is an operator on a
Z/2-graded module &€ such that:

(i) F is of degree one;

(ii) F is a selfadjoint; and

(iii) FE is a generalized Fredholm operator.
Then with respect to the direct sum decomposition of € given by the grading,
F is of the form (3.2) above, with F a generalized Fredholm operator. It
follows very easily from these observations that we may describe K(A) as the
group of homotopy classes of degree one, selfadjoint Fredholm operators on
Z/2-graded Hilbert 4-modules (the correct notion of homotopy is of course
given by operators on Hilbert 4 ® C[0, 1}-modules satisfying (i)-(iii) above).
For the rest of this section F, G, etc., will denote such operators.

Operators G and F on & and &’ clearly give rise to operators G® 1 and
1® F on £RZ’. We need the following slight refinement.

3.35. DEFINITION. Denote by GX1 simply the operator G ® 1 as above.
Denote by 1XF the operator 1 R F “twisted” by the grading as follows:

IRF(n®¢&) = (-1’1 @ FE.
The crucial property of GR1 and 1XKF is that they anti-commute:
(GR)(IKF) + (1IRF)(GR1) = 0
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We are interested in the operator
(3.3) GH#F = GBI + IRF
on £RE’. If we recover from this a generalized Fredholm operator between
Hilbert 4 ® B-modaules as in (3.2) then we obtain
GR1 -1RF*
IRF G*R®I1

(we are expressing G#F as a matrix with respect to the direct sum decompo-
sition of part (ii) of Definition 3.33). The reader can easily verify that if F
and G are Hilbert space operators then G#F is a Fredholm operator and

ker(G#F) = ker(G) ® ker(F) @ ker(G*) ® ker(F*)

(3.4) GHF = (

and

ker(G#F) = ker(G*) ® ker(F) & ker(G) ® ker(F*)
so that G#F is a Fredholm whose index is the product of the indices of F
and G. In general, we have:

3.36. PROPOSITION. The operator G#F above is a generalized Fredholm
operator. The map [G] ® [F] — [G#F] from K(A) ® K(B) to K(A® B) is
well-defined and gives the pairing (3.1). O

The proof is easy: once it is verified that G#F is a generalized Fredholm
operator (a simple C*-algebra exercise) and that the pairing is well-defined
(more or less obvious) we can reduce to zero operators on finitely generated
modules by Proposition 3.31, for which the result is clear.

4. Generalized elliptic operators. The purpose of this section is to show
how “generalized elliptic operators” play an important role in the calculation
and manipulation of K-theory groups. The basic ideas originate in Atiyah’s
articles [2] and [3], and are developed extensively by Kasparov in [28]. We
shall begin with Atiyah’s constructions in topological K-theory and the theory
of elliptic operators, and then describe the general setup of Kasparov’s theory.

Let M be a smooth, closed manifold and let D be an elliptic operator on
M. It is convenient to assume that D is an order zero operator, and so D is
a pseudodifferential, rather than differential, operator. It is permissible that
D act on sections of some bundle, but for the sake of a slight simplification
in notation we shall ignore the bundle and pretend that D acts on functions.
Since it is of order zero we can and will think of D as a bounded operator
on L*(M).

The basic object of interest for us here is a group homomorphism

Indexp: K(M) - Z

with generalizes the Fredholm index of D. It is defined as follows. If E is a
smooth complex vector bundle over M then we construct from D an operator

Dg: LA(M,E) — L*(M, E),
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acting on sections of E. If D was, say, a first-order differential operator then
we could get Dg by choosing a connexion for the bundle E and then letting
D act on sections of E via this connexion. In general we define Dg by using
the local triviality of E together with a partition of unity argument. Thus
we choose a partition of unity {f},..., f} for M such that each f; is sup-
ported within an open set U; over which the bundle E is trivializable. Choos-
ing trivializations, and hence isomorphisms L2(U,, E | U;) = L*(U;) ® Ck
(where k is the dimension of the bundle), we define operators ( fil/ ’D f,-'/ g
on L%(U;, E | U;) by pulling back the operators f,'/ 2p j}"' 2®1 on L3(U;) ® Ck
via these isomorphisms. Finally, define Dg to be the operator

Dg = Zk: (f;l/ZDj;l/Z)

i=1 E

on L%(M, E). The operator we obtain in this way obviously depends on the
choice of partition of unity, and so on. However, whatever the choices, Dg is
a Fredholm operator, and its index does not depend on the choices. In fact
if we define

Indexp(E) = Index(Dg)

then this passes to a homomorphism from K(M) to Z, as desired. Note that
if E is the trivial line bundle over M then Indexp(E) is simply Index(D).

The homomorphism Indexp: K(M) — Z can be thought of in two dif-
ferent (although closely related) ways. On the one hand, it gives additional
information about the index theory of D beyond Index(D) itself. There is
thus the possibility of studying Index(D) via the homomorphism Indexp us-
ing techniques from K-theory. This is roughly the point of view of the proof
of the Atiyah-Singer Index Theorem in [4] (if M is an even-dimensional
spin‘-manifold and if D is the Dirac operator on M, then modulo the Thom
Isomorphism K (M) = K(T M), the map Indexp is exactly the analytic index
map a-ind: K(TM) — Z of [4]). On the other hand we might turn things
around and try to use Indexp: K(M) — Z, and generalizations of it, to study
K-theory. This idea is illustrated by Atiyah’s proof of the Bott Periodicity
Theorem in [2]. In this article we are more or less concerned with extensions
of this latter approach.

What is it exactly about D that makes the construction of Indexp work?
Why is Dg Fredholm and why is Index(Dg) well defined? It is very easy
to see that it is not enough to start off with any random Fredholm operator
in place of D. Without going through great lengths to motivate the answer,
we shall simply state that the crucial and in fact sufficient property of D
(apart from it being Fredholm) is that it is “pseudolocal” in the following
C*-algebraic sense: if f € C(M) and we regard f as acting on L2(M) by
pointwise multiplication then the commutator /D — Df is a compact opera-
tor. The importance of this condition should be clear from the formula for
Dg given above. To justify the use of the term “pseudolocal,” we mention
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the following observation of Kasparov [26]: an operator T on L?(M) is pseu-
dolocal in this sense if and only if for every two disjoint closed subsets C
and C’ in M the compression of T to an operator from L?(C) to L>(C’) isa
compact operator. Note that D is pseudolocal by this characterization since
its distributional kernel is a smooth function off the diagonal of M x M: the
compression is therefore compact by Paragraph 1.5. The reader can check
that if D is any Fredholm operator which is pseudolocal then the operator
Dg constructed as above is indeed Fredholm, and its index is independent of
the choices made in the construction (we shall prove this in a more general
context in a moment).

