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Using elementary ideas from the theory of categories of fractions, we construct bivariant 

homology/cohomology groups E(A, B) for C*-algebras, which satisfy general excision axioms, 

and are equal to Kasparov’s groups KK(A,B) for nuclear (or more generally K-nuclear) 

C*-algebras. 

Introduction 

This article is an investigation into the KK-theory of C*-algebras introduced by 

Kasparov [I 11; our approach is algebraic in nature and is more or less a continuation 

of the paper [8], in which KK-theory is characterized by means of some simple 

axioms. 

Kasparov’s theory can be described as a sort of calculus for computing K-theory 

groups of C*-algebras, which generalizes constructions due to Atiyah and Singer in 

the index theory of elliptic operators [l, 21. A family of elliptic operators on a 

smooth, closed manifold M, parametrized by a compact space X, gives rise to an 

‘index map’ K(M) -+ K(X) in Atiyah-Hirzebruch K-theory, or in other words a map 

K(C(M)) -+ K(C(X)) in C*-algebra K-theory (see [3] or [4] for a survey of K-theory 

for C*-algebras). Following and broadly extending ideas of Atiyah [l], Kasparov 

defines a notion of generalized elliptic operator for a pair of C*-algebras A and B, 

which, in the case A = C(M) and B = C(X), includes the notion of a family of ellip- 

tic pseudodifferential operators on M, parametrized by X. There are natural notions 

of isomorphism and homotopy for these generalized elliptic operators, and the re- 

sulting set of equivalence classes, which is in a natural way an abelian group, is 

denoted KK(A, B). The index construction of Atiyah and Singer extends to a pairing 

K(A) 0 KK(A, B) -+ K(B). (1) 

The most important aspect of Kasparov’s theory is the existence of an associative 

‘product map’ 
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KK(A, B) 0 KK(B, C) + KK(A, C) (2) 

which is compatible with (l), so that a composition of index maps may be repre- 

sented as the index map of a ‘product’ generalized elliptic operator. The formula 

for the product given in [ll] is rather complicated (it is somewhat streamlined in 

[16]) but it is nevertheless possible to compute it in many circumstances, and in 

practice each such computation amounts to some sort of index formula. A survey 

of applications is given in [ 121. 

Following ideas of Cuntz [3], the algebraic structure of Kasparov’s theory is 

worked out in [8]. The basic idea is to regard (2) as the law of composition in an 

additive category, whose objects are (separable) C*-algebras and whose morphisms 

are elements of the groups KK(A,B) (there do exist elements which act as identity 

morphisms). This category then turns out to have a remarkably simple structure (see 

[8] or Theorem 3.4 below). It follows, for example, that there is a unique functorial 

pairing (2), up to normalization, and that associativity is ‘automatic’. 

Kasparov’s point of view in [ 1 I] is that the groups KK(A, B) constitute a sort of 

bivariant homology/cohomology theory for C*-algebras. The motivation for this is 

that the group KK(C,B) is naturally isomorphic to K(B), whilst KK(A,C) is the 

‘K-homology’ of A (for example, if A = C(X), and X is a finite complex, then 

KK(A, C) is the even K-homology group of X). From this point of view, it is natural 

to study questions of excision in KK-theory. In the present context, this amounts 

to asking whether or not the sequences 

and 

KK(C, J) j* - KK(C,A) -5 KK(C,B) (3) 

KK(B,D) 4* KK(A,D) j* - KK(J,D) (4) 

associated with a short exact sequence of C*-algebras 

.i 4 
O-J-A-B-O (9 

are exact in the middle. (From (3) and (4), the existence of long exact homology/ 

cohomology sequences associated with (5) follows from Bott periodicity for KK- 

theory [II, Section 51 and a standard argument adapted from algebraic topology 

[ll, Section 71. By Bott periodicity the sequences are periodic: they are cyclic six 

term exact sequences.) Kasparov proves the exactness of (3) under the hypothesis 

that C is a nuclear C*-algebra, and the exactness of (4) under the assumption that 

A is nuclear (see [ll, Section 71). Simpler proofs of somewhat more general results 

are given in [S]. In [17] the notion of ‘K-nuclear’ C*-algebra is introduced and the 

excision problem is settled for this class. 

Whilst from a certain point of view the class of K-nuclear C*-algebras is rather 

large (certainly all commutative C*-algebras are K-nuclear, and so KK-theory does 

give a homology/cohomology theory for compact metric spaces), the present state 

of knowledge is rather unsatisfactory. This is so for practical, as well as theoretical, 
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reasons: see [lo, Section 31 for a situation in the K-theory of foliations where 

stronger excision results are needed. Unfortunately it seems likely to most experts 

that excision in KK-theory does nol hold in general. The purpose of this paper is 

to construct (using the term rather loosely) a theory E(A,B) which does have exci- 

sion in general. The groups E(A,B) are obtained from a category E, and so there 

is automatically a product of the form (2). Furthermore there is a natural transfor- 

mation KK(A, B) + E(A, B), compatible with products, which is an isomorphism if 

A is K-nuclear. In fact, E can be regarded as a sort of ‘universal’ extension of the 

homology/cohomology theory KK from K-nuclear C*-algebras to all (separable) 

C*-algebras. 

