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On the K-Theory Proof of the Index Theorem

NIGEL HIGSON

1. Introduction

This paper is an exposition of the K-theory proof of the Atiyah-Singer Index
Theorem. I have tried to separate, as much as possible, the analytic parts of the
proof from the topological calculations. For the topology I have taken advantage
of the Chern isomorphism to work mostly within the world of ordinary cohomol-
ogy. The analytic part of the proof is done within the framework of asymptotic
morphisms [6] [7]. Depending on the reader’s outlook this may or may not be
simpler than the usual approach through pseudodifferential operators.

The approach we take is due, more or less, to Kasparov [12]. It differs a
little from the argument in [2] and has the useful feature that embeddings into
Euclidean space are not required. This will be used in the article [4] which deals
with the equivariant index theorem for manifolds equipped with proper actions
of discrete groups.

See [8] for another K-theoretic proof of the index theorem, based on ideas of
P. Baum.

2. Elliptic Operators

Let M be a smooth closed manifold, let E and F be smooth complex vector
bundles over M , and let

D: C∞(M, E) → C∞(M, F )

be a linear elliptic operator on M , mapping sections of E to sections of F . For
simplicity assume that D is a differential—as opposed to pseudodifferential—
operator, and that it has order one. So choosing local coordinates on M , along
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with local frames for E and F , the operator D is of the form

D =
∑

ai ∂/∂xi + b,

where ai: E → F , b: E → F are smooth matrix valued functions.

The symbol of D is the function σ which associates to each cotangent vector
ξ ∈ T ∗Mp a linear transformation Ep → Fp, according to the formula

σ(p, ξ) =
√
−1

∑

i

ξiai(p) (ξ =
∑

i

ξidxi).

It does not depend on the choice of local coordinates. The definition of ellipticity
asserts that if ξ %= 0 then the linear transformation σ(p, ξ): Ep → Fp is invertible.

The rudiments of the theory of elliptic operators imply that the kernel and
cokernel of D are finite dimensional complex vector spaces, and our objective is
to calculate the quantity

Index(D) = dimC(kernelD) − dimC(cokernelD) ∈ Z

in terms of the symbol of D and the algebraic topology of M . See [15].

3. K-Theory

We review a few facts about the K-theory of C∗-algebras. See [5] and [7]
for details. In fact we shall scarcely go beyond the K-theory of commutative
C∗-algebras, which amounts to the same thing as topological K-theory [1], but
for one or two constructions it is convenient to adopt the C∗-algebra point of
view.

Let A be a C∗-algebra. Recall that if A has a unit then K(A) is the abelian
group generated by homotopy classes of projections in matrix algebras over A,
subject to the relation that addition of disjoint projections correspond to addition
in K(A).

A homomorphism A → B between C∗-algebras with unit determines a ho-
momorphism of abelian groups K(A) → K(B), making K(A) into a covariant
functor.

If A does not have a unit then we define K(A) by adjoining a unit to A, so
as to obtain a C∗-algebra A+, and setting

K(A) = kernel{K(A+) → K(A+/A)}.

Since any homomorphism of C∗-algebras A → B extends to a homomorphism
A+ → B+ we obtain a covariant functor on the category of all C∗-algebras and
all C∗-algebra homomorphisms.
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Definition. Let A and B be C∗-algebras. An asymptotic morphism from A
to B is a family of functions Tω: A → B (ω ∈ [1,∞)) such that

(1) Tω(a) is jointly continuous in a and ω;
(2) lim supω→∞ ‖Tω(a)‖ < ∞ for every a ∈ A; and
(3) we have

lim
ω→∞

‖Tω(a) + λT ω(a′) − Tω(a + λa′)‖ = 0,

lim
ω→∞

‖Tω(a∗) − Tω(a)∗‖ = 0,

lim
ω→∞

‖Tω(a)Tω(a′) − Tω(aa′)‖ = 0,

and the convergence is uniform on compact subsets of A.

This differs a little from the definition in [6,7], but not in any essential way.
We remark that condition (2) is in fact a consequence of conditions (1) and (3).

An asymptotic morphism Tω: A → B determines a homomorphism of K-
theory groups

T : K(A) → K(B),

as follows. Suppose first that A has a unit. Let p be a projection in A, or in a
matrix algebra over A (in which case we note that T ω applied entrywise gives an
asymptotic morphism from matrices over A to matrices over B). Consider the
continuous family Tω(p) of elements in B (or in a matrix algebra over B). It is
uniformly bounded, and

‖Tω(p) − Tω(p)2‖ → 0,

as ω → ∞, so that Tω(p) is “asymptotically” a projection. It follows easily from
the functional calculus that there is a continuous family of projections qω in B
such that

‖Tω(p) − qω‖ → 0

as ω → ∞. We define

T [p] = [q1].

