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Abstract

These notes present a partial account of the local index theorem in non-
commutative geometry discovered by Alain Connes and Henri Moscovici.
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Preface

Several years ago Alain Connes and Henri Moscovici discovered a quite general
‘local’ index formula in noncommutative geometry [10]. The formula was origi-
nally studied in relation to the transverse geometry of foliations, but more recently
Connes has drawn attention to other possible areas of application, for example
compact quantum groups [6] and deformations of homogeneous manifolds [8].
Moreover elaborate structures in homological algebra have been devised in the
course of studying the formula [8], and these have found application in quantum
field theory [7] and elsewhere [11].

These notes provide an introduction to the local index formula. They empha-
size the basic, analytic aspects of the subject. This is in part because the analysis
must be dealt with first, before more purely cohomological issues are tackled, and
in part because the later issues are already quite well covered in survey articles by
Connes and others (see for example [5]). Moreover, on the cohomological side,
the final and definitive results have yet to be thoroughly investigated. | hope that
the reader will be able to use these notes to introduce himself to these issues of
current research interest.

The notes begin with a rapid account of the spectral theory of linear elliptic
operators on manifolds, which is the launching point for the local index formula.
They begin right at the beginning, and | hope that they might be accessible to
students with a very modest background in analysis. Two appendices deal with
still more basic issues in Hilbert space operator theory and Fourier theory.

The first result which goes beyond the totally standard canon (but which is
still classical) is the theorem that the zeta functions TrAcé&) associated to el-
liptic operators admit meromorphic continuationsztoe C. | shall present a
proof which is more algebraic than the usual ones, and which seems to me to well
adapted to Connes’ noncommutative geometric point of view.

Following that, manifolds are replaced by Connes’ ‘noncommutative geomet-
ric spaces’, and basic tools such as differential operator theory and pseudodiffer-
ential operator theory are developed in this context.

After the subject of cyclic cohomology theory is rapidly introduced, it be-
comes possible to formulate the basic index problem, which is the main topic of
the notes. The final sections of the paper (from 6 to 8) prove the index formula.

The notes correspond very roughly to the first four of the six lectures | gave
at the Trieste meeting. The remaining two lectures dealt with cyclic cohomology
for Hopf algebras. The interested reader can look at the overhead transparencies
from those lectures [20] to figure out more precisely what has been omitted and
what has been added (note that the division of the present notes into sections does



not correspond to the original division into lectures). The notes borrow (in places
verbatin) from several preprints of mine [17, 18, 19] which will be published else-
where. But of course they rely most of all on the work of Connes and Moscovici.
If a result is given in the notes without attribution, the reader should not assume
that it is original in any way. Most likely the result is due, in one form or another,
to these authors.

[ would like to thank Max Karoubi, Aderemi Kuku, and Claudio Pedrini for the
invitation to speak at the Trieste meeting. Many friends and colleagues helped me
alojng the way as | learned the topics presented here. In this regard | especially
want to thank Raplé Ponge and John Roe, along with all the members of the
Geometric Functional Analysis Seminar at Penn State.

The writing of these notes was supported in part by a grant from the US Na-
tional Science Foundation, and also of course by the ICTP.



1 Elliptic Partial Differential Operators

We are going to develop the spectral theory of elliptic linear partial differential
operators on smooth, closed manifolds. We shall approach the subject from the
direction of Hilbert space theory, which is particularly well suited for the task. In
fact Hilbert space theory was invented for just this purpose.

1.1 Laplace Operators

Let M be a smooth, closed, manifold of dimensionA linear operatoD map-

ping the vector space of smooth, complex-valued functionslao itself islocal

if, for every smooth functior, the support oD ¢ is contained within the support

of ¢. If D is local, then the value dD¢ at a pointm € M depends only on

the values ofp nearm, and as a result it makes sense to seek a local coordinate
description ofD.

1.1 Definition. A linear partial differential operatotis a local operator which in
every coordinate chart may be written

(1.1) D=)_ aa(x)%.

lo<q

where thea, are C*-functions. Hereq is a non-negative integer and the sum
is over non-negative integer multi-indices = («q,..., «,) for which |x| =

x1 + -+ x, < k. Theorderof D is the leasiy required to so represeit (in
any coordinate chart).

To begin with we are mainly interested in one example. This id_tydace
operatorA, also known as theaplace-Beltrami operatoon a closed Riemannian
manifold. It is given by the compact formufa = V*V, whereV is the gradient
operator from functions to tangent vector fields, arndis its adjoint, also called
the divergence operator (up to a sign, these are direct generalizations to mani-
folds of the objects of the same name in vector calculus). In local coordinates the
Laplace operator has the form

n
. 02
A=— Y(x + order one operator
Z_] 0" (x) 55 % p
The order one term is a bit complicated (the exact formula is of no concern to us)
but at the origin of a geodesic coordinate system all the coefficients of the order



one term vanish, and we get
A=— — atthe origi

which is the familiar formula from ordinary vector calculus.
Our goal in Section 1 is to prove the following fundamental fact.

1.2 Theorem. Let A be the Laplace operator on a closed Riemannian manifold.
There is an orthonormal basigp;} for the Hilbert spacel*(M) consisting of
smooth functiong; which are eigenfunctions fak:

Ad; = Ajd;, for some scalap;.
The eigenvalues; are non-negative and they tend to infinityjaends to infinity.

It is possible to say a bit more. Since the functignonstitute an orthonor-
mal basis fol.?(M), every functiond in L2(M) can be expanded as a series

b=>) aib;,
j=0

where the sequence of coefficiefis} is square-summable. It turns out thiat
L%(M) is a smooth function if and only if the sequenisg} is of rapid decay,
which means that ik € N then

supj¥a;| < oo.
j

This should call to mind a basic fact in the theory of Fourier series: a function on
the circle is smooth if and ony if its Fourier coefficient sequence is of rapid decay.
Note that the basic functions in Fourier theory, the exponentiafs constitute an
orthonormal basis fdr?(S') consisting of eigenfunctions for the Laplace operator
on the circle, which is jusP(f—;. So in some sense Theorem 1.2 establishes the
first principles of Fourier theory on any closed Riemannian manifold.