The conclusion to be drawn from this is that if we wish to generalize the
notion of elliptic operators for the purposes of K-theory, then the operators
involved should have the following properties:

(i) the should be pseudolocal, in some sense; and
(ii) they should be Fredholm.

Given the work of the previous section we can proceed very quickly to the
following definition.

4.1. DEFINITION. Let 4 and B be C*-algebras. A generalized elliptic op-
erator over A with coefficients in B consists of the following data:

(i) An operator F: & — & between Hilbert B-modules; and

(ii) *-representations of 4 as operators on & and & such that for ev-
ery a € A the operators aF — Fa, a(F*F — 1) and a(FF* — 1) are
generalized compact operators.

Our elliptic operator D acting on L?(M) fits into this example if we take
A= C(M) and B = C, providing that D* is a parametrix for D (this is so if
the principal symbol of D is unitary valued).

The condition that aF — Fa € % for all a € A is clearly a general version
of the pseudolocal property of D given above.

The condition that a(F*F —1) and a(F F* — 1) be compact is a slight weak-
ening of the requirement that F be a generalized Fredholm operator which is
“unitary modulo compact operators.” The unitarity is simply a small techni-
cal convenience and could be omitted (by a C*-algebraic polar decomposition
argument, we can in these circumstances always reduce to “essentially uni-
tary” operators). The fact that we require F to be only “approximately”
a generalized Fredholm operator is useful in the construction of examples
(particularly examples associated with noncompact manifolds).

Finally the fact that we allow in this definition the possibility that & #
& (in our basic example, both of the modules are L?(M)) is very useful
in most applications. For example, if an elliptic operator D operates on
sections of one bundle, with values in a different bundle, then the associated
Hilbert spaces of sections are isomorphic, even with the left C(M)-module
structure taken into account, but as there is no natural isomorphism it is
usually convenient not to make the identification.
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Let us see how a generalized elliptic operator F gives rise to a group ho-
momorphism
Indexr: K(A4) — K(B),

extending our construction in the case of the elliptic operator D on M. Sup-
pose for the sake of simplicity that 4 is a unital C*-algebra (the nonunital
case can be handled by, for example, a 2 x 2 matrix trick which converts any
generalized elliptic operator over 4 to a generalized elliptic operator over the
C*-algebra 4). We shall regard K(A) as being generated by finitely generated
projective Hilbert A-modules. Given such a module & and a generalized ellip-
tic operator F: & — & we wish to define an operator Fp: £0,& — £®,4&
which extends the construction of the operator Dg. This is accomplished us-
ing the following notion of connexion.

4.2. DEFINITION. An operator F/: & ®, & — & ®,4 & is said to be an
F-connexion if for every n € & the operators F'T, — T, F and T, F' — FT,
are compact, where the operators T, are defined by T,(¢) = n®¢.

The point behind the definition is made clear by looking at a simple ex-
ample.

4.3. Free modules. If & = A™ is the direct sum of n copies of A, then
the tensor product & ® &; is the direct sum of n copies of the range &' of
1 € 4, considered as an operator on &;. Any operator on & ® 4 &' is therefore
given by an n x n matrix of operators on &/, and applying the condition of
Definition 4.2 we see that any F-connexion must be of the form

1F1

£ — 1F1 ' 0

1F1

modulo compact operators (note that the operator commutators of Defini-
tion 4.2 are zero for this particular operator F(*)), From this computation,
and the fact that every finitely generated & may be embedded isometrically
as a complemented submodule of a free module, we obtain the following
result. (We should point out that the pseudolocality of F is used to show
that the operator F(") above commutes, modulo compact operators, with the
projection operators A" @, & — & ® 4 &, associated with the complemented
submodule & of 4")

4.4, PROPOSITION. For any & and any generalized elliptic operator F
there exists an F-connexion F'. The operator F' is unique up to compact
perturbation and is a generalized Fredholm operator. QO

4.5 Comparison with Atiyah’s construction. To compare this with the con-
struction of Dg, note that if & is the module of sections of some bundle E
over M, then as pointed out in Paragraph 3.23 (b), the tensor product &®c(u)
L?(M) is equal to the Hilbert space L?(M,E). The maps T,: L}(M) —
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L%(M, E) are given by multiplying L2-functions by fixed continuous sections
n of E, and it is easily checked that the operator Dg is a D-connection.
It is a straightforward matter to verify the following resuit.

4.6. PROPOSITION. The operation which assigns Index(F') € K(B) (as in
Proposition 3.31) to the module & induces a group homomorphism Indexr:
K(A4) — K(B).

Here are a couple of examples.

4.7. Bott Periodicity. The basic example in the whole theory is Atiyah’s
elliptic operator proof of Bott Periodicity. This is fundamental not only
because of the central importance of the Bott Periodicity Theorem per se,
but because in a great many of the significant applications of the theory,
the key issue is the construction of generalizations of the “Dirac” and “Dual
Dirac” operators of Atiyah. In the present context, these are as follows.

The Dirac operator D’ =d/dx + id/dy on R? is not a bounded operator,
but the operator D = D'(1 + D'*D')~'/2 on H = L?(R?) is. It is easily seen
(by Fourier analysis) to be an elliptic operator over Co(R?) (with coefficients
in C). If A is any C*-algebra then the Hilbert 4-module & = H ® 4 has a
natural left action of A4, and the operator F = DX 1 on & is a generalized
elliptic operator over Cy(R?) ® A with coefficients in A.

Let g(z) = z(14]z|)~'. This is a bounded continuous function on R?(= C)
and so defines an operator on Cy(R?), considered as a Hilbert Co(R?)-module.
In fact g is a generalized Fredholm operator (compare Paragraph 3.19(a)) and
so defines a generalized elliptic operator over C, with coefficients in Cy(R?).
The operator G = g ® 1 on the Hilbert Cy(R?) ® A module Co(R?) ® A4 is a
generalized elliptic operator over 4 with coefficients in Cp(R?) ® 4.

The maps Indexr: K(Co(R?)®A4) — K(A) and Indexg: K(4) — K(Cy(R?)®
A) are inverse to one another. One way to show this is to use the Kasparov
product to be developed in the next section. However, as Atiyah observes
in [2], there is a simple “rotation trick” by means of which the problem is
reduced to a single simple computation (the technique of [2] works as well
for C*-algebra K-theory as for the K-theory of compact spaces). Thus in
this case simply the construction of the index maps is sufficient to obtain an
important result: the Bott Periodicity Theorem.