If A does not have a unit then note that T ω extends to an asymptotic morphism
Tω: A+ → B+ (mapping one adjoined unit to the other). We obtain a map
K(A+) → K(B+) which restricts to a map from K(A) into K(B), as required.

Let X be a compact Hausdorff space. As usual, denote by C(X) the contin-
uous, complex valued functions on X . The group K(C(X)) has the structure of
a commutative ring, for if p ∈ Mn(C(X)) and q ∈ Mn′(C(X)) are projections
then we may form

(3.1) p ⊗ q(x) = p(x) ⊗ q(x) ∈ Mnn′(C(X))
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(here we view matrices of functions on X as matrix valued functions on X). The
multiplicative unit of C(X) determines a unit

1 = [1] ∈ K(C(X)).

Denote by A(X) the C∗-algebra of continuous functions from X into a C∗-
algebra A. Then the group K(A(X)) is a module over K(X). If A has a unit the
module structure is defined by a formula like (3.1). If A has no unit we observe
that

K(A(X)) ∼= kernel{K
(

A+(X)
)

→ K
(

A+/A (X)
)

},
and reduce to the unital case.

An asymptotic morphism Tω: A → B extends in the obvious way to an as-
ymptotic morphism

Tω
X : A(X) → B(X),

and so we obtain homomorphisms of K-theory groups

TX : K(A(X)) → K(B(X)).

Lemma 3.1. The maps TX are K(C(X))-module homomorphisms. In addi-
tion, if f : X ′ → X is any continuous map then the diagram

K(A(X))
TX−−−−→ K(B(X))

f∗





%





%

f∗

K(A(X ′)) −−−−→
TX′

K(B(X ′))

commutes. !

Let K denote the C∗-algebra of compact operators on a separable Hilbert
space. Fix a rank one projection e in K, and map C(X) into K(X) by sending
a function f to the function x *→ f(x)e.

Lemma 3.2. The induced map

K(C(X)) → K(K(X))

(which is a K(C(X))-module homomorphism) is an isomorphism. !

Let Y be a locally compact space and let C0(Y ) be the C∗-algebra of contin-
uous complex valued functions on Y which vanish at infinity.

For the rest of the paper we shall write K(Y ) in place of K(C0(Y )).
Note that C0(Y )+ = C(Y +), where Y + denotes the one point compactifica-

tion of Y . Thus if p and q are projection valued functions on Y +, which are
equal at infinity, then the difference [p] − [q] is an element of K(Y ).

Note also that the algebra of continuous functions from X into C0(Y ) is equal
to C0(X × Y ).
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Using this we can summarize what we need of the discussion in this section
as follows.

Proposition 3.3. An asymptotic morphism Tω: C0(Y ) → K determines a
family of K(X)-module maps

TX : K(X × Y ) → K(X),

which are natural in X as in Lemma 3.1. !

4. The Symbol Class

We shall define two sorts of K-theory classes, the first associated to an elliptic
operator on a manifold, and the second associated to the manifold itself.

Let M be a smooth, closed manifold and let

D: C∞(M, E) → C∞(M, F )

be an elliptic operator with symbol

σ:π∗E → π∗F

(π is the projection from the cotangent bundle T ∗M to M). Endow the E and
F with metrics and form the self-adjoint endomorphism

σ =

(

0 σ∗

σ 0

)

:π∗E ⊕ π∗F → π∗E ⊕ π∗F.

Lemma 4.1. The resolvent operators

(σ ± i)−1:π∗E ⊕ π∗F → π∗E ⊕ π∗F

are endomorphisms which vanish at infinity (in the operator norm induced from
the metrics on E and F ).

Proof. Ellipticity implies that σ is bounded below on the complement of any
neighbourhood of the zero section in T ∗M . Using the homogeneity σ(x, tξ) =
tσ(x, ξ) we see that for any C > 0 there is a compact subset of T ∗M outside of
which σ is bounded below by C. The lemma follows from this. !

Now form the Cayley transform

u = (σ + i)(σ − i)−1

= 1 + 2i(σ − i)−1.

Embed E and F into trivial bundles CN1 and CN2 over M , and extend the
automorphism u of π∗E ⊕ π∗F to the trivial bundle CN1 ⊕ CN2 over T ∗M by
setting it equal to the identity on the complement of π∗E⊕π∗F . By Lemma 4.1
u extends continuously to (T ∗M)+ upon setting u(∞) = I.

Let

ε =

(

1 0
0 −1

)

,



6 NIGEL HIGSON

viewed as an automorphism of the trivial bundle CN1 ⊕CN2 over (T ∗M)+. Then
of course ε2 = 1, but in addition

(uε)2 = 1.

This is a simple consequence of the fact that ε anticommutes with the endomor-
phism σ.

Now to each involution w (meaning w2 = 1) there is associated a projection
p(w) (meaning p(w)2 = p(w)) according to the formula

p(w) =
1

2
(w + 1).