The proof of Theorem 1.2 is more or less a regunh a first course in func-
tional analysis. In view of what we have said it will not surprise the reader to learn
that the argument relies on one or two crucial computations in Fourier theory. But
we shall also need to review various ideas from Hilbert space operator theory.



1.2 Unbounded Operators

An unbounded operatoon a Hilbert spacet, is a linear transformation from a
dense linear subspaceldfinto H. No continuity is assumed. When dealing with
unbounded operators it is important to keep track of domains. Unbounded opera-
tors with different domains can’t generally be added together in a reasonable way.
Unbounded operators can’'t generally be composed in a reasonable way unless the
range of the first is contained within the domain of the second.

An unbounded operatdris symmetridf

(Tv,w) = (v, Tw)

for all v,w € domT. An unbounded operator gelf-adjointif it is symmetric and
if in addition
RangéT + il) = H.
In finite dimensions every symmetric operator is self-adjoint. In infinite dimen-

sions self-adjointness is precisely the condition needed to get spectral theory go-
ing. Observe that il is symmetric then

1T £1Dv]|* = [[Tv]® + [Iv]]?,

which implies that ifT is self-adjoint then the operatofs+ il map domH one-
to-one and ontd, so that they have well-defined inverses (which we regard as
operators fronH to itself).

1.3 Theorem.LetT be a self-adjoint operator. There is a (unique) homomorphism
from the algebra of bounded, continuous functionsfoimto B(H) (the algebra
of bounded operators oH) such that

(x£1)7— (TEiD)
O

This is one version of th&pectral Theoremlt is proved by noting that the
operator§T +1il)~' generate a commutativ@ -subalgebra oB(H), and by then
applying the basic theory of commutatiZg-algebras.

Note that once we have the Spectral Theorem we can define ‘wave operators’
e®T, ‘heat operatorsé—STz, and so on. Thus the result is conceptually very pow-
erful.

Self-adjoint operators are hard to come by in nature. Typically the natural
domain of an unbounded operator (e.g. the smooth, compactly supported functions



in the case of a differential operator) must be enlarged, and the operator extended
to this larger domain, so as to obtain a self-adjoint operator. Here is one procedure,
due to Friedrichs, which we’ll illustrate using the Laplace operator.

Let A be the Laplace operator on a Riemannian manifdid The manifold
need not be compact, or complete; it might have a boundary. Think a$
an unbounded operator dh = L?(M) whose domain is the space of smooth,
compactly supported functions (on the interiof\df if M has boundary).

Observe that ith € domA then

(Ad, ¢) = (VP, V) > 0.

Let us exploit this to define a new inner product on ddtoy the formula

Denote byH; the Hilbert space completion of dafin this inner product. It is,
among other things, a dense subspacH ¢dmore about it later). Now denote by
H, C H; the space of alb for which there exists a vect@ € H (which will be
(I+ A)d) such that

<9>1|)>:<(|)>1|)>1, V1PEH1.
1.4 Theorem (Friedrichs). The operatod + A is self-adjoint orH,. Il

The proof is a really good exercise. To get a self-adjoint extensiak gfst
subtractl from I + A.

1.3 Sobolev Spaces

We are now going to investigate in a bit more detail the Hilbert spécevhich
appeared above. It appears as the spagan the sequence dbobolev spaces
W,, W7, W,, ... associated to a closed manifold (and as it happens the Hilbert
spaceW; is the same as the spaklke that we defined in the last section, at least
for a closed manifold, although the proof of that fact will be postponed for a
while).

Although we are interested in function spaces associated to a manifolece
shall begin not withM but with open sets in Euclidean space.

1.5 Definition. Let Q be an open subset & and letk be a non-negative integer.
Denote byW, (Q)) the completion of°2° (Q)) in the norm

16l ) = D 1% 1Tz -

o<k



Thus theW,-norm combines th&?-norms of all the partial derivatives df
of orderk or less.

1.6 Definition. Let M be a manifold and le€ be a compact subset of (the interior
of) M. Define a Hilbertian spaéé&V,(M|K) as follows.

Case 1. K is contained in a coordinate ball. Fix a diffeomorphism from a
neighbourhood oK to an open sef) C R™, use the diffeomorphism to transfer
the norm orW, (Q) to the smooth functions aml which are compactly supported
within K, and then complete.

Case 2K is any compact set. Choose smooth, compactly supported functions
01,...,0n 0N M, each supported in a coordinate ball, wkhe; = 1 onK, and
let K; = suppd;. Let Wi (MIK) be the completion of the smooth functions®h
which are compactly supported Ky in the norm

||d)H\2/Vk(M\K) = Z Heid)H\Z/vk(M\Kj)-
j

In either case, the norms depend on coordinate choices, etc, but the underlying
Hilbertian spaces do not. If we fix a smooth measuré\brthen all the spaces
Wi (M|K) can be thought of as linear subspaced 6fM) (they are dense, if
K =M).

The spacelV,(M|K) have the following invariance property:df is a diffeo-
morphism carrying\ onto an open subset 8fl’, and if ® mapsK to K’, then®
carriesW, (M’[K’) isomorphically ontdV,.(M|K). Moreover pointwise multipli-
cation by a smooth function is a bounded operator on ®gctiM |K). Differential
operators of ordeq mapW_, 4(M|K) continuously intoV, (M|K).

If K = M, then we’'ll write Wi (M) in place of Wi (M|M). In this case
(whereM is compact) we can give an alternate, more concise, definition of the
Sobolev spaces. The set of all orderor less, differential operators is a finitely
generated module over the ring of smooth functionsvonlif {D,,...,Dyx}is a
finite generating set then

[Pllwi vy = [ID1dllzmy + -+ + Dbl omy

(the symbok- denotes equivalence of norms).