4.8. Foliations. Let M be a smooth, closed manifold, equipped with a free
action of the Lie group R?2. Let & be the foliation on M whose leaves are
the orbits of this action. We can generalize the constructions in the above
paragraph as follows.

Using the action, each leaf L of the foliation can be identified with R2
canonically, up to translation. Since the operator D of the above paragraph
is translation invariant, we obtain via this identification a family of operators
{Dr | L € M/S} on the family of Hilbert spaces {L*(L) | L€ M/F}. It
is not hard to see that the family determines an element F of the multiplier
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algebra of C*(M,% ). In fact, considering C*(M,F ) as a Hilbert module
over itself, F is a generalized Fredholm operator. Furthermore there is an
action of C(M) as operators on C*(M, ), since a continuous function on M
acts on each L2(L) by pointwise multiplication, and one can easily show that
in this way it determines an element of the multiplier algebra of C*(M,5).
With this additional structure, F becomes a generalized elliptic operator over
C (M) with coefficients in C*(M,%).

The construction of G is just slightly more complicated. The Hilbert
C(M)-module on which G acts is obtained as in Paragraph 3.10 from a
bundle E of Hilbert spaces over M. The fibre of E, over a point x € M
is L2(L,), where L, is the leaf of the foliation containing x; these fibres glue
together in a natural way (which we won’t describe) to form a locally trivial
bundle over M. The operator G acting on the fibre E, = L2(L,) (see Para-
graph 3.16) is pointwise multiplication by the function g as above, where we
identify L, with R? so that x is the origin. The C*-algebra C*(M, ¥ ) acts on
each L2(L,) in the natural way, and we obtain a generalized elliptic operator
over C*(M,5) with coefficients in C(M).

Once again, these two operators give mutually inverse maps at the level of
K-theory. Once again, there is a trick (this time the trick uses the harmonic
analysis of R2) which reduces the work involved in showing this substantially,
so that the machinery of the next section is not really needed. See [19].
(For the benefit of the reader who turns to this reference we point out that
the C*-algebra C*(M, %) is *-isomorphic to the C*-algebra crossed product
C(M) x R2. Furthermore, although it is not necessary to do so, it is most
natural to deal with R, not R?, and this requires the theory of selfadjoint
elliptic operators sketched in Section 6.)

More complicated examples of “Dirac” and “Dual Dirac” operators arise
in the context of examples 1.3 and 1.4. (We should remark that the elliptic
pseudodifferential 4-operators of Mishchenko and Fomenko [36] are gener-
alized elliptic operators over C(M) with coefficients in 4.) The tricks of the
above examples are not available, and more machinery is needed to deal with
them.

5. The Kasparov product. We shall first define Kasparov’s K K-groups. As
was the case with products in K-theory, it is convenient to introduce the
language of Z/2-gradings. Thus we introduce the following objects.

5.1. DeEFINITION. A Kasparov (A, B)-cycle consists of the following data:

(i) a Z/2-graded Hilbert B-module & and a generalized Fredholm oper-
ator F: & — & of grading degree 1; and
(i) a *-representation of A4 as operators on &€ of grading degree zero,
such that
(iii) for every a € 4 the operators a(F — F*), a(F?>— 1), and aF — Fa are
compact.
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We shall write such a cycle as (F,&); in keeping with the discussion at
the end of Section 3, we use underlined letters to denote Z/2 graded objects.
The definition is just a repackaging of the definition of generalized elliptic
operator. Indeed, given a generalized elliptic operator F: & — & we can
form the Kasparov (4, B)-cycle

(5.1 g=go5.£-(p ).

whilst on the other hand the hypotheses involving the grading in Definition
5.1 imply that every Kasparov (4, B)-cycle decomposes like this with respect
to the direct sum decomposition of € induced by the grading. The condition
(ii) of Definition 4.1 is exactly condition (iii) of Definition 5.1 under this
correspondence.

We need to extend the notion of connexion introduced in the previous sec-
tion to this setup. Let &’ be a Z/2-graded Hilbert 4-module (not necessarily
finitely generated and projective any more).

5.2. DEFINITION. An operator F' on &'®,& of odd grading degree is
called an F-connexion if for every n € &€ the operators I,F-(-1°"F'T,
and T, F — (—1)?"F'T; are compact, where the T, are as in Definition 4.2.

Thus we require T, to essentially intertwine or “anti-intertwine” the oper-
ators F and F', according as 7 is of odd or even grading degree. The reason
for this of course is that we want to model not “1 ® F£” but a graded tensor
product “1F”.

The existence of connexions can easily be verified by appealing to the Kas-
parov Stabilization Theorem (Theorem 3.6), as follows. Simplifying things
just a little, let us consider the case of a unital B and a unital action of B
on &. If & is the standard (Z/2-graded) Hilbert B-module H; = Hp & Hp
then Hz®,4& is isomorphic to HX& and we may define F’ to be 1RF. In
general we can realize & " as a direct summand of H g and then compress
the connexion just constructed to the direct summand &'®,4& of Hz®,&.
A connexion constructed in this way is called a Grassman connexion. As
Proposition 4.4 showed, for our former notion of connexion, up to compact
perturbation every connexion was of this Grassman type. Here however,
where we are allowing “infinite dimensional” Hilbert A-modules, the notion
is considerably more general. Before reading on, the reader might want to
consider the possibilities in the case of a tensor product as in Paragraph 3.23
(c), and a generalized elliptic operator F given by a family of elliptic order
zero pseudodifferential operators parameterized by N.

As a warm-up for what is to follow, the reader can verify the following
version of Proposition 4.5. If F’ is a Fredholm operator of grading degree
one on a Z/2-graded Hilbert B-module then we define Index(F') € K(B) to
be the index of the part F’ of F’' which maps even vectors to odd vectors.
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5.3. PROPOSITION. Let A be a unital C*-algebra. If F and F are as in
(5.1) and if &' = & & &/ is finitely generated and projective, then every F-
connexion F' is a generalized Fredholm operator, and if F' is of odd grading
degree then Indexr([&]] — [&]']) = Index(E') in K(B). O

Thus the factor (—1)27 in Definition 5.2 neatly allows us to incorporate the
main construction of the previous section into the framework of Z/2-gradings
and Kasparov cycles.

