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Introduction

Let Q be a smooth, compact, spin°-manifold whose boundary consists of k iso-
morphic components (we fix suitable isomorphisms, and suppose that these preserve
the metric and spin®-structures on the boundary). In recent work [6], D. Freed has
considered an index theory appropriate to such manifolds. In collaboration with R.
Melrose, he has proved an index theorem along the lines of the Atiyah-Singer Index
Theorem [4]. Freed analyzes the index of the boundary problem on Q obtained by

imposing Atiyah-Patodi-Singer boundary conditions on the Dirac operator. Because .

of the boundary conditions, this index is sensitive to deformations in the geometry of
0, and so is not a topological invariant. However, Freed and Melrose show that the
congruence class, mod k, of the index is given by a natural K -theoretic formula.

The essential problem in adapting the argument of Atiyah and Singer to the present
situation lies in demonstrating various stability properties for the analytic index:
whereas Atiyah and Singer appeal to the theory of pseudodifferential operators on a
smooth, closed manifold, the corresponding theory for a manifold with boundary is
much more complicated and subtle. The purpose of this article is to describe a new
approach to Z/k-index theory, in which this issue is more or less circumvented by
realizing the analytic index as an element in a certain C*-algebra K-theory group (we
will make use of C*-algebra K-theory in only a rather mild way, and in particular we
will not need K-homology or KK-theory). It follows from the elementary rigidity
properties of K -theory that our index has the desired stability properties (and also that
it is equal to Freed’s index).

Our proof will follow the general strategy of [4], although in several places the details
will be different. Rather than introduce pseudodifferential operators, we shall work
entirely with first order differential operators, using nothing more sophisticated than
the basic elliptic estimates. (A discussion of the Atiyah-Singer Theorem from this point
of view will be given in [107.)

We -shall assume some familiarity with Z/2-gradings, Clifford algebras, spin‘-
structures, and so on. In Secs. 1 and 2 we shall review the construction of analytic
indices in C*-algebra K -theory and certain rudimentary properties of Dirac operators
that we shall need.
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1. Analytic Indices and K-Theory

As mentioned in the introduction, we shall make only limited use of K-theory. Here
we shall use nothing more than the most basic properties of K,-groups (in the
computations of the next section we shall use the long exact sequence in C*-algebra
K -theory, and as in [4], the proof of the Index Theorem will rest ultimately on the
- Bott Periodicity Theorem in Atiyah-Hirzebruch K-theory).

Let o = X, @ H#_ be a Z/2-graded Hilbert space. Denote by &: # — o the
grading operator, so that the operators

0. =1pa+a=(} o).

0. =1/2(1—s)=(g ‘1’)

are the orthogonal projections onto the subspaces #, and #_ of 5. Let D be a
self-adjoint operator on o of odd grading degree. To be precise, we are supposing
that e maps domain(D)into itself, and éD = — D¢ on domain (D). Thus D is of the form

0 D%
D=(D+ 0), (1.1

for some closed operator D, from 3, to #_.
Assume that a C*-algebra € has been specified so that

D+i)y'e¥. (1.2)
Suppose that € < € é.nd for the sake of simplicity, that neither of the projections Q.
or Q_ is an element of €. Denote by € < B(X) the C*-algebra generated by € and
¢. From the inclusion ¢€ < € it follows that € is an ideal in ; the quotient /¢ is

of course generated by the image of ¢ and is isomorphic to C*(e) in this natural way.
Thus the short exact sequence

0-€>%—>CHe)>0
splits, and gives rise to an exact sequence of K-theory groups
0— Ko(€) - Ko(#) > Ko(C*e)) » 0. (13
Now, let f: R > [ —1,1] be any continuous function satisfying the conditions:

(a) f is odd (that is, f(x) = —f(—x)); and
®) lim f(x)=1 (1.4)

x>+
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and let g = (1 — f2)"2. The effect of choosing f to be odd (and hence g even) is that
the bounded operators f(D) and g(D) are of odd and even grading degree, respectively.
Because of this, the operator

U =¢f(D) +g(D) -
on # is unitary. Let us define a projection operator P by the formula

P=UQ,U*
(1.5)
= g*(D)e — f(D)g(D) + Q- .

From condition (1.2) and the Stone-Weierstrass Theorem it follows that h(D) € € for
every h e Co(R) (the continuous functions from R to C which vanish at + oo). Thus
from (1.5) we see that the projections P and Q_ lie in €, and that P — Q_ € %. The
class [P1—[Q-]€ Ko((ﬁ) lies in the kernel of the map Ko@) - Ko(C*(e)), and so
[P]1 - [Q-1€ Ko(¥) by (1.3).

1.1. Lemma. The class [P] — [Q-] does not depend on the choice of the function f
satisfying (1.4).

Proof. We note that if P, and P, are projections in a C*-algebra such that ||P; —
P,|| < 1, then P, and P, are unitarily equivalent (see [5, Proposition 4.6.6]), and so P,
and P, determine the same K-theory class. We shall refer to this as the homotopy
invariance of C*-algebra K-theory, since it implies that all the elements in a norm
continuous path of projections have the same K-theory class.

Given f, and f, satisfying (1.4), let f, = (1 — t)f, + tf;; each of the functions f,
satisfies (1.4). The path t — £, is continuous in the supremum norm, and thus the path
t - f(D) is norm continuous. Therefore the corresponding path ¢t — P, is norm contin-
uous, and so [P,] =[P, 1 QED"

We define: Index (D) = [P] — [Q. ] € Ko(¥). This generalizes the usual notion of
Fredholm index, as follows.

1.2. Lemma. Suppose % is X (), the C*-algebra of compact operators on . Then
the operator D in (1.1) is Fredholm, and if we identify Ko(# (3)) with Z in the natural
way (via the trace on X () then Index (D) = dim ker D, — dim ker D..*.

Proof. By assumption, D has compact resolvent, and therefore D, and hence D,
is Fredholm. We may choose a function f as above which is +1 on the positive
spectrum of D and —1 on the negative spectrum. Then f(D) is of the form

=y ')

where V is a partial isometry whose kernel and cokernel are the same as those of D, ,
and g(D)is the projection onto the orthogonal sum of the kernels of D, and D, *,say
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-5 )

According to the formula (1.5),

and so

m-tea-[(5 1 2,) -6 V)]
(G )6 22116 2GR

= [po] — [p1]- QED

In Sec. 6 we shall need a mild extension of this index theory. Let us suppose that
instead of (1.2) the operator D satisfies the weaker condition that for some 4 > 0,
h(D) € € for every h € Co(R) with supp(h) = [—9,8]). If we choose f as in (1.4) such
that f2 = 1 outside of the interval [ — 4, ], then the projection P in (1.5) will be equal
to Q_, modulo %, and we can still form the index class [P] — [@_] in K(¥). We note
that Lemmas 1.1 and 1.2 are still valid.

2. Dirac Operators

Let M be an oriented, even dimensional Riemannian manifold without boundary.
Let S be a smooth, Hermitian vector bundle over M, equipped with a Clifford action
of the tangent bundle TM and a compatible connection, in the sense of [12, Definition
2.3]. We shall refer to S as a Dirac bundle (the name Clifford bundle is used in [12], but
this is in conflict with the terminology of [2]).

