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A NOTE ON THE COBORDISM INVARIANCE OF THE INDEX
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INTRODUCTION

THE purpose of this note is to give a simple proof of the cobordism invariance for the
analytic index of Dirac type operators [5, Chapter 17, Theorem 3. Our approach is based
upon the analysis of operators on complete manifolds, and follows an argument due to
J. Roe. In fact we shall prove rather more than the cobordism invariance of the index,
namely Roe’s index theorem for partitioned manifolds [6].

1. PRELIMINARIES

Let M be a complete, oriented, odd-dimensional manifold (without boundary), and let
S be a smooth, Hermitian bundle over M, equipped with a Clifford action of TM and
a compatible connection V (see for example [7, Chapter 2]). Let D be the Dirac operator
obtained from S. We wish to regard D as an operator on the Hilbert space L?(S), initially
with domain the smooth, compactly supported sections. Qur starting point is then the
following result concerning solutions of the Dirac equation (see, for example, [1, Theorem
1.17)).

1.1. THEOREM. The maximal and minimal domains of the operator D are equal. Thus if £,
{ e LX(S) and if DE = { in the sense of distributions, then there is a sequence {£,} of smooth,
compactly supported sections such that | ¢, — &| - 0 and |DE, — [ || — 0.

The operator D is formally self-adjoint, in the sense that if ¢ and ¢ are smooth,
compactly supported sections then (D¢, () = (¢, D{) (see [7, Proposition 2.97), and so it
follows from Theorem 1.1 that D is an essentially self-adjoint Hilbert space operator [5],
meaning that the closure of D is a self-adjoint operator on L3(S) (the domain of the
extended operator is as described in the theorem). From now on we shall work with this
extension.

If X and Y are bounded Hilbert space operators then we shall write X ~ Y if X and

Y differ by a compact operator.

1.2. THEOREM. If 8 is a compactly supported function on M then 8(D + i)~ ~ 0.

This follows from the Rellich Lemma, together with the “basic elliptic estimate”
I1DE| + [l = ex || VE| (ex > 0), for smooth sections £ supported in a compact set K; see for
example [7, Chapter 3].
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1.3. LeMMA. Let ¢ be a smooth function on M which is locally constant outside of
a compact set. Then [(D + i)™, ¢] ~ 0.

Proof. Let us note that if ¢ is a smooth section of S then

[D,¢1¢ = D(¢¢) — D¢ = grad(¢)-¢,

where “+” denotes Clifford multiplication. Since grad(¢) vanishes outside of a compact set,
[D,¢] is compactly supported, and bounded as a Hilbert space operator. From the
boundedness it follows that ¢ maps the domain of D into itself, and so we may write

(D) h¢l=D+i) '[¢,DID £

The Lemma thus follows from Theorem 1.2, upon choosing a compactly supported € such
that [ ¢, D] = [¢, D].

Suppose now that M is partitioned by some hypersurface N, so that M = M, UM _,
where M, and M _ are manifolds which are disjoint except for their common boundary N.

L4. Lemma. Let U = (D — i)(D + i)~ ! be the Cayley transform of D, let ¢, be a smooth
function on M which is equal to the characteristic function of M .. outside of a compact set, and
let ¢_ =1~ .. Then:

(i) the operators U, = ¢_ + ¢, U and U. = ¢+ + ¢_U are Fredholm;

(ii) Index(U.) = — Index(U_); and

(ili) the quantity Index (U , ) does not depend on the choice of ¢, but only on the cobordism
class of the partition determined by N (as explained below).

Proof. Writing U =1 — 2i(D + i)™, we see from Lemma 1.3 that
¢.U=0¢, =2¢p, . (D+i) ' ~ ¢+ =2D+i) ¢, =Ug,,

and similarly ¢ _U ~ U¢_. In addition, it follows from Theorem 1.2 that Pep_U~opp_.
Therefore U,U%¥ ~1 and U% Us~1, and so U, and U_ are Fredholm.
Furthermore, U, U_ ~ U, so by the stability and additivity of the Fredholm index,

Index(U, ) + Index(U_) = Index(U, U _) = Index(U) = 0.