There is a natural notion of isomorphism of Kasparov cycles: an isomor-
phism is obtained from a grading degree zero unitary isomorphism between
the underlying Hilbert modules which intertwines (exactly) the actions of A4
and the generalized Fredholm operators. We can also extend the notion of
homotopy from Fredholm operators to Kasparov cycles in a natural way: a
homotopy of Kasparov (4, B)-cycles is simply a Kasparov (4, B ® C[0, 1])-
cycle. As we did with Fredholm operators in Section 3 we pass from cycles
to homotopy classes of cycles.

5.4. DEFINITION. Denote by KK(A4, B) the set of homotopy classes of
Kasparov (A4, B)-cycles.

Adapting the arguments of Proposition 3.30, we obtain the following re-
sult.

5.5. PROPOSITION. The operator of direct sum of Kasparov cycles makes
KK (A, B) into an abelian group. The zero element is represented by any
Kasparov cycle for which the compact operators in part (iii) of Definition 5.1
are all identically zero. The additive inverse of a cycle is obtained by reversing
the grading on the module. O

Note that in terms of generalized elliptic operators rather than Kasparov
cycles, the effect of “reversing the grading” is to pass from the operator F to
the operator F*. Here is one more exercise for the reader.

5.6. PROPOSITION. The index map construction of Section 4 and Propo-
sition 5.3 passes to a well defined group homomorphism

®4: K(A)® KK(4,B) — K(B). O

Now, it is (almost) immediate from the Definitions 3.29 and 5.1 that
K(A) = KK(C,4). Indeed if F: & — & is any Fredholm operator then
the action of C on the Hilbert modules by multiples of the identity operator
makes F into a generalized elliptic operator over C, with coefficients in A.
The only distinction between cycles for the groups K(4) and KK(C, A) is
that in the case of a generalized elliptic operator over C, the action of C need
not be unital, but this difference disappears at the level of homotopy. Thus
the pairing of the proposition could be rewritten as

KK(C,A)® KK(A,B) — KK(C, B).
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Kasparov generalizes this to a pairing
(5.2) KK(A,B)® KK(B,C) — KK(A,C)

based on the following construction (the particular form of it given here is
due to Skandalis [44], [11]).

5.7. DEFINITION. Let (G,&') be a Kasparov (4, B)-cycle and let (F, &)
be a Kasparov (B, C)-cycle. A product of these two cycles is any Kasparov
(A, C)-cycle of the form (G#F,Z'®3&), where G#F has the following prop-
erties:

(i) the operator G#F is an F-connexion on £'®&; and
(ii) for every a € A the operator

a* {(GBL) (G#F) + (G#F) (GBl)} a

is a positive on &'®3&, modulo compact operators (thus it is of the
form {positive operator}+{compact operator}).

In the next several paragraphs we will try to motivate this definition.

5.8. Comparison with Section 4. To begin with, suppose we consider the
simple case where 4 = C, and where the cycle (G, &') is of the form (0, & ®
&), the Hilbert B-modules & and & being finitely generated. Then as
pointed out in Proposition 5.3, any F-connexion F’ is automatically a gener-
alized Fredholm operator and hence automatically an elliptic operator over
C. Furthermore, condition (ii) of Definition 5.7 is trivially satisfied by any
F', and so every F-connexion is a product G#F. It follows from Proposition
5.3 then that the class of any product (G#F,&'®3&) in KK(C, B) = K(B) is
equal to the image under the map

Indexr: K(A) — K(B)

of the class of (G,&') € KK(C, A) = K(A) (here F is the generalized elliptic
operator associated to F as in (5.1)). If we take for granted for the moment
the fact that the K K-theory class of the product of two Kasparov cycles passes
to a well-defined map at the level of K K-groups, then we see that the product
contains the construction of the Index map in the last section. Furthermore,
it extends the construction to generalized Fredholm operators not necessarily
of the elementary form 0: & — &. It is clear that this will be of importance
in situations where a generalized Fredholm operator G is given and it is not
so easy to explicitly deform the operator to one of this simple type.

5.9. Products of order zero pseudodifferential operators. Having seen that
Definition 5.7 does incorporate the basic construction tying together elliptic
operators and K-theory, let us see how we might arrive at the definition in
the general case. Taking the K-theory product described at the end of Section
3 as a guide (and perhaps considering also the formula for the “product” of
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elliptic operators computed at the level of symbols) we look for a formula
for the product of (G,&') and (F, &) of the form

G#F = G®1 + F'

where F' is, say, a Grassman connexion as described above. The trouble
with this is that the operator so defined is not a generalized elliptic operator.
The problem, along with its solution, is illustrated by the following rather
informally phrased proposition (as indicated by Kasparov in [26], this is the
motivating example for his construction of the product).

5.10. PROPOSITION. Let D, and D, be order zero elliptic pseudodifferen-
tial operators on smooth closed manifolds X, and X, and suppose that the
symbols of D\ and D, are unitary valued (this last condition is just so that the
operators D\ and D, determine generalized elliptic operators in the sense of
Definition 4.1). The operator

Q|®l+l®22= (Dl@l _1®D2)

19D, Di®l

is not (in general) a pseudodifferential operator on X, x X,. However, there
exist operators M and N such that:
(i) M and N are positive, of grading degree zero, and M + N = 1; and
(ii) the operator M"*(D,R1) + N'/*(1RD,) is an elliptic order zero pseu-
dodifferential operator (with unitary valued symbol), or at least a norm limit
of such operators.

PRrROOF. The problem is that if D is order zero then D®1 is not (in general)
pseudodifferential; in fact it is not even pseudolocal in the sense of Section 4.
This problem is familiar from the proof of the Atiyah-Singer Index Theorem
in [4]; the solution is to pass from order zero operators to, say, order one
operators, for if D is of order greater than zero then D ® 1 is a pseudodif-
ferential operator, of the same order as D, or at least it is in the closure of
this class (see [4, Section 5]). Given this, if A} and A, are positive, order two
elliptic pseudodifferential operators on X and X, then we can form M and
N as diagonal matrices with entries the operators (A; ® 1 + 1 ® A))"'A; ® 1
and (A1 ®1+104;)7'1®4;,. O

In the light of this we try to modify our construction of the operator G#F
to something of the form

(5.3) G#F = M'*(G81) + N'’F'

for appropriate “generalized pseudodifferential operators” M and N. In fact
this is exactly the prescription for the product given by Kasparov in [28].
It is a remarkable fact that in general, without any reference to order one
pseudodifferential operators and so on as in Proposition 5.10, appropriate
operators M and N can be constructed. This is the so-called Technical The-
orem of Kasparov [28, Section 3] (see [21] for a simpler proof). The reader
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is referred to [22, Appendix] for an exposition of the technical details of
Kasparov’s construction,