Let E be any Hermitian bundle over M, equipped with a connection compatible
with the Hermitian structure. There is a natural Clifford action on the tensor product
bundle S ® E, and this, together with the connection Vy(( ® () = (VyE)®{ +(®
(Vx{) on S ® E (see [8]), makes S ® E into a Dirac bundle.

Every Dirac bundle has a natural Z/2-grading, determined by the formula

e(&) =i"2e ey ... e, &,

for the grading operator, where {e,,...,e,} is a local, oriented, orthonormal frame for
TM and “-” denotes Clifford multiplication. If, however, our Dirac bundle is a tensor
product, as above, and if E is equipped with a non-trivial Z/2-grading, then we shall
equip S ® E with the product grading, deg(¢ ® () = deg(¢) + deg({), and use the
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standard notation S & E to signify this. If G is an endomorphism of E of odd grading
degree then we shall consider G as acting on § ® E in the graded fashion: G(¢ ® {) =
(—1)**9¢ ® GL.
~ Given any Dirac bundle S, we may form the associated Dirac operator Dg = Z;e;* V;
asin [12, Definition 2.4]. A calculation in local coordinates [12, Proposition 2.9] shows
_ that Dg is a formally self-adjoint differential operator. It is of Z/2-grading degree one
with respect to either the usual grading or the tensor product grading (if the Dirac
bundle is a graded tensor product). In the later sections of the paper we shall need to
consider more general operators, of the form

D =yDg¥ + G, 2.1

where G is a self-adjoint endomorphism of S and ¥ is a smooth, bounded, real valued
function on M (it is a sort of cut-off function, confining the action of D to manageable
portions of M). These, too, are formally self-adjoint and of grading degree one.

Let us consider D as a Hilbert space operator, with domain initially the smooth,
compactly supported sections of S. A standard argument involving Friedrichs’
Mollifiers (compare [12, Proposition 3.20]) shows that if £ € domain(D*) (that is,
D¢, computed in the sense of distributions, is an L2-section), and if £ is compactly
supported, then ¢ € domain(D).

2.1.Lemma. (Compare [9, Theorem 1.17].) Suppose that the Riemannian metric on
M may be altered outside of a neighborhood of supp(y) so as to make M complete. Then
D is essentially self-adjoint.

Proof. We may assume that M is complete. There exists a sequence of smooth
functions ¢, : M — [0, 1] which converges uniformly to the constant 1 on compact

subsets, such that sup [|grad(¢,)|| = 0 as k — co. Pointwise multiplication by ¢, leaves
xeM

domain(D*) and domain (D) invariant. The commutator [¢,, D] is the operator given
by Clifford multiplication with y*grad(¢,), and so it is bounded: in fact ||[¢,, D]|| = O
as k — oo. Suppose that ¢ € domain(D*). Then ¢,{ € domain(D*) for all k, and so by
the above remarks, ¢,¢ € domain(D ™). By taking inner products with any test function
we see that

D¢ ¢ = 4D + [D, b ]c.

Taking limits as k — oo, we obtain ¢,& — £ and D¢ & - DE sothat £ e domain(D).
QED

All our operators (with the exception of the boundary value problems appearing
in Theorem 3.5) will be essentially self-adjoint on the smooth, compactly supported
sections. We shall work with the closures of these operators, although to keep our
notation uncluttered we shall write D rather than D. It is easy to check that the
self-adjoint Hilbert space operator D is of Z/2-grading degree one, in the sense de-
scribed in the previous section.
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It is useful to investigate the question of domains a little more closely. Let K be a
compact subset of M and denote by H!(K) the completion of the space of smooth
sections supported in K, with respect to the norm ||¢||,2 = [|£]|% + ||[V&|? (the quanti-
ties on the right are L>-norms; for convenience we shall omit mention of the bundle S
in our notation). The natural map of H!(K) into L?(M) is an inclusion, and the Rellich
Lemma (compare [12, Proposition 3.8]) asserts that this inclusion is compact. If the
cut-off function y is bounded below on K then we have the “basic elliptic estimate”
€l < C(|DEJ + 11£]]) (compare [12,3.14]). It follows that if ¢ is a smooth function
supported in K then

¢ - domain(D) ¢ HX(X). (2.2)

If X and Y are bounded Hilbert space operators then we shall write X ~ Yif X' — Y
is compact. We shall need following calculations.

22. Lemma. Let ¢ be a smooth, compactly supported function, or endomorphism of
S, such that ¢ vanishes wherever \ is zero. Then ¢h(D) ~ 0 for every h € Cy(R).

Proof. Thereis a sequence {¢ } of smooth, compactly supported functions conver-
ging uniformly to ¢, such that y is bounded below on each supp(¢;), and since the
space of compact operators is closed it suffices to prove the Lemma for each ¢,.
Furthermore, we may assume that h is compactly supported. Then range(h(D)) <
domain(D), and so, by (2.2), range(ph(D)) = H}(supp(¢)). It follows easily from the
Closed Graph Theorem that ¢h(D) is continuous as a map from L*(M) to H}(supp(¢)),
and since the inclusion H}(supp(¢)) = L*(M)is compact, the composition is compact.

QED

23. Lemma. Let U, €« M and U, = M be open subsets and let y: U, — U, be an
isometry, lifting to an isomorphism of Dirac bundles, such that D(¢ o y)(x) = (D&)(y(x))
for x € U,. Denote by T : LX(U,) - L*(U,) the Hillbert space partial isometry induced
from y, and let ¢, be a smooth, bounded function supported within U,. If supp([D,¢,])
is compact then h(D)¢,I" ~ ¢, Th(D) for every h € Cy(R).

Proof. By the Stone-Weierstrass Theorem it suffices to consider h(D) = (D + i)™.
The operator I'¢, maps domain(D) into itself, and so we may write

TP+ —D+i)'$ =D ) (D), —4TDi))D £ )™
=D ) (TD ti)g, —T$,(D £ D)D i)™
=D 1 i)7'I'[D, 1D i),

where ¢, = ¢, o y = I'*¢, I'. The compactness of this operator follows from Lemma 2.2
(note that the endomorphism [D, ¢, ] vanishes wherever ¥ is zero). QED

24. Lemma. Let D, and D, be operators on M, and suppose that ¢ is a smooth,
bounded function on M such that D, = D, near supp(¢). For each fixed h e Cy(R) and
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every ¢ > 0 there exists 8 > 0, depending only on h, and not on ¢ or D, such that
if \[Dy,¢1ll < 6 then ||gh(D,) — $h(D,)| <e. If [Dy,4] is compactly supported then
@h(D,) ~ ¢h(D,) for every h € Co(R).