Choosing a different ¢, will only aiter U, or U_ by a compact operator, and this will not
change the Fredholm index. Finally, suppose that N’ is another hypersurface, partitioning
M into say M’;, as above, such that the symmetric differences M, AM, are relatively
compact. Then in the construction of U, and U_ for this new partition we may use the
same ¢, , and so we will obtain the same operator and the same index.

We shall denote the index of U, by Index(D,N). Roe’s index theorem for partitioned
manifolds relates this quantity to the index of a Dirac operator Dy on N, which is
constructed as follows (see [6, Section 3]). Let Sy be the restriction of S to N, equipped with
a Clifford multiplication by restricting the Clifford multiplication of TM on S to
TN 5 TM|y. Then choose any compatible connection on S ~ (an adaptation of the standard
argument shows that such a connection exists), and let Dy be the corresponding Dirac

operator,
In order to state Roe’s theorem we must establish some conventions concerning
orientation. We shall make the minor simplifying assumption that if {e,, . . ., e} is any

oriented, local orthonormal frame for TM, then for all sections Eof §,

ey ... e E=¢ . (1.1)

il +ki2
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(In any case, the laws of Clifford algebra dictate that the left hand side of (1.1) defines
a self-adjoint endomorphism ¢ of S with o2 = 1, and so we may in general write
D=D,® - D_, where D, satisfy our hypothesis.) Let us orient N as the boundary of
M _, so that if n is the normal vector field on N pointing out of M _ and into M, ,andif
{ey,. ... e} is a local, oriented, orthonormal frame for 7N, then {n,e,..., e} 1s an
oriented frame for TM on N. The formula

B€E)=1e, e, .. o, & (1.2)

determines a self-adjoint endomorphism ¢ of Sy such that &2 = | and ¢Dy + Dye = 0.
Considered as an automorphism of L2(S,), ¢ leaves kernel(D) invariant. Thus the kernel
splits as a direct sum K, ® K _ according to the + I eigenvalues of ¢, and we define
Index(Dy) = dim(K , ) — dim(K ). Roe’s index theorem is the assertion

L.5. Tueorem ([6, Theorem 3.3].) Index(Dy) = Index(D, N).

Let V'be a compact, oriented manifold with boundary N, and let D be a Dirac operator
on V. By adding an infinite cylinder M, = [0, 20} x N to the boundary of M_ = I we
obtain a complete manifold M to which D extends. Since M. is compact, by applying
Theorem 1.2 to ¢_ we see that U_ ~ 1, and so Index(D, N) = — Index(U _) = 0. Thus the
cobordism invariance of the index follows from Theorem 1.5. For other interesting
applications, the reader is referred to Roe’s paper [6].

2. THE PRODUCT CASE

Our proof of Theorem 1.5 will follow the general lines of Roe’s argument in [6]. In this
section we shall analyze the special case where M = R x N, and in the next section we shall
reduce the general case to this.

Let N be an even dimensional, oriented, closed Riemannian manifold, and Let S, be
a hermitian bundle over N equipped with a Clifford action of TN and a compatible
connection. Denote by D, the corresponding Dirac operator. Put the natural metric and
orientation on R, and equip R x N with the product metric and orientation. Pull back Sy
and its connection to B x N, and extend the Clifford action of TN to a Clifford action of
TM by letting the unit tangent vector ¢, for R act as — is, with ¢ as in (1.2) (note that
this choice is forced on us by our orientation convention (1.1)). The connection is com-
patible with this larger Clifford action, and we form the Dirac operator
D =Z0eV;= —ied/dr + Dy.

Now, embed N into M =RxN as {0} x N, and let M_ =(—00,0]xN and
M. =[0,00) x N. (This is consistent with our orientation conventions, and we note that
the operator on N induced by D is the operator Dy we started with.) Choose ¢, as in
Lemma 1.4 which is a function only of ¢t € R. Defining y to be 2¢ 4+ — 1, we note that

Us =D +)D+i)" ~ 2g(D + i)™
=(D — if)D + i)~ ",

We see from this that the kernels of U + and U¥ are isomorphic to the kernels of D — 1/
and (D — iy)* = D + i, respectively, considering (D + iy) as operators on the domain of
D. In order to compute these we shall decompose the space L(S) according to K = kernel(Dy).
Using the obvious isomorphism L*(S) = L*(R) ® L2(Sy), we define E: L*(S)— L*(S) to be
the projection onto L*(R) ® K. The space K is finite dimensional and consists entirely of
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smooth sections (see [7, Chapter 37). Choosing an orthonormal basis ¢4y, &,y we have
the formula