Recall that a bounded Hilbert space operat@oisipactf it carries the closed
unit ball into a compact set (see Appendix A for a quick review of compact oper-
ator theory and related matters).

LA Hilbertian space is a vector space with an equivalence class of Hilbert space norms, two
norms|| ||; and|| ||> being equivalent if there is a constadt> 0 such thatC~'|| ||; < || |2 <
Cll -



1.7 Rellich Lemma. If k > 0 then the inclusion oW, (M|K) into L?(M) is a
compact operator.

Proof. Fix a partition of unity{6;} as in Definition 1.6, with each; supported in
a compact sek; within a coordinate neighbouroddl;. The inclusion

Wi(MIK) ——L*(M)
can be broken down as a composition of maps

Wi (MK)

|

Wi(M[Ky) @ - - @ Wi(MIKN) —L3(Uy) @ - - - @ LA(Un)
L*(M),

where the first vertical map is multiplication I8y in componen§ and the other
maps are induced from the obvious inclusions. It clearly suffices to show that the
inclusionsW,(M|K;) — L?(U;) are compact operators. But if we embe¢as

an open set in a toruf then in view of the commuting diagram

Wk(M|Kj) - Lz(uj)
Wi(T;) ——L4(T;),

where the downward map is inclusion and the upward one is restrictiondoT;,
we see that it suffices to prove that the inclusion

Wi(T;) — L4(Ty)

is a compact operator. This is easily accomplished by using Fourier theory — see
Appendix B. ]

1.8 Remark. The same argument shows thatlfis a bounded open set iR™
then the inclusioW,(Q) C L?(M) is compact for alk > 0.

1.9 Lemma. If p andk are non-negative integers, ancif> p+3 thenWy(M|K) C
CP(MJ|K). As a result,

MW (MIK) = C*(MIK).



Proof. To prove that a functiodb € Wy (M|K) is in C?(M|K) it suffices to show
that eacl9;p € W, (U;/K;) belongs taC?(U;/K;) (we are using the same notation
as in the previous proof). After embeddityy as an open set in a tords, it
suffices to show thatvy(T;) € CP(T;). Once again, this is easily proved using
Fourier series — see Appendix B. O

1.4 Compact Resolvent

Let’s return to the Laplace operator and its self-adjoint extension. Assume that
the manifoldM is closed. Recall that the ‘intermediate’ Hilbert spade we
constructed on the way to finding the Friedrichs extensiahwhs the completion

of C*(M) in the norm

d17 = ((1+A)b, &) = | dlI7 + [|deb]|7..

From this it is easy to see thét; = W;(M). As a result, it follows from the
Rellich lemma that

1.10 Theorem.The bounded operatgd + A)~' onL?(M) is compact. O

Now remember from functional analysis that every compact positive-definite
operator (such ad +A)~") has an orthonormal eigenbasis, whose corresponding
eigenvalues constitute a sequence of positive numbers converging to zero (see
Appendix A). Hence:

1.11 Theorem. Let A be the self-adjoint operator oh?(M) obtained by the
Friedrichs extension procedure from the Laplace operatorMdn There is an
orthonormal basis forL?(M) consisting of functiongh; € domA which are
eigenfunctions forA. The corresponding eigenvalues constitute a sequence of
non-negative numbers convergingsa Il

1.12 Remark. We haven't yet shown that thfg; are smooth functions, but at any
rate we have thahd; = A;d; in the sense of distributions.

1.5 Weyl's Theorem

The solution to the problem of finding an orthonormal basid f¢iM ) consisting

of eigenfunctions oA was first great triumph of Hilbert space theory (in fact this

is the problem whiclibeganHilbert space theory — see [27]). Before we develop
the theory any further, let us pause to prove the following very famous theorem of
Weyl.
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1.13 Theorem.Let A be the (Friedrichs extension of the) Laplace operator on a
closed Riemannian-manifold or a smooth, bounded domainRft. LetN(A) be
the number of eigenvalues Af(multiplicities counted) less thax Then

. N(A) \Vol(M)
lim — = - .
oo AT (4m)ET(5 )

This is a little bit of a detour away from our main objectives, but it began a
sequence of developments which ultimately led to the local index theory we shall
be describing in these notes. For this and other reasons, Weyl's theorem is in some
sense the first theorem of noncommutative geometry.

We'll deal with the case of domains IR™ (the case of manifolds is just a tiny
bit harder), and to keep things as clear as possible we’ll consider the dimension
2 case (although the case of genetdk really no different). Thus for a smooth,
bounded domaii) in R? we aim to prove that

. N(A)  Wol(Q)
I = .
AI—Tx; A 47t

The first step is to check the result for some basic regions, namely rectangles.
This, incidentally, will fix the constantrr.

1.14 Lemma. Weyl's Theorem holds for rectangular domains.

Proof. Let us work with the rectangle of widtta and height whose bottom left
corner is the origin in théx,y)-plane. For this domain an eigenbasis for the
Laplace operator can be explicitly computed. The eigenfunctions are

Umn(x,y) = sin(mZx) sin(n{x)

and the eigenvalues akg,,, = 7r2<‘2—22 + L‘—;) wherem, n > 0. It follows that

N(A) :#{(n,m) 6N><N|]:11—22+n—2 < l}

b2 — 72
1 X2 Y? A
~ — <
1 (Area of Elllpsea2 + b2 = 7[2>
_ ab)
4

2Weyl's Theorem holds for various non-smooth domains—as will become clear.
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Thus
N(A) ~ Area Q)

A 4’
as required. O

The proof of Weyl's Theorem is an eigenvalue comparison argument, based
on the following simple observation.