Proof. It suffices to show that h(D,)¢ ~ ¢h(D,) and find 4 >0 so that if
I[Dy, 91l <& then ||h(D,)¢ — ph(D,)|| < &2 (to complete the proof of the lemma,
- apply these conclusions to the case where D; = D,). We may assume that the endo-
morphism [D,, ¢] is bounded. Then ¢ maps the domains of D, and D, into themselves,
and

¢(Dz s i)—1 - (Dl + i)_1¢ = (D1 * i)_l [D1,¢] (Dz * i)_l-

Therefore [|¢(D, + i)™t — (D, + i)"*8|l < I[D;, 41, and furthermore ¢(D, £ i)™ —
(D, +i)"'¢ ~0 by Lemma 2.2. This proves the lemma for the functions h(x) =
(x + i) The general case follows from this and the Stone-Weierstrass Theorem
(compare [1,Lemma to Theorem 2]). QED

25. Lemma. Let W be an open subset of M such that if ¢ is a smooth section
compactly supported inside W then |DE|| > ||&||. Let ¢ be a smooth, bounded function
supported inside W and let h e Co(R) with supp(h) = [—1/2, 1/2]. For every ¢ >0
there exists 8 > 0 (depending on h but not on ¢ or D), such that if |[D,¢]ll < é
then ||ph(D)|| < e. Furthermore, if ¢y is compactly supported (with ¢ as in (2.2)) then
¢h(D) ~ 0.

Proof. We may assume that [D, ] is bounded, so that ¢ maps the domain of
D into itself, note that since D is essentially self-adjoint, | D]l > [|g¢|l for every
& € domain(D). It suffices to prove the lemma for 1 > h >0 and ||¢| < 1. Choose N
so that 27N < ¢/5, and let g = hYN. For every { € L*> and every n = 1, ..., N we have
that g"(D){ € domain(D) and

D¢g™(D), = [D,¢1g9™(D), + ¢Dg" (DX
= [D,$1g"(DX, + [, Dg(D)1g" ' (D). + Dg(D)¢g" ' (D).  (2.3)

Note that since supp(g) < [—1/2,1/2], IDg(D)Il < 1/2]lg(D)|l < 1/2. Given ¢ >0,
choose ¢/5 > & > 0 so small that if |[¢,D]|| < é then ||[4, Dg(D)]|| < &/5. Bearing in
mind the inequality ||| < | DE|, it follows from (2.3) that if |[¢, D]|| < 6 then

I#g" (D)1l < | Dgg"(DY Il < &/SNCI + &/SICH + 1/2]1g™ (DX
Iterating this inequality we obtain
g™ DN < 2¢/SICI + &/SNEI + -+ +27NDe/S LN + 2714l

<eldl.
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Hence |#h(D)]| < ¢ as required. For the second part of the lemma, recall that an
operator K is compact iff lim;, , | K{;|| = O for every orthonormal sequence {¢;}. By
Lemmas 2.2 and 2.3, the operators [D, ¢1g"(D) and [¢, Dg(D)]g"*(D) appearing in
Eq. (2.3) are compact. Therefore lim sup;.,, |¢g"(D); | < 1/2 lim sup;...,, liég" (D)1,
from which it follows that lim sup;_, |[¢h(D){;|| < 27N, QED

3. The Analytic Index for Z/k-Manifolds

We shall develop an index theory associated with the following geometric objects
(compare [6, Definition 1.7]).

3.1. Definition. (i) Let Q be an oriented, smooth manifold whose boundary is
decomposed into k disjoint manifolds (9Q),, . . ., (0Q), (the (9Q); are not necessarily con-
nected, and the choice of labelling of (0Q),, . . ., (3Q), is unimportant). We shall say that
Q admits a Z [k-structure if there exists an oriented manifold P and orientation preserv-
ing diffeomorphisms y;: ¥; — (0, 1] x P, where the ¥, are disjoint collaring neighbor-
hoods of the (0Q); (i = 1,...,k). A Z/k-structure on Q consists of a particular choice of
such data. By a Riemannian metric on Q we shall mean a choice of Riemannian metrics
on Q and P such that the y; are isometries (we put the product metric on (0,1] x P).

(ii) A Z/k-bundle E over Q is a vector bundle, together with a vector bundle F over
P, and liftings of the isomorphisms y;: ;- (0, 1] x P to isomorphisms E|, = n*(F)
(where n*(F) s the pull-back to (0, 1] x P). Any additional structure on E (for example,
a metric), will be assumed to be compatible with these isomorphisms.

(iii) A spin‘-structure on an oriented, even dimensional, orthogonal Z/k-bundle V is
a Hermitian Z/k-bundle S, equipped with a Clifford action of V (as skew-adjoint
endomorphisms) which is fibre-wise irreducible (see [2]). On the open sets V; we assume
that the Clifford action is pulled back from an action over P. A spin‘-structure on an
even dimensional, Riemannian Z/k-manifold is a spin®-structure on the tangent bundle.

This definition has the following counterpart in operator theory.

3.2. Definition. (i) A Z/k-structure on Hilbert space # consists of a separable, in-
finite dimensional Hilbert space %, together with k isometriese;: & —» # (i = 1,...,k)
whose ranges are pairwise orthogonal. We shall denote by e;; the partial isometries
e;e* (i,j = 1,...,k), and by p; the projections e;e;* = ¢; (i = 1,...,k). Let p, be the
complementary projection 1 — p; — *** —p,.

(i) If o# is a Z/k-Hilbert space then denote by Z,(s¢) the C*-algebra

D(H) = {X € B(H)|[X,e,] ~0and Xp, ~ 0}.

Let Q be an even-dimensional, compact, spin®-Z/k-manifold, and let E be a hermitian
Z/k-bundle over Q. Equip E and the spinor bundle S with connections which are
compatible with the metrics, as well as with the Z/k-structures, in the sense that over
the open sets ¥} the connections are pulled back from connections defined over P.
Furthermore, choose the connection for S so that it is compatible with Clifford
multiplication and the Riemannian connection on the tangent bundle.

Form a complete manifold M from Q by attaching cyclinders [1,o0) x P at the
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boundaries (9Q);, using the isometries y; (i = 1,...,k), and extend E and the Dirac

bundle S to M by using the product structure near Q. Denote by Dy the Dirac operator

on M with coefficients in E (that is, the Dirac operator for S ® E).

~ Denote by L%(M) the Hilbert space of L>-sections of S ® E. This has a natural
Z/k-structure (take & = L?([1, ) x P)andlete,,..., e, beinduced by the kinclusions

~ of [1,00) x P into M).

3.3. Proposition. (D + i)™ € 9,(L*(M)).

Proof. Denote by U, (i = 1,..,k) the open subsets of M formed from the union of
the collar neighborhood V; of Definition 3.1 and the attached cylinder [1, 00) x P.
Denote by y;;: U;— U; the isometries extending 3 toy:¥;—> V¥, and denote by
T;;: L%(Uy) —» L*(U,) the partial isometries induced from the y;;. Let ¢, be a smooth
function supported in U, such that¢ = 1on[1,0) x P,andletg, = ¢, o y;y = Tyy» Iy
(i = 1,...,k). The operators ¢;; of Definition 3.2 are given by the formula e;; = I'};p;,
where p;is (multiplication by) the characteristic function of the j’th cylinder [1, o0) x P.
Now,

[eijs Dg = i)_l] = [r‘u¢p D * i)_l:l + rij(pj - ¢j)(DE + i)—l + (Dg £ i)_l(¢i - Pi)rijs

and the first term is compact by Lemma 2.3, whilst the second and third terms are
compact by Lemma 2.2, since p; — ¢;is compactly supported. Finally, po(Dg + iyt~0
by another application of Lemma 2.2. QED