In the case at hand we obtain two projection valued functions p(ε) and p(εu)
on (T ∗M)+ which are equal at infinity. Each defines an element of K((T ∗M)+)
and their difference defines an element

σD = [p(ε)] − [p(εu)] ∈ K(T ∗M).

This is the symbol class of the elliptic operator D. (Our construction of it, using
the Cayley transform, is taken from [16].)

Now let V be a Euclidean vector bundle over a compact space X . We shall
define a class

λV ∈ K(V ⊕ V ).

and from it, using the tangent bundle, we shall obtain a class

λM ∈ K(M × T ∗M).

Form the complexified exterior algebra bundle
∧∗

C
V and for w ∈ Vx ⊗ C define

c(w):
∧∗

C
Vx →

∧∗

C
Vx

c(w)η = dwη − δwη,

where dw denotes the operator of exterior multiplication by w, and δw denotes
its adjoint. Define an endomorphism

c:π∗(
∧∗

C
V ) → π∗(

∧∗

C
V )

of the vector bundle
∧∗

C
V pulled back to the space V ⊕ V by the formula

c(v, v′) = c(v) + c(
√
−1v′).

It is self adjoint and

c(v, v′)2 = ‖v‖2 + ‖v′‖2,

so that the resolvents (c ± i)−1 vanish at infinity in V ⊕ V . In addition, c

anticommutes with the “grading operator” ε which multpilies a form by ±1
according as the form is even or odd. Because of this we can follow the same
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procedure as above to define a K-theory class in K(V ⊕V ): we form the Cayley
transform v of c, and then define

λV = [p(ε)] − [p(εv)] ∈ K(V ⊕ V ).

If V is a vector space (= vector bundle over a point) then λV is the “Bott
element” familiar from the Periodicity Theorem.

Endow the smooth, closed manifold M with a Riemannian metric and define
a map

(4.1)

φ: TM → M,

φ(v) = exp

(

δ

(1 + ‖v‖2)1/2
v

)

.

Here we use the exponential map from differential geometry, and δ > 0 is chosen
to be small enough so that the associated map

v *→ (π(v), φ(v))

is a diffeomorphism from TM onto an open subset of M × M (see for example
[14]). Define a diffeomorphism from TM⊕T ∗M onto an open subset of M×T ∗M
as follows. For m ∈ M the fibre of TM ⊕ T ∗M over m may be identified with
the cotangent bundle of TMm. The map φ is a diffeomorphism from TMm to
an open subset of Wm ⊂ M , and so the transpose of the derivative of φ−1 is a
diffeomorphism

φ̃: T ∗(TMm) → T ∗Wm ⊂ T ∗M.

We define

(4.2)
TM ⊕ T ∗M → M × T ∗M

(v, ξ) *→ (π(v), φ̃(v, ξ)).

Identifying T ∗M and TM using the metric, we define λM ∈ K(M ×T ∗M) to be
the image of λTM ∈ K(TM ⊕ TM) under the map on K-theory groups induced
from (4.2).

5. The Analytic Index

The K-theory proof of the Index Theorem is based on the following result of
Atiyah and Singer.

Theorem 5.1. (Atiyah and Singer [4]) There are maps

IndX : K(X × T ∗M) → K(X)

for each compact space X such that:

(1) IndX is a K(X)-module homomorphism;
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(2) Ind is a natural transformation, in the sense that for every continuous
map f : X ′ → X the diagram

K(X × T ∗M)
IndX−−−−→ K(X)

f∗





%





%

f∗

K(X ′ × T ∗M) −−−−→
IndX′

K(X ′)

commutes;
(3) if D is an elliptic operator on M then

Indpt(σD) = Index(D)

in K(pt) ∼= Z; and
(4) IndM (λM ) = 1 ∈ K(M).

We shall prove this by constructing in Section 8 an appropriate asymptotic
morphism from C0(T ∗M) into K(L2(M)) and applying the remarks made in
Section 3. The verification of parts (3) and (4) will be done in Section 9.

6. Chern Character and Cohomology

Let Y be a locally compact space. Denote by H∗(Y ) the direct sum of the
cohomology groups of Y with real coefficients and compact supports. Denote by
Hev(Y ) the direct sum of the even cohomology groups with real coefficients and
compact supports.

For our purposes Y will always be a reasonable space, in fact a smooth man-
ifold, so it is not necessary to specify a choice of cohomology theory.

Let X be a compact space. The cup product in cohomology makes H∗(X)
into a graded commutative ring, and Hev(X) is a subring. A continuous map
f : Y → X provides H∗(Y ) with the structure of an H∗(X)-module. (If we are
working with de Rham theory and if f is smooth then the module structure is
given by pulling back forms from X to Y and taking wedge product.) We shall
use the cup product symbol a " b for the module action. It will be convenient
to work with both left and right modules.

There is a Chern character homomorphism

ch: K(Y ) → Hev(Y )

(see [11]). It is a natural transformation which is multiplicative with respect to
the ring and module structures on K-theory and cohomology described above
and in Section 3.