1.15 Lemma.LetS andT be compact and positive operators on a Hilbert space
H, and denote byA;(S)} and{A;(T)} the eigenvalue sequencesSadndT. If

(Sv,v) > (Tv,v) >0,
forall v e H, thenA;(S) > A;(T), for all j. O]

Proof. This follows from Weyl’'s formula

- [TVl
A(T)=  inf - sup——-,
(T) am(VIS1 w1y V]|
which is described in Appendix A, and the fact that if a bounded opefatsr
positive then

IP[l = ||S‘l‘JF1<Pv,V>.

The main step in the proof of Weyl's Theorem is now this:

1.16 Proposition. Suppose thaf), and Q; are bounded open sets in the plane,
and thatQ, C ;. ThenNg, (A) < Ng, (A), for all A.

Denote byA,, andAg, the Laplace operators for these two domains. The
proposition (called thédomain Dependence Inequalityill follow if we can
show that\;(Aq,) > Aj(Agq, ), for all j. This in turn will follow if we can show
thatxj(A;)‘]) > ?\j(Ago), for all j. To this end we are of course going to apply
Lemma 1.15, but first we have to overcome the small problem that althtbggh
andAa are compact and positive operators, they are defined on different Hilbert
spaces. To remedy this we regdrti Q,) as the subspace &f(Q;) consisting
of functions which vanish on the complement@j in QQ,, and extendsa) to an
operator on_?(Q;) by definining it to be zero on the orthogonal complement of
L?(Q,). Having done so the proof of the Domain Dependence Inequality reduces
to the following lemma.
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1.17 Lemma. Suppose tha®, C Q; and denote b\, and A, the Laplace
operators for these two domains.ife L*(Q;) then(Ag5 v\, ) > (A5 W, ).

Proof. Lety; € L?(Q;) and denote by, € L*(Q,) the restriction of; to Q.
Write Py = Ag, ¢ andpy = Ag, do, Wherep, € domAg, andd; € domAg, .
Sorting out the notation, we see that what we need to prove is that

(b1,A0,d1) > (bo, Ao, do)

given thatp, € domAg,, thatdp; € domAg,, and that the restriction df o, ¢
to Q, is equal taAq, do. These hypotheses certainly imply that

(bo, A, P1) = (do, Ag, do)-

Now apply the Cauchy-Schwarz inequality for the fofm Aq, _) onW;(Q) to
the left hand side to complete the proof. Il

Proof of Weyl's TheoremLet us first show that if) is any bounded open set then

Na(A)
-

Ar€AQ) _ inf

7T A— 00

(1.2)

(roughly speaking, this i50% of Weyl's Theorem). Lefl be a finite disjoint
union of openrectangled; within Q. ThenN(A) < Nqn(A), by the Domain
Dependence Inequality. But sintés a disjoint union, we get that

Ni(A) =) Ny (A
Moreover for each rectanglg it follows from Lemma 1.14 that

lim le(}\) _ Area(lk)

A— 00 )\ 47[ '
so that A . N:(A N
€Al _ im N g Ne)
47t A—00 A—r00 A

After approximating Are&) by Ared 1) we get the required inequality (1.2).
To complete the proof, puR into a large rectangl® and denote by’ the
complement of (the closure of) in R. According to inequality (1.2),

AredQ)  AredQ’) _ o NoW) e Nor(A)

47t 47t A— 00 A A—ro0 A
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But in additionN(A) + Nq/(A) < N(R), so that

iimint N2 | i g Ner) < lim supNQ(M

A— 00 A— 00 A—s 00

No/(A)

+ liminf
A— 00

NRr(A)

< limsup

A—00
_ AreaR)
4

Since AreaQ) + Area(Q)’) = AreaR) the proof is complete. O

1.6 Elliptic Operators

We shall now return to the analysis of the Laplace operator on a closed Rieman-
nian manifoldM. In the remainder of Section 1, which is a bit technical, we shall
accomplish several things:

e Show that the domaimd, of the Friedrichs extension aof is precisely the
Sobolev spac®/,;(M).

e Show that the eigenfunctions dfare in fact smooth functions awi.

¢ Indicate how to develop a similar eigenvalue analysis for operators more general
thanA.

The key to all this is to recognize the following local feature of the operAtor
which implies strong regularity properties for solutions of the equati¢n= :

1.18 Definition. A linear partial differential operatdd of orderq is elliptic of
order q if, in every local coordinate system, the local expressiorifor

has the property that
> aued zefei+ o+
lod=q

for every pointx in the coordinate chart, some constant- 0 depending orx,
and every, € R™.
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1.19 Example.If M is equipped with a Riemannian metfig;| then the asso-
ciated Laplace operatak is elliptic of order2. Indeed in local coordinates the
formula forA is
92
A=— v lower order terms
Z g 0 ian +

i,j=1

The required inequality is therefore

Y gIEE > e (24 + 8D,

i,j=1

which is an immediate consequence of the fact that the miaftfix )] is positive-
definite.

1.7 Basic Estimate

Let M be a smooth closed manifold (equipped with a smooth measure, so we can
form L2(M)).

1.20 Definition. Let D be a linear partial differential operator & of orderq.
We shall say thab is basic(this is not standard terminology) if

IDdllwi vy + 1z vy = [[blIwic, g v

for all k > 0. Here¢ is a smooth function oM, and the symbok means that
the left and right hand side define equivalent norms on the space of all smooth
functions onM.

1.21 Remark. The comparisorg holds for any order; operator, so the force of
the definition is thag> holds too. The latter we shall refer to as theesic estimate
for D.

We are going to show that all elliptic operators are basic:

1.22 Theorem.If D is an orderq elliptic operator on a smooth closed manifold,
then

IDd[lwi vy + 1P llzvy 2 1DlTwy (-

We shall prove this in the next subsection, but for motivation let us first show
how the basic estimate implies a strong regularity property for elliptic operators.
To keep things simple we’ll focus on the Laplace operatofthe general case
requires some small modifications which we shall mention at the end).
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1.23 Lemma. Let ¢, € L[?(M) and assume thaA¢ = 1 in the sense of
distributions. If¢p € W;(M), then in facth € W,(M).