3.4. Proposition. If ¢ is any Z/k-Hilbert space then K (2, () =
Kol (H))/kK o[ X ().

Proof. Note that X' (#) is an ideal in 9,(s#). Define a *-homomorphism
a: B(L) - D () by a(X) = Ze;Xe;*. This maps A (£) into H (##), and the induced
*.homomorphism on quotients is an isomorphism. From the diagram of extensions

0 —— X (H#) —— D(H) —— DUH)AH (H) — O
0 —— H(¥) — BEL) —— BLYHN (L) — 0
we obtain a diagram of exact sequences in K-theory, a piece of which is

K@/ H) —— Ko(H) — Ko@) ——  Kol&/X)

K(B/AH) —=— KolX) Ko(#/X) =0

The image of a* : Ko(# (£)) = Ko(H (#)) is easily seen to be kKo(H (), and so
Ko(@y) = Ko ())/kKo(X (). QED
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Identify Ko(# (5#)) with Z in the usual way and define:
'Indexk(DE) = Indeng(Lz(M))(DE) € Ko(@k) 4 Z/k.

The following theorem identifies our analytic index with the one considered by Freed
in [6], and so gives Index, (D) a more concrete form. We shall not however use this
result in the remainder of the paper.

3.5. Theorem. The quantity Index,(Dg) is equal to the congruence class, mod k, of
the index of the Atiyah-Patodi-Singer boundary value problem for Dg on Q (as described
in [3]).

In order to prove this we shall need the following computations concerning the
K-theory of 9,.

3.6. Lemma. (i) If P is a projection in 9, such that the operators [P,e;;] and Pp,
are zero (and not merely compact) then [P] = 0 in Ko(Z;).

(i) If V: o — #' is an isometry of Z/k-Hilbert spaces (meaning that there is an
associated isometry W : ¥ — %', and e,W = Ve, for i = 1,...,k), then the *-homomor-
phism Ad(V) maps D,(¥) into D,(H#"), and the induced map on K-theory corresponds
to the identity map on Z/k. Furthermore, if V is in addition an isometry of Z/2-graded
spaces, and if D and D’ are odd degree, self-adjoint operators such that Vh(D)V* = h(D’)
for every h e Co(R) with say supp(h) = [—1/2,1/2], then Index,(D) = Index,(D’) (as-
suming that the first, and hence both, of these indices is defined).

(iii) Let 9, — B(H) be obtained from D, by adjoining a grading operator, as in
Sec. 1, which commutes with the e;;, and let Q _ denote the projection onto the odd-graded
subspace of . Let P, (t € [0,1]) be a strongly continuous path of projections in 78
such that P, — Q_ € 9, for all t € [0,1], and such that the paths [e;;, P,] and p, P, are
norm continuous. Then [P,] — [Q_] = [P,] — [Q-]in Ky(2D)).

Proof. Part (i) of the lemma follows from the fact that P is the image of a projection
in #(%), under the *-homomorphism o : #(¥)— Z,(#) defined in the proof of
Proposition 3.4, and the fact that Ko(#(¥)) =

An easy computation shows that V@, (#)V* < 2,(5#¢"). Since Ad(V) preserves the
rank of projections, and since the isomorphism of K(2,) with Z/k is given by the rank,
mod k, of finite projections, it follows that Ad(V), corresponds to the identity map on
Z/k. The last assertion in part (ii) follows from the formula (1.6) for the projection
determining the index.

To prove (iii) we shall show that the K-theory class [Py] — [P,] € Ko(2,) is zero.
Denote by 2, [0, 1) the C*-algebra of those bounded, *-strongly continuous functions
X, from [0, 1] to @, which vanish at 1, for which the functions [X,,e;;] and p, X, are
norm-continuous. The formal difference of P, and the constant projection P; de-
termines an element of the group K,(2,[0, 1)), which maps to the class [P,] — [P;]
via the map K4(2,[0, 1)) - Ko(%;) induced from evaluation at 0. Using the *-homo-
morphism a we see that there is an exact sequence of C*-algebras

0 = Hporm[0, 1) = Z,[0,1) » B[O, 1)/ A0 [0, 1) = O,
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where #[0, 1) denotes the bounded, *-strongly continuous maps from [0, 1] to #(¥)
which vanish at 1, and X,,,[0, 1) denotes the norm continuous, compact operator
valued functions which vanish at 1. By homotopy invariance, K, (#;0m[0, 1)) = 0. As
for #[0,1), this is an ideal in the C*-algebra #[0,1] of all bounded, *-strongly
continuous maps from [0, 1] to #(%), with quotient %. A standard argument (see
[5,12.2.1]) shows that K ,(2[0, 1]) = K .(®) = 0, and so K (#[0, 1)) = 0 by the long
exact sequence in K-theory. It follows from another application of the long exact
sequence that K (2,[0,1)) = 0. QED

Proof of Theorem 3.5. Denote by Q' the manifold obtained from Q by deleting
collars (1/2,1] x P at the boundary manifolds (6Q),, . . ., (8Q),. The complete manifold
M associated with Q is obtained from @’ by attaching cylinders [1/2, ) x P, and
considering M as decomposed in this new way we obtain a new Z/k-structure on L*(M).
It follows from part (i) of Lemma 3.6 (applied to the identity map on L?(M), considered
as an isometry from the old to the new Z/k-structure) that we may compute the index
of Dg using the new Z/k-structure, and so for the rest of the proof we shall work with
this.

Denote by D the self-adjoint, grading degree one, Hilbert space operator on L*(Q)
associated with the Atiyah-Patodi-Singer boundary value problem for D on Q. Thus

0 2*
b= (9 0 )
where & is the bpcrator descirbed in [3, Sec. 3]. The domain of D is a subspace of the
Sobolev space H'(Q) (consisting of sections whose L-restrictions to 9Q satisfy the
pseudodifferential equation giving the boundary conditions), and so by the Rellich
Lemma D has compact resolvent.

Choose smooth compactly supported, real valued functions ¢, and ¥ on M, which
are invariant under interchanging the cylinders (0, ) x P in M, such that: (i) ¢, =1
on Q'; (i) ¥ = 1 onsupp(d,); and (iii) Y = 0 on each cylinder [3/4, c0) x P (in particu-
lar, = 0 in a neighborhood of 8Q). For 1 >t > 0 let

D, = (y + t(1 —¥))D(Y + t(1 — ¥)). 3.n

Each of the operators D, is self-adjoint and each of the resolvents R, = (D, iy,
considered as an operator on L2(M) via the natural inclusion of L%(Q) into L*(M), is
an element of 2,. For ¢ > 0 this is clear since domain(D,) = domain(D,) = H'(Q), and
so R, is compact; for t = 0 the assertion follows from the argument of Proposition 3.3.
Thus we may form Index,(D,), and the main part of our proof will be to show that this
index is independent of t. We shall accomplish this by showing that the projections F,
obtained from D,, as in (1.5), satisfy the hypotheses of Lemma 3.6, part (iii). By the
Stone-Weierstrass Theorem it suffices to show that the resolvents R, satisfy the contin-
uity requirements of the lemma, and to begin with, it is easily seen that R, is a strongly
continuous path. Let ¢,, ..., ¢, be smooth functions on M such that ¢; = 1 on the jth
cylinder [1/2, o) x P and ¢; = 0 on the other cylinders, and let I';; be the Hilbert space
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partial isometries given interchanging the cylinders (0, c0) x P in M. Then p, = podo
and

