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1. Introduction

Several years ago Alain Connes and Henri Moscovici discovered a quite general
“local” index formula in noncommutative geometry [12] which, when applied to
Dirac-type operators on compact manifolds, amounts to an interesting combination
of two quite different approaches to index theory.

Atiyah and Bott noted that the index of an elliptic operatorD may be expressed
as a complex residue

Index(D) = Ress=0

(
Γ(s) Trace(ε(I + ∆)−s)

)
,

where ∆ = D2 (see [1]). Rather surprisingly, the residue may be computed, at least
in principle, as the integral of an explicit expression involving the coefficients of D,
the metric g, and the derivatives of these functions. However the formulas can be
very complicated.

In a different direction, Atiyah and Singer developed the crucial link between
index theory and K-theory. They showed, for example, that an elliptic operator D
on M determines a class

[D] ∈ K0(M)
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2 NIGEL HIGSON

in theK-homology ofM (see [2] for one account of this). As it turned out, this was a
major advance: when combined with the Bott periodicity theorem, the construction
of [D] leads quite directly to a proof of the index theorem.

When specialized to the case of elliptic operators on manifolds, the index for-
mula of Connes and Moscovici associates to an elliptic operator D on M a cocycle
for the group HCP ∗(C∞(M)), the periodic cyclic cohomology of the algebra of
smooth functions on M . In this respect the Connes-Moscovici formula calls to
mind the construction of Atiyah and Singer, since cyclic cohomology is related to
K-homology by a Chern character isomorphism. But the actual formula for the
Connes-Moscovici cocycle involves only residues of zeta-type functions associated
to D. In this respect it calls to mind the Atiyah-Bott formula.

The proper context for the Connes-Moscovici index formula is the noncom-
mutative geometry of Connes [7], and in particular the theory of spectral triples.
Connes and Moscovici have developed at length a particular case of the index for-
mula which is relevant to the transverse geometry of foliations [12, 13]. This work,
which involves elaborate use of Hopf algebras, has attracted considerable attention
(see the survey articles [8] and [26] for overviews). At the same time, other in-
stances of the index formula are beginning to be developed (see for example [9],
which among other things gives a good account of the meaning of the term “local”
in noncommutative geometry).

The original proof of the Connes-Moscovici formula, which is somewhat in-
volved, reduces the local index formula to prior work on the transgression of the
Chern character, and is therefore is actually spread over several papers [12, 11, 10].
Roughly speaking, the residues of zeta functions which appear in the formula are
related by the Mellin transform to invariants attached to the heat semigroup e−t∆.
The heat semigroup figures prominently in the theory of the JLO cocycle in cyclic
theory, and so previous work on this subject can now be brought to bear on the
local index formula.

The main purpose of these notes is to present, in a self-contained way, a new
and perhaps more accessible proof of the local index formula. But for the benefit of
those who are just becoming acquainted with Connes’ noncommutative geometry,
we have also tried to provide some context for the formula by reviewing at the
beginning of the notes some antecedent ideas in cyclic and Hochschild cohomology.

As for the proof of the theorem itself, in contrast to the orginal proof of Connes
and Moscovici, we shall work directly with the complex powers ∆−z. Our strategy
is to find an elementary quantity 〈a0, [D, a1], . . . , [D, ap]〉z (see Definition 4.12), a
sort of multiple zeta function, which is meromorphic in the argument z, and whose
residue at z = −p

2 is the complicated combination of residues which appears in the
Connes-Moscovici cocycle. The proof of the index formula can then be organized in
a fairly conceptual way using the new quantities. The main steps are summarized
in Theorems 5.5, 5.6, 7.1 and 7.12.

The “elementary quantity” 〈a0, [D, a1], . . . , [D, ap]〉z was obtained by emulating
some computations of Quillen [23] on the structure of Chern character cocycles in
cyclic theory. Quillen constructed a natural “connection form” Θ in a differential
graded cochain algebra, along with a “curvature form” K = dΘ+Θ2, for which the
quantities

Γ(z)Trace
(
K−z) =

Γ(z)
2πi

Trace
(∫

λ−z(λ−K)−1 dλ

)
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have components 〈1, [D, a1], . . . , [D, ap]〉z. Taking residues at z = −p
2 we get (at

least formally)

Trace
(
K

p
2
)

= Resz=− p
2
〈1, [D, a1], . . . , [D, ap]〉z

Now, in the context of vector bundles with curvature form K, the pth component
of the Chern character is a constant times Trace(K

p
2 ). As a result, it is natural to

guess that our elementary quantities 〈· · · 〉z are related to the Chern character and
index theory, after taking residues. All this will be explained in a little more detail
at the end of the notes, in Appendix B. Appendix A explains the relation between
the Connes-Moscovici cocycle and the JLO cocycle, which was one of the orginal
objects of Quillen’s study and which, as we noted above, played an important in
the original approach to the index formula.

A final appendix presents a proof of Connes’ Hochschild class formula. This
is essentially a back-formation from the proof of the local index formula presented
here. (Connes’ Hochschild formula is introduced in Section 3 as motivation for the
development of the local index formula.)

Obviously the whole of the present work is strongly influenced by the work of
Connes and Moscovici. Moreover in several places the computations which follow
are very similar ones they have carried out in their own work. I am very grateful to
both of them for their encouragement and support. I also thank members of Penn
State’s Geometric Functional Analysis Seminar, especially Raphaël Ponge, for their
advice, and for patiently listening to early versions of this work.

2. The Cyclic Chern Character

In this section we shall establish some notation and terminology related to
Fredholm index theory and cyclic cohomology. For obvious reasons we shall fol-
low Connes’ approach to cyclic cohomology, which is described for example in his
book [7, Chapter 3]. Along the way we shall make explicit choices of normalization
constants.

2.1. Fredholm Index Problems. A linear operator T : V → W from one
vector space to another is Fredholm its kernel and cokernel are finite-dimensional,
in which case the index of T is defined to be

Index(T ) = dim ker(T )− dim coker(T ).

The index of a Fredholm operator has some important stability properties, which
make it feasible in many circumstances to attempt a computation of the index even
if computations of the kernel and cokernel, or even their dimensions, are beyond
reach.

First, if F : V → W is any finite-rank operator then T + F is also Fredholm,
and moreover Index(T ) = Index(T + F ). Second, if V and W are Hilbert spaces
then the set of all bounded Fredholm operators from V to W is an open subset
of the set of all bounded operators in the operator norm-topology, and moreover
the index function is locally constant. In addition, if K : V → W is any compact
operator between Hilbert spaces (which is to say that K is a norm-limit of finite-
rank operators), then T +K is Fredholm, and moreover Index(T ) = Index(T +K).
In fact, an important theorem of Atkinson asserts that a bounded linear operator
between Hilbert spaces is Fredholm if and only if it is invertible modulo compact
operators. See for example [15].
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The following situation occurs frequently in geometric problems which make
contact with Fredholm index theory. One is presented with an associative algebra A
of bounded operators on a Hilbert space H, and one is given a bounded self-adjoint
operator F : H → H with the property that F 2 = 1, and for which, for every a ∈ A,
the operator [F, a] = Fa−aF is compact. This setup (or a small modification of it)
was first studied by Atiyah [2], who made the following observation related to index
theory and K-theory. Since F 2 = 1 the operator P = 1

2 (P +1) is a projection on H
(it is the orthogonal projection onto the +1 eigenspace of F ). If u is any invertible
element of A then the operator PuP : PH → PH is Fredholm. This is because
the operator Pu−1P : PH → PH is an inverse, modulo compact operators, and so
Atkinson’s theorem, cited above, applies.

A bit more generally, if U = [uij ] is an n × n invertible matrix over A then
the matrix PUP = [PuijP ], regarded as an operator on the direct sum of n copies
of PH, is a Fredholm operator (for basically the same reason). Now the invertible
matrices over A constitute generators for the (algebraic) K-theory group Kalg

1 (A)
(see [22] for details1). It is not hard to see that Atiyah’s index construction gives
rise to a homomorphism of groups

IndexF : Kalg
1 (A) → Z.

If A is a reasonable2 topological algebra, for instance a Banach algebra, so that
topological K-groups are defined, then the index construction even descends to a
homomorphism

IndexF : Ktop
1 (A) → Z.

In short, the data consisting of A and F together provides a supply of Fredholm
operators, and one can investigate in various examples the possibility of determining
the indices of these Fredholm operators.

2.1. Example. Let A be the algebra of smooth, complex-valued functions on
the unit circle S1, H is the Hilbert space L2(S1), and F is the Hilbert transform
on the circle, which maps the trigonometric function exp(2πinx) to exp(2πinx)
when n ≥ 0 and to − exp(2πinx) when n < 0. To see that the operators [F, a]
are compact, one can first make an explicit computation in the case where a is a
trigonometric monomial a(x) = exp(2πinx), with the result that [F, a] is in fact a
finite-rank operator. The general case follows by approximating a general a ∈ A by
a trigonometric polynomial. In this example one has the famous index formula

Index(PuP ) = − 1
2πi

∫
S1
u−1du.

The right hand side is (minus) the winding number of the function u : S1 → C\{0}.
(There is also a simple generalization to matrices U = [uij ].) The topological K1-
group here is Z, and the index homomorphism is an isomorphism.

These notes are concerned with formulas for the Fredholm indices which arise
from certain instances of Atiyah’s construction. We are going to write down a bit
more carefully the basic data for the construction, and then add a first additional
hypothesis to narrow the scope of the problem just a little.

1Except to provide some background context, we shall not use K-theory in these notes.
2See the appendix of [3] for a discussion of some types of reasonable topological algebra.



THE RESIDUE INDEX THEOREM OF CONNES AND MOSCOVICI 5

2.2. Definition. Let A be an associative algebra over C. An odd Fredholm
module over A is a triple consisting of:

(a) a Hilbert space H,
(b) a representation of A as bounded operators on H, and
(c) a self-adjoint operator F : H → H such that F 2 = 1 and such that [F, π(a)] is

a compact operator, for every a ∈ A.

An even Fredholm module over A consists of the same data as above, together with
a self-adjoint operator ε : H → H such that ε2 = 1, such that ε commutes with
each operator π(a), and such that ε anticommutes with F .

Since ε is self-adjoint and since ε2 = 1, the Hilbert space H decomposes as an
orthogonal direct sum H = H0⊕H1 in such a way that ε =

(
1 0
0 −1

)
. The additional

hypothesis imply that

F =
(

0 T ∗

T 0

)
and π(a) =

(
π0(a) 0

0 π1(a)

)
.

Even Fredholm modules often arise from geometric problems on even-dimensional
manifolds — hence the terminology. They are actually closer to Atiyah’s original
constructions in [2] than are the odd Fredholm modules.

Associated to an even Fredholm module there is the following index construc-
tion. If p is an idempotent element of A then the operator

π1(p)Fπ0(p) : π0(p)H0 → π1(p)H1

is Fredholm, since π0(p)Fπ1(p) : π1(p)H1 → π0(p)H0 is an inverse, modulo compact
operators. This construction passes easily to matrices, and we obtain a homomor-
phism

IndexF : Kalg
0 (A) → Z.

which is the counterpart of the index homomorphism we previously constructed in
the odd case.

2.3. Definition. A Fredholm module over A is finitely summable if there is
some d ≥ 0 such that for every integer n ≥ d every product of commutators

[F, π(a0)][F, π(a1)] · · · [F, π(an)]

is a trace-class operator. (See [25] for a discussion of trace class operators.)

2.4. Example. The Fredholm module presented in Example 2.1 is finitely
summable: one can take d = 1.

We are going to determine formulas in multi-linear algebra for the indices of
Fredholm operators associated to finitely summable Fredholm modules.

2.2. Cyclic Cocycles.

2.5. Definition. A (p+ 1)-linear functional φ : Ap+1 → C is said to be cyclic
if

φ(a0, a1, . . . , ap) = (−1)pφ(ap, a0, . . . , ap−1),

for all a0, . . . , ap in A.
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2.6. Definition. The coboundary of a (p+ 1)-linear functional φ : Ap+1 → C
is the (p+ 2)-linear functional

bφ(a0, . . . , ap+1) =
p∑
j=0

(−1)jφ(a0, . . . , ajaj+1, . . . , ap+1)

+ (−1)p+1φ(ap+1a0, . . . , ap)

A (p+ 1)-multilinear functional φ is a p-cocycle if bφ = 0.

It is easy to check that the coboundary of any coboundary is zero, or in other
words b2 = 0. Thus every coboundary is a cocycle and as a result we can form
what are called the Hochschild cohomology groups of A: the pth Hochschild group
is the quotient of the p-cocycles by the p-cocycles which are coboundaries. We will
return to these groups in Section 3, but for the purposes of index theory we are
much more interested in the special properties of cyclic cocycles.

2.7. Theorem (Connes). Let φ be a (p+ 1)-linear functional on which is both
cyclic and a cocycle.
(a) If p is odd, and if u is an invertible element of A then the quantity

〈φ, u〉 = constant · φ(u−1, u, . . . , u−1, u)

depends only on the class of u in the abelianization of GL1(A), and defines a
homomorphism from the abelianization into C.

(b) If p is even and if e is an idempotent element of A then the quantity

〈φ, e〉 = constant · φ(e, e, . . . , e)

depends only on the equivalence class3 of e. If e1 and e2 are orthogonal, in the
sense that e1e2 = e2e1 = 0, then

〈φ, e1 + e2〉 = 〈φ, e1〉+ 〈φ, e2〉. �

2.8. Remark. We have inserted as yet unspecified constants into the formu-
las for the pairings 〈 , 〉. As we shall see, they are needed to make the pairings
for varying p consistent with one another, The constants will be made explicit in
Theorem 2.27.

2.9. Example. The simplest non-trivial instances of the theorem occur when
p = 1 or p = 2. For p = 1 the explicit conditions on φ are{

φ(a0, a1) = −φ(a1, a0)

φ(a0a1, a2)− φ(a0, a1a2) + φ(a2a0, a1) = 0,

while for p = 2 the conditions are{
φ(a0, a1, a2) = φ(a2, a0, a1)

φ(a0a1, a2, a3)− φ(a0, a1a2, a3) + φ(a0, a1, a2a3)− φ(a3a0, a1, a2) = 0.

The reader who has not done so before ought to try to tackle the theorem for his
or herself in these cases before consulting Connes’ paper [4].

3Two idempotents e and f are equivalent if there are elements x and y of A such that e = xy
and f = yx. If A is for example a matrix algebra then two idempotent matrices are equivalent if

and only if their ranges have the same dimension.
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The pairings 〈 , 〉 defined by the theorem extend easily to invertible and idem-
potent matrices, and thereby define homomorphisms

〈φ, 〉 : Kalg
1 (A) → C p odd

〈φ, 〉 : Kalg
0 (A) → C p even

The question now arises, can the index homomorphisms constructed in the previous
section be recovered as instances of the above homomorphisms, for suitable cyclic
cocycles φ? This was answered by Connes, as follows:

2.10. Theorem. Let (A,H,F ) be a finitely summable, odd Fredholm module
and let n = 2k + 1 be an odd integer such that for all a0, . . . , an in A the product
[F, a0] · · · [F, an] is a trace-class operator. The formula

φ
(
a0, . . . , an

)
=

1
2

Trace
(
F [F, a0][F, a1] . . . [F, an]

)
defines a cyclic n-cocycle on A. If u is an invertible element of A then

φ(u, u−1, . . . , u, u−1) = (−1)k+122k+1 Index(PuP : PH → PH),

where P = 1
2 (F + 1). �

2.11. Theorem. Let (A,H,F ) be a finitely summable, even Fredholm module,
and let n = 2k be an even integer such that for all a0, . . . , an in A the product
[F, a0] · · · [F, an] is a trace-class operator. The formula

φ
(
a0, . . . , an

)
=

1
2

Trace
(
εF [F, a0][F, a1] . . . [F, an]

)
defines a cyclic n-cocycle on A. If e is an idempotent element of A then

φ(e, e, . . . , e) = (−1)k Index(eFe : eH0 → H1).

�

The proofs of these results may be found in [4] or [7, IV.1] (but in the next
section we shall at least verify that the formulas do indeed define cyclic cocycles).

2.3. Cyclic Cohomology. Throughout this section we shall assume that A
is an associative algebra over C with a mutlilicative identity 1. The definitions for
algebras with an identity are a little different and will be considered later.

It is a remarkable fact that if φ is a cyclic multi-linear functional then so is its
coboundary bφ.4 As a result of this we can form the cyclic cohomology groups of
A:

2.12. Definition. The pth cyclic cohomology group of a complex algebra A
is the quotient HCp(A) of the cyclic p-cocycles by the cyclic p-cocycles which are
cyclic coboundaries.

But we are interested in a small modification of the cyclic cohomology groups,
called the periodic cyclic cohomology groups of A. There are only two such groups
— an even one and and odd one. The even periodic group HCP even(A) in some
sense combines all the HC2k(A) into one group, while the odd periodic group
HCP odd(A) does the same for the HC2k+1(A). One reason for considering the

4Note that cyclicity for a (p+1)-linear functional φ has to do with invariance under the action

of the cyclic group Cp+1, whereas cyclicity for bφ has to do with invariance under Cp+2, so to a

certain extent b intertwines the actions of two different groups — this is what is so remarkable.
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periodic groups is that Connes’ construction of the cyclic cocycle associated to
a Fredholm module produces not one cyclic cocycle, but one for each sufficiently
large integer n of the correct parity. As we shall see, the periodic cyclic cohomology
groups provide a framework within which these different cocycles can be compared
with one another.