As a consequence of the Bott Periodicity Theorem we have:
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Chern Isomorphism Theorem. The map

ch ⊗ idR: K(Y ) ⊗ R → Hev(Y )

is an isomorphism. !

7. Poincaré Duality and the Index Theorem

In this section we shall use Theorem 5.1 and the Chern isomorphism to obtain
the Atiyah-Singer Index Theorem.

Given a smooth closed manifold M , orient the manifold T ∗M as follows.
Choose local coordinates x1, . . . , xn on M . Define functions y1, . . . , yn on T ∗M
by

yi(ξ) = 〈ξ, ∂/∂xi〉
(the angle brackets denote the pairing between cotangent and tangent vectors).
Then we deem x1, y1, x2, y2, . . . xn, yn to be an oriented system of local coordi-
nates on T ∗M .

The orientation gives a linear functional

(7.1) p∗: H
∗(T ∗M) → R

(in de Rham theory, take the degree 2n component of an element in H∗(T ∗M),
represent it as a compactly supported 2n-form and integrate it over T ∗M).

The projection π: T ∗M → M gives H∗(T ∗M) the structure of an H∗(M)-
module. For bookkeeping purposes take it to be a right module.

Poincaré Duality Theorem. The pairing

b ⊗ a *→ p∗(b " a)

from Hp(T ∗M)⊗H2n−p(M) into R induces an isomorphism from Hp(M) to the
dual space of H2n−p(T ∗M). !

This simple version of Poincaré Duality is easily proved using a Mayer-Vietoris
argument, as is the following result.

Kunneth Formula. View H∗(X × T ∗M) as a left H∗(X) module via the
projection p of X × T ∗M onto X. Denote by q: X × T ∗M → T ∗M the other
projection. Then the map x ⊗ y *→ x " q∗(y) is an isomorphism from H∗(X) ⊗
H∗(T ∗M) to H∗(X × T ∗M). !

In view of the Kunneth Formula, the recipe

p∗(x " q∗y) = x · p∗y,

where x ∈ H∗(X) and y ∈ H∗(T ∗M), extends (7.1) above, giving maps

p∗: H
∗(X × T ∗M) → H∗(X).

They are H∗(X)-module homomorphisms, functorial in X .
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These preliminaries dispensed with, we turn to an analysis of the maps

IndX : K(X × T ∗M) → K(X)

of Theorem 5.1. By the Chern isomorphism Theorem, there are homomorphisms

Iev
X : Hev(X × T ∗M) → Hev(X)

such that the diagrams

K(X × T ∗M)
IndX−−−−→ K(X)

ch





%





%
ch

Hev(X × T ∗M) −−−−→
Iev

X

Hev(X)

commute. They are Hev(X)-module homomorphisms, functorial with respect to
maps X ′ → X .

Replacing X with X × S1, it is easily checked that the Iev
X extend to maps

IX : H∗(X × T ∗M) → H∗(X)

which are functorial H∗(X)-module homomorphisms. We shall work with these
below.

Lemma 7.1. View H∗(X×T ∗M) as a right H∗(M) module via the projection
map

X × T ∗M → T ∗M → M.

There is a cohomology class aM ∈ H∗(M) such that

IX(x) = p∗(x " aM ),

for every x ∈ H∗(X × T ∗M). Thus if D is an elliptic operator on M then

Index(D) = p∗(ch(σD) " aM ).

Proof. Poincaré duality asserts that Ipt is given by multiplication with some
element aM of H∗(M), followed by evaluation against the fundamental class. The
formula for IX follows from this in view of the Kunneth formula and the fact
that IX is natural and an H∗(X)-module homomorphism. !

We calculate aM as follows. Observe that H∗(M×T ∗M) is both a left H∗(M)-
module, via the projection of M×T ∗M onto the first factor, and a right H∗(M)-
module, via the projection of M × T ∗M onto M through the second factor.
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Lemma 7.2. Let λM ∈ K(M ×T ∗M) be the class defined in Section 4. Then

a " ch(λM ) = ch(λM ) " a

for all a ∈ H∗(M).

Proof. As in Section 4, regard TM ⊕T ∗M as an open subset of M ×T ∗M .
The projection of M × T ∗M onto M via the second factor corresponds to the
map TM ⊕ T ∗M → M given by the formula

(v, v′) *→ exp

(

δ

(1 + ‖v‖2)1/2
v

)

(compare (4.1)). This is homotopic to the standard projection (v, v′) *→ π(v)
(which corresponds to the projection of M × T ∗M onto the first factor) by
contracting δ to zero. Therefore both maps induce the same Hev(M)-module
action on H∗(TM ⊕T ∗M) (note that multiplying Hodd(M) against Hodd(TM ⊕
T ∗M) on the right differs by a minus sign from multiplication on the left: this
is why we consider only Hev(M)). Since ch(λM ) lies in the image of the map

Hev(TM ⊕ T ∗M) → Hev(M × T ∗M)

given by (4.2) the result follows. !