[eij’ R]= [¢iristr] +(p; - ¢i)rij¢oRt + R¢o(p; — ¢i)rij’

from which we see that it suffices to show that the paths R,é, and [4,I;;, R,] are
norm continuous. Noting that @D, = ¢,D, for all ¢, we see that R,d, — R, =
R,[D,,¢,]R,. The of)erator [D,,#o]R, is compact by Lemma 2.2, so that R, ¢, — ¢y R,
is the product of a bounded, strongly continuous path and a fixed compact operator,
and is therefore norm continuous. Next, note that [¢,I;;, R,] = R,I};[D,, §;]R, (see the
proof of Lemma 2.3),and [D,, ¢;] = ¢o[ Dy, ;140 (since [D, ¢;] is Clifford multiplication
by grad(¢,)). Hence the continuity of [#,[};, R,] follows from that of R,d,.

It follows ‘then that Index,(D,) = Index,(D,). It is clear from Lemma 1.2, and the
manner in which we identify K(2,) with Z/k, that Index,(D, ) is the congruence class,
mod k, of the Atiyah-Patodi-Singer index. As for Dy, replacing D by Dg in the formula
(3.1) we obtain a homotopy from D, to Dy, and so a repetition of the above argument
shows that Index,(D,) = Index,(Dg). QED

We could replace the Atiyah-Patodi-Singer problem with any Fredholm boundary
value problem for the Dirac operator (the domain of the corresponding self-adjoint
Hilbert space operator should be invariant under multiplication by smooth functions
which are locally constant near dQ). An analysis of the Z/k-index from the point of
view of boundary value problems is given in [11].

The techniques of this section provide for the construction of Index,(Dg) in a variety
of more general circumstances. The simplest instance of this is that it is not necessary
to assume Q is of product form near 4Q; it would, for example, be sufficient to assume
that there are isometric neighborhoods of the boundary pieces (0Q),, . . ., (3Q);. (In fact
our index is independent of the choice of metric on Q—this follows from the basic
elliptic estimates; it will of course also follow from the index theorem.) Furthermore,
instead of attaching cylinders we could attach any other ends to Q (as long as we attach
isometric ends to the k parts of the boundary). The argument of the preceding theorem
shows that Index (Dg) will be the same for all constructions.

4. The Topological Z/k-Index

The construction of a topological index for a Z/k-bundie E over a compact, even
dimensional, spin°-Z/k-manifold Q is described by Freed in [6]. Since our definitions
only differ from those of [6] in some minor respects, we shall be brief.

4.1. Definition. (i) We construct inside each even dimensional Euclidean space R2d
a Z/k-manifold ¢, by adjoining to the open half space H = {x € R**: x; < 0} kdisjoint,
relatively open, unit radius disks in the hyperplane H, = {x € R*!: x; = 0} (we obtain
collaring neighborhoods and diffcomorphisms U; = (0, 1] x D, where D is the unit disk
in Hy, by translations in R?9).

(ii) Denote by ﬁ the locally compact space obtained by identifying the k disks in

143
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A computation very similar to the proof of Proposition 3.4 shows that:

4.2. Proposition. The inclusion H Qé\k induces an isomorphism K°(¢A,‘) =
KO(H)/kK(H).

The Bott Periodicity Theorem asserts that K°(H) Z, and so a choice of generator
for K°(H) = Z determines an isomorphism K°(¢k) ~ Z/k. We shall choose the stan-
dard Bott generator for K°(H) (to be described in a moment)

We shall construct our topological index in K° (¢k) and for computations it will
be useful to have a concrete description of this group in terms of cycles and relations
among cycles.

By a Z/k-submanifold of a Z/k-manifold such as ¢, we shall mean a submanifold in
the ordinary sense such that the Z/k-structure of g, restricts to a Z /k-structure for the
submanifold.

4.3. Definition. A cycle for K°(¢/;) is a triple (%, S, G), where:
(i) % is an open Z/k-submanifold of g;
(i) Sis a Z/2-graded Z/k-bundle over %; and
(ili) G is a self-adjoint, grading degree 1, endomorphism of § such that G2 >2
outside of a compact subset of % (the inequality refers to comparison of positive
operators).

Denote by % the locally compact space obtained by identifying the k boundary
pieces of 4. Because of all the identifications built into the definition, each cycle
(@,S, G) determines a vector bundle S on %, together with an endomorphism G
which is bounded below outside of a compact subset of 4. Such an object determines
an element of the group KO(%) (see for example [4, Sec. 2]), and the inclusion i<, #x
induces a natural map Ko@) - K°(¢k) Therefore every cycle of the type described
above does indeed determine an element of K°(¢k)

4.4. Definition. Put on the set of all cycles the equivalence relation generated by
the following relations:

(i) Isomorphism. (The obvious notion for cycles defined over the same base %.)

(i) Addition of trivial cycles. A cycle is trivial if G* > 2 on all of %. We deem that the
direct sum of a trivial cycle over % with any other cycle (%, S, G) is equivalent to
.S, G).

(iii) Restriction. Let ' be an open Z/k-submanifold of #. The cycle (%, S,G) is
deemed to be equivalent to (%, S|4, Gly-) (assuming the latter is a cycle).

(iv) Homotopy. If {(#, S, G)};c(0.1; are cycles, and if the family of endomorphisms
{G,}1e10.17 is uniformly continuous on compact sets, then (%, S, G,) is equivalent to
,S,Gy).

It is a simple matter to check that this is the correct relation (the task is left to the
reader): :

45.Lemma. The quotient of the set of cycles by this equivalence relation is Ko(é\,‘).

Suppose now that Q is a compact, even dimensional, spin°-Z/k-manifold, and let E
be a Hermitian Z/k-bundle over Q. Since any compact manifold with boundary can
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be embedded in some half-space, it is easy to see that Q can be smoothly embedded
into some ¢, as a Z/k-submanifold. Choose such an embedding and let vQ denote the
normal bundle, which is a Z/k-bundle over Q. Equip vQ with an orthogonal structure
and the orientation induced from the orientations on Q and ¢,. The spin°-structure on
the tangent bundle TQ determines a spin°®-structure on vQ : we choose it so that the
combined spin®-structure on the direct sum TQ @ vQ = Q x R is the standard one
for a trivial bundle. Denote by S the spinor bundle for this spin°®-structure.

Now, let N be the total space of the bundle vQ. Denote by S* the complex conjugate
of the spinor bundle for vQ and denote by n*(S*) the pull back of this bundle to N
This is a Z/2-graded, Z/k-bundle over the Z/k-manifold N. Define a self-adjoint,
grading degree one endomorphism J of n*(S*) by the formula J(v) = ev, where v acts
by Clifford multiplication and ¢ is the grading operator. In the usual way we embed
into ¢, an open neighborhood A" = N of the zero set @ — N; let us scale the metric on
vQ, if necessary, so that A" consists of all vectors of lcngth less than 3. Then by
restricting to 4" we obtain a cycle (A, n*(S*), J) for K°(¢k)

This construction may be applied to the embedding of a single point (which is a
degenerate Z/k-manifold) into the interior of ¢,. The cycle obtained in this way is in
fact a cycle for K°(H), and represents the Bott generator for that group. As indicated
above, we use this generator to make the identification K°(;k) ~ Z/k.