Sketch of the ProofAssume first thath has support in the interior of a compact
setK in a coordinate neighbourhood. dfis a compactly supported, non-negative
bump function orR™ with total integrall, and ifK. is the operator of convolution
with e k(e 'x) then it can be shown that

(a) If 0 € Wi (M|K) (supported in the coordinate neighbourhood) tke@ — 6
in Wi (M|K) ase — 0.

(b) [A, K.]is uniformly bounded ir as an operator from,., 1 (M|K) to Wy, (M|K).

The family {K.} is called aFriedrichs mollifier Right now we’ll only use the
k = 0 properties of mollifiers, but later we’ll considkr> 0. From the equation

AK:.b = KAd + [A K D

we see thafAK, ¢}~ is uniformly bounded ir.2(M). It therefore follows from
the basic estimate th&.¢} is uniformly bounded ilWV,(M). SinceK.¢» — ¢
in L2(M) it follows, after a little functional analysis, that in fad€. ¢} is actually
convergent inV,(M), which impliesp € W,(M) as required.

In the general case, |8tbe supported in a coordinate neighbourhood. Since
[A, 0] is a differential operator of orddrwe see that

ABD = [A,0]d + 0AP € L2(M),

and therefor®@d € W,(M) by the special case just considered. Varyihgt
follows thatp € W5(M), as required. H

1.24 Theorem.Denote byA the Laplace operator on a closed Riemannian man-
ifold. The domain of the Friedrichs extension/fs the Sobolev spadé/>(M).

Proof. The domain of the Friedrichs extension is precisely the space of these
W, (M) for which A¢ (taken in the distributional sense) belongd foM). So
according to the lemma, ip € domA thend € W,(M). The reverse inclusion
is easy. Il

1.25 Theorem.Let$ € domA and assume thdD¢$ = 1 in the sense of distri-
butions. Ify € Wi (M), thend € Wy ,(M).

Proof. This can be proved by the same Friedrichs mollifier method we used to
prove Lemma 1.23. O
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1.26 Theorem.Let A be the Laplace operator on a closed Riemannian manifold.
There is an orthonormal basis f&r (M) consisting of eigenfunctions far, which
are in fact smooth functions owl.

Proof. As before, the Rellich Lemma implies th&thas compact resolvent, and so

the Spectral Theorem for compact operators applies to provide an eigenbasis. The
eigenfunctions are in doh = W,(M), and applying Theorem 1.25 repeatedly

to the equatiom¢ = Ad we see thath € MWy (M). Henced is smooth by
Lemma 1.9. ]

1.27 Remark. If D is a symmetric elliptic operator of ordef, then Theorems
1.24,1.25 and 1.26 above continue to hold, although with the Sobolev space index
“2”in the statements of 1.24 and 1.25 replaced §¥. “The proofs are essentially

the same once we introduce Sobolev spadgsM ) with negativeindicesk (see
Appendix B). Once this is done, the general version of Lemma 1.23 says that
if p € Wi (M), and if ¢ is a distribution for whichD¢ = 1 in the sense of
distributions, then in facthp € Wi 4(M). The proof is essentially the same,
although it makes more serious use of the language of distributions.

1.8 Proof of the Basic Estimate

Before starting the proof of Theorem 1.22 we note the following fact:

1.28 Lemma. Fix an integerk > 0. For everyd > 0 there is a constan€ > 0
such that

[bllwi vy < 8l[dllwa vy + Clld |2 my,
for all smooth functiong.

Roughly speaking, this says that &-norm is much stronger than the, ;-
norm — only a tiny multiple of the former is needed to dominate the latter. Like
just about everything else involving Sobolev spaces, the lemma is proved by re-
ducing to the case of a torus, and doing an explicit Fourier series calculation there.
With the lemma in hand we can proceed.

Proof of Theorem 1.221t will be helpful to introduce the following piece of ter-
minology. We shall say that a differential operai@rwhich is defined on some
open sell C M satisfies the basic estimate owif for every compact subsét
of U the inequality

IDdllwwy + | Pllzw > ellbllwi.,, w
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holds, for some > 0 depending oK andk, and all$ supported irk.

The first step in the proof is to observe thaDif is aconstant coefficierdarder
q elliptic operator, defined in some coordinate neighbourhdaaf M, thenD,
satisfies the basic estimate owér This is an exercise in Fourier theory.

The next step is this. D is a general ordeq elliptic operator, ifx € M, and
if D, is the constant coefficient operator obtained by freezing the coefficients of
D atx, then for every > 0 there is a small neighbourhoatiof x for which

D — Dyl < ef[d],

for every ¢ supported inll. This follows from the fact that the coefficients of
D — D, vanish atx, as a result of whicH) — D, can be written as a sum of terms
VE, wherey is a smooth function vanishing atandE is an orderq operator.

From the first two steps, it follows that for evexyc M there is a neighbour-
hoodU of x such that the basic elliptic estimate holds dioverU.

Now coverM by finitely many open sets over each of which the basic el-
liptic estimate forD holds, and le{8;} be a smooth partition of unity which is
subordinate to this cover. Write

[l = | Z 0 |r-+1
j

< Z ”eid)HrJrk
j

<D 11A8dl+ ) 185dllo
j j

< D110+ D _1IA, 00k + D [195llo
) ) )

In the middle inequality we have invoked the basic elliptic estimates over the sets
in the cover; everything else is just algebra. Since multiplicatiof;by continu-

ous on each Sobolev space we obtain from the above sequence of inequalities the
estimate

Iblla S 1ADI+ [ dllo+ D 1A, 851 ]
j
Finally, the operator&\, 6;] are of orderq — 1, or less, and as a result

D 1A, 8]0k S b llra
j
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Combining this with Lemma 1.28 we get

[Pl S 1AD[I + Klidllo + 8l dllirq

in which we can maké as small as we like, say< 1. The theorem now follows
just by rearranging the terms in this inequality. O
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2 Zeta Functions

In this section we shall study further the eigenvalue sequéx¢eassociated to
the Laplace operator on a closed Riemannian manifdldf dimensiorm. The
main result will be Theorem 2.2 below, although not only the result but also the
proof will be important for our later purposes.