The definition of HCP even / odd(A) is, at first sight, a little strange, but after
we look at some examples it will come to seem more natural.

2.13. Definition. Let A be an associative algebra over C with a multiplicative
identity element 1. If p is a non-negative integer, then denote by Cp(A) space of
(p + 1)-multi-linear maps φ from A into C wich have the property that if aj = 1,
for some j ≥ 1, then φ(a0, . . . , ap) = 0. Define operators

b : Cp(A) → Cp+1(A) and B : Cp+1(A) → Cp(A),

by the formulas

bφ(a0, . . . , ap+1) =
p∑
j=0

(−1)jφ(a0, . . . , ajaj+1, . . . , ap+1)

+ (−1)p+1φ(ap+1a0, . . . , ap)

and

Bφ(a0, . . . , ap) =
p∑
j=0

(−1)pjφ(1, aj , aj+1, . . . , aj−1).

2.14. Remark. The operator b is the same as the coboundary operator that we
encountered in the previous section, except that we are now considering a slightly
restricted class of multi-linear maps on which b is defined (we should not that a
simple computations shows b to be well defined as a map from Cp(A) into Cp+1(A)).
In what follows, we could in fact work with all multi-linear functionals, rather than
just those for which φ(a0, . . . , ap) = 0 when aj = 1 for some j ≥ 1 (although this
would entail a small modification to the formula for the operator B; see [21]). The
setup we are considering is a bit more standard, and allows for some slightly simpler
formulas.

2.15. Lemma. b2 = 0, B2 = 0 and bB +Bb = 0. �
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As a result of the lemma, we can assemble from the spaces Cp(A) the following
double complex, which is continued indefinitely to the left and to the top.

...
...

...
...

. . . B // C3(A)

b

OO

B // C2(A)

b

OO

B // C1(A)

b

OO

B // C0(A)

b

OO

. . . B // C2(A)

b

OO

B // C1(A)

b

OO

B // C0(A)

b

OO

. . . B // C1(A)

b

OO

B // C0(A)

b

OO

. . . B // C0(A)

b

OO

2.16. Definition. The periodic cyclic cohomology of A is the cohomology of
the totalization of this complex.

Thanks to the symmetry inherent in the complex, all even cohomology groups
are the same, as are all the odd groups. As a result, one speaks of the even and odd
periodic cyclic cohomology groups of A. A cocycle for the even group is a sequence

(φ0, φ2, φ4, . . . ),

where φ2k ∈ C2k, φ2k = 0 for all but finitely many k, and

bφ2k +Bφ2k+2 = 0

for all k ≥ 0. Similarly a cocycle for the odd group is a sequence

(φ1, φ3, φ5, . . . ),

where φ2k+1 ∈ C2k+1, φ2k+1 = 0 for all but finitely many k, and

bφ2k+1 +Bφ2k+3 = 0

for all k ≥ 0 (and in addition Bφ1 = 0).

2.17. Definition. We shall refer to cocycles of the above sort as (b, B)-cocycles.
This will help us distinguish between these cocycles and the cyclic cocycles which
we introduced in the last section.

Suppose now that φn is a cyclic n-cocycle, as in the last section, and suppose
that φn has the property that φ(a0, . . . , an) = 0 when some aj is equal to 1. Note
that Connes’ cocycles described in Theorems 2.10 and 2.11 have this property. By
definition, bφn = 0, and clearly Bφn = 0 too, since the definition of D involves the
insertion of 1 as the first argument of φn. As a result, the sequence

(0, . . . , 0, φn, 0, . . . ),

obtained by placing φn in position n and 0 everywhere else, is a (b, B)-cocycle. In
this was we shall from now on regard every cyclic cocycle as a (b, B)-cocycle.



10 NIGEL HIGSON

2.18. Remark. It is known that every (b, B)-cocycle is cohomologous to a
cyclic cocycle of some degree p (see [21]).

Let us now return to the cocycles which Connes constructed from a Fredholm
module.

2.19. Theorem. Let (A,H,F ) be a finitely summable, odd Fredholm module
and let n be an odd integer such that for all a0, . . . , an in A the product [F, a0] · · · [F, an]
is a trace-class operator. The formula

chFn
(
a0, . . . , an

)
=

Γ(n2 + 1)
2 · n!

Trace
(
F [F, a0][F, a1] . . . [F, an]

)
defines a cyclic n-cocycle on A whose periodic cyclic cohomology class is independent
of n.

Proof. Define

ψn+1(a0, . . . , an+1) =
Γ(n2 + 2)
(n+ 2)!

Trace
(
a0F [F, a1][F, a2] . . . [F, an+1]

)
.

It is then straightforward to compute that bψn+1 = − chFn+2 while Bψn+1 = chFn .
Hence chFn − chFn+2 is a (b, B)-coboundary. �

2.20. Remarks. Obviously, the multiplicative factor Γ( n
2 +1)

2n! is chosen to guar-
antee that the class of chFn in periodic cyclic cohomology is independent of n.
Since b2 = 0, the formula bψn+1 = − chFn+2 proves that chFn+2 is a cocycle (i.e.
b chFn+2 = 0). In addition, since it is clear from the definition of the operator B
that the range of B consists entirely of cyclic multi-linear functionals, the formula
Bψn+1 = chFn proves that chFn is cyclic.

2.21. Theorem. Let (A,H,F ) be a finitely summable, even Fredholm module
and let n be an odd integer such that for all a0, . . . , an in A the product [F, a0] · · · [F, an]
is a trace-class operator. The formula

chFn
(
a0, . . . , an

)
=

Γ(n2 + 1)
2 · n!

Trace
(
εF [F, a0][F, a1] . . . [F, an]

)
defines a cyclic n-cocycle on A whose periodic cyclic cohomology class is independent
of n.

Proof. Define

ψn+1(a0, . . . , an+1) =
Γ(n2 + 2)
(n+ 2)!

Trace
(
a0F [F, a1][F, a2] . . . [F, an+1]

)
and proceed as before. �

2.22. Definition. The cocycle chFn defined in Theorem 2.19 or 2.21 is the
cyclic Chern character of the odd or even Fredholm module (A,H,F ).

2.4. Comparison with de Rham Theory. Let M be a smooth, closed
manifold and denote by C∞(M) the algebra of smooth, complex-valued functions
on M . For p ≥ 0 denote by Ωp the space of p-dimensional de Rham currents (dual
to the space Ωp of smooth p-forms).

Each current c ∈ Ωp determines a cochain φc ∈ Cp(A) for the algebra C∞(M)
by the formula

φc(f0, . . . , fp) =
∫
c

f0df1 · · · dfp.
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The following is a simple computation:

2.23. Lemma. If c ∈ Ωp is any p-current on M then

bφc = 0 and Bφc = p · φd∗c,

where d∗ : Ωp → Ωp−1 is the operator which is adjoint to the de Rham differential.
�

The lemma implies that if we assemble the spaces Ωp into a bicomplex, as
follows,

...
...

...
...

. . . 4d∗ // Ω3

0

OO

3d∗ // Ω2

0

OO

2d∗ // Ω1

0

OO

d∗ // Ω0

0

OO

. . . 3d∗ // Ω2

0

OO

2d∗ // Ω1

0

OO

d∗ // Ω0

0

OO

. . . 2d∗ // Ω1

0

OO

d∗ // Ω0

0

OO

. . . d∗ // Ω0

0

OO

then the construction c 7→ φc defines a map from this bicomplex to the bicomplex
which computes periodic cyclic cohomology of A = C∞(M).

A fundamental result of Connes [4, Theorem 46] asserts that this map of com-
plexes is an isomorphism on cohomology:

2.24. Theorem. The inclusion c 7→ φc of the above double complex into the
(b, B)-bicomplex induces isomorphisms

HCP even
cont (C∞(M)) ∼= H0(M)⊕H2(M)⊕ · · ·

and
HCP odd

cont(C
∞(M)) ∼= H1(M)⊕H3(M)⊕ · · ·

Here HCP ∗cont(C
∞(M)) denotes the periodic cyclic cohomology of M , computed

from the bicomplex of continuous multi-linear functionals on C∞(M). �

It follows that an even/odd (b, B)-cocycle for C∞(M) is something very like a
family of closed currents on M of even/odd degrees.

Connes’ theorem is proved by first identifying the (continuous) Hochschild co-
homology of the algebra A = C∞(M). Lemma 2.23 shows that there is a map of
complexes

Ω0 0 //

��

Ω1

��

0 // · · · 0 // Ωn

��

0 // 0

��

0 // . . .

C0(A)
b

// C1(A)
b

// · · ·
b

// Cn(A)
b

// Cn+1(A)
b

// . . .
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in which the vertical maps come from the construction c 7→ φc. The following result
is known as the Hochschild Kostant Rosenberg theorem (see [21]), although this
precise formulation is due to Connes [4].

2.25. Theorem. The above map induces an isomorphism from Ωp to the pth
continuous Hochschild cohomology group HHp

cont(C∞(M)).

Let us conclude this section with a few brief remarks about non-periodic cyclic
cohomology groups. We already noted that every cyclic p-cocycle determines a
(B, b)-cocycle (even or odd, according to the parity of p). In view of the Hochschild
Kostant Rosenberg theorem, and in view of the fact that every cyclic p-cocycle is in
particular a Hochschild p-cocycle, so that if A is any algebra then there is a natural
map from pth cyclic cohomology group HCp(A), as given in Definition 2.12, into
the Hochschild group HHp(A), it might be thought that when A = C∞(M) the
cyclic p-cocycles correspond to the summand Hp(M) in Theorem 2.24. But this is
not exactly right. It cannot be right because if a (b, B)-cocycle is cohomologous
to a cyclic p-cocycle, it may be shown that it is also cohomologous to a cyclic
(p+ 2)-cocycle, and to a cyclic (p+ 4)-cocycle, and so on. So when A = C∞(M) a
single cyclic p-cocycle can encode information not just about closed p-currents, but
also about closed (p − 2)-currents, closed (p − 4)-currents, and so on. The precise
relation, again discovered by Connes, is as follows:

2.26. Theorem. Denote by Zp(M) the set of closed de Rham k-currents on
M . There are isomorphisms

HC2k
cont(C

∞(M)) ∼= H0(M)⊕H2(M)⊕ · · · ⊕H2k−2(M)⊕ Z2k(M)

and

HC2k+1
cont (C∞(M)) ∼= H1(M)⊕H3(M)⊕ · · · ⊕H2k−1(M)⊕ Z2k+1(M).

Here HC∗cont(C
∞(M)) denotes the cyclic cohomology of M , computed from the

complex of continuous cyclic multi-linear functionals on C∞(M). �

2.5. Pairings with K-Theory. The pairings described in Theorem 2.7 be-
tween cyclic cocycles and K-theory have the following counterparts in periodic
cyclic theory.

2.27. Theorem (Connes). Let A be an algebra with a multiplicative identity.
(a) If φ = (φ1, φ3, . . . ) is an odd (b, B)-cocycle for A, and u is an invertible element

of A, then the quantity

〈φ, u〉 =
1

Γ( 1
2 )

∞∑
k=0

(−1)k+1k!φ2k+1(u−1, u, . . . , u−1, u)

depends only on the class of u in the abelianization of GL1(A) and the periodic
cyclic cohomology class of φ, and defines a homomorphism from the abelianiza-
tion into C.

(b) If φ = (φ0, φ2, . . . ) is an even (b, B)-cocycle for A, and e is an idempotent
element of A, then the quantity

〈φ, e〉 = φ0(e) +
∞∑
k=1

(−1)k
(2k)!
k!

φ2k(e−
1
2
, e, e, . . . , e).
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depends only on the equivalence class of e and the periodic cyclic cohomology
class of φ. Moreover if e1 and e2 are orthogonal idempotents in A, then

〈φ, e1 + e2〉 = 〈φ, e1〉+ 〈φ, e2〉.

Proof. See [16] for the odd case and [17] for the even case. �

2.28. Example. Putting together Theorem 2.10 with the formula (a) in The-
orem 2.27, we see that if (A,H,F ) is a finitely summable, odd Fredholm module,
and if u is an invertible element of A, then

〈chFn , u〉 = Index(PuP : PH → PH),

where P is the idempotent P = 1
2 (F + 1), and the odd integer n is large enough

that the Chern character is defined. Similarly, if (A,H,F ) is an even Fredholm
module and if e is an idempotent element of A then

〈chFn , e〉 = Index(eFe : eH0 → eH1),

for all even n which again are large enough that the Chern character is defined.

2.29. Remarks. The pairings described in Theorem 2.27 extend easily to the
algebraic K-theory groups Kalg

1 (A) and Kalg
0 (A).

2.6. Improper Cocycles and Coefficients. We are going to describe to
extensions of the notion of (b, B)-cocycle which will be useful in these notes.

If V is a complex vector space and p is a non-negative integer, then let us
denote by Cp(A, V ) space of (p + 1)-multi-linear maps φ from A into V for which
φ(a0, . . . , ap) = 0 whenever aj = 1 for some j ≥ 1.

Define operators

b : Cp(A, V ) → Cp+1(A, V ) and B : Cp+1(A, V ) → Cp(A, V ),

by the same formulas we used previously:

bφ(a0, . . . , ap+1) =
p∑
j=0

(−1)jφ(a0, . . . , ajaj+1, . . . , ap+1)

+ (−1)p+1φ(ap+1a0, . . . , ap)

and

Bφ(a0, . . . , ap) =
p∑
j=0

(−1)pjφ(1, aj , aj+1, . . . , aj−1).
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Then assemble the double complex

...
...

...
...

. . . B // C3(A, V )

b

OO

B // C2(A, V )

b

OO

B // C1(A, V )

b

OO

B // C0(A, V )

b

OO

. . . B // C2(A, V )

b

OO

B // C1(A, V )

b

OO

B // C0(A, V )

b

OO

. . . B // C1(A, V )

b

OO

B // C0(A, V )

b

OO

. . . B // C0(A, V )

b

OO

just as before.

2.30. Definition. The periodic cyclic cohomology of A, with coefficients in V
is the cohomology of the totalization of this complex.

It is easy to check that the periodic cyclic cohomology of A with coefficients in
V is just the space of homomorphisms into V from the periodic cyclic cohomology
of A with coefficients in C (the latter is the “usual” periodic cyclic cohomology of
A). Nevertheless the concept of coefficients will be a convenient one for us.

If we totalize the (b, B)-bicomplex (either the above one involving V or the
previous one without V ) by taking a direct product of cochain groups along the
diagonals instead of a direct sum, then we obtain a complex with zero cohomology.

2.31. Definition. We shall refer to cocycles for this complex, consisting in
the even case of sequences (φ0, φ2, φ4, . . . ), all of whose terms may be nonzero, as
improper (b, B)-cocycles.

On its own, an improper periodic (b, B)-cocycle has no cohomological signifi-
cance, but once again the concept will be a convenient one for us. For example in
Section 5 we shall construct a fairly simple improper (b, B)-cocycle with coefficients
in the space V of meromorphic functions on C. By taking residues at 0 ∈ C we
shall obtain a linear map from V to C, and applying this linear map to our cocycle
we shall obtain in Section 5 a proper (b, B)-cocycle with coefficients in C.

2.7. Nonunital Algebras. If the algebra A has no multiplicative unit then
we define periodic cyclic cohomology as follows. Denote by Ã the algebra obtained
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by adjoining a unit to A and form the double complex

...
...

...
...

. . . B // C3(Ã)

b

OO

B // C2(Ã)

b

OO

B // C1(Ã)

b

OO

B // C0(A)

b

OO

. . . B // C2(Ã)

b

OO

B // C1(Ã)

b

OO

B // C0(A)

b

OO

. . . B // C1(Ã)

b

OO

B // C0(A)

b

OO

. . . B // C0(A)

b

OO

in which the spaces Cp(Ã) are, as before, the (p+ 1)-multlinear functionals φ from
Ã into C with the property that φ(a0, . . . , ap) = 0 whenever aj = 1 for some j ≥ 1,
and in which C0(A) is the space of linear functionals on A (not on Ã). If we
interpret b : C0(A) → C1(Ã) using the formula

bφ(a0, a1) = φ(a0a1)− φ(a1a0) = φ(a0a1 − a1a0)

then the differential is well defined, since the commutator a0a1−a1a0 always belongs
to A, even when a0, a1 ∈ Ã.

2.32. Definition. The periodic cyclic cohomology of A is the cohomology of
the totalization of the above complex. A (b, B)-cocycle for A is a cocycle for the
above complex.

2.33. Remark. The periodic cyclic cohomology of a non-unital algebra A is
isomorphic to the kernel of the restriction map from HCP ∗(Ã) to HCP ∗(C).

2.34. Definition. By a cyclic p-cocycle on A we shall mean a cyclic cocycle φ
on Ã for which φ(a0, . . . , ap) = 0 whenever aj = 1 for some j.

3. The Hochschild Character

The purpose of this section is to provide some motivation for the development
of the local index formula in cyclic cohomology by describing an antecedent formula
in Hochschild cohomology.

3.1. Spectral Triples. Examples of Fredholm modules arising from geometry
often involve the following structure.

3.1. Definition. A spectral triple is a triple (A,H,D) consisting of:
(a) An associative algebra A of bounded operators on a Hilbert space H, and
(b) An unbounded self-adjoint operator D on H such that

(i) for every a ∈ A the operators a(D ± i)−1 are compact, and
(ii) for every a ∈ A, the operator [D, a] is defined on domD and extends to a

bounded operator on H.
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3.2. Remark. In item (b) we require that D be self-adjoint in the sense of
unbounded operator theory. This means that D is defined on some dense domain
domD ⊆ H, that 〈Du, v〉 = 〈u,D〉, for all u, v ∈ domD, and that the operators
(D ± i) map domH bijectively onto H. In item (ii) we require that each a ∈ A
map domD into itself.