The construction of E is based on the notion of a category of fractions, familiar 

in category theory. Unfortunately the standard presentation of this, [6], is not 

quite adequate for our purposes. Thus in Section 1 of the paper we give an elemen- 

tary account of the necessary algebraic results, which slightly extends the discussion 

in [6, Chapter 11. In Section 2 we construct various homotopy categories of 

C*-algebras. Much of the theory has been worked out by Rosenberg in [15] and we 

refer to this paper for a number of computations. (Some of the other basic construc- 

tions given at the beginning of Section 2 are taken from the author’s M.Sc. thesis 

[7].) The main part of Section 2-the material following Definition 2.5-is devoted 

to fitting C*-algebra categories into the framework of Section 1. Finally, in Section 

3 we assemble the results of the previous sections to define E, prove its excision 

properties (Theorem 3.2), relate it to KK-theory (Theorem 3.5), and characterize E 

as a ‘universal’ homology/cohomology theory (Theorem 3.6). 

An interesting and quite different approach to more or less the same problem of 

excision is given by Skandalis in [ 171, where subgroups KK,,,(A, B) c  KK(A, B) are 

defined, and shown to satisfy excision. The main distinction between KK,,,(A,B) 

and E(A, B) is that all generalized elliptic operators give rise to elements of E(A, B), 

and so E ‘contains’ the elliptic operator calculus on C*-algebra K-theory. Now, 

Skandalis has shown in [17] that certain identities involving products of specific 

elliptic operators, arising in differential topology, do not hold in KK-theory. A con- 

sequence is that KK-theory is inadequate as a tool to prove the corresponding rela- 

tions among K-groups. However, it is possible that within E-theory these elliptic 

operator identities do hold. Thus from the point of view of applications it would 

be extremely interesting to develop a concrete realization of E (or a similar functor). 

This aspect of E-theory is discussed in a little more detail in [9, Section 71. 

1. Categories of fractions 

Let A be a small, additive category (for our purposes it is convenient to include 

in the definition of additive category the existence of finite products and a zero 

object). If .Z is a set of morphisms in A then we shall denote by A[C-‘1 the addi- 

tive category obtained from A by inverting the morphisms in .Z. To be precise, 
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A[E-‘1 is an additive category, together with an additive functor F: A + A[Yl], 

such that: 

(i) the objects of A[,T’] are the objects of A; 

(ii) for every object A of A, F(A)=A; 

(iii) for every morphism o in Z’, F(a) is an isomorphism; and 

(iv) if G: A+B is any additive functor such that G(a) is an isomorphism for 

every 0 in ,Z then there exists a unique additive functor G : A[T’] + B such that 

G=eoF. 

The existence of A[Z-‘1 for an arbitrary A and Z is easy to establish (see [13, 

Chapter 41 for example), whilst of course the uniqueness of A[Y’] up to canonical 

isomorphism is guaranteed by condition (iv). 

In order to simplify notation, if @ is a morphism in A then we shall denote the 

morphism F(Q) in A[Z“] by 4. 

1.1. Definition (compare [6, Chapter 11). We shall say that .Z is an admissible set 

of morphisms if it is closed under composition of morphisms, contains all identity 

morphisms, and if the following four conditions involving morphisms in A are 

satisfied. 

(Ll) Given @ : A -+ B and o : A +A’, with o in 2, there exists a commutative square 

@ 
A-B 

with 7 in 2. 

(L2) Denote by Z; the class of morphisms in A which is generated (under com- 

position) by ,Y and all split monomorphisms in A. If a composition @o o is zero, 

where o is an element of Z, then there exists 7 in .ZL such that 7 0 @ = 0. 

(Rl) Given o:A+A’ and @‘:B’+A’, with o in Z, there exists a commutative 

diagram 

CJ’ 
A’- B’ 

A e---- B 

@J 

with 7 in _Z. 

(R2) Denote by _ER the set of morphisms in A generated by _E and all split epimor- 

phisms in A. If a composition orp is zero, with CJ in 2, then c$r= 0 for some 7 in ZR. 
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1.2. Remarks. (1) The above conditions are weakened versions of the conditions 

given in [6] for 2 to admit a ‘calculus of left and right fractions’ (unfortunately the 

C*-algebra constructions of the next section do not quite fit into the framework of 

[6], and so the extra generality of Definition 1.1 is necessary). Following [6], we will 

obtain a concrete description of A[Z-‘1 for admissible sets C. 

(2) The conditions (Rl) and (R2) are of course simply the duals of (Ll) and (L2). 

We shall consider in detail the consequences of (Ll) and (L2); corresponding results 

concerning (Rl) and (R2) follow by reversing arrows. 

(3) Note that if .Z is generated under composition by a set X0 and a set of iso- 

morphisms in A, then in order to verify that Z is admissible, it suffices to check 

(Ll)-(R2) for morphisms o in _Z ‘, for then (Ll)-(R2) hold for all o in .Z by a 

simple induction argument. 