4.6. Definition. Let E be a Z/k-bundle over Q. We define the topological Z/k-index
of E to be the class 7,(E) € K°(#,) = Z/k of the cycle (A, n*(S* ® E), J).

We can now state the main theorem of the paper.

4.7. Theorem. Let Q be an even-dimensional, spin°-Z /k-manifold, and let E be a Z [k-
bundle over Q. If Dg denotes the Dirac operator on Q with coefficients in E then
Index,(Dg) = 1,(E).

Our proof of this index theorem will follow the argument of Atiyah and Singer in
[4]. First, we shall construct a suitable operator Dy on N, and by analytic methods
we shall show that Index,(Dy) = Index,(Dg). To identify Index,(Dy) with the topo-
logical index 1,(E) we shall construct a homomorphism Index, : K°(¢A,‘) — Z/k, such
that the K-theory class representing 7,(E) is mapped to Index,(Dy). Since by Bott
Periodicity the group K° (¢k) is cyclic, we need then only check on any gcncrator
that the homomorphism Index, is equal to the natural identification of K°(¢,‘) with
Z/k.

5. The Operator Dy

Let M be a complete, oriented manifold and let S be a Dirac bundle over M. Let V
be a smooth, oriented, orthogonal vector bundle over M and denote by N the total
space of V. We shall construct an operator Dy on N whose index theory is a model for
the index theory of the Dirac operator on M (the construction is very close to that
described in [4, Sec. 9]). At the end of the section we shall specialize to the situation
relevant to the Z/k-index theorem.
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Denote by n: N — M the projection mapping, and choose a splitting
TN = n*(TM) @ n*(V) 5.1

" of the tangent bundle into “horizontal” and “vertical” bundles. The isomorphism (5.1),
together with the metrics on TM and V, determines a complete Riemannian metric
on N.

Denote by A*V, the complexified exterior algebra bundle of V, equipped with the
hermitian form induced from the inner product on V. Form the graded tensor product
S ® A*V¢ and let

Sy = S ® A*Vy)

(equipped with the hermitian form pulled back from § and A*Vg).

Let {¢2} be a smooth partition of unity for M which is subordinate to a locally
finite cover of M by contractible open sets {U,}. For each a, choose an oriented,
orthonormal frame {v;}%_, for V|, and define diffeomorphisms from n~'{U,] to
U, x R" by

v = X, - (1), y', ..., ¥")- (5.2

These diffeomorphisms lift to bundle isomorphisms from Syl.-ip, t0 the tensor
products of S|y, with the trivial bundle over R” with fiber A*C". Using them, we pull
back the first order operators D ® 1 to Syl.-1u,, and define a first order operator D,
(“k” for “horizontal”) acting on Sy by

Dh = za;a(D ® l)ga'

Here g, denotes the pull-back of the function ¢, to N; we note that the family {42} is
a partition of unity for N.

If v is a section of V then denote by d,: A*Ve — A*V, the operator of exterior
multiplication by v, and denote by J, its adjoint (interior multiplication). The map
v —d, — 8, is a Clifford action of ¥ on A*V, (which bundle we regard as Z/2-graded
in the usual way). We pull this back to a Clifford action of n*Von n*A*V,, and (in the
manner described in Sec. 2) pass to an action on Sy = 7*(S) & n*(A*V¢). Define an

(L3 )

operator D, (“v” for “vertical”) by
Dv = zj(dv_, - 6vj)a/ay1

It is easily verified that the expression for D, does not depend on the choice of frame
{v,,...,v,} and so we obtain a globally well defined first order differential operator D,
acting on Sy.

Denote by W the endomorphism

W) =d, + 6,
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of n*(A* V), and let W act on the graded tensor product Sy = n*(S) & n*(A*V,)in the
manner described in Sec. 2. Define Dy, to be the operator

DN = Dh + D', + W.
5.1. Lemma. The diffeomorphisms (5.2) preserve the Riemannian volume (we equip

U, x R" with the product metric).

Proof. Let {e,,...,e,} be an oriented, orthonormal frame for TU,. Using this,
together with the frame {v,,...,v,} and the isomorphism (5.1), build an oriented ortho-
normal frame {¢,,...,€,,7;,...,7,} for T(x'[U,]). The vector fields in this frame are
mapped as follows under the derivative of (5.2):

e, - ¢; + (vector field tangent to R")
Ei hd a/ayi.
Thus the volume of the parallelopiped spanned by the images of the frame vectors at
any given point is 1. The lemma follows from this. QED
5.2. Lemma. The operators D,, D,, Dy are essentially self-adjoint.

Proof. By Lemma 5.1, the diffefomorphisms (5.2) induce unitary isomorphisms from
L¥(Syla1uy) to LYS|y) ® (LA(R") ® A*C") (without the introduction of any Radon-
Nikodym derivative). Therefore D, is formally self-adjoint (since D is), as are D, and
Dy. The same argument as used in the proof of Lemma 2.1 establishes essential
self-adjointness (in fact the operator Dy is of the sort covered by Lemma 2.1). QED

It follows immediately from their definitions that the operators D, and D, + W
anticommute (considered as differential operators, acting on smooth sections), and so:

Dy* =D* + (D, + W),
Thus if { is a smooth, compactly supported section of Sy then
IDNCI2 = IDLN2 + (D, + W)L (5.3)

In fact, by a simple approximation argument, the domain of Dy is precisely the
intersection of the domains of D, and D, + W, and the identity (5.3) holds for all
{ € domain (Dy).

53. Lemma. (D, + W)2 = —A + ||v]|2 + 2F — n, where A is the Laplacian on N
in the vertical direction, and F is the “number operator” which multiplies a form in A*V
by its degree.

Proof. Choosing {v,,...,v,}, and hence {y',...,)"} as in (5.2), we compute that

(D, + W) = 50%/0y” + £y + 2d, 6, — 6, d,,.
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The operator d,, 8, — 6, d,, multiplies a basic form v;, A --- A v;_by 1ifit contains v;,
and multiplies it by — 1 if it does not. Hence

xd, 5, — 8,d, =2F —n. QED

The second order operator
H=A+ |v]|? = Z;0* /0y + y*

appearing above (considered as an operator on scalar functions) is the harmonic
oscillator, familiar from elementary quantum mechanics (see for example [7]). There
is an orthonormal basis for L%(R") consisting of eigenfunctions for H, which are in fact
Schwartz class functions, and the eigenvalues are n, n + 1, n+ 2, .... The lowest
eigenvalue, n, has multiplicity 1, with corresponding eigenfunction

Y(v) = n~"exp(— [lv]|*/2). (5-4)

Define a map U from the smooth, compactly supported sections of the bundle S (the
original Dirac bundle on M) to the sections of Sy by the formula

(U&)(p) = ¢(n(v) @ Y ().