3.3. Example. Let A = C∞(S1), let H = L2(S1) and let D = 1
2πi

d
dx . The

operator D, defined initially on the smooth functions in H = L2(S1) (we are
thinking now of S1 as R/Z), has a unique extension to a self-adjoint operator
on H, and the triple (A,H,D) incorporating this extension is a spectral triple in
the sense of Definition 3.1.

3.4. Remark. If the algebra A has a unit, which acts as the identity operator
on the Hilbert space H, then item (i) is equivalent to the assertion that (D ± i)−1

be compact operators, which is equivalent to the assertion that there exist an
orthonormal basis for H consisting of eigenvectors vj for D, with eigenvalues λj
converging to ∞ in absolute value.

In a way which is similar to our treatment of Fredholm modules, we shall call
a spectral triple even if the Hilbert space H is equipped with a self-adjoint grading
operator ε, decomposing H as a direct sum H = H0 ⊕ H1, such that ε maps the
domain of D into itself, anitcommutes with D, and commutes with every a ∈ A.
Spectral triples without a grading operator will be referred to as odd.

Let (A,H,D) be a spectral triple, and assume that D is invertible. In the polar
decomposition D = |D|F of D the operator F is self-adjoint and satisifies F 2 = 1.

3.5. Lemma. If (A,H,D) is a spectral triple (A,H,F ) is a Fredholm module
in the sense of Definition 2.2. �

3.6. Example. The Fredholm module described in Example 2.1 is obtained in
this way from the spectral triple of Example 3.3, after we make a small modification
to D to make it invertible — for example by replacing 1

2πi
d
dx with 1

2πi
d
dx + 1

2 .

3.2. The Residue Trace. We are going to develop for spectral triples a re-
finement of the notion of finite summability that we introduced for Fredholm mod-
ules. For this purpose we need to quickly review the following facts about compact
operators and their singular values (see [25] for more details).

3.7. Definition. If K is a compact operator on a Hilbert space then the
singular value sequence {µj} of K is defined by the formulas

µj = inf
dim(V )=j−1

sup
v⊥V

‖Kv‖
‖v‖

j = 1, 2, . . . .

The infimum is over all linear subspaces of H of dimension j − 1. Thus µ1 is
just the norm of K, µ2 is the smallest possible norm obtained by restricting K to
a codimension 1 subspace, and so on.

The trace ideal is easily described in terms of the sequence of singular values:

3.8. Lemma. A compact operator K belongs to the trace ideal if and only if∑
j µj < ∞. Moreover if K is a positive, trace-class operator then Trace(K) =∑
j µj. �
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Now, any self-adjoint trace-class operator can be written as a difference of posi-
tive, trace-class operators, K = K(1)−K(2), and we therefore have a corresponding
formula for the trace

Trace(K) = Trace(K(1))− Trace(K(2)) =
∑
j

µ
(1)
j −

∑
j

µ
(2)
j .

And since every trace-class operator is a linear combination of two self-adjoint,
trace-class operators, we can go on to obtain a formula for the trace of a general
trace-class operator.

We are going to define a new sort of trace by means of formulas like the one
above.

3.9. Definition. Denote by L1,∞(H) the set of all compact operators K on
H for which

N∑
j=1

µj = O(logN).

Thus every trace-class operator belongs to L1,∞(H) but operators in L1,∞(H) need
not be trace class, since the sum

∑
j µj is permitted to diverge logarithmically.

3.10. Remark. The set L1,∞(H) is a two-sided ideal in B(H).

Suppose now that we are given a linear subspace of L1,∞(H) consisting of
operators for which the sequence of numbers

1
logN

N∑
j=1

µj

is not merely bounded but in fact convergent. It may be shown using fairly standard
singular value inequalities that the functional Trω which assigns to each positive
operator in the subspace the limit of the sequence is additive:

Trω(K(1)) + Trω(K(2)) = Trω(K(1) +K(2)).

As a result, if we assume that the linear subspace we are given is spanned by its
positive elements, the prescription Trω extends by linearity from positive operators
to all operators and yields a linear functional.

A theorem of Dixmier [14] (see also [7, Section IV.2]) improves this construction
by replacing limits with generalized limits, thereby obviating the need to assume
that the sequence of partial sums 1

logN

∑N
j=1 µj is convergent:

3.11. Theorem. There is a linear functional Trω : L1,∞(H) → C with the
following properties:
(a) If K ≥ 0 then Trω(K) depends only on the singular value sequence {µj}, and
(b) If K ≥ 0 then lim infN 1

logN

∑N
j=1 µj ≤ Trω(K) ≤ lim supN

1
logN

∑N
j=1 µj. �

It follows from (a) that Trω(K) = Trω(U∗KU) for every positive K ∈ L1,∞(H)
and every unitary operator U on H. Since the positive operators in L1,∞(H) span
L1,∞(H), it follows that Trω(T ) = Trω(U∗TU), for every T ∈ L1,∞(H) and every
unitary operator U . Replacing T by U∗T we get Trω(UT ) = Trω(TU), for every
T ∈ L1,∞(H) and every unitary U . Since the unitary operators span all of B(H),
we finally conclude that

Trω(ST ) = Trω(TS),
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for every T ∈ L1,∞(H) and every bounded operator S.

3.12. Remark. The Dixmier trace Traceω is not unique — depends on a choice
of suitable generalized limit for the sequence of partial sums 1

logN

∑N
j=1 µj . But

of course it is unique on (positive) operators for which this sequence is convergent,
which turns out to be the case in many geometric examples.

3.3. The Hochschild Character Theorem. If (A,H,F ) is a finitely sum-
mable Fredholm module then Connes’ cyclic Chern character chFn is defined for
all large enough n of the correct parity (even or odd, according as the Fredholm
module is even or odd). It is a cyclic n-cocycle, and in particular, disregarding its
cyclicity, it is a Hochschild n-cocycle. We are going to present a formula for the
Hochschild cohomology class of this cocycle, in certain cases.

3.13. Lemma. Let (A,H,D) be a spectral triple, and let n be a positive integer.
Assume that D is invertible and that

a · |D|−n ∈ L1,∞(H),

for every a ∈ A. Then the associated Fredholm module (A,H,F ) has the property
that the operators

[F, a0][F, a1] · · · [F, an]
are trace-class, for every a0, . . . , an ∈ A. In particular, the Fredholm module
(A,H,F ) is finitely summable and if n has the correct parity, then the Chern char-
acter chFn is defined. �

3.14. Definition. A spectral triple (A,H,D) is regular if there exists an al-
gebra B of bounded operators on H such that
(a) A ⊆ B and [D,A] ⊆ B, and
(b) if b ∈ B then b maps the domain of |D| (which is equal to the domain of D)

into itself, and moreover |D|B −B|D| ∈ B.

3.15. Example. The spectral triple (C∞(S1), L2(S1), D) of Example 3.3 is
regular.

3.16. Remark. We shall look at the notion of regularity in more detail in
Section 4, when we discuss elliptic estimates.

We can now state Connes’ Hochschild class formula:

3.17. Theorem. Let (A,H,D) be a regular spectral triple. Assume that D is
invertible and that for some positive integer n of the same parity as the triple, and
every a ∈ A,

a · |D|−n ∈ L1,∞(H).

The Chern character chFn of Definition 2.22 is cohomologous, as a Hochschild co-
cycle, to the cocycle

Φ(a0, . . . , an) =
Γ(n2 + 1)
n · n!

Traceω(εa0[D, a1][D, a2] · · · [D, an]|D|−n).

Here ε is 1 in the odd case, and the grading operator on H in the even case.

3.18. Remark. Actually this is a slight strengthening of what is actually prov-
able. For the correct statement, see Appendix C.
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3.4. A Simple Example. We shall prove Theorem 3.17 in Appendix C, as a
by-product of our proof of the local index theorem (at the moment, it is probably
not even obvious that the functional Φ given in the theorem is a Hochschild cocycle).
Right now what we want to do is to compute a simple example of the Hochschild
cocycle Φ.

We shall consider the spectral triple (C∞(S1), L2(S1), D), where D is the
unique self-adjoint extension of the operator 1

2πi
d
dx + 1

2 (recall that the term 1
2

was added to guarantee that D is invertible).
The operator D is diagonalizable, with eigenfunctions en(x) = exp(2πinx) and

eigenvalues n+ 1
2 , where n ∈ Z. We see then that |D| given by the formula

|D|en = |n+ 1
2 |en (n ∈ Z).

As a result, |D|−1 ∈ L1,∞(H), and a brief computation shows that

Traceω(|D|−1) = 2.

3.19. Lemma. If f ∈ C(S1) then Traceω(f · |D|−1) = 2
∫
S1 f(x) dx.

Proof. The linear functional f 7→ Traceω f · |D|−1 is positive, and so by the
Riesz representation theorem it is given by integration against a Borel measure
on S1. But the functional, and hence the measure, is rotation invariant. This
proves that the measure is a multiple of Lebesgue measure, and the computation
Trω(|D|−1) = 2 fixes the multiple. �

With this computation in hand, we can now determine the cocycle Φ which
appears in Theorem 3.17:

Φ(f0, f1) = Traceω(f0[D, f1]|D|−1) =
1
πi

∫
S1
f0(x)f ′1(x) dx.

Now if a0, a1 ∈ C∞(S1), and if Ψ is any 1-cocycle which is in fact a Hochschild
coboundary, then it is easily computed that Ψ(a0, a1) = 0. As a result, of Theo-
rem 3.17 it therefore follows that

Γ( 3
2 ) · 1

2 Trace(F [F, a0][F, a1])
def
= chF1 (a0, a1) = Γ( 3

2 )Φ(a0, a1)

If we combine this with the Fredholm index formula in Theorem 2.10 we arrive at
a proof of the well-known index formula

Index(PuP ) = − 1
4 Trace(F [F, u−1][F, u]) = − 1

2Φ(u−1, u) = − 1
2πi

∫
S1
u−1du

associated to an invertible element u ∈ C∞(S1), which we already mentioned in
Example 2.1.

3.20. Remark. In this very simple example we have determined not only the
Hochschild cocycle Φ but also the cyclic cocycle chF1 . This is an artifact of the low-
dimensionality of the example: the natural map from the first cyclic cohomology
group into the first Hochschild group happens always to be injective. In higher
dimensional examples a determination of Φ will in general stop quite a bit short of
a determination of chFn .
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3.5. Weyl’s Theorem. The simple computation which we carried out above
has a general counterpart which originates with a famous theorem of Weyl. We
shall state the theorem in the context of Dirac-type operators, for which we refer
the reader to Roe’s introductory text [24] (this book also contains a proof of Weyl’s
theorem).

3.21. Theorem. Let M be a closed Riemannian manifold of dimension n,
and let D be a Dirac-type operator on M , acting on the sections of some complex
Hermitian vector bundle S over M . The operator D has a unique self-adjoint
extension, and |D|−n ∈ L1,∞(H). Moreover

Traceω(|D|−n) =
dim(S)
(2
√
π)n

Vol(M)
Γ(n2 + 1)

.

3.22. Remark. If D is not invertible then we define |D|−n by for example
|D|−1 = |D + P |−n, where P is the orthogonal projection onto the kernel of D.
(Incidentally, we might note that altering an operator in L1,∞(H) by any finite
rank operator — or indeed any trace-class operator — has no effect on the Dixmier
trace.)

The theorem may be extended, as follows:

3.23. Theorem. Let M be a closed Riemannian manifold of dimension n,
and let D be a Dirac-type operator on M , acting on the sections of some complex
Hermitian vector bundle S over M . The operator D has a unique self-adjoint
extension, and |D|−n ∈ L1,∞(H). If F is any endomorphism of S then

Traceω(|D|−n) =
1

(2
√
π)nΓ(n2 + 1)

∫
M

trace(F (x)) dx.

Thanks to the theorem, the Hochschild character Φ of Theorem 3.17 may be
computed in the case where A = C∞(M), H = L2(S), and D is a Dirac-type
operator acting on sections of S (it may be shown that this consitutes an exam-
ple of a regular spectral triple; compare Section 4). The commutators [D, a] are
endomorphisms of S, and so

Φ(a0, . . . , an) =
1

(2
√
π)nΓ(n2 + 1)

∫
M

trace(εa0[D, a1] · · · [D, an]) dx.

3.24. Remark. In many cases the pointwise trace which appears here can be
further computed. For example if D is the Dirac operator associated to a Spinc-
structure on M then we obtain the simple formula

Φ(a0, . . . , an) =
1

(2
√
π)nΓ(n2 + 1)

∫
M

a0da1 · · · dan.

In summary, we see that Φ(a0, . . . , an) is an integral over M of an explicit ex-
pression involving the aj and their derivatives. Unfortunately, in higher dimensions,
this very precise information about Φ is not enough to deduce an index theorem,
since it is impossible to recover the pairing between cyclic coycles and idempotents
or invertibles from the Hochschild cohomology class of the cyclic cocycle. For the
purposes of index theory we need to obtain a similar formula for the cyclic cocycle
chFn itself, or for a cocycle which is cohomologous to it in cyclic or periodic theory.
This is what the Connes-Moscovici formula achieves.
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The formula involves in a crucial way a residue trace which in certain circum-
stances extends to a certain class of operators, including some unbounded operators,
2 times the Dixmier trace on L1,∞(H). We shall discuss this in detail in the next
section, but we shall conclude here with a somewhat vague formulation of the local
index formula, to give the reader some idea of the direction in which we are heading.
The statement will be refined in the coming sections.

3.25. Theorem. Let (A,H,D) be a suitable even spectral triple5 and let (A,H,F )
be the associated Fredholm module. The Chern character chFn is cohomologous, as
a (b, B)-cocycle to the cocycle φ = (φ0, φ2, . . . ) given by the formulas

φp(a0, . . . , ap) =
∑
k≥0

cpk Res Tr
(
εa0[D, a1](k1) · · · [D, ap](kp)∆− p

2−|k|
)
.

The sum is over all multi-indices (k1, . . . , kp) with non-negative integer entries, and
the constants cpk are given by the formula

cpk =
(−1)k

k!
Γ(k1 + · · ·+ kp + p

2 )
(k1 + 1)(k1 + k2 + 2) · · · (k1 + · · ·+ kp + p)

.

The operators X(k) are defined inductively by X(0) = X and X(k) = [D2, X(k−1)].

3.26. Remark. Note that when p = n and k = 0 we obtain the term

Γ(n2 )
n!

Res Tr
(
εa0[D, a1] · · · [D, ap]|D|−n

)
=

2Γ(n2 )
n!

Traceω
(
εa0[D, a1] · · · [D, ap]|D|−n

)
=

Γ(n2 + 1)
n · n!

Traceω
(
εa0[D, a1] · · · [D, ap]|D|−n

)
.

Thus we recover precisely the Hochschild cocycle of Theorem 3.17. The relation
between Theorem 3.17 and the local index formula will be further discussed in
Appendix C.

4. Differential Operators and Zeta Functions

Apart from cyclic theory, the local index theorem requires a certain amount of
Hilbert space operator theory. We shall develop the necessary topics in this section,
beginning with a very rapid review of the basic theory of linear elliptic operators
on manifolds.

4.1. Elliptic Operators on Manifolds. Let M be a smooth, closed man-
ifold, let S be a smooth vector bundle over M . Let us equip M with a smooth
measure and S with an inner product, so that we can form the Hilbert space
L2(M,S).

Let D be the algebra of linear differential operators on M acting on smooth
sections of S. This is an associative algebra of operators and it is filtered by the
usual notion of order of a differential operator: an operator X has order q or less if
any local coordinate system it can be written in the form

X =
∑
|α|≤q

aα(x)
∂α

∂xα
,

5There is an analogous theorem in the odd case.
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where α is a multi-index (α1, . . . , αn) and |α| = α1 + · · ·+ αn.
If s is a non-negative integer then the space of order s or less operators is a

finitely generated module over the ring C∞(M). If X1, . . . , XN is a generating set
then the Sobolev space W s(M,S) is defined to be the completion of C∞(M,S)
induced from the norm

‖φ‖2W s(M,S) =
∑
j

‖Xjφ‖2L2(M,S).

Different choices of generating set result in equivalent norms and the same space
W s(M,S). Every differential operator of order q extends to a bounded linear
operator from W s(M,S) to W s−q(M,S), for all s ≥ q. The Sobolev Embedding
Theorem implies that that ∩s≥0W

s(M,S) = C∞(M,S).
Now let ∆ be a linear elliptic operator of order r. The reader unfamiliar with

the definition of ellipticity can take the following basic estimate as the definition:
if ∆ is elliptic of order r, then there is some ε > 0 such that

‖∆φ‖W s(M,S) + ‖φ‖L2(M,S) ≥ ε‖φ‖W s+r(M,S),

for every φ ∈ C∞(M,S).
Suppose now that ∆ is also positive, which is to say that 〈∆φ, φ〉L2(M,S) ≥ 0,

for all φ ∈ C∞(M,S). It may be shown then that ∆ is essentially self-adjoint on
the domain C∞(M,S), and for s ≥ 0 we can define the linear spaces

Hs = dom(∆
s
r ) ⊆ H,

which are Hilbert spaces in the norm

‖φ‖2Hs = ‖φ‖2L2 + ‖∆ r
s ‖2L2 .