(4) Assuming that .Z is admissible, the condition (Ll) is satisfied not just for all 

(T in C but in fact for all o in 2.. To show this, it suffices, as in the previous 

remark, to consider the case where o is a split monomorphism, with a left inverse 

n. In (Ll) we may then take @‘=@n, and T= 1,. We shall refer to this generalized 

condition simply as (Ll) below. Similarly, condition (Rl) is satisfied for all cr in 

_ZR. Concerning .Z, and .XR, we also note that the images in A[T’] of morphisms 

in EL and ,ZR are left and right invertible, respectively. 

For the rest of this section, we assume that Z is admissible. 

1.3. Definition (compare [6, 1.2.31). Let A and B be objects in A and denote by 

gB(A) the set of ordered pairs of morphisms (a, @) in A of the form 

and with rs in 2. We shall say that (it, &) and (02, &) are related if there exists a 

commutative diagram 

(meaning that (xi r$, = (r2& and oI oI = a20Z), where a, oi is in .ZL. 

1.4. Lemma. The relation of Definition 1.3 is an equivalence relation. 

(6) 

Proof. Symmetry and reflexivity are obvious. Suppose that (Ok,&) is related to 

((us, p3) by some diagram 
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By (Ll) there is a commuting square 

ff202 

B-C 

P2 02 

! I 

Y 

D-E 
6 

with y in .ZL, and hence ya2a2 =ap202 EZ~. By (L2), applied to ~+6 = ya2 - SD2 and 

0 = 02, there exists 7: E -+ E, in ZL such that 7yff2 = 7&. Then the diagram 

commutes (note that we need the morphism 7 so that tya,$~, = rd&@,) and so 

(or, c$,) is related to (03, &). 0 

1.5. Definition. Denote by [o,@] the equivalence class of (a,@), and denote by 

F,(A) the quotient of SB(A) by this equivalence relation. 

1.6. Lemma. (i) For any finite collection {[a,, I,v,], . . . , [a,, I,M,]} of elements of 

F,(A), there exists some o : B + B’ in Z and morphisms @,, . . . ,&, in A such that 

[o,@i] = [Oi, vi] for i= 1, . . . . n. 

(ii) The operation [a, Q1] + [q G2] = [o, qJ + G2] is well defined and makes F,(A) 

into an abelian group. 

Proof. (i) If n = 1 the result is trivial. Suppose then that there exist Q and 

81, *a., 8,_t such that [aj,~i]=[~,C9j] for i=l,...,n-1. By (Ll) there is a com- 

muting diagram 

e 
B - B’ 

B ” - B” 
L7 
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with r E_Z, and hence o E Z’:, where o = TQ = au,,. It is then easily checked that 

[a, av/,] = [a,, u/,] and [Q, 19~1 = [a, re,] for i = 1, . . . , n - 1. 

(ii) We must show that if [o,,&] = [02, &] and [ai, I+v,] = [02, I,v~] then 

[ai, @i + vi] = [Q, G2 + I,v~] (this, together with part (i) will show that the operation 

is well defined on F,(A); it is clear that F,(A) will then be an abelian group). 

Given commuting diagrams 

C and A 

as in Definition I. 1, by (Ll) there exists a commuting square 

alal 
B-C 

PI 01 

I I 
Y 

D-E 
6 

with y in Z. By (L2) there exist ri : E jEi in .ZL such that Tiyaj=ri6/$, for i-1,2, 

and applying (Ll) to 

TI 
E-E I 

52 

I 

, 

E2 

we obtain a single r : E + E’ in Z. such that rya, = TSP, for i = 1,2. Then the com- 

muting diagram 

shows that IO,, G1 + v/J = b2,02 + ~21. 0 

We are of course thinking of F,(A) as a model for A[Z-‘](A, B). Observe that 
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if [al,@,] = [az,&] in F,(A) then b;‘$l =a;‘& in A[F’](A,B). Indeed, given 

the diagram (6), we have c?,$~ = oi2& and dl = 82d2a;‘, so that I&&= ~?~r3~d;‘$~. 

But CJ*(T~, and hence d,, is a split monomorphism, and so from G~c&=C~~I?~(T;]$, 

we obtain C& = &o;‘$, , and hence a;‘& = a;‘$, . The following result is the con- 

verse of this computation: 

1.7. Proposition. Every element of  A[T’](A, B) is equal to one of the form a-‘$ 

where o E 2, and 6;’ I& = CT~’ & if and only if [aI, &] = [02, &I. 

Proof. An element of A[E’-‘](A, B) is a Z-linear combination of compositions of 

the form 

--, - __, - --, - 
@k Wk@k-lWk-1 “‘@I WI, 

where ej~~ forj-I,..., k. Using (Ll) repeatedly, any such composition is equal 

to some p-’ I+V. Thus any morphism from A to B may be written as a linear com- 

bination of morphisms ai_’ t+Vi (i = 1, . . . , n). Using Lemma 1.6 and the remark pre- 

ceding this proposition, these may be written as a-‘& (i= 1, . . . , .FZ), and then 

C?=, mi(G-‘$i)=C1(C miQi), so the first part of the proposition is proved. 