What then is the relationship between the formula (5.3) and Definition 5.7?
The crucial observation is that for the particular choices of operators specified
in Kasparov’s formulation of the product, the whole of the expression (5.3) is
an F-connexion. This is because the operator M has the property that T, M
is a compact operator for every n € &'. (One might compare this with the
property of the operator (A, ® 1 +1®A;)"!A; ® | constructed in Proposition
5.10, that the product of it with any operator of the form

{compact operator} ® {bounded operator}

is compact.) This justifies to some extent condition (i) of Definition 5.7. As
for the second condition, note that since the definition of connexion takes
into account the Z/2-grading, we expect that the operators Q@l and F' should
more or less anticommute (compare with the operators GX1 and 18F con-
sidered in Section 3). Hence the expression in part (ii) of Definition 5.7
should more or less amount to a*(G&1)2a (let us ignore for the moment the
operators M and N). Since G is essentially selfadjoint (see condition (iii)
of Definition 5.1) this quantity should be more or less positive. The extent
to which these statements are “more or less” true depends of course on the
exact properties of the operators M and N, but checking the details one finds
that condition (ii) of Definition 5.7 is indeed satisfied by Kasparov’s operator
(5.3).

The upshot of all this is that the operators G#F of Definition 5.7 include
the construction (5.3) of Kasparov, which in turn can be understood in terms
of already known product constructions in K-theory and index theory. The
important advantage of Definition 5.7 is that it allows for more general rep-
resentations of the product, and in particular it is not necessary to represent
the module &’ as a direct summand of a standard Hilbert B-module in order
to construct a Grassman connexion for £. In applications this is often a
significant point.

5.11. THEOREM. There always exist product operators G#F as in Defini-
tion 5.7. The product is well defined at the level of K K-groups and gives rise
to a homomorphism

KK(A4,B)® KK(B,C) ¥ KK(4,C).

SKETCH OF THE PROOF. The existence part of the theorem is proved as we
have indicated: one constructs an operator G#F of the form (5.3). As for
well-definedness, it has to be shown first that for fixed (G, &’) and (F, &) all
possible choices for G#F are homotopic, and second that homotopic Kas-
parov (A, B)-cycles have homotopic products. The second part turns out to
be very straightforward: we need only observe that a product of homotopies
gives rise to a homotopy between the products. The first part is a little more
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complicated. The heart of the matter is this: if J; and J, are generalized el-
liptic operators (acting on the same Hilbert modules) and if J;' J; is positive,
modulo compacts, then J; and J, are homotopic. Indeed J; is homotopic to
(J1J7')J2 and then following the straight line path from J;'J; to the identity
operator gives a homotopy from J;(J;'J,) to J;. Somewhat extending this
basic idea, one can show that if J, and J, are Kasparov (4, C)-cycles (these
are the operators; we suppose that they act on the same module) and if the
quantity a*{J,J, +J,J,}a is positive, modulo compacts, then J, and J, are
homotopic [44, Lemma 11]. Finally, condition (ii) of Definition 5.7 implies
that if G#F is any product and if (G#F )ka.sp denotes the particular product
(5.3) then the quantity

a* {(GHE) (G#E sy + (GHE)yasp (GHE) } a

is positive, modulo compacts. (To be more accurate, it is necessary to choose
M and N somewhat carefully, but one can easily show that (G#F)kasp is
independent of the choice of M and N, up to homotopy.) Thus every G#F
is homotopic to (G#F )kasp, and so any two products are homotopic. O

As one might expect, in applications, existence of the product is not the
issue: the problem is to show that a reasonable candidate operator satisfies
the conditions of Definition 5.7, and then (usually) to deform this candidate
operator to a more easily understandable one. However, the abstract con-
struction of the product (the Technical Theorem) is often useful in this, and
of course it is needed to develop the properties of the theory.

The group KK(A, B) is contravariantly functorial in 4: if f: 4’ — A is
a *-homomorphism then by composing with f we obtain from an action of
A as operators on a Hilbert module an action of 4’. Thus by composing
with f we obtain from any Kasparov (4, B)-cycle a Kasparov (4’, B)-cycle.
The group KK(A4, B) is covariantly functorial in B using the extension of
scalars construction of Example 3.23 (d). It is simple matter to check that
the pairing (5.2) is functorial.

5.12. THEOREM. The pairing (5.2) is associative, in the sense that if o €
KK(A,B), B € KK(B,C), and y € KK(C, D) then

a®p(B®cy)=(a®pB)®cy. O

For a proof of this important property, see [44, Proposition 20]. Actually,
as we shall indicate in Section 7, it is possible to prove this theorem in an
indirect way, by studying the algebraic properties of the K K-groups. On the
other hand, it is not so hard to show directly that the two iterated products
(G#F)#E and G#(F#E) are operator homotopic.

5.13. PROPOSITION. Let A be any C*-algebra and denote by 14 the class
in KK (A, A) of the cycle associated to the generalized elliptic operator 0: A —
0 (we consider A as a Hilbert A-module in the usual way, together with the
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obvious action of A as operators on itself). Then for any o € KK (A, B), and
any B € KK(B,A),14,®@4a=aand f®414=4. O

Given the almost trivial form of the cycle representing 1 4, this is an almost
trivial direct computation (see [44, Proposition 17]).

Now let us return to generalized elliptic operators and K-theory. Suppose
that we have constructed generalized elliptic operators F and G, giving rise to
elements @ € KK(A, B) and 8 € KK(B, A), respectively, and suppose we wish
to show that the maps Indexr: K(4) — K(B) and Indexg: K(B) — K(A) are
inverse to one another. Identifying K(A4) with KK(C, A) and K(B) with
KK(C, B), we can attack this problem using the Kasparov product and its
properties. Indeed, by Paragraph 5.8, we have that Indexr(y) = y ®4 a
and Indexg(y) = y ®s B, and so by the associativity of the product, the
compositions of the two index maps are given by Kasparov product with
a®p B and B ®4 a. If these elements are 1, and 15 respectively, then by
Proposition 5.12 the two compositions are the identity maps on K(A4) and
K(B). This suggests the following terminology.

5.14. DEFINITION. If there exist elements a€ KK(A4, B) and f€ KK(B, A)
such that a ® # = 1 and S ® a = 1 then the C*-algebras 4 and B are said to
be K-equivalent. The elements o and f are said to be invertible.

From this we see that it is of some importance to be able to show that a
given generalized elliptic operator is homotopic to the operator in Proposition
5.13, and so represents the element 1,. Unfortunately this is very often a
very difficult problem, at the heart of many applications of KK-theory. Here
is one rather simple result (the proof is a simple modification of the argument
in Proposition 3.27).