Letz € C. Define a sort of zeta function favl using the formula

(ml(s) = Z 7\;%-

Aj£0
The definition makes sense in view of the following computation:
2.1 Lemma. There is somé € R such that ifRe(s) > d then

3 A < oo

A #£0

Proof. According to Weyl's Theorem we can take= n = dim(M), which is

the optimal value. However, if we are content with some valuelfgrot the best)

then we can prove the lemma with less effort. We can take, for example, any even
integerd bigger thanmn. It follows from the basic estimate proved in Section 1
that the operatofI + A)*% mapsL?(M) into W4(M), and since the inclusion

of W4(M) into L?(M) is a trace-class operator (see Appendix B) it follows that

(I+A)—%, viewed as an operator dd(M), is trace-class. Its eigenvalue sequence
_d
is therefore summable, and it follows from this that\; * < oo, as required. [

Let us disregard Weyl's Theorem for a moment and refer to the smallest
with the property of the lemma as tla@alytic dimensiorof M. Our main result
will give an independent proof thadt= n.

Basic analysis proves thgt,(s) is analytic in the region Re) > d. We are
going to prove the following remarkable fact.

2.2 Theorem. Let{A;} be the eigenvalue sequence for the Laplace operator on a
closed Riemannian-manifoldM. The zeta function

(mls) = Z 7\;%
A 0

extends to a meromorphic function on the complex plane. The only singularities of
the zeta function are simple poles, and these are located within the set of integer
pointsn,n—1n—2....
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2.3 Example.If M = S' then the zeta functiod, is precisely twice the famous
Riemann zeta function. This explains our terminology and of course illustrates
the phenomenon of meromorphic continuation.

Theorem 2.2 was discovered in the 1940’s, by Minakshisundaram and Plei-
jel [23] in connection with attempts to refine Weyl's Theorem. The relation with
Weyl's Theorem is made clear by the followifguberian Theorenfsee for ex-
ample Hardy’s boolbivergent Serie§l6]):

2.4 Theorem. Let{y;} be a sequence of positive real numbers and assume that it
is p-summable for alb > 1. For u > 0 denote byM () the number of such
thatp; > p. Then

lim —1 71 =C limp-M =C.
N((s )]Z]u,) & lim - M(u)

Thanks to the Tauberian theorem, putting= 7\5_ 2 we see rather easily that

if {m has a pole at = n then the eigenvalues df satisfy the asymptotic relation

_ Res_ Cum(s)
n

N(A) AZ

(hereN(A) is the counting function from Weyl's Theorem). It follows that the
analytic dimension oM is equal ton, the topological dimension. Moreover
Weyl's Theorem follows from the meromorphic continuation@jf(s), plus a
computation of the residue of the zeta functiors at n. Or, to put it in a better

way, Weyl's Theorem, plus the Tauberian Theorem, show that the residues of the
zeta functioniy,(s) contain important geometric information abddt This is a
theme we shall be developing throughout the rest of these notes.

2.1 Outline of the Proof

The proof of Theorem 2.2 will involve some Hilbert spectral theory and some
algebra, notably the fundamental ‘Heisenberg commutation relation’

d
— xl=1
[ el
in the algebra of differential operators. It is closely related to Guillemin’s proof
of Weyl's Theorem in [15] (for a different proof based on pseudodifferential op-

erators see [25]).
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Here is the basic idea. ¥, . . . , x,, are local coordinates awl then it follows
from Heisenberg’s relation that i) is anydifferential operator of ordeq or less
then

N
0
2.1 D= D, xi— + R,
(2.2) q ;[ Xzt
whereR is a differential operator of ordey — 1 or less. As a result of this, a little
bit of algebra shows that

= d )
(2.2) (a+mn)D —;[D,xlaxi]+;[axi,xlD]+R,
with the same remainder terRn

Now, we are going to show that the same sort of formula as (2.1) holdlssif
replaced by a more complicated operator, roughly speaking one of théxXarm,
to which we shall assign the “ordeq’ — 2 Reg(z). As for the operatoA =, if the
real part ofz is positive then we can define it to be the unique bounded operator
such that on eigenfunctions =¢; = A;*¢; (we define the complex powers of
the zero eigenvalue to be zero). We shall give a more useful description of this
operator in the next subsection, but for the moment we note the key property

TracdA*) = ) A;*%, whenRéz) >d
Ay £0

Having found an analog of (2.1) fap A=, it will follow that DA™= may be
substituted into (2.2) in place @ to give an equation

n

(a+n)DA*=) [DA +Z XIDA +R,,

i=1

The remainder term will be a combination of operators of the same general type
asDA™* but of “order” one less thab A~=.

Obtaining this formula folDA~* is the crucial step, and from here on the
rest of the proof is simple. Taking traces, and bearing in mind that the trace of a
commutator is zero, we shall get

1
T DA™) = ———T R,).
race ) 4 2in racgR.)
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If we repeat the whole process, wittA~* replaced by the remaind®t, and then
with R, replaced by the new remainder, and so on, then we shall get

J—1 1

Tracd DA ?) = (H PR n) Tracds,),

j=0

whereS, has ordeiry — 2z — J. But as] gets really large then we see from the Rel-
lich Lemma that TradeS,) becomes well-defined and holomorphic on an increas-
ingly large half-plane irfC. So the formula determines meromorphic extension of
Tracd DA™ #) to any desired half-plane i@i, and hence t& itself.