It follows from the basic estimate that Hs = W s(M,S).
Let us say that an operator ∆ of order r operator is of scalar type if in every

local coordinate system ∆ can be written in the form

∆ =
∑
|α|≤r

aα(x)
∂α

∂xα
,

where the aα(x), for |α| = r, are scalar multiples of the identity operator (acting on
the fiber Sx of S). Good examples are the Laplace operators ∆ = ∇∗∇ associated
to affine connections on S, which are positive, elliptic of order 2, and of scalar type.
Other examples are the squares of Dirac-type operators on Riemannian manifolds.
If ∆ is of scalar type then

order([∆, X]) ≤ order(X) + order(∆)− 1

(whereas the individual products X∆ and ∆X have one greater order, in general).
The following theorem, which is quite well known, will be fundamental to what

follows in these notes. For a proof which is somewhat in the spirit of these notes
see [19].

4.1. Theorem. Let ∆ be elliptic of order r, positive and of scalar type, and
assume for simplicity that ∆ is invertible as a Hilbert space operator. Let X be any
differential operator. If Re(z) is sufficiently large then the operator X∆−z is of
trace class. Moreover the function ζ(z) = Trace(X∆−z) extends to a meromorphic
function on C with only simple poles.
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4.2. Remarks. The assumption that ∆ is of scalar type is not necessary, but
it simpifies the proof. and covers the cases of interest. The meaning of the complex
power ∆−z will be clarified in the coming paragraphs.

4.2. Abstract Differential Operators. In this section we shall give abstract
counterparts of the ideas presented in the previous section.

Let H be a complex Hilbert space. We shall assume as given an unbounded,
positive, self-adjoint operator ∆ on H. The operator ∆ and its powers ∆k are
provided with definite domains dom(∆k) ⊆ H, which are dense subspaces of H.
We shall denote by H∞ the intersections of the domains of all the ∆k:

H∞ = ∩∞k=1 dom(∆k).

We shall assume as given an algebra D(∆) of linear operators on the vector space
H∞. We shall assume the following things about D(∆):6

(i) IfX ∈ D(∆) then [∆, X] ∈ D(∆) (we shall not insist that ∆ belongs to D(∆)).
(ii) The algebra D(∆) is filtered,

D(∆) = ∪∞q=0Dq(∆) (an increasing union).

We shall write order(X) ≤ q to denote the relation X ∈ Dq(∆). Sometimes
we shall use the term “differential order” to refer to this filtration. This is
supposed to call to mind the standard example, in which order(X) is the order
of X as a differential operator.

(iii) There is an integer r > 0 (the “order of ∆”) such that

order([∆, X]) ≤ order(X) + r − 1

for every X ∈ D(∆).
To state the final assumption, we need to introduce the linear spaces

Hs = dom(∆
s
r ) ⊆ H

for s ≥ 0. These are Hilbert spaces in their own right, in the norms

‖v‖2s = ‖v‖2 + ‖∆ s
r v‖2.

The following key condition connects the algebraic hypotheses we have placed on
D(∆) to operator theory:

(iv) If X ∈ D(∆) and if order(X) ≤ q then there is a constant ε > 0 such that

‖v‖q + ‖v‖ ≥ ε‖Xv‖, ∀v ∈ H∞.

4.3. Example. The standard example is of course that in which ∆ is a Laplace-
type operator ∆ = ∇∗∇, or ∆ is the square of a Dirac-type operator, on a closed
manifoldM and D(∆) is the algebra of differential operators onM . We can obtain a
slightly more complicated example by dropping the assumption that M is compact,
and defining D(∆) to be the algebra of compactly supported differential operators
on M (∆ is still a Lapacian or the square of a Dirac operator). Item (i) above was
formulated with the non-compact case in mind.

4.4. Remark. In the standard example the “order” r of ∆ is r = 2. But other
orders are possible. For example Connes and Moscovici consider an important
example in which r = 4.

6Various minor modifications of these axioms are certainly possible.
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4.5. Remark. For the purposes of these notes we could get by with something
a little weaker than condition (iv), namely this:

(iv′) If X ∈ D(∆) and if order(X) ≤ kr then there is a constant ε > 0 such
that

‖∆kv‖+ ‖v‖ ≥ ε‖Xv‖, ∀v ∈ H∞.

The advantage of this condition is that it involves only integral powers of the
operator ∆ (in contrast the ‖ ‖s involve fractional powers of ∆). Condition (iv′) is
therefore in principle easier to verify. However in the main examples, for instance
the one developed by Connes and Moscovici in [12], the stronger condition holds.

4.6. Definition. We shall refer to an algebra D(∆) (together with the distin-
guished operator ∆) satisfying the axioms (i)-(iv) above as an algebra of generalized
differential operators.

4.7. Lemma. If X ∈ D(∆), and if X has order q or less, then for every s ≥ 0
the operator X extends to a bounded linear operator from Hs+q to Hs.

Proof. If s is an integer multiple of the order r of ∆ then the lemma follows
immediately from the elliptic estimate above. The general case (which we shall not
actually need) follows by interpolation. �

4.3. Zeta Functions. Let D(∆) be an algebra of generalized differential oper-
ators, as in the previous sections. We are going to define certain zeta-type functions
associated with D(∆).

To simplify matters we shall now assume that the operator ∆ is invertible. This
assumption will remain in force until Section 6, where we shall first consider more
general operators ∆.

The complex powers ∆−z may be defined using the functional calculus. They
are, among other things, well-defined operators on the vector space H∞.

4.8. Definition. The algebra D(∆) has finite analytic dimension if there is
some d ≥ 0 with the property that if X ∈ D(∆) has order q or less, then, for every
z ∈ C with real part greater than q+d

r , the operator X∆−z extends by continuity to
a trace-class operator on H (here r is the order of ∆, as described in Section 4.2).

4.9. Remark. The condition on Re(z) is meant to imply that the order of
X∆−z is less than −d. (We have not yet assigned a notion of order to operators
such as X∆−z, but we shall do so in Definition 4.15.)

4.10. Definition. The smallest value d ≥ 0 with the property described in
Definition 4.8 will be called the analytic dimension of the algebra D(∆).

Assume that D(∆) has finite analytic dimension d. If X ∈ D(∆) and if
order(X) ≤ q then the complex function Trace(X∆−z) is holomorphic in the right
half-plane Re(z) > q+d

r .

4.11. Definition. An algebra D(∆) of generalized differential operators which
has finite analytic dimension has the analytic continuation property if for every
X ∈ D(∆) the analytic function Trace(X∆−z), defined initially on a half-plane in
C, extends to a meromorphic function on the full complex plane.

Actually, for what follows it would be sufficient to assume that Trace(X∆−s)
has an analytic continuation to C with only isolated singularities, which could
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perhaps be essential singularities.7 The analytic continuation property is obviously
an abstraction of Theorem 4.1 concerning elliptic operators on manifolds.

We are ready to present what is, in effect, the main definition of these notes,
in which we describe the “elementary quantities” which were mentioned in the
introduction. The reasoning which leads to this definition will be explained in
Appendix B.

In order to accommodate the cyclic cohomology constructions to be carried
out in Section 5 we shall now assume that the Hilbert space H is Z/2-graded, that
∆ has even grading-degree, and that the grading operator ε =

(
1 0
0 −1

)
multiplies

D(∆) into itself. (The case ε = I, where the grading is trivial, is one important
possibility.)

4.12. Definition. Let D(∆) be an algebra of generalized differential operators
which has finite analytic dimension. Define, for Re(z) � 0 and X0, . . . , Xp ∈ D(∆),
the quantity

(4.1) 〈X0, X1, . . . , Xp〉z =

(−1)p
Γ(z)
2πi

Trace
(∫

λ−zεX0(λ−∆)−1X1(λ−∆)−1 · · ·Xp(λ−∆)−1 dλ

)
(the factors in the integral alternate between the Xj and copies of (λ − ∆)−1).
The contour integral is evaluated down a vertical line in C which separates 0 and
Spectrum(∆).

4.13. Remark. The operator (λ−∆)−1 is bounded on all of the Hilbert spaces
Hs, and moreover its norm on each of these spaces is bounded by | Im(λ)|−1. As a
result, if

order(X0) + · · ·+ order(Xp) ≤ q

and if the integrand in equation (4.1) is viewed as a bounded operator from Hs+q to
Hs, then the integral converges absolutely in the operator norm whenever Re(z) +
p > 0. In particular, if Re(z) > 0 then the integral (4.1) converges to a well defined
operator on H∞.

The following result establishes the traceability of the integral (4.1), when
Re(z) � 0.

4.14. Proposition. Let D(∆) be an algebra of generalized differential operators
and let X0, . . . , Xp ∈ D(∆). Assume that

order(X0) + · · ·+ order(Xp) ≤ q.

If D(∆) has finite analytic dimension d, and if Re(z) + p > 1
r (q + d), then the

integral in Equation (4.1) extends by continuity to a trace-class operator on H, and
the quantity 〈X0, . . . , Xp〉z defined by Equation (4.1) is a holomorphic function of
z in this half-plane. If in addition the algebra D(∆) has the analytic continuation
property then the quantity 〈X0, . . . , Xp〉z extends to a meromorphic function on C.

For the purpose of proving the proposition it is useful to develop a little more
terminology, as follows.

7The exception to this is Appendix A, which is independent of the rest of the notes, where
we shall assume at one point that the singularities are all simple poles.
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4.15. Definition. Let m ∈ R. We shall say that an operator T : H∞ → H∞

has analytic order m or less if, for every s,8 T extends to a bounded operator from
Hm+s to Hs.

4.16. Example. The resolvents (λ−∆)−1 have analytic order −r, or less.

Let us note the following simple consequence of our definitions:

4.17. Lemma. Let D(∆) have finite analytic dimension d. If T has analytic
order less than −d − q, and if X ∈ D(∆) has order q, then XT is a trace-class
operator. �

4.18. Definition. Let T and Tα (α ∈ A) be operators on H∞. We shall write

T ≈
∑
α∈A

Tα

if, for every m ∈ R, there is a finite set F ⊆ A with the property that if F ′ ⊆ A is
a finite subset containing F then T and

∑
α∈F ′ Tα differ by an operator of analytic

order m or less.

One should think of m as being large and negative. Thus T ≈
∑
α∈A Tα if

every sufficiently large finite partial sum agrees with T up to operators of large
negative order.

4.19. Definition. If Y ∈ D(∆) then denote by Y (k) the k-fold commutator of
Y with ∆. Thus Y (0) = Y and Y (k) = [∆, Y (k−1)] for k ≥ 1.

4.20. Lemma. Let Y ∈ D(∆) and let h be a positive integer. For every positive
integer k there is an asymptotic expansion

[(λ−∆)−h, Y ] ≈ hY (1)(λ−∆)−(h+1) +
h(h+ 1)

2
Y (2)(λ−∆)−(h+2) + . . .

+
h(h+ 1) · · · (h+ k)

k!
Y (k)(λ−∆)−(h+k) + · · · ,

4.21. Remark. If order(Y ) ≤ q then, according to the axioms in Section 4.2,
order(Y (p)) ≤ q+p(r−1). Therefore, thanks to the elliptic estimate of Section 4.2,
the operator Y (p)(λ − ∆)−(h+p) has analytic order q − hr − p or less. Hence the
terms in the asymptotic expansion of the lemma are of decreasing analytic order.

Proof of Lemma 4.20. Let us write L = λ − ∆ and observe that the k-
fold iterated commutator of Y with L is (−1)k times Y (k), the k-fold iterated
commutator of Y with ∆. Let us also write z = −h.

To prove the lemma we shall use Cauchy’s formula,(
z

p

)
Lz−p =

1
2πi

∫
wz(w − L)−p−1 dw.

The integral (which is carried out along the same contour as the one in Defini-
tion 4.12) is norm-convergent in the operator norm on any B(Hs). Applying this

8Strictly speaking we should say “for every s ≥ 0 such that m + s ≥ 0,” since we have not
defined Hs for negative s.
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formula in the case p = 0 we get

[Lz, Y ] =
1

2πi

∫
wz

[
(w − L)−1, Y

]
dw

= − 1
2πi

∫
wz(w − L)−1Y (1)(w − L)−1 dw

= −Y (1) 1
2πi

∫
wz(w − L)−2 dw

− 1
2πi

∫
wz

[
(w − L)−1, Y (1)

]
(w − L)−1 dw

= −
(
z

1

)
Y (1)Lz−1 +

1
2πi

∫
wz(w − L)−1Y (2)(w − L)−2 dw.

The integrals all converge in the operator norm of B(Hs+q,Hs) for any q large
enough (and in fact any q ≥ order(Y ) would do). By carrying out a sequence of
similar manipulations on the remainder integral we arrive at

[Lz, Y ] = −
(
z

1

)
Y (1)L−z−1 +

(
z

2

)
Y (2)L−z−2 − . . .

+ (−1)p
(
z

p

)
Y (p)L−z−p +

(−1)p

2πi

∫
wz(w − L)−1Y (p)(w − L)−p dw.

Simple estimates on the remainder integral now prove the lemma. �

We are now almost ready to prove Proposition 4.14. In the proof we shall use
asymptotic expansions, as in Definition 4.18. But we shall be considering operators
which, like (λ − ∆), depend on a parameter λ. In this situation we shall amend
Definition 4.18 by writing T ≈

∑
α Tα if, for every m � 0, every sufficiently large

finite partial sum agrees with T up to an operator of analytic order m or less, whose
norm as an operator from Hs+m to Hs is O(| Im(λ)|m). The reason for doing so is
that we shall then be able to integrate with respect to λ, and obtain an asymptotic
expansion for the integrated operator.

Proof of Proposition 4.14. The idea of the proof is to use Lemma 4.20
to move all the terms (λ − ∆)−1 which appear in the basic quantity X0(λ −
∆)−1 · · ·Xp(λ−∆)−1 to the right. If the operators Xj actually commuted with ∆
then we would of course get

X0(λ−∆)−1 · · ·Xp(λ−∆)−1 = X0 · · ·Xp(λ−∆)−(p+1),

and after integrating and applying Cauchy’s integral formula we could conclude
without difficulty that

〈X0, . . . , Xp〉z =
Γ(z + p)

p!
Trace(εX0 · · ·Xp∆−z−p)

(compare with the manipulations below). The proposition would then follow imme-
diately from this formula. The general case is only a little more difficult: we shall
see that the above formula gives the leading term in a sort of asymptotic expansion
for 〈X0, . . . , Xp〉z.

It will be helpful to define quantities

c(k1, . . . , kj) =
(k1 + · · ·+ kj + j)!

k1! · · · kj !(k1 + 1) · · · (k1 + · · ·+ kj + j)
,
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which depend on non-negative integers k1, . . . , kj . These have the property that
c(k1) = 1, for all k1, and

c(k1, . . . , kj) = c(k1, . . . , kj−1)
(k1 + · · ·+ kj−1 + j) · · · (k1 + · · ·+ kj + j − 1)

kj !

(the numerator in the fraction is the product of the kj successive integers from
(k1 + · · ·+kj−1 + j) to (k1 + · · ·+kj + j−1)). Using this notation and Lemma 4.20
we obtain an asymptotic expansion

(λ−∆)−1X1 ≈
∑
k1≥0

c(k1)X1
(k1)

(λ−∆)−(k1+1),

and then

(λ−∆)−1X1(λ−∆)−1X2 ≈
∑
k1≥0

c(k1)X1
(k1)

(λ−∆)−(k1+2)X2

≈
∑

k1,k2≥0

c(k1, k2)X1
(k1)

X2
(k2)

(λ−∆)−(k1+k2+2),

and finally

(λ−∆)−1X1 · · · (λ−∆)−1Xp ≈
∑
k≥0

c(k)X1
(k1)

· · ·Xp
(kp)

(λ−∆)−(|k|+p),

where we have written k = (k1, . . . , kp) and |k| = k1 + · · ·+ kp. It follows that

(−1)pΓ(z)
2πi

∫
λ−z(λ−∆)−1 · · ·Xp(λ−∆)−1 dλ

≈
∑
k≥0

c(k)X1
(k1)

· · ·Xp
(kp) (−1)pΓ(z)

2πi

∫
λ−z(λ−∆)−(|k|+p+1) dλ

=
∑
k≥0

c(k)X1
(k1)

· · ·Xp
(kp)

(−1)pΓ(z)
(

−z
|k|+ p

)
∆−z−|k|−p.

The terms of this asymptotic expansion have analytic order q− k− r(Re(z) + p) or
less, and therefore if Re(z) + p > 1

r (q + d) then the terms all have analytic order
less than −d. This proves the first part of the proposition: after multiplying by
εX0, if Re(z) + p > 1

r (q + d) then all the terms in the asymptotic expansion are
trace-class, and the integral extends to a trace-class operator on H. To continue,
it follows from the functional equation for Γ(z) that

(−1)pΓ(z)
(

−z
|k|+ p

)
= (−1)|k|Γ(z + p+ |k|) 1

(|k|+ p)!
.

So multiplying by εX0 and taking traces we get

〈X0, . . . , Xp〉z ≈
∑
k≥0

(−1)|k|Γ(z + p+ |k|) 1
(|k|+ p)!

c(k)

× Trace
(
εX0X1

(k1)
· · ·Xp

(kp)
∆−z−|k|−p

)
,

where the symbol ≈ means that, given any right half-plane in C, any sufficiently
large finite partial sum of the right hand side agrees with the left hand side modulo
a function of z which is holomorphic in that half-plane. The second part of the
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proposition follows immediately from this asymptotic expansion and Definition 4.11.
�

4.22. Remark. In the coming sections we shall make use of a modest general-
ization of the first part of Proposition 4.14, in which the operators X0, . . . , Xp are
chosen from the algebra generated by D(∆) and D (a square root of the operator
∆ that we shall discuss next), with at least one Xj actually in D(∆) itself. The
conclusion of the proposition and the proof are the same.