Now we may make A + FB(A) into a (contravariant) functor on A in the obvious 

way, and it follows easily from the group structure given in Lemma 1.6 that Fs is 

an additive functor from A to abelian groups. If Q: A + A’ is in 2 then 

F(Q) : F,(A’) -+ F,(A) is injective. Indeed, if F(e)([a, ~$1) = 0, so that there exists a 

commuting diagram 

(with ala in ZJ, then by (L2), since a,@~ = 0, there exists TE ,EL such that 

S(Y~ C#J = 0. The diagram 
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then shows that [a, @] = 0. On the other hand, F(Q) is surjective since it is easily seen 

that if [a, @] EF~(A) then F(~)([ra, @‘I) = [o, ~$1, where re,X and @ are chosen 

using (Ll) so that the square 

@ 
A - B’ 

A’- B” 

@’ 

commutes. Thus FB passes to a functor on A[Z:-‘1. The proof is completed by 

noting that under the homomorphism F(b-‘$) =F(@)F(o)-‘, the ‘unit element’ 

[l, 11 E FB(B) is sent to [a, @] E F,(A), since F(a)([o, 11) = [l, l] (by the above) and 

F(@)([o, 11) = [a, @I. 0 

1.8. Proposition. Every element of A[,Y’](A,B) is equal to one of the form 

$a-‘, whereoE~,and~,a;‘=~2(7;’ ifando nly if there is a commuting diagram 

with (T, (xl E ZR. 

Proof. Apply Proposition 1.7 to the opposite category of A. 0 

Having so described A[E-I], we can proceed to prove the excision result we 

require. 

1.9. Theorem. Suppose that A L B 5 C is a sequence of morphisms in A such 

that for every object D in A the sequences of abelian groups 

A(C, D) -+ A(B, D) + A(A, D) 

and 

A(D,A)+A(D,B)-*A(D,C) 

are exact in the middle. Then the sequences 

A[C-‘](C, D) + A[X-‘](B, D) + AIZC1](A,D) 

and 

A[Z-‘](D,A) -+ A[Z-‘](D, B) --t A[Z-‘](D, C) 

are also exact in the middle. 
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Proof. We shall consider just the contravariant sequence; the covariant one is dual. 

Let ~-‘$EA[Z-‘](B,D) and suppose that 6-‘6i=O. There is a diagram of the 

form 

with a, o&Y,. We have that (at@)r= 0, and so by the hypothesis of the theorem, 

a, I$ = in for some w : C + E in A. Now, @I has a left inverse /? : E -+ D’ in A[E-‘I, 

and from the equality at@ = IJZ we obtain $=/?Wit. Therefore ~-‘$=(d-~P@)fi, 

andso8- I#J ’ - has the pre-image K’pw in A[Z;-‘](C, D), and the sequence is exact 

at A[Z-‘1(&D). 0 

2. Stable homotopy for C*-algebras 

Denote by C*-Alg the category of separable C*-algebras and *-homomorphisms. 

This is of course not a small category so that the results of the previous section will 

not immediately apply to the categories associated to C*-Alg that we are about to 

construct. However, C*-Alg does have a small, equivalent subcategory-take the 

set of C*-algebras which are algebras of operators on a fixed separable, infinite- 

dimensional Hilbert space, for example-and it is sufficient for our purposes to 

work with it. Since they are of a completely straightforward nature, we shall not 

bother to comment on the various details associated with this substitution. (It would 

be equally simple to modify the results of Section 1 so that they apply to categories 

with a smal1 equivalent subcategory.) 

Denote by H the category of separable C*-algebras and homotopy classes of 

*-homomorphisms (see for example [15]). We shall denote the homotopy class of 

a *-homomorphism f by [f 1. 
We may also form a stable homotopy category S using the suspension functor 

S : H + H, defined by 

“’ S(A - B) = Co(O, l)@A “@” - C,(O, 1) @B. 

The objects of S are pairs (A, m), where A is a separable C*-algebra and m E Z (we 

shall write A, instead of (A,m)). The morphisms are given by: 

S(A,, B,) = 1% H(S’“+KA,Sn+KB). 

K 
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Here H(Sm fKA, SntK B) is mapped into H(S”+KflA,S”+K+‘B) by suspension 

(we consider only those K such that K + m ~0 and K + n ~0). Given a *-homomor- 

phism f: S”+KA -+ Sri+++ B, we shall denote the corresponding morphism in 

S(A,, B,) by {f}. As is the case with stable homotopy of spaces, S is an additive 

category (compare [ 15, Section 31). 

Now, denote by X the C*-algebra of compact operators on a separable Hilbert 

space. The following facts about X are well known and easily derived. 

2.1. Lemma. (i) The C*-algebras X@Y~ and Yl are isomorphic, and any two 

*-isomorphisms are homotopic. 

(ii) Any two rank one projections in Al are homotopic. 

(iri) If p EX is a rank-one projection then the *-homomorphism X-+.yl@yl 

given by k + k @p is homotopic to a *-isomorphism. 

Define functors T: H + H and T: S -+ S by 

T(A) = A OS, Wfl) = [f 0 11 
and 

VA,) = (A OX),, T({f)) = {f@l). 