5.15. ProposITION. IfV isa Fredholm operator of index one on a Hilbert
space H, then the generalized elliptic operator F = V & 1 on the Hilbert A-
module HR A (with the obvious action of A) is homotopic to the operator of
Proposition 5.13. DO

It is a very useful exercise to compute the four products possible in Exam-
ples 4.7 and 4.8 and to reduce them to this proposition. The computation
of the index of the operator V' obtained ultimately boils down to the same
computation as in Section 8 of [4], but there is a fair amount of work to be
done to get to the point of computing Index(V').

6. The groups KK (A, B). We shall (very) briefly indicate the construction
and properties of the odd K K-groups KK (A4, B). They are constructed in the
same manner as the groups KK (A4, B) out of homotopy classes of generalized
elliptic operators, except that we consider not arbitrary generalized elliptic
operators but only those which are selfadjoint. We can, as in Section 4,
motivate this by starting with a selfadjoint elliptic pseudodifferential operator
D and constructing from it a map

Indexp: K'(M) - Z
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in the following manner. Denote by P the spectral projection of D corre-
sponding to the interval [0, co0); since D is elliptic this is also a pseudodif-
ferential operator. An element of K!(M) is given by a unitary n x n matrix
U = [u;;] of continuous functions on M (see Section 2) and considering this
as an operator on LZ(M) ® C" we may form the operator

Up =[Pu;jP + (1 — P)]

on this space. As a result of the pseudolocality of P it is easy to see that this
is a Fredholm operator, and we define

Indexp([U]) = Index(Up).

This construction may be generalized as follows: if F is any selfadjoint gen-
eralized elliptic operator over 4 with coefficients in B then we can construct
from F a homomorphism

Indexs: Ky (A4) — Ko(B)

by means of the above formula. In the general context of Hilbert modules
the Spectral Theorem is not applicable, and so we cannot directly define the
operator P as above, but we may take, for example P = 1/2(F + 1). Since
the definition of generalized elliptic operator requires that F be “essentially
unitary,” if F is in addition selfadjoint then it is not hard to show that the
operator P so defined is “essentially” a projection.

Generalizing things a little, using for example Bott Periodicity (or other
explicit constructions), one can show that a generalized elliptic operator gives
rise to homomorphisms

Indexr: K.(4) — K.(B) (*x=0,1)
whilst a selfadjoint generalized elliptic operator gives rise to homomorphisms
Indexr: K.(A) = K,41(B) (*=0,1).

We can ask then for a calculus for these more general maps along the lines
of Section 5.

The most convenient way to incorporate the hypothesis of selfadjointness
into the formalism of Section 5 is to make further use of Z/2-gradings. Thus,
given a Kasparov (4, B)-cycle (F, &), suppose that there is a supplementary
unital action of the C*-algebra C; = C & C on the Hilbert module &€ such
that

(i) 1 —1 acts as a grading degree | operator;
(i) the action commutes with the action of A4; and
(iii) the operator 1 @ —1 anticommutes with F.

The effect of the action of C, is that if we identify the even and odd parts of
& via 1®—1 then by virtue of (iii) the operator F (as in (5.1)) is selfadjoint.
Thus this does capture the selfadjointness condition on F.

Taking a small leap forward in abstraction, the above structure added to
the notion of Kasparov (4, B)-cycle can be summarised in the notion of
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Kasparov (4, B ® C,)-cycle, where we regard C,, and hence A ® C,, as a
Z[2-graded C*-algebra by assigning the grading degree 1 to 1@ —1. We shall
not go into this (the reader can refer to, say, [7] for the exact definition)
except to say that by introducing the notions of Z/2-graded C*-algebras and
“graded commutators” one can treat the two types of Index map described
above on a completely equal footing. In particular, using the definition for
the product as in Section 5, mutatis mutandis, we can extend the product to
a pairing
KK,‘(A, B) ® KK](B, C) — KK,'_H'(A, C),

where the indices are in Z/2, and K K denotes KX as in Section 5, whilst KK,
denotes the group of homotopy classes of Kasparov (A4, B ® C;y)-cycles. The
pairing has all the various possible functoriality and associativity properties
of the product of Section 5.

This extension of the theory to cover the selfadjoint case is important for
at least two reasons. First of all, many important operators in practical ex-
amples turn out to be selfadjoint (the prototype being the Dirac operator on
the smooth closed spin‘-manifold of odd dimension) and it is very conve-
nient to be able to incorporate them into K-theory. Secondly, just as it is
useful to consider both the even and odd topological K-theory groups for
a space, when analysing K-theory from a cohomological point of view, the
same phenomenon occurs in K K-theory (see for example the next section).

Some final remarks:

(i) As one might expect, if F is selfadjoint and if we forget about this
extra structure and regard F as determining an element of KK (A, B), then
the element is trivial.

(i) We have that K,(B) = KK,(C, B). Thus, parallel to Section 3, K(B)
may be described in terms of selfadjoint Fredholm operators.

(iii) There is an invertible element of KK, (Cy(R), C) which gives rise to a
Bott Periodicity isomorphism

KK (Co(R)® 4, B) = KKo(A, B).

(iv) The group KK, plays an important role in the theory of C*-algebra
extensions (see [28, Section 7]).

7. Characterization of K K-theory. In this section we want to comment
on two questions concerning the K K-groups considered as functors on C*-
algebras. The first is about the extent to which K K-theory really is a system-
atization of the calculus of elliptic operators acting on K-theory groups. In
the course of answering this, one is led to study the homological properties
of the KK-groups, and from this the second question arises: is it possible
to characterize KK-theory by some system of axioms, in the spirit of the
Eilenberg-Steenrod axioms for ordinary homology and cohomology?

I shall begin by explaining exactly what is meant by the first question.
The groups KK(A, B) have been introduced by putting a natural equiva-
lence relation on generalized elliptic operators, in order to analyze the maps
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Indexr: K(4) — K(B) more fully, and in particular to analyze the compo-
sition of two such maps. Thus we study the composition not at the level
of the homomorphisms of the K-theory groups, but at the level of the ellip-
tic operators inducing the homomorphisms. Since we are interested in, for
example, deciding when the composition of two Index maps is the identity
on K-theory, it is natural to ask whether or not we can always answer this
problem by analysis at the level of the operators. Formulating the question
more mathematically, we ask the following question: to what extent is the
homomorphism

(7.1) KK.(A,B) - Hom(K.(A), K.(B))

injective? (We have been for the most part concerned with the even KK-
groups, but with a little thought one can see that it is more natural for the
purposes of the present question to consider both even and odd groups).
It is also interesting to consider whether or not the map is surjective. For
example if we are studying a map Indexr: K(B) — K(A) which we believe
to be an isomorphism, is it reasonable to seek an inverse map of the form
Indexg: K(4) — K(B)?