Index Theorem, Preliminary Version. The class p∗(ch(λM )) is a unit
in the ring Hev(M), and for every x ∈ H∗(X × T ∗M)

IX(x) = p∗(x " p∗(ch(λM ))−1).

In particular, if D is an elliptic operator on M then

Index(D) = p∗(ch(σD) " p∗(ch(λM ))−1).

Proof. Let aM ∈ H∗(M) be the class obtained in Lemma 7.1. Using
Lemma 7.2 and the fact that p∗ is a left H∗(M)-module homomorphism, we
obtain

aM " p∗(ch(λM )) = p∗(aM " ch(λM )) = p∗(ch(λM ) " aM ) = IM (ch(λM )).

But according to part (4) of Theorem 5.1 and the definition of IM ,

IM (ch(λM )) = ch(IndM (λM )) = 1. !

The customary formulation of the index theorem is obtained from the pre-
liminary version above by using some further ideas in algebraic topology. What
follows below is a rapid summary of this. For further details see, for example,
[3] or [13].
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Let X be any compact space, let V be a Euclidean vector bundle over X ,
and let λV ∈ K(V ⊕ V ) be the class defined in Section 4. Using the Thom
isomorphism in cohomology,

π∗: H
∗(V ⊕ V ) → H∗(X),

we form the characteristic class

τ(V ) = π∗(ch(λV )) ∈ H∗(X),

noting that if M is a smooth closed manifold then

τ(TM) = p∗(ch(λM )).

Using techniques of characteristic class theory one shows that

τ(V ) = (−1)dim(V ) Todd(V ⊗ C)−1,

where V ⊗ C is the complexification of V and Todd(V ⊗ C) denotes its Todd
class. Using a more suggestive notation for the functional p∗: Hev(T ∗M) → R

(borrowed from de Rham theory) we get:

Index Theorem.

Index(D) = (−1)dim(M)

∫

T∗M
ch(σD) " Todd(TM ⊗ C). !

8. The Asymptotic Morphism

In this section we construct the asymptotic morphism

Tω: C0(T
∗M) → K(L2(M))

used in the definition of the maps IndX : K(X × T ∗M) → K(X).

Let U be an open subset of Rn and let a(x, ξ) be a smooth, compactly supported
function on T ∗U . For ω ∈ [1,∞) define an operator T ω

a : L2(U) → L2(U) by the
formula

Tω
a f(x) =

∫

a(x, ω−1ξ)eixξf̂(ξ) dξ.

Thus

Tω
a f(x) =

∫

kω
a (x, y)f(y) dy,

where

kω
a (x, y) =

( ω

2π

)n
∫

a(x, ξ)eiω(x−y)ξ dξ.

Each Tω
a is a compact operator.

We are interested in the asymptotic behaviour of the operators T ω
a as ω → ∞

(compare [17]).



ON THE K-THEORY PROOF OF THE INDEX THEOREM 13

Lemma 8.1. The operators Tω
a are uniformly bounded.

Proof. For f, g ∈ L2(U) the Cauchy-Schwarz inequality gives

|(f, Tω
a g)|2 = |

∫ ∫

f(x)kω
a (x, y)g(y) dxdy|2

≤
∫ ∫

|f(x)|2|kω
a (x, y)| dydx ·

∫ ∫

|g(y)|2|kω
a (x, y)| dxdy

=

∫

|f(x)|2
(

∫

|kω
a (x, y)| dy

)

dx ·
∫

|g(y)|2
(

∫

|kω
a (x, y)| dx

)

dy.

It is easily verified that for every N ,

|kω
a (x, y)| ≤ constant · ωn/(1 + ω|y − x|)N .

Using polar coordinates and this estimate for N = n + 1 we get

∫

|f(x)|2
(

∫

|kω
a (x, y)| dy

)

dx ≤ constant·
∫

|f(x)|2
(

∫ ∞

0

rn−1ωn

(1 + ωr)n+1
dr

)

dx,

where the term rn−1 comes from the change of variables formula. Substituting
ρ = ωr we see that the integral is independent of ω (and of course finite).
Treating the other iterated integral in a similar fashion we obtain

|(f, Tω
a g)|2 ≤ constant · ‖f‖2

2‖g‖2
2. !

The following lemmas are proved by the same method.

Lemma 8.2. Suppose that Aω: L2(U) → L2(U) are operators of the form

Aωf(x) =

∫

kω(x, y)f(x) dy,

where

|kω(x, y)| ≤ constant · ωn/(1 + ω|y − x|)n+1.

For L > 0 let Aω
L be the operator with kernel

kω
L(x, y) =

{

kω(x, y) if |x − y| < Lω−1

0 if |x − y| ≥ Lω−1
.