2.2 Remark on Orders of Differential Operators

If Dy andD; are differential operators then the orded®{D; is usually the sum

of the orders ofD; andD,. However the order of theommutator[Dq, D,] is
never more than the sum of the orderdfandD, minusT. This drop in degree

is very important for the arguments that we are going to develop. It implies that
taking the commutator of an operatorwith a function lowers the degree bf by

one; taking the commutator @ with a vector field does not change the degree;
and taking the commutator & with A raises the degree by at most one.

If we work with more general rings of differential operators (for example act-
ing on sections of vector bundles) then the general fact alhwytD,] no longer
holds, and one must take a little care to check that the consequences listed above
hold in sufficiently generality for the arguments below to work (tdeyvork).

2.3 The Actual Proof

On a closed manifold there do not exist global coordinatgs. ., x,,. But by
using a partition of unityf¢ .} subordinate to a cover @1 by coordinate charts,
we can easily find functiond,, ..., AN and vector field$,, .. ., B,, such that

N

Z[Bj, A)] =nl

j=1
and

N
qD =) [D,Aj]B; +R,
j=1
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where as befor® is an operator of ordeq or less andR has order less than

g. (The operatord\; are of the form - x;, wherey is supported in the’th
coordinate chart and i on the support ofp,, and the operatorB; are of the

form ¢ - a—?q.) For the purposes of the commutator argument sketched in the last

section theA; andB; work just as well as the coordinatesand vector fieldg%_.

So let us begin by attempting to compute an expression of the[fori) A]B.
For this purpose we shall need a way of looking at the operatéwhich is better
suited to computation. We shall use the Cauchy formula

1

AN P = —
2mi

JAZ(A —A) T
The integral is a contour integral along a downwards pointing vertical lirf@ in
which separate&from the eigenvalues @t. Itis not hard to check that if Re) >
0 and if¢ € C*(M) then by applying the integrand tb we get a convergent
integral in each Sobolev spa®¥,. (M), so the integral defines an operator from
C*®(M) to C>(M). Cauchy’s formula from complex analysis proves that this is
the same as the operaifir= we defined previously.

Now, onwards with the computation, the first part of which is straightforward:

[A72 A]B = L J?\z[()\ —A)"T AIB dA
2mi

B 1
C2m

_ J}\Z(}\ —A)Y[AAIB(A— A) T A

J?\Z(A —A)7MA AN —A)TTB dA

+ J?\‘Z(A —A)7A AN —A) A, BI(A—A) T dA.

(In the last step we did two things at once: we commutguhist(A —A)~' and we
then used the formulgs=", T] = S7'[T,S]S~'.) The operator$A, A] and [A, B]
have orderd and2, respectively.

Before going on, we shall introduce some better notation for our contour inte-
grals.

2.5 Definition. If D,,...,D,, are differential operators on the closed manifold
M, then denote by, (D,, ..., D,) the integral

1

— J)\‘ZDO()\ —A)7- DA —A) T aA
2mi
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(in the integral, copies dfA — A) ! alternate with the operatof3;). The integral
converges if Rez) < n, in the sense we discussed above, and defines an operator
onC*®(M).

Using our new notation, we can writeA~* = [,(D) and by elaborating very
slightly the computation we just ran through, we see that

[I.(D),AlB = L([D,A]B) + L.(D, [A, A]B) + L(D, [A, Al [A, B]).
So what? Well, after replacing andB by A; andB;, and summing ovej, we
know that
N N
D [D,AjBj=qD—R and » [AAjB;j=2A-S
ji=1 j=1

where the ‘remainderS has orderl. We are going to plug these formulas into
our expression foll,(D), A]B. To prepare for this, let us introduce the following
terminology:

2.6 Definition. We shall say that,(D,, ..., D,) is anintegral of typel € Z if
ordefDy) + - - -ordefD,,) —2p < {.

2.7 Lemma. If I, = I,(Do,, ..., D,) is any integral of typé then

N
D L, AjlB; = (- 22)I, + R,

j=1
whereR, is a finite sum of integrals of tyde— 1.

Proof. Let usjust consider the case of the intedeéD ) (thust = q = orde(D));
the other cases are no harder. Using the formulas we have already obtained we get

> [1.(D), Aj]B; = qL.(D) + 2L.(D, A) + type — 1 integrals.

So the lemma will be proved if we can deal successfully Wijtfb, A). What we
need to show is that

(2.3) [,(D,A) = —zI,(D),
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at least modulo integrals of ordér 1. But in fact (2.3) holdexactly To see why
this is so, note first that from the formula

AN=A)T=AA=A)T—1,
along with our definition of the integrals it follows that
L(D,A) = L,+(D,I) — L(D)
So (2.3) is equivalent to the formula
[1(D, 1) = (1 —2)I,(D).

This functional equation is proved using calculus, as follows. Take the integral
which defined, (D) and differentiate the integrand with respecit¢the inte-
grand is of course a function a). We get

d%\ (AP DA—=A)) =(1—2)A*D(A—A) ' —=A"*D(A—A) 2%

Using the fact that the integral of this derivative is zero we get
(] - Z)IZ(D) - sz1(Da I) - O)
as required. m

2.8 Remark. In the general case the functional equation is
p—1
(1 — Z)IZ(D(), e ,Dp) = Z IZ,](Do, v ,Dj, I, Dj+], C e ,Dp).
j=0

At this stage we have almost proved our meromorphic continuation theorem.
Using the algebraic tricks described earlier we can reduce the problem of comput-
ing the trace of an integral of typeto the problem of computing the trace of an
integral of typel — 1. It only remains to relate our notion of “type” to some notion
of “order” of operators, so that we can guarantee the traceability, ébr all z in
a suitable right half plane.

2.9 Definition. Let m be an integer (positive or negative). We shall say that a
linear operatoff: C*(M) — C*(M) hasanalytic orderm or lessif, for every

s € Z such thats > 0 ands + m > 0, the operatoil extends to a continuous
linear operator fronW,,, (M) to W,(M).
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Thus for example every differential operator of ordeor less has analytic
orderq or less. If Réz) < —m then the operatoA—* has analytic order2m, or
less.