Of course, (7.1) immediately suggests the idea of formulating some sort of
Universal Coefficient Theorem for KK-theory. Considering the K K-groups
from a homological point of view, it is then natural to begin by studying the
excision properties of the K K-groups. (This line of reasoning does not rep-
resent the historical order of events, where questions concerning C*-algebra
extension theory made the computation of K K-groups important.) In fact for
a large class of C*-algebras the situation is very satisfactory, as the following
result indicates.

7.1. THEOREM. Suppose that
0—-J—>4-4/J-0

is a short exact sequence of nuclear C*-algebras (see below). Then for any
C*-algebra D the sequences of abelian groups

KK(D,J) - KK(D,A) — KK(D,A/J)

and
KK(A/J,D) — KK(A,D) — KK(J,D)

are exact in the middle. O

This result is due to Kasparov [28, Section 7]. The theorem is generalized
and the proof simplified by Cuntz and Skandalis in [17], and then further
extended in [45]. All the various generalizations involve some hypothesis
related to nuclearity. (This condition on a C*-algebra A4 is most easily char-
acterized as the property that for any C*-algebra B there be a unique C*-norm
(Jlx*x|| = |lx||?) on the algebraic tensor product 4 ® B which is compatible
(la® bl = ||al| ||12]]) with the norms on 4 and B.) Although the class covered
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in [45] is broad enough to include a great many C*-algebras of interest (cer-
tainly including all commutative C*-algebras, for example) it also does not
include all the C*-algebras which are of interest from the point of view of
geometry and topology, and furthermore, it seems very likely that in fact the
theorem is not true for all of these C*-algebras. Before considering this in
more detail, let us return to the Universal Coefficient Theorem. For a precise
statement of the following result the reader is referred to [43].

7.2. THEOREM. For a large class of C*-algebras there is a natural exact
sequence

0 — Ext(K.(A), Kur1(B)) — KK.(4, B) » Hom(K.(A4), K.(B)) = 0. O

The idea behind the proof is simple enough: we verify the exact sequence
first for elementary C*-algebras such as Co(R”), where the result follows from
Bott Periodicity; then we show that the class of C*-algebras for which the
result is true is closed under various operations—for example, if two out of
three C*-algebras in a short exact sequence of nuclear C*-algebras is in the
class then so is the third, and so on. Finally we can obviously close the class
under K-equivalence (see Definition 5.14).

Theorem 7.2 gives on the face of it a very satisfactory answer to the ques-
tions we posed at the beginning: for the class of C*-algebras to which it
applies, the theorem shows that, modulo perhaps some torsion, the calculus
of the maps Indexr is exactly the same as Kasparov’s calculus for the ellip-
tic operators F. Unfortunately Skandalis has produced a sobering example
[45] which shows that in fact the class of C*-algebras to which Theorem 7.2
applies is limited and definitely does not contain certain C*-algebras of im-
portance in applications. In particular, if Il is a discrete, torsion-free, finite
covolume subgroup of Sp(n, 1) then the reduced group C*-algebra C;(Il) is
an example. Skandalis’s argument in [45] (very crudely summarized) is as
follows. He shows by careful analytic arguments that the C*-algebra C;(Il)
does not have a certain nuclearity property: in the terminology of [45] it is
not K-nuclear. On the other hand every C*-algebra which is K-equivalent
to a K-nuclear C*-algebra is itself K-nuclear, and since every commutative
C*-algebra is K-nuclear, C*(Il) is not K-equivalent to a commutative C*-
algebra. Finally, by a sort of geometric resolution argument it is not hard to
show that the class of C*-algebras for which Theorem 7.2 holds is exactly the
class of C*-algebras which are K-equivalent to commutative C*-algebras.

This is of a great deal of significance in connection with the Baum-Connes
conjecture mentioned in Paragraph 1.8. For given II as above we can con-
struct “Dirac” and “Dual Dirac” elements f € KK(Co(TII), C;(IT)) and
a € KK(C}(IT), Co(TTD)) (for a suitable space TTI, as described in, say, [6]).
One can show that

(7.2) B ®c:my a = 1¢,(TT).



278 NIGEL HIGSON

The conjecture is that 8 induces an isomorphism
(7.3) - ® B: K. (Co(TTD) — K. (C7(IT))

and one would like to prove this by showing that as well as the relation (7.2)
one also has

(7.4) a®cyrm B = lc-m)-

However, (7.2) and (7.4) together would show that C;(IT) and Co(7TII) are
K-equivalent, which, as Skandalis shows, they are not. The conclusion is
that, assuming the Baum-Connes conjecture is true in this case, the product
technique summarized by Definition 5.1 is not adequate for proving it. Of
course, one cannot rule out the possibility of a proof that (7.3) is an isomor-
phism within the framework of KK-theory, but this example does suggest
that beyond the class of K-nuclear C*-algebras K K-theory may be of limited
value.

Let us take the optimistic point of view that the map (7.2) is in fact as
isomorphism. We might consider the possibility of some sort of alternative
calculus for K-theory groups, more suited to dealing with non-K-nuclear C*-
algebras. In connection with this there is at least the following positive result
(see [24] for an exact statement).

7.3. THEOREM. There exists a bifunctor E(A, B) on C*-algebras with the
Jollowing properties

(i) E is homotopy invariant and stable;
(ii) there is a product structure on E as in 5.11 and 5.12;
(iii) the sequences of Theorem 1.1 (with E replacing KK) are exact in the
middle for an arbitrary short exact sequence of C*-algebras;, and
(iv) there is a natural transformation KK — E which is compatible with
all the above structure and which is an isomorphism on the category
of K-nuclear C*-algebras.

Thus there does exist one alternative calculus for K-groups, namely this
“E-theory” (by virtue of part (iii) of the theorem, except in the unlikely event
that K K-theory is generally half-exact, “E-theory” really is distinct from KX-
theory). Furthermore it is at least conceivable that the relation (7.4) does hold
in E(C}(IT), C}(IT)). Unfortunately E(A, B) is constructed in [24] by very
abstract homotopy-theoretic and category-theoretic arguments, which offer
no clue as to how to resolve such concrete questions. The mere existence of
the theory does however lend credence to the idea that there are, waiting to be
constructed, more viable alternative frameworks for K-theory groups, which
might play a role in the resolution of problems such as the Baum-Connes
Conjecture.