Fixing a rank-one projection p EYE and a *-isomorphism h :X8X+X, define 

natural transformations q : 1 + T and p : T2 + T by means of the *-homomorphisms 

e,:A+A@Yt, eA(a)=a@p, 

for q and 

mA:A@x@x+A@x, mA(a@kl@kz)=a@h(kl@kl), 

for P. Using Lemma 2.1 we obtain the following result: 

2.2. Lemma. (i) The natural transformation p is an isomorphism, with inverse TV. 

(ii) Both q and p commute with T in the sense that Tv=qT and Tp=pT as 

natural transformations. 

(By TV we mean the natural transformation T-r T2 given by (Tq)A = T(qA), and 

by VT we mean the natural transformation T+ T2 given by (qT)A = VT(A). The 

natural transformations ,uT and Tp are defined similarly.) 

Using T, rl and P, define new categories TH and TS as follows (we shall spell out 

the construction for TH; the case of TS is the same). The objects of TH are the 

objects of H, and 

TH(A, B) = H(A, TB). 

Given @ : A -+ TB and v/ : B + TC their composition is given by 

@ T(w) PC 
A - TB- T2C- TC. 
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It is easily checked that this composition law gives a category and that F: H + TH 

given by 

F(A ’ - B)=A - rlB’ TB 

is a functor. (In fact, by Lemma 2.2, T, q and ,U form an idempotent monad, and 

TH is the Kleisli category of this monad-see [13, Chapter 61 for the terminology.) 

The main feature of TH (and similarly for TS) is that the functor F: H + TH is 

stable, that is, F([eA]) :A +A @X is an isomorphism for every A. Indeed, the 

identity *-homomorphism on A @X determines a morphism in TH from A @X to 

A which is inverse to F([e,]). Furthermore, if G : H + X is any stable functor then 

there is a unique functor G : TH + X such that G = G 0 F, namely 

lfl 
&A - B) = G(A) ‘(1”) 

wal)-’ 
- G(B@sY) - G(B). 

(Thus TH is obtained from H by inverting the morphisms [eJ.) 

The group structure on TS(A, B) = S(A, B 0.X) makes TS an additive category 

and F: S + TS an additive functor. 

We are mainly interested in the category TH, in the sense that we are interested 

in functors on C*-Alg which are homotopy invariant and stable. However, the cate- 

gory TS fits much more easily into the framework of Section 1, first of all because 

it is additive, and secondly because it is better suited to analyzing the following stan- 

dard construction. 

2.3. Definition. Let f:  A -+ B be a *-homomorphism. The mapping cone off is the 

C*-algebra 

C,= {aOgEAOCo[O,l)@B /f@)=g(O>) .  

(We identify C,[O, 1) 0 B with the C*-algebra of continuous maps from [0, l] to B 

which vanish at 1. Note that following standard C*-algebra usage, ‘0’ denotes car- 

tesian product-the product in C*-Alg.) 

There is a natural map p : Cf + A given by p(a @ g) = a. As far as we are con- 

cerned, the principal fact about C’ is the following result. 

2.4. Theorem. For any object D,, of TS and any m E Z the sequences 

IfI* 
TS(B,,D,,) - 

iPI* 
TS(A,,D,) - TS((C& D,) 

TW’,, CC’>,> 
lPl* w* 

- WD,,A,,) - TWD,, B,) 

are exact in the middle. 

These sequences are nothing more than pieces of the Puppe exact sequences of 

algebraic topology. For a proof, see [15, Section 31. (Actually, [ 151 deals with S, not 
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TS, and so it is necessary to make the simple observation that the mapping cones 

forf:A+B andf@l:A@S-+BBOare related by Cf@X~C’,,.) 

2.5. Definition. (i) Denote by Zoo the class of morphisms 0 : A, --f A’,, in S of the 

form @ = {j}, where j : Z”‘NA * .Zm’+NAf is an injection of Z”‘NA onto an ideal 

of z m’+NA’, such that the quotient C*-algebra ,Z’m’+NAr/P+NA is contractible. 

(ii) Denote by Z” the set of morphisms o in TS of the form a=F(ao), where 

F: S -+ TS is the canonical functor, and o. E Zoo. 

(iii) Denote by _Z the class of morphisms in TS generated under composition by 

Z” and the class of all isomorphisms in TS. 

We will show that C is admissible, in the sense of Definition 1.1. The following 

is one of two technical C*-algebra results needed (Lemma 2.8 being the other). 

2.6. Lemma. Let A be an ideal in A’ and let B be a stable P-algebra (that is, 

BE B OX). Any *-homomorphism f. : A + B is homotopic to a *-homomorphism 

f, : A --f B which extends to a *-homomorphism from A’ into the multiplier algebra 

M(B). 

Proof. By Lemma 2.1 we may assume that B is of the form B’@X for some B’, 

and that f. is of the form 

eA fdOl 
A-A@X- B’@Yl. 

Since e, extends to a map from A’ into M(A@X), it suffices to show that 

f,‘@ 1 : A OS%+ B’@ X is homotopic to a map which extends to multiplier algebras. 