At the end of Section 7 we shall also need a version of Lemma 4.20 involving
powers ∆−h for non-integral h. Once again the formulation of the lemma, and the
proof, are the otherwise unchanged.

4.4. Square Root of the Laplacian. We shall now assume that a self-
adjoint operator D is specified, for which D2 = ∆. If the Hilbert space H is
nontrivially Z/2-graded we shall also assume that the operator D has grading de-
gree 1. We shall also assume that an algebra A ⊆ D(∆) is specified, consisting
of operators of differential order zero (the operators in A are therefore bounded
operators on H).

4.23. Example. In the standard example, D will be a Dirac-type operator and
A will be the algebra of C∞-functions on M .

Continuing the axioms listed in Section 4.2, we shall assume that
(v) If a ∈ A ⊆ D(∆) then [D, a] ∈ D(∆).

We shall also assume that
(vi) If a ∈ A then order

(
[D, a]

)
≤ order(D)− 1, where we set order(D) = r

2 .

4.5. Spectral Triples. In Section 5 we shall use the square root D to con-
struct cyclic cocycles for the algebra A from the quantities 〈X0, . . . , Xp〉z. But first
we shall conclude our discussion of analytic preliminaries by briefly discussing the
relation between our algebras D(∆) and the notion of spectral triple.

4.24. Definition. A spectral triple is a triple (A,H,D), composed of a complex
Hilbert space H, an algebra A of bounded operators on H, and a self-adjoint
operator D on H with the following two properties:

(i) If a ∈ A then the operator a · (1 +D2)−1 is compact.
(ii) If a ∈ A then a · dom(D) ⊆ dom(D) and the commutator [D, a] extends to a

bounded operator on H

Various examples are listed in [12]; in the standard example A is the algebra
of smooth functions on a complete Riemannian manifold M , D is a Dirac-type
operator on M , and H is the Hilbert space of L2-sections of the vector bundle on
which D acts.

Let (A,H,D) be a spectral triple. Let ∆ = D2, and as in Section 4.2 let us
define

H∞ = ∩∞k=1 dom(∆k) = ∩∞k=1 dom(Dk).
Let us assume that A maps the space H∞ into itself (this does not follow auto-
matically). Having done so, let us define D(A,D) to be the smallest algebra of
linear operators on H∞ which contains A and [D,A] and which is closed under the
operation X 7→ [∆, X]. Note that D(A,D) does not necesssarily contain D.

Equip the algebra D(A,D) with the smallest filtration so that
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(i) If a ∈ A then order(a) = 0 and order
(
[D, a]

)
= 0.

(ii) If X ∈ D(A,D) then order
(
[∆, X]

)
≤ order(X) + 1.

The term “smallest” means here that we write order(X) ≤ q if and only if the order
of X is q or less in every filtration satisfying the above conditions (there is at least
one such filtration). Having filtered D(A,D) in this way we obtain an example
of the sort of algebra of generalized differential operators which was considered in
Section 4.2.

Denote by δ the unbounded derivation of B(H) given by commutator with |D|.
Thus the domain of δ is the set of all bounded operators T which maps the domain
of |D| into itself, and for which the commutator extends to a bounded operator on
H.

4.25. Definition. A spectral triple is regular if A and [D,A] belong to ∩∞n=1δ
n.

We want to prove the following result.

4.26. Theorem. Let (A,H,D) be a spectral triple with the property that every
a ∈ A maps H∞ into itself. It is regular if and only if the algebra D(A,D) satisfies
the basic estimate (iv) of Section 4.2.

The proof is based on the following computation. Denote by B the algebra of
operators on H∞ generated by all the spaces δn[A] and δn

[
[D,A]

]
, for all n ≥ 0.

According to the definition of regularity every operator in B extends to a bounded
operator on H.

4.27. Lemma. Assume that (A,H,D) is a regular spectral triple. Every operator
in D of order k may be written as a finite sum of operators b|D|`, where b belongs
to the algebra B and where ` ≤ k.

Proof. The spaces Dk of operators of order k or less in D(A,D) may be
defined inductively as follows:
(a) algebra generated by D0 = A+ [D,A].
(b) D1 = [∆,D0] +D0[∆,D0].
(c) Dk =

∑k−1
j=1 Dj · Dk−j + [∆,Dk−1] +D0[∆,Dk−1].

Define E , a space of operators on H∞, to be the linear span of the operators of the
form b|D|k, where k ≥ 0. The space E is an algebra since

b1|D|k1 · b2|D|k2 =
k1∑
j=0

(
k1

j

)
b1δ

j(b2)|D|k1+k2−j .

Filter the algebra E by defining Ek to be the span of all operators b|D|` with ` ≤ k.
The formula above shows that this does define a filtration of the algebra E . Now the
algebra D of differential operators is contained within E , and the lemma amounts
to the assertion that Dk ⊆ Ek. Clearly D0 ⊆ E0. Using the formula

[∆, b|D|k−1] = [|D|2, b|D|k−1] = 2δ(b)|D|k + δ2(b)|D|k−1

and our formula for Dk the inclusion Dk ⊆ Ek is easily proved by induction. �

Proof of Theorem 4.26, Part One. Suppose that (A,H,D) is regular. Ac-
cording to the lemma, to prove the basic estimate for D(A,D) it suffices to prove
that if k ≥ ` and if X = b|D|`, where b ∈ B, then there exists ε > 0 such that

‖Dkv‖+ ‖v‖ ≥ ε‖Xv‖,
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for every v ∈ H∞. But we have

‖Xv‖ = ‖b|D|`v‖ ≤ ‖b‖ · ‖|D|`v‖ = ‖b‖ · ‖D`v‖,
And since by spectral theory for every ` ≤ k we have that

‖D`v‖2 ≤ ‖Dkv‖2 + ‖v‖2 ≤
(
‖Dkv‖+ ‖v‖

)2

it follows that
‖Dkv‖+ ‖v‖ ≥ 1

‖b‖+ 1
‖Xv‖,

as required. �

To prove the converse, we shall develop a pseudodifferential calculus, as follows.

4.28. Definition. Let (A,H,D) be a spectral triple for which A ·H∞ ⊆ H∞,
and for which the basic elliptic estimate holds. Fix an operator K : H∞ → H∞

of order −∞ and such that ∆1 = ∆ + K is invertible. A basic pseudodifferential
operator of order k ∈ Z is a linear operator T : H∞ → H∞ with the property that
for every ` ∈ Z the operator T may be decomposed as

T = X∆
m
2
1 +R,

where X ∈ D(A,D), m ∈ Z, and R : H∞ → H∞, and where

order(X) +m ≤ k and order(R) ≤ `.

A pseudodifferential operator of order k ∈ Z is a finite linear combination of basic
pseudodifferential operators of order k.

4.29. Remarks. Every pseudodifferential operator is a sum of two basic oper-
ators (one with the integer m in Definition 4.28 even, and one with m odd). The
class of pseudodifferential operators does not depend on the choice of operator K.

4.30. Lemma. If T is a pseudodifferential operator and z ∈ C then

[∆z
1, T ] ≈

∞∑
j=1

(
z

j

)
T (j)∆z−j

1 .

Proof. See the proof of Lemma 4.20. �

4.31. Proposition. The set of all pseudodifferential operators is a filtered alge-
bra. If T is a pseudodifferential operator then so is δ(T ), and moreover order(δ(T )) ≤
order(T ).

Proof. The set of pseudodifferential operators is a vector space. The formula

X∆
m
2
1 · Y∆

n
2
1 ≈

∞∑
j=0

(m
2

j

)
XY (j)∆

m+n
2 −j

1

shows that it is closed under multiplication. Finally,

δ(T ) = |D|T − T |D| ≈ ∆
1
2
1 T −∆

1
2
1 T

≈
∞∑
j=1

( 1
2

j

)
T (j)∆

1
2−j
1 .

This computation reduces the second part of the lemma to the assertion that if
T is a pseudodifferential operator of order k then T (1) = [∆, T ] is a pseudodiffer-
ential operator of order k + 1 or less. This in turn follows from the definition of



32 NIGEL HIGSON

pseudodifferential operator and the fact that if X is a differential operator then the
differential operator [∆, X] has order at most one more than the order of X. �

Proof of Theorem 4.26, Part Two. Suppose that (A,H,D) is a spectral
triple for which A ·H∞ ⊆ H∞ and for which the basic estimate holds. By the basic
estimate, every pseudodifferential operator of order zero extends to a bounded
operator on H. Since every operator in A or [D,A] is pseudodifferential of order
zero, and since δ(T ) is pseudodifferential of order zero whenever T is, we see that
if b ∈ A or b ∈ [D,A] then for every n the operator δn(b) extends to a bounded
operator on H. Hence the spectral triple (A,H,D) is regular, as required. �

4.32. Definition. A spectral triple (A,H,D) is finitely summable if there is a
Schatten ideal Lp(H) (where 1 ≤ p <∞)) such that

a · (1 +D2)−
1
2 ∈ Lp(H)

for every a ∈ A.

If the spectral triple (A,H,D) is regular and finitely summable then for every
X ∈ D(A,D) the zeta function Trace(X∆− z

2 ) is defined in a right half-plane in C,
and is holomorphic there. The following concept has been introduced by Connes
and Moscovici [12, Definition II.1].

4.33. Definition. Let (A,H,D) be a regular and finitely summable spectral
triple. It has discrete dimension spectrum if9 there is a discrete subset F of C with
the following property: for every operator X in D(A,D) if order(X) ≤ q then the
zeta function Trace(X∆− z

2 ) extends to a meromorphic function on C with all poles
contained in F + q. The dimension spectrum of (A,H,D) is then the smallest such
set F .

4.34. Remark. The definition above extends without change to arbitrary al-
gebras of generalized differential operators, and at one point (in Section 6) we shall
use it in this context.

A final item of terminology: in Appendix A we shall make use of the following
notion:

4.35. Definition. A regular and finitely summable spectral triple has simple
dimension spectrum if it has discrete dimension spectrum and if all the zeta-type
functions above have only simple poles.

5. The Residue Cocycle

In this section we shall assume as given an algebra D(∆), a square root D of ∆,
and an algebra A ⊆ D(∆), as in the previous sections. We shall assume the finite
analytic dimension and analytic continuation properties set forth in Definitions 4.8
and 4.11. We shall also assume that the Hilbert space H is nontrivially Z/2-graded
and therefore that the operator D has odd grading-degree. This is the “even-
dimensional” case. The “odd-dimensional” case, where H has no grading, will be
considered separately in Section 7.4.

9Connes and Moscovici add a technical condition concerning decay of zeta functions along
vertical lines in C; compare Appendix A.
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5.1. Improper Cocycle. We are going to define a periodic cyclic cocycle
Ψ = (Ψ0,Ψ2, . . . ) for the algebra A. The cocycle will be improper, in the sense that
all the Ψp will be (typically) nonzero. Moreover the cocycle will assume values in
the field of meromorphic functions on C. But in the next section we shall convert
it into a proper cocycle with values in C itself.

We are going to assemble Ψ from the quantities 〈X0, . . . , Xp〉z defined in Sec-
tion 4. In doing so we shall follow quite closely the construction of the JLO cocycle
in entire cyclic cohomology (see [20] and [17]), which is assembled from the quan-
tities

(5.1) 〈X0, . . . , Xp〉JLO = Trace
(∫

Σp

εX0e−t0∆ . . . Xpe−tp∆ dt

)
(the integral is over the standard p-simplex). In Appendix A we shall compare
our cocycle to the JLO cocycle. For now, let us note that the quantities in Equa-
tion (5.1) are scalars, while the quantities 〈X0, . . . , Xp〉z are functions of the pa-
rameter z. But this difference is superficial, and the computations which follow in
this section are more or less direct copies of computations already carried out for
the JLO cocycle in [20] and [17].

We begin by establishing some “functional equations” for the quantities 〈· · · 〉z.
In order to keep the formulas reasonably compact, if X ∈ D(∆) then we shall write
(−1)X to denote either +1 or −1, according as the Z/2-grading degree of X is even
or odd.

5.1. Lemma. The meromorphic functions 〈X0, . . . , Xp〉z satisfy the following
functional equations:

〈X0, . . . , Xp−1, Xp〉z+1 =
p∑
j=0

〈X0, . . . , Xj−1, 1, Xj , . . . , Xp〉z(5.2)

〈X0, . . . , Xp−1, Xp〉z = (−1)X
p

〈Xp, X0, . . . , Xp−1〉z(5.3)

Proof. The first identity follows from the fact that

d

dλ

(
λ−zX0(λ−∆)−1 · · ·Xp(λ−∆)−1

)
= (−z)λ−z−1X0(λ−∆)−1 · · ·Xp(λ−∆)−1

−
p∑
j=0

λ−zX0(λ−∆)−1 · · ·Xj(λ−∆)−2Xj+1 · · ·Xp(λ−∆)−1

and the fact that the integral of the derivative is zero. As for the second identity,
if p � 0 then the integrand in Equation (4.1) is a trace-class operator, and Equa-
tion (5.3) is an immediate consequence of the trace-property. In general we can
repeatedly apply Equation (5.2) to reduce to the case where p� 0. �

5.2. Lemma.

(5.4) 〈X0, . . . , [D2, Xj ], . . . , Xp〉z =

〈X0, . . . , Xj−1Xj , . . . Xp〉z − 〈X0, . . . , XjXj+1, . . . Xp〉z
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Proof. This follows from the identity

Xj−1(λ−∆)−1[D2, Xj ](λ−∆)−1Xj+1

= Xj−1(λ−∆)−1XjXj+1 −Xj−1Xj(λ−∆)−1Xj+1.

Note that when j = p equation (5.4) should read as

〈X0, . . . , Xp−1, [D2, Xp]〉z = 〈X0, . . . , Xp−1Xp〉z − (−1)X
p

〈XpX0, . . . , Xp−1〉z.
�

5.3. Lemma.

(5.5)
p∑
j=0

(−1)X
0···Xj−1

〈X0, . . . , [D,Xj ], . . . , Xp〉z = 0

Proof. The identity is equivalent to the formula

Trace
(
ε
[
D,

∫
λ−zX0(λ−∆)−1 · · ·Xp(λ−∆)−1 dλ

])
= 0,

which holds since the supertrace of any (graded) commutator is zero. �

With these preliminaries out of the way we can obtain very quickly the (im-
proper) (b, B)-cocycle which is the main object of study in these notes.

5.4. Definition. If p is a non-negative and even integer then define a (p+ 1)-
multi-linear functional on A with values in the meromorphic functions on C by the
formula

Ψp(a0, . . . , ap) = 〈a0, [D, a1], . . . , [D, ap]〉s− p
2

5.5. Theorem. The even (b, B)-cochain Ψ = (Ψ0,Ψ2,Ψ4 · · · ) is an (improper)
(b, B)-cocycle.

Proof. First of all, it follows from the definition of B and Lemma 5.1 that

BΨp+2(a0, . . . , ap+1) =
p+1∑
j=0

(−1)j〈1, [D, aj ], . . . , [D, aj−1]〉s− p+2
2

=
p+1∑
j=0

〈[D, a0], . . . , [D, aj−1], 1, [D, aj ], . . . , [D, ap+1]〉s− p+2
2

= 〈[D, a0], [D, a1], . . . , [D, ap+1]〉s− p
2
.

Next, it follows from the definition of b and the Leibniz rule [D, ajaj+1] = aj [D, aj+1]+
[D, aj ]aj+1 that

bΨp(a0, . . . , ap+1) =
(
〈a0a1, [D, a2], . . . , [D, ap+1]〉s− p

2

− 〈a0, a1[D, a2], . . . , [D, ap+1]〉s− p
2

)
−

(
〈a0, [D, a1]a2, [D, a3], . . . , [D, ap+1]〉s− p

2

− 〈a0, [D, a1], a2[D, a3], . . . , [D, ap+1]〉s− p
2

)
+ · · ·
+

(
〈a0, [D, a1], . . . , [D, ap]ap+1〉s− p

2

− 〈ap+1a0, [D, a1], . . . , [D, ap+1]〉s− p
2

)
.
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Applying Lemma 5.2 we get

bΨp(a0, . . . , ap+1) =
p+1∑
j=1

(−1)j−1〈a0, [D, a1], . . . , [D2, aj ], . . . , [D, ap+1]〉s− p
2

Setting X0 = a0 and Xj = [D, aj ] for j ≥ 1, and applying Lemma 5.3 we get

BΨp+2(a0, . . . , ap+1) + bΨp(a0, . . . , ap+1)

=
p+1∑
j=0

(−1)X
0···Xj−1

〈X0, . . . , [D,Xj ], . . . , Xp+1〉s− p
2

= 0.

�

5.2. Residue Cocycle. By taking residues at s = 0 we map the space of
meromorphic functions on C to the scalar field C, and we obtain from any (b, B)-
cocycle with coefficients in the space of meromorphic functions a (b, B)-cocycle
with coefficients in C. This operation transforms the improper cocycle Ψ that we
constructed in the last section into a proper cocycle Ress=0 Ψ. Indeed, it follows
from Proposition 4.14 that if p is greater than the analytic dimension d of D(∆)
then the function

Ψp(a0, . . . , ap)s = 〈a0, [D, a1], . . . , [D, ap]〉s− p
2

is holomorphic at s = 0.
The following proposition identifies the proper (b, B)-cocycle Ress=0 Ψ with the

residue cocycle studied by Connes and Moscovici.