™M =

E{t, x)=

i

Gilx) L@,-(y), £, y)>dy,

1

from which we see that E maps the smooth, compactly supported sections of S to
themselves. For smooth, compactly supported { we compute that

(D + W) I = (D F W )D % i), §)
= (DAL0) + (—ied/dr + i)*(— ied/dt + W)L, )
> [|Dx¢)?
= |11 — EXII?,
where J is the least positive eigenvalue of Dy (see [7, Chapter 3]). and also that
(D £ WE( = — ied(EC)/dt + i EL.

It follows from Theorem 1.1 and an approximation argument that the estimate
D £ i)l = 8[(1 — E)|* holds for all {edomain(D), and so kernel
(D + i) « LAHR) ® K, whilst on L*(R) ® K the operator D + iy is equal to — ied/dt + iy,
considered as a differential operator on vector valued functions, with its maximal domain.
Now, the distributional solutions of ( — ied/dt + ity)}f = O are just the ordinary C! solu-
tions [3, Corollary 3.1.5], namely

cxp( + J.I t,b(s)ds>v (vreK,)
0
[ = ’
exp( F f w(s)ds)v (ve K_),
0

where we decompose K according to the eigenspaces of &. Since only exp( — {5 ¥(s)ds)v is an
L*-function, we see that dim(ker(D + iY)) = dim(K .) and dim(ker(D — i¥)) = dim(K , ),
which shows that Index(D, N) = Index(Dy), as desired.

3. THE GENERAL CASE

We shall reduce the analysis of a general partitioned manifold M to the product case of
the previous section using the following result.

3.1, Lemma. (Compare [2, Lemma 2.3].) Let M, and M, be two partitioned manifolds,
and let y: My — M, be an isometry which lifts to an isomorphism of Clifford structures.
Then Index(D,N,) = Index(D,, N,). Similarly, if there is an isometry y:M,_ — M, _ which
lifts to an isomorphism of Clifford structures then Index(D,, N} = Index(D,, N,).

Proof. Let ¢, be a smooth function on M, such that ¢, = Oina neighborhood of M, _
and ¢, = 1 on all but a compact subset of M, ., and let ¢, = ¢, o. Then

U1+ = 1 + 2[¢}(D1 + i)_l
and
Use ~ 1 + 2D, + i)~ 1¢h,.
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Let V: L3(S,)— L*(S,) be any unitary operator obtained as an extension of the Hilbert
space isometry I': L*(S,|M [, ) - L*(S,|M,, ) induced by . Then:

VUiw = Une Vs V(L4 290Dy + )71 ~ (14 2D, + 1)L py) ¥
=2iT¢1(Dy + i)™ —(Dy + i) 1, T)
= 2Dz + )TN (D2 + )Ty — ¢, T(Dy + H)(Dy + 1),

(the last manipulation is legitimate because domain((D, + i)T'¢,) domain(D,)). But
(D2 + ¢, = T'(D; + i)¢, and &, 0Dy + 1) =T¢,(D, + 1)), and so the above expression
reduces to

VUis = UsiV ~ 2Dy + i) 'T[Dy, ¢, 1(Dy + i)t

As we noted in the proof of Lemma 14, [D1,¢,1(Dy + i)' ~ 0. Therefore VU, V*
~ U+, and so Index(U, ;) = Index(U, ).

The other assertion in the Lemma is proved in the same way, using the fact that
Index(D;, Nj) = — Index(U;_) (j = 1, 2).

Proof of Theorem 1.5. Choose a collaring neighborhood ( — I, 1)x N of N in M. By
Lemma 3.1, we may change M to be of product form ( — o0, — 1/2)x N away from M,
without altering Index(D, N). But then by Lemma L4, we can replace the partitioning
hypersurface N = {0} x N with { — 1/2} x N without changing the value of Index(D, N).
Having done so, we can use Lemma 3.1 again to replace the part of M to the right of
{ = 1/2} x N with the cylinder ( — 1,2, ) x N, once again, without changing Index(D, N).
We have now transformed M to the product R x N.
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