Having given the reader the impression that beyond the world of K-nuclear
C*-algebras the structure and behaviour of the K K-groups is very mysterious,
it may seem paradoxical that there is in fact an extremely simple axiomatic
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characterization of K K-theory on the category of all C*-algebras, K-nuclear
or not. This is based on the following simple but clever (and also some-
what surprising) observation of Joachim Cuntz: every Kasparov (4, B)-cycle
(F,&) is homotopic to one of the form (T, Hz) where Hy denotes the stan-
dard Z/2-graded Hilbert B-module and T denotes the transposition operator

r-(1 o)

(see [12] or [22, Lemma 3.6]). The information contained in the cycle is thus
compressed into the representations of A4 as operators on the two summands
of Hp; the elliptic operator has disappeared! Now, bearing in mind the
isomorphism mentioned in Paragraph 3.19 (b) we see that the information
contained in the cycle (T, Hg), namely the actions of 4, amounts to a pair
of *-homomorphisms

(7.5) fofoiA— M(B®.X)
such that
(7.6) fi(a)— f-(a) e B®F foreveryac€ A.

(The condition on f, — f_ comes from the fact that T intertwines the action
of A on Hp.) A set of data of this new form is (more or less) what Cuntz
calls a quasihomomorphism [12]. We shall not go into details (the reader
is referred to [12], [13], and [22]), but simply state that from this one can
construct in a rather algebraic fashion a homomorphism

{fo:/-}+: K(4) — K(B)

which turns out to be equal to the map Indexfs constructed from the Kas-
parov (A, B)-cycle we started with. Analysis of this basic construction shows
that Indexr, and in fact the general Kasparov product, is determined by the
functorial properties of the K K-groups:

7.4. THEOREM. There is a unique functorial pairing
1: KK(A,B)® KK(B,C)— KK(A,C),

associative or not, subject to the normalization condition that u(1p,1p) = lg
Jfor every C*-algebra B. O

For a proof of this, see [22]. The argument does not use the associativity of
the Kasparov product, and in fact it is a simple exercise to derive associativity
from the theorem. Pursuing the analysis a little further, we arrive at the
following characterization of K K-theory (see again [22] for the proof, as well
as a more precise statement).

7.5. THEOREM. Regard KK-theory as a category KK in which the objects
are C*-algebras; the morphisms from A to B are the elements of KK (A, B); and
the composition law is the Kasparov product. Denote by F the functor from
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C*-algebras to KK which maps a *-homomorphism f: A — B to f.(14) €
KK(A, B). This functor F is the universal functor from C*-algebras to an
additive category which is:
(i) homotopy invariant,
(ii) stable (see Definition 2.7); and
(iii) split exact. if0 - J — A — A/J — 0 is split by a *-homomorphism
Jrom A}J to A, then F(A) — F(J) — F(A/J) is split exact. O

As an application of this, it is a simple matter to define the general product
KK(A,,By® D)® KK(D® Ay,B;) - KK(A, ® A3, B) ® B;)

of [28] from the basic product of Section 5, as well as to establish its vari-
ous associativity properties (see [22, Section 4.7]). Of course, since we have
moved ourselves quite far away from the basic objects of interest, namely
elliptic operators, such a construction of the product is of much more theo-
retical interest than practical use.

The overall significance (if any) of KK-theory having such a trivial alge-
braic characterization is not clear. However we should at least mention in
closing that a very important aspect of the algebraic point of view on KK
(which, as mentioned, is due to Cuntz) is its close connection with cyelic
cohomology. This goes as follows: Cuntz constructs in [14] a C*-algebra g4
which has the property that homotopy classes of *-homomorphisms from ¢ A4
to B ® % correspond to homotopy classes of pairs of *-homomorphisms as
in (7.5) and (7.6). It follows easily that the set (g4, B ® %] of such ho-
motopy classes (which happens to have a natural abelian group structure) is
isomorphic to KK (A4, B). On the other hand, for any algebra 4 (meaning any
algebra over the complex numbers, not necessarily with a norm of any sort)
there is an algebraic version of g4, and the cyclic cohomology of 4 can be
completely described in terms of traces on (ideals of) gA4. The relationship
of this to K-homology and the Chern Character is analyzed in {16].

8. Notes. The purpose of this section is to give a short guide to the litera-
ture for those who want to pursue the subject further. I had intended to cover
rather more material in these notes, in particular some sample computations
of the Kasparov product, but a lack of space, time, and energy has prevented
me from doing so. I hope nevertheless that these notes will be of some use,
and that after looking through them the reader will be in a good position to
turn to some of the papers mentioned below.

The basic reference for the theory described in these notes is Kasparov’s
article [28]: just about everything I have covered originates there. This paper
is very difficult to read, mostly because a great many challenging new ideas
are compressed into a comparatively small number of pages, but there are
now a number of articles which clarify the results of [28] as well as extend
them in certain directions. Here is a short account of this work (the section
numbers below refer to [28]).
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Sections 1 & 2. There is a very short and elegant proof of the Stabilization
Theorem (Theorem 1.12) in [33]. The “Generalized Theorems of Voiculescu
and Stinespring” (Theorems 1.16 and 1.17) are important from the point of
view of C*-algebra extension theory, but do not play a role in the applications
of KK-theory to topology and geometry. Although the notions of Z/2-graded
C*-algebra, Z/2-graded Hilbert module, and so on are very important, the
rather confusing material on orientations of Clifford algebras does not play
a great role in the theory. (What is at stake here are +/— signs: conventions
of orientation).

Section 3. A simplified account of this section is given in [21].

Section 4. This material is covered in the article [44] of Skandalis. This is
the approach to the product we followed in Section 5.

Section 6. Theorem 1 of this section is Theorem 19 of [44). The material
on K(B) is roughly what was covered in Section 3 of this article. See for
example [32] for details.

Section 7. For a treatment of C*-algebra extension theory (a subject that
was not touched upon at all here) the reader is referred to [8], [41], and [7].
The excision results are proved and generalized in [17] and [45].

As for applications of the theory, the article [29] gives a very rapid over-
view. The basic reference for applications to the Novikov conjecture is now
Kasparov’s article [30]. A systematic treatment of the Atiyah-Singer Index
Theorem (along the lines of the proof in [4], [5]), using the K K-machine, is
given in [11] which goes on to extend the theorem to the case of operators
elliptic along the leaves of a foliation.

Apart from the references in these papers, the reader might also peruse the
bibliography of [7].
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