Then ‖Aω − Aω
D‖ → 0 as D → ∞, uniformly in ω. !

Lemma 8.3. Let Aω be as above, but suppose that

|kω(x, y)| ≤ constant · ωn−1/(1 + ω|y − x|)n+1.

Then ‖Aω‖ → 0 as ω → ∞. !
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Proposition 8.4.
(1) If b(x, ξ) is another smooth, compactly supported function on T ∗U then

Tω
a Tω

b − Tω
ab → 0,

in the operator norm, as ω → ∞.
(2) Denote by a∗ the complex conjugate of a. Then

Tω
a∗ − (Tω

a )∗ → 0,

in the operator norm, as ω → ∞.

Proof. It is easily checked that if the kernels of operators Aω and Bω satisfy
the estimate of Lemma 8.2 then so do the kernels of AωBω. Because of this, along
with Lemmas 8.3 and 8.4, it suffices to show that for any L > 0 the kernels of the
operators Tω

ab−Tω
a Tω

b are bounded by a multiple of ωn−1 on the set |x−y| ≤ L/ω.
We have that

Tω
a Tω

b f(x) =
( ω

2π

)n
∫ ∫

cω(x, ξ)eiω(x−y)ξf(y) dydξ,

where

cω(x, ξ) =
( ω

2π

)n
∫ ∫

a(x, η)b(z, ξ)eiω(x−z)(η−ξ) dzdη

=
( ω

2π

)n
∫ ∫

a(x, ξ + η)b(x + z, ξ)e−iωηz dzdη.

A simple special case of the stationary phase formula (see Lemma 7.7.3 of [10])
gives us

(8.1) |cω(x, ξ) − a(x, ξ)b(x, ξ)| ≤ constant · ω−1.

Now, the kernel of Tω
ab − Tω

a Tω
b is

( ω

2π

)n
∫

{a(x, ξ)b(x, ξ) − cω(x, ξ)}eiω(x−y)ξ dξ,

and by (8.1), together with the fact that cω(x, ξ) is uniformly compactly sup-
ported, this is bounded by a multiple of ωn−1, as required.

Part (2) (which is much easier) is proved in a similar fashion by calculating
the kernel of Tω

a∗ − (Tω
a )∗ and applying Lemmas 8.2 and 8.3. !

Theorem 8.5. There is an asymptotic morphism Tω: C0(T ∗U) → K(L2(U))
such that

‖Tω(a) − Tω
a ‖ → 0,

as ω → ∞, for all a ∈ C∞
c (T ∗U). !

Proof. We start from the fact that a ∗-homomorphism from the algebra
C∞

c (T ∗U) into any C∗-algebra is automatically continuous in the sup norm, and
so extends to C0(T ∗U) (this is left to the reader).
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Form the quotient K∞/K0 of the algebra of bounded continuous functions
from [1,∞) to K(L2(U)) by the ideal of functions which vanish at infinity. It is a
C∗-algebra, and by Lemma 8.1 and Proposition 8.4 the correspondence a → T ω

a

gives a ∗-homomorphism from C∞
c (T ∗U) into K∞/K0. Composing the extension

to C0(T ∗U) with a continuous (but not necessarily multiplicative, or even linear)
section K∞/K0 → K∞ we get the desired asymptotic morphism. !

These considerations are easily generalized from open sets U to arbitrary
smooth manifolds M by means of a partition of unity argument and the following
calculations.

Lemma 8.6. Let f be a smooth, compactly supported function on U and de-
note by Mf : L2(U) → L2(U) the operator of pointwise multiplication by f . Then

MfTω
a − Tω

a Mf → 0

in the operator norm, as ω → ∞.

Proof. The kernel of MfTω
a −Tω

a Mf is (f(x)− f(y))kω(x, y). By the Mean
Value Theorem, |f(x)−f(y)| ≤ constant·L/ω when |x−y| ≤ L/ω. So the kernel
is bounded by a multiple of ωn−1 on the set |x−y| ≤ D/ω, and Lemmas 8.2 and
8.3 apply. !

Lemma 8.7. Suppose that U , W are open subsets of Rn and that φ: W → U
is a diffeomorphism. Denote by φ̃: T ∗W → T ∗U the induced diffeomorphism
of cotangent bundles and denote by Uφ: L2(U) → L2(W ) the induced unitary
isomorphism of Hilbert spaces. Then

Tω
a◦φ̃

− UφTω
a U−1

φ → 0

in the operator norm as ω → ∞.

To explain the notation, we define, as in (4.2),

φ̃(x, ξ) = (φ(x), (φ−1
∗ )tξ),

where φ∗ denotes the derivative of φ, mapping tangent vectors at x to tangent
vectors at φ(x), and (φ−1

∗ )t denotes the transpose of its inverse, mapping cotan-
gent vectors at x to cotangent vectors at φ(x). Also, we define

Uφf(x) = f(φ(x)) · J1/2(x),

where J(x) denotes the absolute value of the Jacobian of φ at x.