Let u, EM(A@X) be the isometry constructed in Lemma 1.4 of [8]. Then Ad(v,) 

maps M(A 0.X) into M(A OX) cM(A OX), where a denotes A with a unit 

adjoined (if A has a unit we could set a=A, although the result we are trying to 

prove is trivial in this case anyway). Now, &‘Q 1 extends to a map from M(A OX) 

to M(B@X) (see [S, paragraph 1.31) and so it suffices to show that Ad(u,) : A OX--+ 

A @YZ is homotopic to the identity, for then we can definef, to be the composition 

eA 

A-A@X- Ad(“‘) A Ox 

$01 

- B’@X. 

But according to [8], Ad(u,) is homotopic to 1 @Ad(w,) for some isometry w,, 

and then by Lemma 2.1, 10 Ad(w,) : A @X + A @X is homotopic to the identity 

map. 0 

2.1. Proposition. The class Z satisfies property (Ll) of Definition 1.1. 

Proof. Let @: A, --f B,, be a morphism in TS, represented by some *-homomor- 

phism 

f:S m+“A +SnfMB@X, 
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and let a=F(a,,) be a morphism in Co, 

represented by some *-homomorphism 

j:S 
,??+,‘,A ~ S,,I’+NA’ 

Higson 

where cro : A, + A& is a morphism in .X0’, 

as in Definition 2.5. By taking suspensions off or j we may assume that N=M 

(note that a suspension of j is still an inclusion of an ideal, with contractible quo- 

tient). By Lemma 2.6 we may assume that f extends to a *-homomorphism from 

S m’+NAt to M(S “‘NB@X), which we shall call 3 Let D be the subalgebra of 

M(S “+NB~~))SS”NA’/SM’NA generated by S”+NB@X@O and elements 

of the form y(x) @i, where x E S m’+NA’ and ,I! denotes the image of x in the quo- 

tient algebra (this subalgebra is automatically closed, and so is a C*-algebra). Under 

the natural inclusion i: S”+NB@31+D, Sri+++ BOX is an ideal in D; the quotient 

is isomorphic to S”“NA’/S m+NA, and is therefore contractible. The map i thus 

gives rise to a morphism {i} : (BOX), --f D_, in S which is an element of Zoo; the 

map f’:S m’+NA’+ D defined by x H f(x) @a gives rise to a morphism 

{f’} : AL, + D-N in S. The standard map e : B --f B 0.X gives rise to a morphism 

{e} : B, + (BOX), in S which is invertible in TS. Since the diagram 

@ 
A, - B n 

Ah, - Dp 
F({f’)) * 

in TS is easily seen to commute (using Lemma 2.1), we are done. 0 

2.8. Lemma. If f: B’-+ A’ is any *-homomorphism then there is a homotopy 

equivalence h : B” -+ B’ such that the composition f 0 h : B” -+ A is homotopic to a 

surjective *-homomorphism. 

Proof. Take B” to be the free product B’* (C,[O, 1) @A) (this is the coproduct in 

C*-Alg), and let h = 1 *O : B“+ B’. Then foh:B”+A is equal to f*O:B”-+A, 

which is homotopic to the surjection f * e : B” + A, where e : C,[O, 1) @A -+ A is 

evaluation at 0 E [0,  1). 0 

2.9. Proposition. The class Z satisfies property (Rl) of Definition 1.1. 

Proof. Let 0’ : B;, + AA, be represented by some *-homomorphism 

f:S n’+M B’-+ S”‘+“A’@.X 

and let o = F(ao) : A, + AA, be a morphism in E”, where o. E Zoo is represented by 

a *-homomorphism 

j:S ~+NA ~ SV?‘+NAJ 
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as in Definition 2.5. As in Proposition 2.7, we may assume that M=N. By Lemma 

2.8 there exists a homotopy equivalence h : B”+ S”‘INB’ such that f 0 h is homo- 

topic to a surjective *-homomorphism g : B”-t S”‘+NA’@Z. Let B be the ideal 

g-‘[S”+N A 0x1 of B”. The quotient B”/B is *-isomorphic to S”“NA’@~/ 

S m+NA @Z and is therefore contractible. The diagram in TS 

0’ 
A’,, 4 B;f 

p F({hI) 
T 

B/IN 

T 
F({iI) 

commutes, where i: B-t B” is the inclusion map, and so we are done. 0 

In order to establish that the properties (L2) and (R2) hold, we need to recall 

some basic facts concerning mapping cones. For the simple proof of the following 

lemma, compare for example [15, Section 31. Note that given a *-homomorphism 

f: A + B there is a natural map s : SB + Cr given by s(g) = 0 @g. 

2.10. Lemma. Given a *-homomorphism of P-algebras h :X-t Y the compo- 

sitions 
h 

ch - p X-Y 

and 

SXSh. SYs C,, 

are homotopic to zero. If h : X + Y is homotopic to zero then [p] : Ch +X is a split 

epimorphism in H and [s] : SY- ch is a split monomorphism. 