Here 1 denotes the unit zero form in A*V. It follows from Lemma 5.1, and the fact that
Y is normalized, that U extends to an isometry from L?(S) into L%(Sy). By Lemma 5.3,
if £ is smooth and compactly supported then

(D, + WYUE={Q(H —npy1 =0,

and so (D, + W)U¢ = 0. Since the kernel of D, + W (considered as a self-adjoint
operator) is closed, it follows that U maps L*(S) into kernel(D, + W). On the other
hand, denote by P : L%(S) — L*(Sy) the projection onto U[L*(Sy)] = L*(Sy), and let {
be any smooth, compactly supported section of Sy. It follows from Lemma 5.1 that
the restriction of P{ to a fiber ¥, = N of V is the projection of the restriction of { onto
the subspace generated by the sections of the form &(p) ® y(||v[|)1. Therefore, using
Lemma 5.1 to compute inner products by integrating first in the fiber direction, and
considering the fact that the next lowest eigenvalue of the harmonic oscillator above
nis n + 1, we see that

(D, + W)P{)1? = (D, + W)?P(, PL) 2 | P2 (5.5)

By an approximation argument, this inequality holds true for all { in the domain of
D, + W. Therefore the kernel of D, + W is exactly the image of U, and D, + W is
bounded from below by 1 on the orthogonal complement of its kernel.

54.Lemma. Let D, and D, be self-adjoint operators on Hilbert spaces #, and #,
and let U : ¥, - #, be an isometry which maps a core H, for D, into domain(D,).
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If D,UE = UD,¢ for all &€ Hy then D, commutes with the projection of #, onto
U, < X, (in the sense of unbounded operators: the projection commutes with the
resolvent of D,), and the restriction of D, to U, is unitarily equivalent to D, via U.

Proof. If { is a vector in the subspace K, = {(D; t+i)é|¢e H,} of #, then
(D, + i)"'UL = U(D; £ i)"'¢. But K, is dense in 5, (since H, is a core), and so
(D, + i)'U = U(D, + i)™*. The lemma follows easily from this identity. QED

Denote by D’ the operator
D' =%.4,D¢, =D + Z,¢,[¢,, D] (5.6)

acting on sections of S. This is essentially self-adjoint by Lemma 2.1, and if  is a
smooth, compactly supported section of S then

D,U¢ = D¢ @ Y1) = Z,4,(D ® 14, ® Y1)

= Z,(¢.D4.5) @Y1 = UD'C.

Therefore, applying Lemma 5.4 to D, = D’ and D, = Dy, we conclude that Dy de-
composes as a direct sum of self-adjoint operators,

Dy =UDU*® D", (5.7

where, by virtue of (5.3) and (5.5), the operator D" is bounded below by 1.

At this point let us return to Z/k-manifolds. Let Q and E be as in Sec. 3, and fix an
embedding of Q into the space g, as in Sec. 4. Attach cylinders at the boundaries of 0
and g, to obtain an embedding M < .#, and let V be the normal bundle for this
embedding. Denote by S, the spinor bundle for M; let S = S, ® E; and let D = Dg be
the Dirac operator for this Dirac bundle.

Choose a partition of unity for M which respects the Z/k-structure and which
consists of finitely many functions, each one constant in the [0, co) direction on each
cylinder. Using this, together with choices of frames {v,,..., v,} which are compatible
with the Z/k-structure, construct an operator Dy on Sy as above. Note that the Hilbert
space L%(Sy) has a natural Z/k-structure.

5.5. Proposition. Index,(Dy) = Index,(Dg).

Proof. Referring to Eq. (5.6), we see that D’ is a perturbation of Dg by a bounded
endomorphism of S. Following the arguments of Sec. 3, the resolvent of D’ is an element
of the C*-algebra 2,, and so Index,(D’) is defined. But the resolvents of the operators
tDg + (1 — t)D’ (¢t € [0, 1]).vary continuously in norm, and so Index,(Dg) = Index(D’)
by the homotopy invariance of C*-algebra K-theory. To see that we may form
Index,(Dy), note first that U : L%(S) » L*(Sy) is an isometry of Z/k-Hilbert spaces, in
the sense of Lemma 3.6(ii). Suppose that h € Co(R) and supp(h) = [—1/2,1/2]. Then
since D” is bounded below by 1 it follows from (5.7) that Ur(D')U* = h(Dy). Therefore
h(Dy) € 2,(L*(N)) and Index,(Dy) = Index,(D’) by Lemma 3.6(ii). QED
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Now, denote by S, the spinor bundle for V (for the spin®-structure described in
Sec. 4). There are isomorphisms

S, ® S,* = End(S,) = Clff(V)¢c = A*Ve.

The first is the standard map from linear algebra (note that the inner product on
" End(S,) is given in the usual way by the trace). The second isomorphism comes from
the fact that the fibrewise action of Cliff(V)c is irreducible in the case of a spin‘-
structure. The last isomorphism is the standard map v,-...-v; > v; A ... A v; (see
[14, Chapter 2], for example).

56. Lemma. If v is a section of V then, via the above isomorphism, d, — 9, and
d,+ 8, actonS,® S,* as v ® 1 and 1 & ev respectively.

Proof. This is a straightforward computation (compare [2]). QED

Note that the isomorphism (5.1) gives an irreducible Clifford action of TN on
%S5, ® S,).

57. Lemma. Equip the bundle n*(S, ® S,) with a connection compatible with the
Clifford action of TN and the Riemannian connection, and equip n*(S,* ® E) with any
connection. If D is the Dirac operator for Sy = %S, ® S,) ® n*(S,* ® E) then the
difference D — (D, + D,) is an endomorphism of Sy which is bounded on subsets of N
which lie within a finite distance of the zero section M — N.

Proof. If ¢ is any smooth function on N then both of the commutators [D, ¢] and
[D, + D,, ] are equal to Clifford multiplication with grad(¢). Therefore D — (D, + Dy)
commutes with every 4, and so it is an endomorphism of Sy. Since the coefficients of
all our operators are constant along the lengths of the cylinders attached to form N,
the norm of D — (D, + D,) on the set of all vectors in ¥ = N of length no more than
some constant C is equal to the norm on the set of vectors over Q of length no more
than C. Since this last set is compact, the norm is finite. QED

6. Proof of the Index Theorem

Fix a metric on ¢, so as to make it a Riemannian Z/k-manifold (it will be necessary
to consider metrics other than the obvious one that ¢, inherits as a subset of R*).
Equip ¢, with its standard spin°-structure and fix a Dirac Z/k-bundle as in part (iii) of
Definition 3.1.

So that we do not have to keep mentioning it, we state once and for all that all the
structure (bundles, connections, functions, etc.) we consider below will be compatible with
the Z/k-structure of g, etc, and then extended in the natural way to the manifolds A,
etc. obtained by adjoining cylinders at the boundary.

Let (%, S, G) be a cycle for K°(¢/;), and construct an operator Dg from (%, S, G) as
follows. Extend % to an open set ¥~ in # by adding cylinders at the boundary, and
extend S and G to ¥". Equip ¥ with the spin°®-structure restricted from the standard
spin®-structure on .#, and denote the spinor bundle by S, (which we equip with a
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suitable connection). Choose a connection for the Z/k-bundle S which respects the
Z/2-grading, and choose a smooth “cut-off” function y on ¥~ such that:

(@) supp(y) N % is compact; and

(ii) ¥ = 1 wherever G* % 2.
Let D be the Dirac operator for S, ® S and let

Dg = yDVY + G.