Proof. By reducing U and W to smaller sets, if necessary, we may suppose
that the deriviatives of φ and its inverse are bounded. Then the operators
UφTω

a U−1
φ are of the sort considered in Lemaa 8.2. So it suffices to show that for

each L > 0 the kernel of Tω
aφ − UφTω

a U−1
φ is O(ωn−1) on the set |x − y| ≤ L/ω.
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The kernel of UφTω
a U−1

φ is

( ω

2π

)n
J(x)1/2J(y)1/2

∫

a(φ(x), ξ)eiω(φ(x)−φ(y))ξ dξ.

On the other hand the kernel of Tω
aφ is

kω
aφ(x, y) =

( ω

2π

)n
∫

a(φ(x), (φ−1
∗ )tξ)eiω(x−y)ξ dξ

=
( ω

2π

)n
J(x)

∫

a(φ(x), ξ)eiω(x−y)φt
∗
ξ dξ

=
( ω

2π

)n
J(x)

∫

a(φ(x), ξ)eiωφ∗(x−y)ξ dξ.

The required estimate follows from the approximation

φ(x) − φ(y) = φ∗(x − y) + O(|x − y|2)

as |x − y| → 0. !

Theorem 8.8. Let M be a smooth manifold without boundary, and fix a
smooth measure on M . There is an asymptotic morphism Tω: C0(T ∗M) →
K(L2(M)) such that if φ: W → U is a diffeomorphism from an open set in M to
Rn then

‖Tω(a ◦ φ̃) − UφTω
a U−1

φ ‖ → 0

as ω → ∞, for all a ∈ C∞
c (T ∗U). !

Remark. In the definition of Uφ: L2(U) → L2(W ) we include the appropriate
Radon-Nikodym derivative, so as to make Uφ a unitary operator.

9. Completion of the Proof

Let M be a smooth closed manifold and let D: C∞(M, E) → C∞(M, F ) be
an elliptic operator with symbol σ:π∗E → π∗F .

Put a smooth measure on M and metrics on E and F , and consider the
formally self-adjoint operator

D =

(

0 D∗

D 0

)

: C∞(M, E ⊕ F ) → C∞(E ⊕ F ).

Its symbol is the endomorphism

σ =

(

0 σ∗

σ 0

)

:π∗(E ⊕ F ) → π∗(E ⊕ F )

considered in Section 4.
Basic elliptic operator theory tells us that there is a system of eigenvectors

{un} for the operator D on C∞(M, E ⊕ F ) which constitute an orthonormal
basis for L2(M, E ⊕ F ). The eigenvalues λn are real and converge to infinity, in
absolute value, as n → ∞.
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Suppose now that α ∈ C0(R). We may form the operators

α(ω−1D): L2(M, E ⊕ F ) → L2(M, E ⊕ F )

in the sense of spectral theory, so that

α(ω−1D)un = α(ω−1λn)un.

They are compact (since |λn| → ∞).

On the other hand we may apply α to the symbol σ of D. The endomorphism
α(σ) so obtained vanishes at infinity (compare Lemma 4.1).

Viewing E and F as summands of trivial bundles CN1 and CN2 , we may
regard α(σ) as an endomorphism of the trivial bundle CN1 ⊕ CN2 on T ∗M , by
setting it to be zero on the complement of π∗E ⊕ π∗F . So thought of it is a
matrix valued function on T ∗M , and we can apply Tω to it.

Similarly, we may view α(ω−1D) as an operator on L2(M, CN1 ⊕ CN2) by
setting it to be zero on the complement of the subspace L2(M, E ⊕ F ) of
L2(M, CN1 ⊕ CN2).

The following key result links the spectral theory of D to the asymptotic
morphism of the previous section. We shall only outline a proof.

Proposition 9.1. If D is an elliptic operator on M with symbol σ then

Tω(α(σ)) − α(ω−1D) → 0

as ω → ∞, for every α ∈ C0(R).

Proof (sketch). ONe verifies that as ω → ∞ the operator Mfα(ω−1D) de-
pends, asymptotically, only on the coefficients of D in a neighbouhood of supp(f)
(see [9], Lemma 2.4). Furthermore it follows from the basic elliptic estimates
that α(ω−1D) varies continuously with the coefficients of D. Using these facts
and a partition of unity argument we reduce the Lemma to an analogous one for
constant coefficient operators, for which α(ω−1D) may be computed explicitly
using the Fourier transform. !

Theorem 9.2. Indpt(σD) = Index(D).