2.11. Proposition. The class .Z satisfies property (L2) of Definition 1.1. 

Proof. Let @ : A’,,--+ B, be represented by f:  Sm’+MA’+ S”+“B@3t and let U= 

F(cQ) : A, --f AA, be a morphism in Zgiven byj : S”‘NA + Sm’+NA’ as in Definition 

2.5. We may assume that M= N. Furthermore, if a@ = 0, then by choosing N large 

enough we may assume that the composition fj is homotopic to zero. It follows 

from Lemma 2.10 that the map s: Sn+‘+N B@.N+ Cfj is a split monomorphism in 

H, and so the map F({s}): (B@JZ),-+(C”)_~_~ is a split monomorphism in TS. 

The C*-algebra Cfi is an ideal in Cf (via the embedding a @ g --f a @ g); the quotient 

is isomorphic to S”‘tNA’/SM+N A, and is therefore contractible. Also, by Lemma 

2.10 the composition 

S m’+l+N~/,sn+l+N~~~~~~ 
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is homotopic to zero. It follows that r 0 @ = 0 in TS, where r is the composition 

Since F({e}) is an isomorphism, F({s}) is a split monomorphism, and F({i}) EC’, 

we have that r E.Z~ as required. 0 

2.12. Proposition. The class satisfies property (R2) of Definition 1.1. 

Proof. Suppose that a@ = 0 in TS, where 0 : A, + B, is represented by f: S”‘n+MA --t 

s “iMB@X and ae_X, a:B,,+B;,, is given by j:Sn+NB+Sn’+NB‘. We may 

assume that M= N and that the composition 

sm+N A --L s”+~B~x% Sn’+N~l@~ 

is homotopic to zero. By Lemma 2.10 the morphism [p] : Ccjo Ilf+ Sm+NA is a 

split epimorphism in H, and hence F({p}) : (Ccjo l)f)_N-* A, is a split epimor- 

phism in TS. On the other hand, the composition 

Cr- C~jo l)f-’ Sm’NA ~ S”‘NBO~ 

is homotopic to zero (by Lemma 2.10 again). Also, C, is included in C~jo ijf as an 

ideal; the quotient is isomorphic to (S”‘+l+NB’@.N)/(Sn+l+NB@X), and is 

hence contractible. Thus if T is the composition 

then ~E.Z, and @r=O. 0 

3. KK-theory 

3.1. Definition. Let E be the full subcategory of the category of fractions TSIZpl] 

(with Z as in Definition 2.5) whose objects are the objects A, in TS. 

We shall identify the objects A, of E with the class of separable C*-algebras A. 

There is of course an obvious functor from C*-Alg to E, mapping A, to A. 

Putting together the results of Sections 1 and 2 we obtain the following result. 

3.2. Theorem. If 0 + J+jA +qB+ 0 is an exact sequence of separable 

C*-algebras then for any separable C*-algebra C the sequences of abelian groups 

E(B, C) 4* E(A, C) j* - E(J, C) 

and 

E(C, J) J* -E(C,A)- ‘* E(C, B) 

are exact in the middle. 
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Proof. Since .Z is an admissible class in TS (by Propositions 2.7, 2.9, 2.11 and 2.12) 

it follows from Theorems 1.9 and 2.4 that these sequences would be exact ifj : A-+ A 

were replaced with p : C4 + A. There is an inclusion i : J+ C4, of J as an ideal in 

C,, namely i(a) = a@ 0, such that the p 0 i=j: J-A, and so it suffices to show 

that i maps to an isomorphism in E. But the quotient C/J is isomorphic to 

C,[O, 1) 0 B and is hence contractible. Therefore, by definition of Z, i is invertible 

in E. 0 

3.3. Remark. Theorem 3.2 asserts that the functors E(C, . ) and E(. , C) on C*-Alg 

are half-exact. They are in addition stable and homotopy invariant and so by 

Cuntz’s Bott Periodicity Theorem [3, Theorem 4.41, there is a natural six term exact 

sequence 

J* 

)r 

E(C,A) 4*_ E(C, B) 
a 

\ 

WC  J) UC, SJ) 

2 
a 

J sj* 

E(C,SB) ,+ - E(C,S/l) 
* 

as well as a similar sequence for E(. , C) (these are natural with respect to change 

of the exact sequences, as well as natural in C). 

Now, denote by KK the category obtained from Kasparov’s KK-theory 

scribed in the Introduction. The functor C*-Alg-t KK is characterized in 

follows. 

as de- 

PI as 

3.4. Theorem. Let A be an additive category and let F: C*-Alg -+ A be a functor 

with the folio wing properties: 

(i) F is a homotopy functor; 

(ii) F is stable; and 

(iii) if 0 + J+jA %iB + 0 is a split exact sequence of C*-algebras then F(A) is 

the direct sum of F(J) and F(B) via the maps F(j) and F(s). 

There exists a unique functor P: KK + A such that F is the composition 

C *-Alg + KK --f ‘A. (Furthermore, the functor C *-Alg + KK itself has properties 

(i), (ii) and (iii).) 

There is a suspension functor S : KK + KK, 

S(A - ’ B)=SAASB, 

which is compatible with the suspension functor on C*-Alg (see for example [8, Sec- 

tion 4.71, where S is denoted 1 ca(O,lj ! -). It follows from the Bott Periodicity 

Theorem in KK-theory [ll, Section 51 that S : KK + KK is full and faithful. Using 

this, it is a simple matter to compare KK and E. 
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3.5. Theorem. There is a unique (additive) functor KK + E such that the diagram 

i*-*\ 

KK +E 

commutes. If A is a K-nuclear C*-algebra then for any B the homomorphism 

KK(A, B) + E(A, B) is an isomorphism. 