Here G is taken to act on the graded tensor product S ,- ® S in the manner described
in Sec. 2. It follows that G anticommutes with the coefficients of D, and so the term
DG + GD in the expression

6> = WDY)* + G* + Y(DG + GD)y (6.1)

is an endomorphism of S, ® S. By a compactness argument it is in fact bounded on
supp(¥).

The operator Dy is essentially self-adjoint on L*(¥7), and L*(¥") has a natural
Z/k-structure. Our first task is to show that Index,(D;) is defined.

6.1. Lemma. (i) If h € Cy(R) and supp(h) = [ —1/2,1/2] then h(Dg) € 2(L*()).

(ii) The quantity Index,(Dg) (which is defined in view of (i) and the remarks at the end
of Sec. 1) does not depend on the choice of cut-off function Y in its construction.

(iii) Let E be a Z/k-bundle over Q and let (A, n*(S,* ® E), J) be the cycle representing
7,(E). If we choose a metric on A such that /~ <, M is an isometry then Index,(D;) =
Index,(Dy), where Dy, is the operator constructed in Sec. 5.

Proof. Let ¢, be a smooth function on # such that ¢, = 1 on ¢, N % and such that
¢, is supported within a finite distance of ¢, N %. We shall show first that goh(Dg) ~ 0.
This implies that poh(Dg) ~ 0; the remainder of the proof of part (i) follows from the
argument in the proof of Proposition 3.3 (we replace the resolvent function (¢ + iyt
with the function h(t)). By the remarks preceeding this lemma, for ¢ > O sufficiently
small, |y(DG + GD)¥| < 1 on the open set W, where § < &. It then follows from (6.1)
that | Dgé| = [|¢] for all ¢ supported in W,. Choose a smooth function ¢ on % such
that ¢ = 1 on W,, and supp(¢) = W,. Then ¢¢oh(Dg) ~ 0 by Lemma 2.5, whilst
(1 — #)@oh(Dg) ~ 0 by Lemma 2.2.

Let ' be another cut-off function and define

=tyDy +G  (1=1t>0),
D, =tyDY' +G  (12t>0).

Denote by P, and P, the projections constructed from these operators according to
the formula (1.6). We shall prove that ||, — P/|| — 0 as t — 0, and therefore that P, and
P, are unitarily equivalent for small ¢. Since it is easily verified that P, and F; vary
continuously in the norm (for t > 0), it will follow from this that P, and P,’ are unitarily
equivalent, and so we shall have proved part (ii) of the lemma. Let W be the open set
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where G2 > 13, and let ¢ be a smooth function supported in W such that ¢ =1 on
the set where G2 > 13. It follows from (6.1) that ||Dg, <l D', &Nl = NEll for suffi-
ciently small ¢ and all £ supported in W. Therefore, since {|[Dg..» #11l, I[D'6,:» 411l = 0
as t — 0, it follows from Lemma 2.5 that | @h(Dg ), 9D’ I =0 as t—0 for
every h supported in [—/1/2,1/2]. Inspecting the formula for P, F/, we see that
. |¢P,— ¢P/| »0ast—0.0n the other hand, Dg , = D’g , near supp(1 — ). Therefore,
by Lemma 2.4, |(1 — $)h(Dg,) — (1 — Hh(Dg, )|l -0 as £ >0, and so [[(1 — @)F, —
(1 — ¢)P’,|| =0 as t — 0. This completes the proof of part (ii).

To prove part (iii), regard 4" as an open submanifold of N, and so regard D, as an
operator on L*(N) (we extend the action of J to all of N; this will not effect the index).
As a first step, note that by Lemma 5.6, the endomorphism J identifies with the
endomorphism W discussed in Sec. 5. Therefore, by Lemma 5.7 and homotopy in-
variance, the indices of D, and y/(D, + D)y + J are equal. Applying the argument of
part (i) we see that the indices of ty(Dy + D)y + J and t(D, + D,) + J are equal for
small enough ¢ > O (it is necessary to observe that the anticommutator J(D, + D,) +
(D, + D,)J is bounded—but this follows from Lemma 5.3). Since it is once again easily
verified that the index projections are continuous in ¢, this completes the proof.

QED

6.2. Proposition. The map (%,S,G)— Index,(Dg) passes to a homomorphism
Index, : K°(,§\,,) — Z/k which is independent of the choice of metric on #. It is in fact
equal to the natural identification of K%4,) with Z/k.

Proof. Fix, for the moment, a choice of metric on .#. Let us note first that
Index,(Dg) is independent of the choice of connections on the spinor bundle and on
the auxiliary bundle S. Indeed, the space of admissible connections is an affine space
and a linear path between two connections gives rise to a path Dg_, of operators which
is norm continuous, in the sense that {Dg ¢ — Dg,:}ref0,11 1S @ DOTM continuous path
of bounded operators. It follows that the resolvents of these operators form a norm
continuous path, as do the index projections P, defined by (1.6).

Let us consider next the four components of the equivalence relation of Definition
44.

It follows from Lemma 3.6, part (i), that isomorphic cycles have the same index.
If (', S, G) is obtained from (%, S, G) by restriction, as in part (i) of Definition 4.4,
then by applying Lemma 3.6 (i) to the inclusion L¥(¥") = L¥(¥") we get that
Index,(Dg-) = Index,(D¢)-

Given a homotopy {(%, S, G,)};c [0, 1; as in part (iii) of Definition 4.4, by restricting to
an open subset %’ with compact closure in %, we may assume that the homotopy is
uniformly continuous. Choosing one cut-off function  for all the G,, the resolvent
operators (Dg, i)', and hence the operators h(Dg,) for any h € Cy(R), vary con-
tinuously in norm. It follows from the homotopy invariance of K-theory that
Index,(Dg,) = Index,(Dg,)-

Finally, if the cycle (%, E, G) is trivial then in the construction of D; we can choose
¥ = 0, and so Index,(Dg) = 0. Since the map (%, E, G) — Index,(Dg) is obviously addi-
tive on cycles defined over the same base %, it passes to a homomorphism on K°(¢/)‘).

To show that this homomorphism does not depend on the choice of metric on #,
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it suffices to check on a generator for K°(;),), say a Bott generator (#,n*(S*),J)
supported in a small ball in the interior of ¢, (away from the collars at the boundary).
Given two metrics on .#, we may deform the metric of one so that the two metrics
are equal on some disjoint ball 4, without changing Index,(D;), and hence without
changing the index homomorphisms. But then by checking on a generating cycle
supported on 4, we see that the two index homomorphisms are the same.

- Choosing the Euclidean metric, it follows from part (iii) of Lemma 6.1 that the index
for this generating cycle is the index of the operator D + J on R?. But this is simply
the operator D, + W of Sec. 5, which has index 1. QED

The prdof of the Index Theorem now follows from Proposition 5.5, Lemma 6.1, part
(iii), and the above Proposition, which together give the equalities

Index, (D) = Index,(Dy) = Index,(D;) = t(E).
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