Proof. For 0 < ω < ∞ form the Cayley tranform

Uω = (ω−1D + i)(ω−1D − i)−1

= I + 2i(ω−1D − i)−1

Extend it to a unitary operator on L2(M, CN1 ⊕CN2) by setting it equal to the
identity on the complement of L2(M, E⊕F ). If u denotes the Cayley transform
of σ then it follows from Proposition 9.1 that

Uω − Tω(u) → 0,
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as ω → ∞. Therefore

Indpt(σD) = [p(ε)] − [p(εU1)] ∈ K(K)

where p(ε) and p(εU1) are the projections associated to the involutions ε and
εU1.

We consider now what happens as ω → 0. The operator Uω converges in norm
to minus the identity on the kernel of D, and the identity on the complement.
So the projection p(εUω) converges to the projection

p(εU0) = P − Pker(D) + Pker(D∗)

where the last two terms are the projections onto the kernels of D and D∗.
Therefore

[p(ε)] − [p(εU1)] = [Pker(D)] − [Pker(D∗)],

which proves the theorem. !

It remains to prove part (4) of Theorem 5.1.

Let V be a Euclidean vector space with basis {e1, . . . , en} and correpsonding
coordinates xi(v) = (v, ei). Define operators

Bω:S(V,
∧∗

C
V ) → S(V,

∧∗

C
V )

on Schwartz space by the formula

Bω =
∑ 1√

−1ω
c(
√
−1ej)∂/∂xj + xjc(ej),

where c(
√
−1ej) and c(ej) are as in Section 4. The definition does not depend

on the choice of basis.

The spectral theory of Bω is easily worked out:

Lemma 9.3. There is a system of eigenfunctions {un} for Bω consistuting
an orthonormal basis for L2(V,

∧∗
C

V ). The eigenvalues are real and converge to
infinity in absolute value as n → ∞. The kernel of Bω is one dimensional and
is spanned by the 0-form e−ω|x|2.

Proof. (See [9], Section 5.) Upon squaring Bω we obtain

(Bω)2 = −ω−2∆+ |x|2 + ω−1N,

where ∆ is the Laplacian, |x|2 denotes pointwise multiplication by the scalar
function |x|2, and N is the operator which multiplies a form of degree j by
2j − n. So (Bω)2 is a direct sum of harmonic oscillators −a∆+ b|x|2 + c whose
spectral theory is well known from elementary quantum mechanics. !

Needless to say, our interest in Bω lies in its relation to the “symbol” c

constructed in Section 4.
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Lemma 9.4. For every α ∈ C0(R), Tω
α(c) − α(Bω) → 0 as ω → ∞. !

This may be proved either by an approximation argument, as in Propsition 9.1,
or by a direct calculation, based on Mehler’s formula for the kernel of the operator
e−(Bω)2 .

Theorem 9.5. IndM (λM ) = 1.

Proof. For m ∈ M let

Um: L2(TMm,
∧∗

C
TMm) → L2(TMm,

∧∗

C
TMm)

be the Cayley transform of the operator B = B1, and let

εm: L2(TMm,
∧∗

C
TMm) → L2(TMm,

∧∗

C
TMm)

be the grading operator which multiplies a form by ±1 according as its degree
is even or odd. As usual, form the projections p(εm) and p(εUm).

Using the exponential map, identify TMm with a neighbourhood Wm of
m in M (compare (4.1)), and so view L2(TMm,

∧∗
C
TMm) as a subspace of

L2(M,
∧∗

C
TMm). By complementing the bundle TM over M we can view

L2(M,
∧∗

C
TMm) as a subspace of the fixed Hilbert space

L2(M, CN ) = L2(M) ⊕ . . . L2(M).

In this way, p(εm) and p(εUm) become projection valued functions from M to
MN (K+)

Using Lemma 9.4 and the invariance under diffeomorphism of T ω (Lemma 8.7)
we see that IndM (λM ) is represented by the difference of projections

[p(ε)] − [p(εU ] ∈ K(K(M)).

In order to calculate this difference we use a homotopy similar to the one in
Theorem 9.2, replacing B with t−1B and letting t → 0. Bearing in mind the
calculation of the kernel of B we see that the Cayley transform of ωB converges
to the operator U0 which is is −1 on the 0-form e−‖v‖2

and +1 on its orthogonal
complement. Therefore

IndM (λM ) = [p(ε)] − [p(εU ]

= [p(ε)] − [p(εU0]

= [p],

where p(m) is the projection onto the subspace spanned by the 0-form

e−|x|2 ∈ L2(TMm,
∧∗

C
TMm) ⊂ L2(M, CN ).

The “rotation”
(

sin2(θ)p(m) sin(θ) cos(θ)r(m)
sin(θ) cos(θ)r(m) cos2(θ)e

)

,
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where e is the projection onto the subspace spanned by a fixed v ∈ L2(M)

and r(m) is the partial isometry mapping v to e−|x|2 ∈ L2(TMm,
∧∗

C
TMm)

(appropriately normalized), shows that [p] = [e] in K-theory. Bearing in mind
the form of the isomorphism from K(K(M)) to K(M) we see that

IndM (λM ) = 1,

as required. !
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