5.6. Theorem. For all p ≥ 0 and all a0, . . . , ap ∈ A,

Ress=0 Ψp(a0, . . . , ap)

=
∑
k≥0

cp,k Ress=0 Tr
(
εa0[D, a1](k1) · · · [D, ap](kp)∆− p

2−|k|−s
)
.

The sum is over all multi-indices (k1, . . . , kp) with non-negative integer entries, and
the constants cpk are given by the formula

cpk =
(−1)k

k!
Γ(|k|+ p

2 )
(k1 + 1)(k1 + k2 + 2) · · · (k1 + · · ·+ kp + p)

5.7. Remarks. Before proving the theorem we need to make one or two com-
ments about the above formula.

First, the constant c00 = Γ(0) is not well defined since 0 is a pole of the Γ-
function. To cope with this problem we replace the term c00 Ress=0

(
Tr(εa0∆−s)

)
with Ress=0

(
Γ(s)Tr(εa0∆−s)

)
.

Second, it follows from Proposition 4.14 that if |k| + p > d then the (p, k)-
contribution to the above sum of residues is actually zero. Hence for every p the
sum is in fact finite (and as we already noted above, the sum is 0 when p > d).
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Proof of Theorem 5.6. We showed in the proof of Proposition 4.14 that

〈X0, . . . , Xp〉z ≈
∑
k≥0

(−1)|k|Γ(z + p+ |k|) c(k)
(|k|+ p)!

× Trace
(
εX0X1

(k1)
· · ·Xp

(kp)
∆−z−|k|−p

)
.

After we note that

cpk = (−1)|k|Γ
(
|k|+ p

2
) c(k)
(p+ |k|)!

the proof of the theorem follows immediately from the asymptotic expansion upon
setting z = s− p

2 and taking residues at s = 0. �

6. The Local Index Formula

The objective of this section is to compute the pairing between the periodic
cyclic cocycle Ress=0 Ψ and idempotents in the algebra A (compare Section 2.5).
We shall prove the following result.

6.1. Theorem. Let Ress=0 Ψ be the index cocycle associated to an algebra
D(∆) of generalized differential operators with finite analytic dimension and the
analytic continuation property, together with a square-root D of ∆ and a subalgebra
A ⊆ D(∆). If e is an idempotent element of A then

〈Ress=0 Ψ, e〉 = Index
(
eDe : eH0 → eH1

)
.

Theorem 6.1 will later be superseded by a more precise result at the level of
cyclic cohomology, and we shall we shall only sketch one or to parts of the proof
which will be dealt with in more detail later. Furthermore, to slightly simplify the
analysis we shall assume that D(∆) has discrete dimension spectrum, in the sense
of Definition 4.33.

6.1. Invertibility Hypothesis Removed. Up to now we have been assum-
ing that the self-adjoint operator ∆ is invertible (in the sense of Hilbert space
operator theory, meaning that ∆ is a bijection from its domain to the Hilbert space
H). We shall now remove this hypothesis.

To do so we shall begin with an operator D which is not necessarily invertible
(with D2 = ∆). We shall assume that the axioms (i)-(vi) in Sections 4.2 and 4.4
hold. Fix a bounded self-adjoint operator K with the following properties:

(i) K commutes with D.
(ii) K has analytic order −∞ (in other words, K ·H ⊆ H∞).
(iii) The operator ∆ +K2 is invertible.
Having done so, let us construct the operator

DK =
(
D K
K −D

)
acting on the Hilbert space H ⊕Hopp, where Hopp is the Z/2-graded Hilbert space
H but with the grading reversed. It is invertible.

6.2. Example. If D is a Fredholm operator then we can choose for K the
projection onto the kernel of D.
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Let ∆K = (DK)2 and denote by D(∆K) the smallest algebra of operators on
H ⊕Hopp which contains the 2× 2 matrices over D(∆) and which is closed under
multiplication by operators of analytic order −∞.

The axioms (i)-(iv) of Section 4.2 are satisfied for the new algebra. Moreover
if we embed A into D(∆K) as matrices ( a 0

0 0 ) then the axioms (v) and (vi) in
Section 4.4 are satisfied too.

6.3. Lemma. Assume that the operators K1 and K2 both have the properties
(i)-(iii) listed above. Then D(∆K1) = D(∆K1). Moreover the algebra has finite
analytic dimension d and has the analytic continuation property with respect to
∆K1 if and only if it has the same with respect to ∆K2 . If these properties do hold
then the quantities 〈X0, . . . , Xp〉z associated to ∆K1 and ∆K2 differ by a function
which is analytic in the half-plane Re(z) > −p.

Proof. It is clear that D(∆K1) = D(∆K2). To investigate the analytic con-
tinuation property it suffices to consider the case where K1 is a fixed function of
∆, in which case K1 and K2 commute. Let us write

X∆−z =
1

2πi

∫
λ−zX(λ−∆)−1 dλ

for Re(z) > 0. Observe now that

(λ−∆K1)
−1 − (λ−∆K2)

−1 ≈M(λ−∆K1)
−2 −M(λ−∆K1)

−3 + · · · ,
where M = ∆K1 − ∆K2 (this is an asymptotic expansion in the sense described
prior to the proof of Proposition 4.14). Integrating and taking traces we see that

(6.1) Trace
(
X∆−z

K1

)
− Trace

(
X∆−z

K2

)
≈

∑
k≥1

(−1)k−1

(
−z
k

)
Trace

(
XM∆−z−k

K1

)
,

which shows that the difference Trace
(
X∆−z

K1

)
− Trace

(
X∆−z

K2

)
has an analytic

continuation to an entire function. Therefore ∆K1 has the analytic continuation
property if and only if ∆K2 does (and moreover the analytic dimensions are equal).

The remaining part of the lemma follows from the asymptotic formula

〈X0, . . . , Xp〉z ≈
∑
k≥0

(−1)|k|Γ(z + p+ |k|) 1
(|k|+ p)!

c(k)

× Trace
(
εX0X1

(k1)
· · ·Xp

(kp)
∆−z−|k|−p

)
that we proved earlier. �

6.4. Definition. The residue cocycle associated to the possibly non-invertible
operator D is the residue cocycle Ress=0 Ψ associated to the invertible operator
DK , as above.

Lemma 6.3 shows that if p > 0 then the residue cocycle given by Definition 6.4
is independent of the choice of the operator K. In fact this is true when p = 0
too. Indeed Equation (6.1) shows that not only is the difference Trace(εa0∆−s

K1
)−

Trace(εa0∆−s
K2

) analytic at s = 0, but it vanishes there too. Therefore

Ress=0 ΨK1
0 (a0)− Ress=0 ΨK2

0 (a0)

= Ress=0 Γ(s)
(
Trace(εa0∆−s

K1
)− Trace(εa0∆−s

K2
)
)

= 0.
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6.5. Example. If D happens to be invertible already then we obtain the same
residue cocycle as before.

6.6. Example. In the case where D is Fredholm, the residue cocycle is given
by the same formula that we saw in Theorem 5.6:

Ress=0 Ψp(a0, . . . , ap)

=
∑
k≥0

cp,k Ress=0 Tr
(
εa0[D, a1](k1) · · · [D, ap](kp)∆− p

2−|k|−s
)
.

The complex powers ∆−z are defined to be zero on the kernel of D (which is also
the kernel of ∆). When p = 0 the residue cocycle is

Ress=0

(
Γ(s) Trace(εao∆−s)

)
+ Trace(εa0P ),

where the complex power ∆−s is defined as above and P is the orthogonal projection
onto the kernel of D.

6.2. Proof of the Index Theorem. Let us fix an idempotent e ∈ A and
define a family of operators by the formula

Dt = D + t[e, [D, e]], t ∈ [0, 1].

Note that D0 = D while D1 = eDe + e⊥De⊥, so that in particular D1 commutes
with e. Denote by Ψt the improper cocycle associated to Dt (via the mechanism
just described in the last section which involves the incorporation of some order
−∞ operator Kt, which we shall assume depends smoothly on t).

6.7. Lemma. Define an improper (b, B)-cochain Θt by the formula

Θt
p(a

0, . . . , ap) =
p∑
j=0

(−1)j−1〈a0, . . . , [DKt
, aj ], ḊKt

, [DKt
, aj+1], . . . , [DKt

, ap]〉s− p+1
2
,

where Ḋ = d
dtDKt

∈ D(∆K). Then

BΘt
p+1 + bΘt

p−1 +
d

dt
Ψt
p = 0.

�

The lemma, which is nothing more than an elaborate computation, can be
proved by following the steps taken in Section 7.1 below (compare Remark 7.9).

Proof of Theorem 6.1. It follows from the asymptotic expansion method
used to prove Lemma 6.3 that each Ψt and each Θt is meromorphic. Since we
are assuming that D(∆) has discrete dimension spectrum the poles of all these
functions are located within the same discrete set in C. As a result, the integral∫ 1

0
Θt dt is clearly meromorphic too. Since

B

∫ 1

0

Θt
p+1 dt+ b

∫ 1

0

Θt
p−1 dt = Ψ0 −Ψ1,

it follows by taking residues that Ress=0 Ψ0 and Ress=1 Ψ1 are cohomologous. As
a result, we can compute the pairing 〈Ress=0 Ψ, e〉 using Ψ1 in place of Ψ0. If
we choose the operator K1 to commute with not only D1 but also e, then DK1
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commutes with e and the explicit formula for the pairing 〈Ress=0 Ψ, e〉 given in
Theorem 2.27 simplifies, as follows:

〈Ress=0 Ψ1, e〉 = Ress=0 Ψ1
0(e) +

∑
k≥1

(−1)k
(2k)!
k!

Ress=0 Ψ1
2k(e−

1
2
, e, . . . , e)

= Ress=0 Ψ1
0(e)

(all the higher terms vanish since they involve commutators [DK1 , e]). We conclude
that

〈Ress=0 Ψ1, e〉 = Ress=0 Ψ1
0(e)

= Ress=0

(
Γ(s)Trace(εe (∆K1)

−s)
)

= Index
(
eDe : eH0 → eH1

)
,

as required (the last step is the index computation made by Atiyah and Bott that
we mentioned in the introduction).

�

6.8. Remark. The proof of the corresponding odd index formula (involving
the odd pairing in Theorem 2.27) is not quite so simple, but could presumably
be accomplished following the argument developed by Getzler in [16] for the JLO
cocycle.

7. The Local Index Theorem in Cyclic Cohomology

Our goal in this section is to identify the cohomology class of the residue cocycle
Ress=0 Ψ with the cohomology class of the Chern character cocycle chFn associated
to the operator F = D|D|−1 (see Section 2.1). Here n is any even integer greater
than or equal to the analytic dimension d. It follows from the definition of analytic
dimension and some simple manipulations that

[F, a0] · · · [F, an] ∈ L1(H),

for such n, so that the Chern character cocycle is well-defined.
We shall reach the goal in two steps. First we shall identify the cohomology

class of Ress=0 Ψ with the class of a certain specific cyclic cocycle, which involves
no residues. Secondly we shall show that this cyclic cocycle is cohomologous to the
Chern character chFn .

To begin, we shall return to our assumption that D is invertible, and then deal
with the general case at the end of the section.

7.1. Reduction to a Cyclic Cocycle. The following result summarizes step
one.

7.1. Theorem. Fix an even integer n strictly greater than d − 1. The multi-
linear functional

(a0, . . . , an) 7→

1
2

n∑
j=0

(−1)j+1〈[D, a0], . . . , [D, aj ], D, [D, aj+1], . . . , [D, an]〉−n
2
.

is a cyclic n-cocycle which, when considered as a (b, B)-cocycle, is cohomologous to
the residue cocycle Ress=0 Ψ.
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7.2. Remark. It follows from Proposition 4.14 that the quantities

〈[D, a0], . . . , [D, aj ], D, [D, aj+1], . . . , [D, an]〉z
which appear in the theorem are holomorphic in the half-plane Re(z) > −n

2 +
1
r (d − (n + 1)). Therefore it makes sense to evaluate them at z = −n

2 , as we have
done. Appearances might suggest otherwise, because the term Γ(z) which appears
in the definition of 〈. . . 〉z has poles at the non-positive integers (and in particular
at z = −n

2 if n is even). However these poles are canceled by zeroes of the contour
integral in the given half-plane.

Theorem 7.1 and its proof have a simple conceptual explanation, which we shall
give in a little while (after Lemma 7.8). However a certain amount of elementary,
if laborious, computation is also involved in the proof, and we shall get to work on
this first. For this purpose it is useful to introduce the following notation.

7.3. Definition. If X0, . . . , Xp are operators in the algebra generated by
D(∆), 1 and D, and if at least one belongs to D(∆) then define

〈〈X0, . . . , Xp〉〉z =
p∑
k=0

(−1)X
0···Xk

〈X0, . . . , Xk, D,Xk+1, . . . , Xp〉z,

which is a meromorphic function of z ∈ C.

The new notation allows us to write a compact formula for the cyclic cocycle
appearing in Theorem 7.1:

(a0, . . . , an) 7→ 1
2 〈〈[D, a

0], . . . , [D, an]〉〉−n
2
.

We shall now list some properties of the quantities 〈〈· · · 〉〉z which are analogous
to the properties of the quantities 〈· · · 〉z that we verified in Section 5. The following
lemma may be proved using the formulas in Lemmas 5.1 and 5.2.

7.4. Lemma. The quantity 〈〈X0, . . . , Xp〉〉z satisfies the following identities:

〈〈X0, . . . , Xp〉〉z = 〈〈Xp, X0, . . . , Xp−1〉〉z(7.1)
p∑
j=0

〈〈X0, . . . , Xj , 1, Xj+1, . . . , Xp〉〉z+1 = 〈〈X0, . . . , Xp〉〉z(7.2)

In addition,

(7.3) 〈〈X0, . . . , Xj−1Xj , . . . , Xp〉〉z − 〈〈X0, . . . , XjXj+1, . . . , Xp〉〉z

= 〈〈X0, . . . , [D2, Xj ], . . . , Xp〉〉z − (−1)X
0···Xj−1

〈X0, . . . , [D,Xj ], . . . , Xp〉z.

(In both instances within this last formula the commutators are graded commuta-
tors.) �

7.5. Remark. When j = p equation (7.3) should be read as

〈〈X0, . . . , Xp−1Xp〉〉z − 〈〈XpX0, . . . , Xp−1〉〉z

= 〈〈X0, . . . , Xp−1, [D2, Xp]〉〉z − (−1)X
0···Xp−1

〈X0, . . . , Xp−1, [D,Xp]〉z.

We shall also need a version of Lemma 5.3, as follows.
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7.6. Lemma.

(7.4)
p∑
j=0

(−1)X
0···Xj−1

〈〈X0, . . . , [D,Xj ], . . . , Xp〉〉z

= 2
p∑
k=0

〈X0, . . . , Xk−1, D2, Xk, . . . , Xp〉z.

�

Proof. This follows from Lemma 5.3. Note that [D,D] = 2D2, which helps
explain the factor of 2 in the formula. �

The formula in Lemma 7.6 can be simplified by means of the following compu-
tation:

7.7. Lemma.
p∑
j=0

〈X0, . . . , Xj , D2, Xj+1, . . . , Xp〉z = (z + p)〈X0, . . . , Xp〉z

Proof. If we substitute into the integral which defines 〈X0, . . . , D2, . . . , Xp〉z
the formula

D2 = λ− (λ−∆)

we obtain the (supertrace of the) terms

(−1)p+1 Γ(z)
2πi

∫
λ−z+1X0(λ−∆)−1 · · · 1(λ−∆)−1 · · ·Xp(λ−∆)−1 dλ

− (−1)p+1 Γ(z)
2πi

∫
λ−zX0(λ−∆)−1 · · ·Xp(λ−∆)−1 dλ

Using the functional equation Γ(z) = (z−1)Γ(z−1) we therefore obtain the quantity

(z − 1)〈X0, . . . , Xj , 1, Xj+1, . . . , Xp〉z−1 + 〈X0, . . . , Xp〉z

(the change in the sign preceding the second bracket comes from the fact that the
bracket contains one fewer term, and the fact that (−1)p+1 = −(−1)p). Adding up
the terms for each j, and using Lemma 5.1 we therefore obtain
p∑
j=0

〈X0, . . . , Xj , D2, Xj+1, . . . , Xp〉z = (z − 1)〈X0, . . . , Xp〉z + (p+ 1)〈X0, . . . , Xp〉z

= (z + p)〈X0, . . . , Xp〉z

as required. �

Putting together the last two lemmas we obtain the formula

(7.5)
p∑
j=0

(−1)X
0···Xj−1

〈〈X0, . . . , [D,Xj ], . . . , Xp〉〉z = 2(z + p)〈X0, . . . , Xp〉z.

With this in hand we can proceed to the following computation:
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7.8. Lemma. Define multi-linear functionals Θp on A, with values in the space
of meromorphic functions on C, by the formulas

Θp(a0, . . . , ap) = 〈〈a0, [D, a1], . . . , [D, ap]〉〉s− p+1
2
.

Then

BΘp+1(a0, . . . , ap) = 〈〈[D, a0], . . . , [D, ap]〉〉s− p
2
.

and in addition

bΘp−1(a0, . . . , ap) +BΘp+1(a0, . . . , ap) = 2sΨp(a0, . . . , ap)

for all s ∈ C and all a0, . . . , ap ∈ A.