Proof. The existence and uniqueness of a functor from KK to E follows from 

Theorem 3.4 and Remark 3.2, since the six term exact sequences for a split exact 

sequence degenerate into split exact sequences of E-groups, and these imply that E 

satisfies condition (iii) of Theorem 3.4, whilst the other conditions are obviously 

satisfied. If A is any C*-algebra then we may define a functor KA from S into 

abelian groups as follows. On objects we set 

KA(B,) = ‘5 KK(SNA, Sm+NB), (7) 
N 

where the direct limit is taken using the suspension functor. A morphism {f} : 

B, --f C, in S induces homomorphisms KK(SNA, ,S”INB) + KK(SNA, Sn+NC), for 

large enough N, compatible with suspension, and so we obtain a homomorphism 

KA({fl):KA(Bm)+KA(Cn). 

Since KK is stable it follows that KA passes to a functor from TS to abelian 

groups (which we will also call KA). Suppose now that A is K-nuclear (see [17, 

Definition 3.11). Then all suspensions SmA of A are K-nuclear ([17, Proposition 

3.5]), and the functors KK(S”A, -) on C*-Alg are half-exact by [17, Theorem 

3.61. It follows from the resulting long exact sequence that if 0 + B + B’+ B’/B + 0 

is a short exact sequence of C*-algebras with B’/B contractible then the map 

KK(S’“A, B) + KK(SmA, B’) is an isomorphism. Therefore the functor KA passes 

to a functor on TS[X’] (with Z as in Definition 2.5) and so by restricting this we 

obtain a functor KA on the category E. Since the suspension functor S : KK + KK 

is fully faithful, the direct limit in (7) is superfluous for objects in E: we have 

KA(B) = KK(A, B). Denote by EA the functor E(A, -) on E or KK. The functor 

KK + E gives a natural transformation r : KA + EA, and we may define a natural 

transformation CJ : EA -+ KA (considering EA and KA as functors on E or KK) by 

~A(~)=KA(~)(~A)EKK(A,B), 

where lA EE* (A) = E(A, A) is the identity morphism. It follows from the Yoneda 

Lemma that u and T are mutual inverses. 0 

We shall conclude by outlining a characterization of E, analogous to the 

characterization of KK in Theorem 3.4. 
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3.6. Theorem. Let F be any functor from C*-Alg to an additive category A which 

satisfies the following conditions: 

(i) F is a homotopy functor; 

(ii) F is stable; and 

(iii) if 0 + J + A -+ B + 0 is any short exact sequence of C *-algebras, and C is any 

other C*-algebra, then the sequences of abelian groups 

A(B, C) z A(A, C) j* - NJ, C) 

and 

A(C, J) J* -A(C,A)- ‘* A(C,B) 

are exact in the middle. 

There exists a unique functor P: E + A such that F is equal to the composition 

C*-Alg -+ E -rFA. 

By Theorem 3.2 and the properties of TS, the functor C*-Alg -+ E satisfies prop- 

erties (i), (ii) and (iii). Thus E is characterized by Theorem 3.6 as the universal stable 

cohomology theory on C*-Alg. In distinction to Theorem 3.4, it is not obvious that 

such a universal theory exists. 

Proof. By Cuntz’s Bott Periodicity Theorem [3, Theorem 4.41, there are natural 

isomorphisms A(F(S2A), F(B)) G A(F(A), F(B)) G A(F(A), F(S2B)) (where we regard 

A(F(A),F(B)), etc., as a bifunctor on C*-Alg). By property (i), we may regard F 

as a functor on H, and by means of these isomorphisms we may construct from F 

a functor on S. By property (ii) we obtain from this a functor on TS. Property (iii) 

implies that associated to any short exact sequence of C*-algebras, 

O+JLAzB-0, 

there are six term exact sequences in the C and D variables of A(F(C), F(D)). If B 

is contractible then these exact sequences degenerate to isomorphisms 

and 

j* : W’(A), F(D)) -+ W’(J), F(D)) 

j, : A(F(C), F(J)) + W’(C), F(A)). 

It follows thatf(j) : F(J) + F(A) is an isomorphism, and so F(o) is an isomorphism 

for any (T in the class Z of Definition 2.5. Thus F passes to a functor on TSIZpl], 

and hence to a functor Pan E. Uniqueness follows from the fact that E is generated 

by the image of KK + E (on which p is unique by Theorem 3.4) together with the 

inverses of certain morphisms in this image. 0 

As an application, using the approach of [8, Section 4.71 it is straightforward to 

show the existence of an associative pairing 
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as long as A, and B, (or A2 and B2) are nuclear, or more generally K-nuclear. In 

the absence of some nuclearity condition the situation is unclear, the reason being 

that in general the tensor product 

of an exact sequence with an auxiliary C*-algebra C is not necessarily exact. 
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