Proof. The formula for BΘp+1(a0, . . . , ap) is a consequence of Lemma 7.4.
The computation of bΘp−1(a0, . . . , ap) is a little more cumbersome, although still
elementary. It proceeds as follows. First we use the Leibniz rule to write

bΘp−1(a0, . . . , ap) =
p−1∑
j=0

(−1)j〈〈a0, . . . , [D, ajaj+1], . . . , [D, ap]〉〉s− p
2

+ (−1)p〈〈apa0, [D, a1], . . . , [D, ap−1]〉〉s− p
2

= 〈〈a0a1, [D, a2], . . . , [D, ap]〉〉s− p
2

+
p−1∑
j=1

(−1)j〈〈a0, . . . , aj [D, aj+1], . . . , [D, ap]〉〉s− p
2

+
p−1∑
j=1

(−1)j〈〈a0, . . . , [D, aj ]aj+1, . . . , [D, ap]〉〉s− p
2

+ (−1)p〈〈apa0, [D, a1], . . . , [D, ap−1]〉〉s− p
2

Next we rearrange the terms to obtain the formula

bΘp−1(a0, . . . , ap) =
(
〈〈a0a1, [D, a2], . . . , [D, ap]〉〉s− p

2

− 〈〈a0, a1[D, a2], . . . , [D, ap]〉〉s− p
2

)
+
p−2∑
j=1

(−1)j
(
〈〈a0, . . . , [D, aj ]aj+1, . . . , [D, ap]〉〉s− p

2

− 〈〈a0, . . . , aj+1[D, aj+2], . . . , [D, ap]〉〉s− p
2

)
+ (−1)p−1

(
〈〈a0, [D, a1], . . . , [D, ap−1]ap〉〉s− p

2

− 〈〈apa0, [D, a1], . . . , [D, ap−1]〉〉s− p
2

)
.
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We can now apply Lemma 7.6:

bΘp−1(a0, . . . , ap) =
(
〈〈a0, [D2, a1], [D, a2], . . . , [D, ap]〉〉s− p

2

+ 〈a0, [D, a1], [D, a2], . . . , [D, ap]〉s− p
2

)
+
p−2∑
j=1

(−1)j
(
〈〈a0, [D, a1], . . . , [D2, aj+1], . . . , [D, ap]〉〉s− p

2

+ (−1)j 〈a0, [D, a1], . . . , [D, aj+1], . . . , [D, ap]〉s− p
2

)
+ (−1)p−1

(
〈〈a0, [D, a1], . . . , [D, ap−1], [D2, ap]〉〉s− p

2

+ (−1)p−1〈a0, [D, a1], . . . , [D, ap−1], [D, ap]〉s− p
2

)
.

Collecting terms we get

bΘp−1(a0, . . . , ap) =
p∑
k=1

(−1)k−1〈〈a0, [D, a1], . . . , [D2, ak], . . . , [D, ap]〉〉s− p
2

+ p〈a0, [D, a1], . . . , [D, ap]〉s− p
2
.

All that remains now is to add together bΘ and BΘ, and apply Equation (7.5) to
the result. Writing a0 = X0 and [D, aj ] = Xj for j = 1, . . . , p we get

bΘp−1(a0, . . . , ap) +BΘp+1(a0, . . . , ap)

=
p∑
j=0

(−1)X
0···Xj−1

〈〈X0, . . . , [D,Xj ], . . . , Xp〉〉s− p
2
− p〈X0, . . . , Xp〉s− p

2

= 2(s− p

2
+ p)〈X0, . . . , Xp〉s− p

2
− p〈X0, . . . , Xp〉s− p

2

= 2s〈X0, . . . , Xp〉s− p
2
,

as the lemma requires. �

7.9. Remark. The statement of Lemma 7.8 can be explained as follows. If we
replace D by tD and ∆ by t2∆ in the definitions of 〈· · · 〉z and Ψp, so as to obtain
a new improper (b, B)-cocycle Ψt = (Ψt

0,Ψ
t
2, . . . ), then it is easy to check from the

definitions that
Ψt
p(a

0, . . . , ap) = t−2sΨp(a0, . . . , ap).

Now, we expect that as t varies the cohomology class of the cocycle Ψt should not
change. And indeed, by borrowing known formulas from the theory of the JLO
cocycle (see for example [17], or [18, Section 10.2], or Section 6 below) we can
construct a (b, B)-cochain Θ such that

BΘ + bΘ +
d

dt
Ψt = 0.

This is the same Θ as that which appears in the lemma.

The proof of Theorem 7.1 is now very straightforward:

Proof of Theorem 7.1. According to Lemma 7.8 the (b, B)-cochain(
Ress=0

( 1
2s

Θ1

)
,Ress=0

( 1
2s

Θ3

)
, . . . ,Ress=0

( 1
2s

Θn−1

)
, 0, 0, . . .

)
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cobounds the difference of Ress=0 Ψ and the cyclic n-cocycle Ress=0

(
1
2sBΘn+1

)
.

Since

Ress=0

( 1
2s
BΘn+1

)
(a0, . . . , an) =

1
2
〈〈[D, a0], . . . , [D, an]〉〉−n

2

the theorem is proved. �

7.2. Computation with the Cyclic Cocycle. We turn now to the second
step. We are going to alter D by means of the following homotopy:

Dt = D|D|−t (0 ≤ t ≤ 1)

(the same strategy is employed by Connes and Moscovici in [10]). We shall similarly
replace ∆ with ∆t = D2

t , and we shall use ∆t in place of ∆ in the definitions of
〈· · · 〉z and of 〈〈· · · 〉〉z.

To simplify the notation we shall drop the subscript t in the following com-
putation and denote by Ḋ = −Dt · log |D| the derivative of the operator Dt with
respect to t.

7.10. Lemma. Define a multi-linear functional on A, with values in the analytic
functions on the half-plane Re(z) + n > d−1

2 , by the formula

Φtn(a
0, . . . , an) = 〈〈a0Ḋ, [D, a1], . . . , [D, an]〉〉z.

Then BΦtn is a cyclic (n− 1)-cochain and

bBΦtn(a
0, . . . , an)

=
d

dt
〈〈[D, a0], . . . , [D, an]〉〉z + (2z + n)

n∑
j=0

〈Ḋ, [D, aj ], . . . , [Dj−1]〉z.

7.11. Remark. Observe that the operator log |D| has analytic order δ or less,
for every δ > 0. As a result, the proof of Proposition 4.14 shows that the quantity
is a holomorphic function of z in the half-plane Re(z) + n > d−1

2 . But we shall not
be concerned with any possible meromorphic continuation to C.

Proof. Let us take advantage of the fact that bB+Bb = 0 and compute BbΦt

instead (fewer minus signs and wrap-around terms are involved).
A straightforward application of the definitions in Section 2 shows that the

quantity BbΦtn(a
0, . . . , an) is the sum, from j = 0 to j = n, of the following terms:

− 〈〈Ḋ, [D, ajaj+1], [D, aj+2], . . . , [D, aj−1]〉〉z
+ 〈〈Ḋ, [D, aj ], [D, aj+1aj+2], . . . , [D, aj−1]〉〉z
− · · ·

+ (−1)n〈〈Ḋ, [D, aj ], [D, aj+1], . . . , [D, aj−2aj−1]〉〉z.

If we add the term 〈〈Ḋaj , [D, aj+1], . . . , [D, aj−1〉〉z to the beginning of this expres-
sion, and also the terms

− 〈〈aj−1Ḋ, [D, ajaj+1], [D, aj+2], . . . , [D, aj−2]〉〉z
− 〈〈[Ḋ, aj ], [D, aj+1], . . . , [D, aj−1]〉〉z

at the end, then, after summing over all j, we have added zero in total. But we can
now invoke Leibniz’s rule to expand [D, akak+1] and apply part (iii) of Lemma 7.4
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to obtain the quantity(
〈〈Ḋ, [D2, aj ], [D, aj+2], . . . , [D, aj−1]〉〉z

− 〈〈Ḋ, [D, aj ], [D2, aj+1], . . . , [D, aj−1]〉〉z
+ . . .

+(−1)n〈〈Ḋ, [D, aj ], [D, aj+1], . . . , [D2, aj−1]〉〉z
)

+ (n+ 1)〈Ḋ, [D, aj ], [D, aj+1], . . . , [D, aj−1]〉z
− 〈〈[Ḋ, aj ], [D, aj+1], . . . , [D, aj−1]〉〉z

(summed over j, as before). Applying Equation 7.5 we arrive at the following
formula

BbΦtn(a
0, . . . , an) =

∑n
j=0〈〈[D, Ḋ], [D, aj ], [D, aj+2], . . . , [D, aj−1]〉〉z

− (2z + (n+ 1))
∑n
j=0〈Ḋ, [D, a

j ], . . . , [D, aj−1]〉z
−

∑n
j=0〈〈[Ḋ, a

j ], [D, aj+1], . . . , [D, aj−1]〉〉z.

To complete the proof we write

〈〈[D, a0], . . . , [D, ap]〉〉z =
∑n
j=0〈D, [D, a

j ], . . . , [D, aj−1]〉z

and differentiate with respect to t, bearing in mind the definition of the quantities
〈. . . 〉z and the fact that d

dt (λ−∆)−1 = (λ−∆)−1[D, Ḋ](λ−∆)−1. We obtain

d
dt 〈〈[D, a

0], . . . , [D, ap]〉〉z = −
∑n
j=0〈〈[D, Ḋ], [D, aj ], [D, aj+2], . . . , [D, aj−1]〉〉z

+
∑n
j=0〈Ḋ, [D, a

j ], . . . , [D, aj−1]〉z
+

∑n
j=0〈〈[Ḋ, a

j ], [D, aj+1], . . . , [D, aj−1]〉〉z.

This proves the lemma. �

We can now complete the second step, and with it the proof of the Connes-
Moscovici Residue Index Theorem:

7.12. Theorem (Connes and Moscovici). The residue cocycle Ress=0 Ψ is co-
homologous, as a (b, B)-cocycle, to the Chern character cocycle of Connes.

Proof. Thanks to Theorem 7.1 it suffices to show that the cyclic cocycle

(7.6)
1
2
〈〈[D, a0], . . . , [D, an]〉〉−n

2

is cohomologous to the Chern character. To do this we use the homotopy Dt above.
Thanks to Lemma 7.10 the coboundary of the cyclic cochain∫ 1

0

BΨt
n(a

0, . . . , an−1) dt
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is the difference of the cocycles (7.6) associated to D0 = D and D1 = F . For D1

we have D2
1 = ∆1 = I and so

1
2
〈〈[D1, a

0], . . . , [D1, a
n]〉〉z

=
1
2

n∑
j=1

(−1)j+1 (−1)n+1Γ(z)
2πi

×

Trace
(∫

λ−zε[F, a0] · · · [F, aj ]F · · · [F, an](λ− I)−(n+2) dλ

)
Since F anticommutes with each operator [F, aj ] this simplifies to

1
2

n∑
j=1

(−1)n+1Γ(z)
2πi

Trace
(∫

λ−zεF [F, a0] · · · [F, an](λ− I)−(n+2) dλ

)
.

The terms in the sum are now all the same, and after applying Cauchy’s formula
we get

n+ 1
2

(−1)n+1Γ(z) · Trace
(
εF [F, a0] · · · [F, an]

)
·
(
−z
n+ 1

)
.

Using the functional equation for the Γ-function this reduces to

Γ(z + n+ 1)
2 · n!

Trace
(
εF [F, a0] · · · [F, an]

)
and evaluating at z = −n

2 we obtain the Chern character of Connes. �

7.3. Invertibility Hypothesis Removed. In the case whereD is non-invert-
ible we employ the device introduced in Section 6.1, and associate to D the residue
cocycle for the operator DK .

Now Connes’ Chern character cocycle is defined for a not necessarily invertible
operator D by forming first DK , then FK = DK |DK |−1, then chFK

n . See [4, Part
I]. The following result therefore follows immediately from our calculations in the
invertible case.

7.13. Theorem. For any operator D, invertible or not, the class in periodic
cyclic cohomology of the residue cocycle Ress=0 Ψ is equal to the class of the Chern
character cocycle of Connes. �

7.4. The Odd-Dimensional Case. We shall briefly indicate the changes
which must be made to deal with the “odd” degree case, consisting of a self-adjoint
operator D on a trivially graded Hilbert space H.

The basic definition of the quantity 〈· · · 〉z is unchanged, except of course that
now we set ε = I, and so we could omit ε from Equation (4.1). The formula

Ψp(a0, . . . , ap) = 〈a0, [D, a1], . . . , [D, ap]〉s− p
2

now defines an odd, improper cocycle, with values in the meromorphic functions on
C. The proof of this is almost the same as the proof of Theorem 5.5. We obtain
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the formula

(7.7) BΨp+2(a0, . . . , ap+1) + bΨp(a0, . . . , ap+1)

= 〈[D, a0], [D, a1], . . . , [D, ap+1]〉s− p
2

+
p+1∑
j=1

(−1)j−1〈a0, [D, a1], . . . , [D2, aj ], . . . , [D, ap+1]〉s− p
2
,

as in that proof, but instead of appealing to Lemma 5.3 we now note that

[D2, aj ] = D[D, aj ] + [D, aj ]D

and
〈· · · , [D, aj−1], D[D, aj ], . . . 〉z = 〈· · · , [D, aj−1]D, [D, aj ], . . . 〉z.

Using these relations the right hand side of Equation (7.7) telescopes to 0. The
computation of Ress=0 Ψ is unchanged from the proof of Theorem 5.6, except for
the omission of ε.

With similar modifications to the proofs of Lemmas 7.8 and 7.10 we obtain
without difficulty the odd version of Theorem 7.12.

Appendix A. Comparison with the JLO Cocycle

In this appendix we shall use the residue theorem and the Mellin transform of
complex analysis to compare the residue cocycle with the JLO cocycle.

The JLO cocycle, discovered by Jaffe, Lesniewski and Osterwalder [20], was
developed in the context of spectral triples, as in Section 4.5, and accordingly we
shall begin with such a spectral triple (A,H,D). Since we are going to compare
the JLO cocycle with the residue cocycle we shall assume that (A,H,D) has the
additional properties considered in Section 4.5 (although the theory of the JLO
cocycle itself can be developed in greater generality). Thus we shall assume that our
spectral triple is regular, is finitely summable, and has discrete dimension spectrum.
We shall also make an additional assumption later on in this section.

We shall consider only the even, Z/2-graded case here, but the odd case can
be developed in exactly the same way.

A.1. Definition. If X0, . . . , Xp are bounded operators on H, and if t > 0, let
us define

〈X0, . . . , Xp〉JLO
t = t

p
2 Trace

(∫
Σp

εX0e−u0t∆ . . . Xpe−upt∆ du

)
The integral is over the standard p-simplex

Σp =
{

(u0, . . . , up)
∣∣∣uj ≥ 0 & u0 + · · ·+ up = 1

}
.

The JLO cocycle is the improper (b, B)-cocycle

(a0, . . . , ap) 7→ 〈a0, [D, a1], . . . , [D, ap]〉JLO
t ,

which should be thought of here as a cocycle with coefficients in the space of
functions of t > 0.

Strictly speaking the “traditional” JLO cocycle is given by the above formula for
the particular value t = 1. Our formula for 〈a0, [D, a1], . . . , [D, ap]〉JLO

t corresponds
to the traditional cocycle associated to the operator t

1
2D. It will be quite convenient

to think of the JLO cocycle as a function of t > 0.
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Of course, it is a basic result that the JLO cocycle really is a cocycle. See [20]
or [17].

The proper context for the JLO cocycle is Connes’ entire cyclic cohomology [5,
7] for Banach algebras. We shall not describe this theory here, except to say that
there is a natural map

HCP ∗(A) → HCP ∗entire(A),
and that the arguments which follow show that the image of the residue cocycle in
entire cyclic cohomology is the JLO cocycle.10

The following formula (which is essentially due to Connes [6, Equation (17)])
exhibits the connection between the JLO cocycle and the cocycle that we con-
structed in Section 5.

A.2. Lemma. If p > 0 and if X0, . . . , Xp are generalized differential operators
in D(A,D), then

〈X0, . . . , Xp〉JLO
t

= t−
p
2
(−1)p

2πi
Trace

(∫
e−tλεX0(λ−∆)−1X1 · · ·Xp(λ−∆)−1 dλ

)
.

As in Section 4.3 the contour integral should be evaluated along a (downward
pointing) vertical line in the complex plane which separates 0 from the spectrum
of ∆. The hypotheses guarantee the absolute convergence of the integral, in the
norm-topology. The formula in the lemma is also correct for p = 0, but in this case
the integral has to be suitably interpreted since it does not converge in the ordinary
sense.

Proof of the Lemma. For simplicity let us assume that the operators Xj

are bounded (this is the only case of the lemma that we shall use below).
By Cauchy’s Theorem, we may replace the contour of integration along which

the contour integral is computed by the imaginary axis in C (traversed upward).
Having done so we obtain the formula

(A.1)
(−1)p

2πi

∫
e−tλX0(λ−∆)−1X1 · · ·Xp(λ−∆)−1 dλ

=
1
2π

∫ ∞

−∞
eitvX0(iv + ∆)−1 · · ·Xp(iv + ∆)−1 dv.

Note that this has the appearance of an inverse Fourier transform. As for the JLO
cocycle, if we define functions gj from R into the bounded operators on H by

u 7→

{
Xje−u∆ if u ≥ 0

0 if u < 0.

then we obtain the formula

(A.2) t
p
2

∫
Σp

X0e−u0t∆ . . . Xpe−upt∆ du

= t−
p
2

∫ ∞

−∞
· · ·

∫ ∞

−∞
g0(t− u1)g1(u1 − u2) · · · gn−1(un−1 − un)gn(un) du1 . . . dun,

10This result can be improved somewhat. Entire cyclic cohomology is defined for locally
convex algebras, and one can identify the JLO cocycle and the residue cocycle in the entire cyclic

cohomology of various completions of A.
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which has the form of a convolution product, evaluated at t.
Suppose now that f0, . . . , fn are Schwartz-class functions from R into a Banach

algebra B. Define their Fourier transforms in the obvious way, by the formulas

f̂ j(v) =
∫ ∞

−∞
e−iuvf(u) du.

The just as in ordinary Fourier theory one has the formula

(A.3) (f0 ? · · · ? fn)(t) =
1
2π

∫ ∞

−∞
eitv f̂0(v) · · · f̂n(v) du.

Returning to the case at hand, let B = B(H) and let f jδ (u) be the convolution
product of a C∞, compactly supported bump function δ−1φ(δ−1x) with the func-
tion gj . Applying the formula (A.3) to the functions f jδ and then taking the limit
as δ → 0 we obtain the equality of (A.1) and (A.2), which proves the lemma. �

A.3. Lemma. If p ≥ 0 and a0, . . . , ap ∈ A, then there is some α > 0 such that∣∣ 〈a0, [D, a1], . . . , [D, ap]〉JLO
t

∣∣ = O(e−αt)

as t→∞. In addition if k > d−p
2 then∣∣ 〈a0, [D, a1], . . . , [D, ap]〉JLO

t

∣∣ = O
(
t−k

)
as t→ 0, �

Proof. See [18, Equation (10.47)] for the first relation, and [18, Equation
(10.43)] for the second. �

The following proposition now shows that the improper cocycle which we con-
sidered in Section 5 is the Mellin transform of the JLO cocycle.

For the rest of this section let us fix a real number k > d−p
2 .

A.4. Proposition. If p ≥ 0 and a0, . . . , ap ∈ A, and if Re(s) > k then

〈a0, [D, a1], . . . , [D, ap]〉s− p
2

=
∫ ∞

0

〈a0, [D, a1], . . . , [D, ap]〉JLO
t ts

dt

t
.

Proof. By Lemma A.3 the integral is absolutely convergent as long as Re(s) >
k. The identity follows from Lemma A.2 and the formula

Γ(z)λ−z =
∫ ∞

0

e−tλtz
dt

t

which is valid for all λ > 0 and for all z ∈ C with Re(z) > 0. (In the case p = 0
Lemma A.2 does not apply, but then the proposition is a direct consequence of the
displayed formula). �

Having established this basic relation, we are now going to apply the inversion
formula for the Mellin transform to obtain an asymptotic formula for the JLO
cocycle. In order to do so we shall need to make an additional analytic assumption,
as follows: the function 〈a0, [D, a1], . . . , [D, ap]〉z has only finitely many poles in
each vertical strip α < Re(z) < β, and in each such strip and every N one has∣∣∣〈a0, [D, a1], . . . , [D, ap]〉z

∣∣∣ = O(|z|−N )

as |z| → ∞. Note that a similar assumption is made by Connes and Moscovici in
[12].
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Consider the rectangular contour in the complex plane which is indicated in
the figure.

−K − iR

k + iR−K + iR

k − iR

s ∈ C

Here R is a large positive number (we shall take the limit as R → ∞). The real
numbers k > d−p

2 and K should be chosen so that there are no poles on the vertical
lines Re(s) = k and Re(s) = −K.

Let us integrate the function 〈a0, [D, a1], . . . , [D, ap]〉s− p
2
t−s around this con-

tour.
The function 〈a0, [D, a1], . . . , [D, ap]〉s− p

2
is holomorphic in the region Re(s) >

d1−p
2 , and converges rapidly to zero along each vertical line there. Therefore, by

the inversion formula for the Mellin transform,

(A.4) lim
R→∞

1
2πi

∫ k+iR

k−iR
〈a0, [D, a1], . . . , [D, ap]〉s− p

2
t−s ds

= 〈a0, [D, a1], . . . , [D, ap]〉JLO
t

(the contour integral is along the vertical line from k − iR to k + iR).
Turning our attention to the left vertical side of the contour, we note that∫ −K+iR

−K−iR
〈a0, [D, a1], . . . , [D, ap]〉s− p

2
t−s dz

= tK
∫ −R

−R
〈a0, [D, a1], . . . , [D, ap]〉−K− p

2 +irt
−ir dr

By hypothesis the quantity 〈a0, [D, a1], . . . , [D, ap]〉−K− p
2 +ir is an integrable func-

tion of r ∈ R. Taking the limit as R→∞, the integral on the right-hand side (not
including the term tK) is the Fourier transform, evaluated at log(t), of an integrable
function of r. It is therefore a bounded function of t. Hence

(A.5) lim
R→∞

∫ −K+iR

−K−iR
〈a0, [D, a1], . . . , [D, ap]〉s− p

2
t−s ds = O(tK)

as t→ 0.
Since the horizontal components of the contour contribute zero to the contour

integral, in the limit as R→∞, it follows from the Residue Theorem that

(A.6) 〈a0, [D, a1], . . . , [D, ap]〉JLO
t =∑

−K<Re(w)<k

Ress=w
(
〈a0, [D, a1], . . . , [D, ap]〉s− p

2
t−s

)
+O(tK)
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as t→ 0.

A.5. Theorem. Assume that the spectral triple (A,H,D) is regular and has
simple dimension spectrum. Then for every p ≥ 0 and all a0, . . . ap ∈ A the quantity
〈a0, [D, a1], . . . , [D, ap]〉JLO

t has an asymptotic expansion in powers of t as decreases
to zero. The residue cocycle Ress=0 Ψ(a0, . . . , ap) is the coefficient of the constant
term in this asymptotic expansion. �

Appendix B. Complex Powers in a Differential Algebra

In this appendix we shall try to sketch out a more conceptual view of the
improper cocycle which was constructed in Section 5. This involves Quillen’s
cochain picture of cyclic cohomology [23], and in fact it was Quillen’s account
of the JLO cocycle from this perspective which first led to the formula for the
quantity 〈X0, . . . , Xp〉z given in Definition 4.12.

We shall not attempt to carefully reconstruct the results of Sections 5 and 7
from the cochain perspective, and in fact for the sake of brevity we shall disregard
analytic niceties altogether. Our purpose is only to set the main definitions of these
notes against a background which may (or may not) make them seem more natural.

With this limited aim in mind we shall assume, as we did in the body of the
notes, that the operator ∆ is invertible. We shall also consider only the even case,
in which the Hilbert space H on which ∆ acts is Z/2-graded.

As we did when we looked at cyclic cohomology in Section 2, let us fix an
algebra A. But let us now also fix a second algebra L. For n ≥ 0 denote by
Homn(A,L) the vector space of n-linear maps from A to L. By a 0-linear map
from A to L we shall mean a linear map from C to L, or in other words just an
element of L. Let Hom∗∗(A,L) be the direct product

Hom∗∗(A,L) =
∞∏
n=0

Homn(A,L).

Thus an element φ of Hom∗∗(A,L) is a sequence of multi-linear maps from A to
L. We shall denote by φ(a1, . . . , an) the value of the n-th component of φ on the
n-tuple (a1, . . . , an).

The vector space Hom∗∗(A,L) is Z/2-graded in the following way: an element
φ is even (resp. odd) if φ(a1, . . . , an) = 0 for all odd n (resp. for all even n). We
shall denote by degM (φ) ∈ {0, 1} the grading-degree of φ. (The letter “M” stands
for “multi-linear;” a second grading-degree will be introduced below.)

B.1. Lemma. If φ, ψ ∈ Hom∗∗(A,L), then define

φ ∨ ψ(a1, . . . , an) =
∑

p+q=n

φ(a1, . . . , ap)ψ(ap+1, . . . , an)

and

dMφ(a1, . . . , an+1) =
n∑
i=1

(−1)i+1φ(a1, . . . , aiai+1, . . . , an+1).

The vector space Hom∗∗(A,L), so equipped with a multiplication and differential,
is a Z/2-graded differential algebra. �

Let us now suppose that the algebra L is Z/2-graded. If φ ∈ Hom∗∗(A,L) then
let us write degL(φ) = 0 if φ(a1, . . . , an) belongs to the degree-zero part of L for
every n and every n-tuple (a1, . . . , an). Similarly, if φ ∈ Hom∗∗(A,L) then let us
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write degL(φ) = 1 if φ(a1, . . . , an) belongs to the degree-one part of L for every
n and every n-tuple (a1, . . . , an). This is a new Z/2-grading on the vector space
Hom∗∗(A,L). The formula

deg(φ) = degM (φ) + degL(φ)

defines a third Z/2-grading—the one we are really interested in. Using this last
Z/2-grading, we have the following result:

B.2. Lemma. If φ, ψ ∈ Hom∗∗(A,L), then define

φ � ψ = (−1)degM (φ) degL(ψ)φ ∨ ψ

and
dφ = (−1)degL(φ)d′φ

These new operations once again provide Hom∗∗(A,L) with the structure of a Z/2-
graded differential algebra (for the total Z/2-grading deg(φ) = degM (φ)+degL(φ)).

�

We shall now specialize to the following situation: A will be, as in Section 5, an
algebra of differential order zero and grading degree zero operators contained within
an algebra D(∆) of generalized differential operators, and L will be the algebra of
all operators on the Z/2-graded vector space H∞ ⊆ H.

Denote by ρ the inclusion of A into L. This is of course a 1-linear map from A
to L, and we can therefore think of ρ as an element of Hom∗∗(A,L) (all of whose
n-linear components are zero, except for n = 1).

Denote by D a square root of ∆, as in Section 4.4. Think of D as a 0-linear
map from A to L, and therefore as an element of Hom∗∗(A,L) too. Combining D
and ρ let us define the “superconnection form”

θ = D − ρ ∈ Hom∗∗(A,L)

This has odd Z/2-grading degree (that is, deg(θ) = 1). Let K be its “curvature:”

K = dθ + θ2,

which has even Z/2-grading degree. Using the formulas in Lemma B.2 the element
K may be calculated, as follows:

B.3. Lemma. One has

K = ∆− E ∈ Hom∗∗(A,L),

where E : A→ L is the 1-linear map defined by the formula

E(a) = [D, ρ(a)]. �

In all of the above we are following Quillen, who then proceeds to make the
following definition, which is motivated by the well-known Banach algebra formula

eb−a =
∞∑
n=0

∫
Σn

e−t0abe−t1a · · · be−tna dt.

B.4. Definition. Denote by e−K ∈ Hom∗∗(A,L) the element

e−K =
∞∑
n=0

∫
Σn

e−t0∆Ee−t1∆ . . . Ee−tn∆ dt.
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The n-th term in the sum is an n-linear map from A to L, and the series should
be regarded as defining an element of Hom∗∗(A,L) whose n-linear component is
this term. As Quillen observes, in [23, Section 8] the exponential e−K defined in
this way has the following two crucial properties:

B.5. Lemma (Bianchi Identity). d(e−K) + [e−K , θ] = 0. �

B.6. Lemma (Differential Equation). Suppose that δ is a derivation of Hom∗∗(A,L)
into a bimodule. Then

δ(e−K) = −δ(K)e−K ,
modulo (limits of) commutators. �

Both lemmas follow from the “Duhamel formula”

δ(e−K) =
∫ 1

0

e−tKδ(K)e−(1−t)K dt,

which is familiar from semigroup theory and which may be verified for the notion
of exponential now being considered. (Once more, we remind the reader that we
are disregarding analytic details.)

Suppose we now introduce the “supertrace” Traceε(X) = Trace(εX) (which
is of course defined only on a subalgebra of L). Quillen reinterprets the Bianchi
Identity and the Differential Equation above as coboundary computations in a
complex which computes periodic cyclic cohomology (using improper cocycles, in
our terminology here). As a result he is able to recover the following basic fact
about the JLO cocycle — namely that it really is a cocycle:

B.7. Theorem (Quillen). The formula

Φ2n(a0, . . . , a2n) = ∫
Σn

Trace
(
εa0e−t0∆[D, a1]e−t1∆[D, a2] . . . [D, an]e−tn∆

)
dt

defines a (b, B)-cocycle. �

The details of the argument are not important here. What is important is that
using the Bianchi Identity and a Differential Equation one can construct cocycles
for cyclic cohomology from elements of the algebra Hom∗∗(A,L). With this in
mind, let us consider other functions of the curvature operator K, beginning with
resolvents.

B.8. Lemma. If λ /∈ Spectrum(∆) then the element (λ−K) ∈ Hom∗∗(A,L) is
invertible.

Proof. Since (λ−K) = (λ−∆) + E we can write

(λ−K)−1 = (λ−∆)−1 − (λ−∆)−1E(λ−∆)−1

+ (λ−∆)−1E(λ−∆)−1E(λ−∆)−1 − · · ·
This is a series whose nth term is an n-linear map from A to L, and so the sum
has an obvious meaning in Hom∗∗(A,L). One can then check that the sum defines
(λ−K)−1, as required. �

With resolvents in hand, we can construct other functions of K using formulas
modeled on the holomorphic functional calculus.
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B.9. Definition. For any complex z with positive real part define K−z ∈
Hom∗∗(A,L) by the formula

K−z =
1

2πi

∫
λ−z(λ−K)−1 dλ,

in which the integral is a contour integral along a downward vertical line in C
separating 0 from Spectrum(∆).

The assumption that Re(z) > 0 guarantees convergence of the integral (in
each component within Hom∗∗(A,L) the integral converges in the pointwise norm
topology of n-linear maps from A to the algebra of bounded operators on H; the
limit is also an operator from H∞ to H∞, as required). The complex powers K−z

so defined satisfy the following key identities:

B.10. Lemma (Bianchi Identity). d(K−z) + [K−z, θ] = 0. �

B.11. Lemma (Differential Equation). If δ is a derivation of Hom∗∗(A,L) into
a bimodule, then

δ(K−z) = −zδ(K)K−z−1,

modulo (limits of) commutators. �

These follow from the derivation formula

δ(K−z) =
1

2πi

∫
λ−z(λ−K)−1δ(K)(λ−K)−1 dλ.

In order to simplify the Differential Equation it is convenient to introduce the
Gamma function, using which we can write

δ
(
Γ(z)K−z

)
= −δ(K)Γ(z + 1)K−(z+1)

(modulo limits of commutators, as before). Except for the appearance of z + 1
in place of z in the right hand side of the equation, this is exactly the same as
the differential equation for e−K . Meanwhile even after introducing the Gamma
function we still have available the Bianchi identity:

d
(
Γ(z)K−z

)
+

[
Γ(z)K−z, θ

]
= 0.

The degree n component of Γ(z)K−z is the multi-linear function

(a1, . . . , an) 7→ (−1)n

2πi
Γ(z)

∫
λ−z(λ−∆)−1[D, a1] . . . [D, an](λ−∆)−1 dλ,

Quillen’s approach to JLO therefore suggests (and in fact upon closer inspection
proves) the following result:

B.12. Theorem. If we define

Ψs
p(a

0, . . . , ap) =

(−1)pΓ(s− p
2 )

2πi
Trace

(∫
λ

p
2−sεa0(λ−∆)−1[D, a1] . . .

[D, ap](λ−∆)−1 dλ

)
,

then bΨs
p +BΨs

p+2 = 0. �

This is of course precisely the conclusion that we reached in Section 5.
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Appendix C. Proof of the Hochschild Character Theorem

In this final appendix we shall prove Connes’ Hochschild character theorem by
appealing to some of the computations that we made in Section 7.

C.1. Definition. A Hochschild n-cycle over an algebra A is an element of the
(n+ 1)-fold tensor product A⊗ · · · ⊗A which is mapped to zero by the differential

b(a0 ⊗ · · · an) =
n−1∑
j=0

(−1)ja0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · an

+ (−1)nana0 ⊗ a1 ⊗ · · · ⊗ an−1.

C.2. Remark. Obviously, two Hochschild n-cochains which differ by a Hochschild
coboundary will agree when evaluated on any Hochschild cycle. The converse is
not quite true.

C.3. Theorem. Let (A,H,D) be a regular spectral triple. Assume that D is
invertible and that for some positive integer n of the same parity as the triple, and
every a ∈ A,

a · |D|−n ∈ L1,∞(H).
The Chern character chFn of Definition 2.22 and the cochain

Φ(a0, . . . , an) =
Γ(n2 + 1)
n · n!

Traceω(εa0[D, a1][D, a2] · · · [D, an]|D|−n)

are equal when evaluated on any Hochschild cycle
∑
i a

0
i ⊗ · · · ⊗ ani . Here ε is 1 in

the odd case, and the grading operator on H in the even case.

Proof. We showed in Lemma 7.8 that

bΘn−1(a0, . . . , an) +BΘn+1(a0, . . . , an) = 2sΨn(a0, . . . , an),

at least for all s whose real part is large enough that all the terms are defined (since
we are no longer assuming any sort of analytic continuation property this is an issue
now). It follows that BΘn+1 and 2sΨn agree on any Hochschild cycle. Now, it is
not hard to compute that 2sΨn is defined when Re(s) > 0, and

lim
s→0

2sΨn(a0, . . . , an) =
Γ(n2 + 1)
n · n!

Traceω(εa0[D, a1][D, a2] · · · [D, an]|D|−n).

On the other hand BΘn+1(a0, . . . , an) is defined when Re(s) ≥ 0 (compare Re-
mark 7.2). Since the computations in Section 7.2 show that BΘn+1 is coho-
mologous, even as a cyclic cocycle, to the Chern character chFn , the theorem is
proved. �
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