To prove Theorem 2.2 using our commutator strategy it remains to prove the
following two results:

2.10 Lemma.If I,(D,,...,D,) is an integral of type then
analytic ordefI,(D,,...,D,)) < {—2Re(z).
2.11 Remark. The integrand which we use to defibgDy,...,D,) is
A *Do(A—A)" - D, (A —A).

This has ordety — 2p + 2. So when Ré&z) is negative (recall that the integral is
defined as long as Re) +p > 0) the order estimate in the lemma (which is sharp)
Is considerably better than one would expect by looking at the integrand alone.

To understand the content of the following lemma, recall that the integral
definingI.(Dy,...,D,) is convergent when Re) > n, and that we have not
up to this point defined the integral for other valueszof However, thanks to
the previous lemma, the quantity TratgD,, ..., D,)) is defined in the domain
Re(z) > maxXn, “7*‘3} (this is where the integral makes sense and converges to an
operator of order less thann).

2.12 Lemma.lIf I,(D,, ..., D,) is an integral of type then the function
z — Tracg1,(Dy,...,D,)),

extends to a holomorphic function on the half-pldtez) > ™.

Lemmas 2.10 and 2.12 are both proved by the same explicit computation. To
get the basic idea, let’s pretend that the operaitygommutewith the operator
A. In this case the integrdl(D,, ..., D,) can be written as

1
— | Dy...D (A= A)"PHI A,
ZﬂiJ © vl ) d

The “constant'Dy . . . D,, can be pulled out from under the integral sign, and what
is left can be evaluated by Cauchy'’s integral formula. We get

L(Do,...,Dp) = (_kZ)D()~ DA,

With this formula in hand, both lemmas are obvious.
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Proof of Lemmas 2.10 and 2.1Zhe idea of the proof is to try to move all the
terms(A — A)~! which appear in the basic quantity

XA —=A)T L XP(A—A)T]
toward the right using the identity

A=A T=TA-A)"+[A=-4)"T
=TA-A) "+ A=A A TIA-A)",

The formula leads to the formal expansion

A=A)"T~r) THA—A)F

k>0
where we have used the notation
TO=T and T =[A, TV fork>1.

The series does not converge, but instead it is an asymptotic formula in the follow-
ing sense: iff andT, depend on a parameterthen we shall writd ~ ) T, if,
for everym < 0, every sufficiently large finite partial sum agrees withp to an
operator of analytic orde or less, whose norm as an operator freviy,,..,(M)
to W,(M) is O(JA|™). In our case if we truncate our serieskat= K, then the
remainder term is

(}\ . A)71T(K+1)(}\ _ A)7K71

and the asymptotic expansion condition is easily verified. The reason for including
the O(|A|™) condition is that we shall then be able to integrate with respekf to
and obtain an asymptotic expansion for the integrated operator.
More generally one has, for any non-negative intégean asymptotic expan-
sion
A—A)"T~ Z(-] )k< h) YR —A)TK

k
k>0

(this can be proved by induction ar).
Before beginning the actual computation let us also define the quantities

(ki + -+ Kk +7)!
kilooo kil (kg + 1) (kg + -+ k5 +5)]

C(k],...,kj) =
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which depend on non-negative integéss. .., k;. These have the property that
c(kq) =1, forall kq, and

C(k],...,k]') o (k1+—|—k]—|-]—1)
C(k],...,kj_1) kj

(to be explicit the right hand fraction is the product of #jesuccessive integers
from (ky + .-+ kj_1 +j)to (ks +--- + k; +j — 1), divided byk;!).
Now we can begin. Using this notation we obtain an asymptotic expansion

A=A)"Di= ) clk JA = A)tatD)
k>0

and then

(A—A)_‘D1(7\—A)_1D2%Zc(k]) DA — A)(at2)x2

ki >0

~ Y clki ko)D) DyR(A— A) (M)

k1,k2>0

wherelk| = k1 + k,, and finally

A=A)"Dy---(A=A) D= ) (kD). DI (A= A) )

k>0

where we have writtek = (kq, ..., k,) and/k| = k; + - - - + k,,. Premultiplying
by D,, postmultiplying by(A — A)~', and integrating with respect fowe get

1
—,J)\_ZDO(A —A)---D,(A—A)"aA

2mi
~ KDeDM) .. ple) [ TF J A=k,
Zc() oD, 24 p

k>0
The terms of this expansion have analytic order
q—k—2(Re(z) +p) =0 —k—2Rez)

or less. This proves Lemma 2.10. If R¢ > %(n — {) then all the terms in the
asymptotic expansion are trace-class. This proves Lemma 2.12. H
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Having proved the lemmas, the proof of Theorem 2.2 follows by using the
method outlined in Subsection 2.1. Let us add one or two small remarks about
the vanishing of traces of commutators. It is a fundamental property of the trace
that if X andY and bounded, and if one of them is trace-class, then Txate=
Tracd YX). The situation here is a little more complicated because we are consid-
ering the traces of commutators of possibly unbounded operators. To see that the
traces still vanish, we use Sobolev spaces, as follows. First, we may assume that
Re(z) > 0 (if the trace of the commutator vanishes here it will vanish everywhere
the commutator is defined, by unique analytic continuation). Next we note that the
trace of an operatof of analytic order—{ < —d is the same, whether we regard
Z as an operator ob*(M) or on any Sobolev spad# (M) with k < .3 Indeed
if we denote byJ: W, (M) — L?(M) the inclusion, and by the operatoiZ
acting onWy (M), then we can write

TracdZy) = Tracd] ' Z]).

SinceJ: Wi (M) — L?(M) is a bounded operator agd'Z: L*(M) — Wi (M)
Is trace-class (whefhi>> d + k) we get

Tracd (]~ 'Z)]) = Tracd](J~'Z)) = Tracd Z).

Finally, if we wish to show that Tra¢XY) = Tracd YX) when sayX has bounded
orderq andY has ordef < —d we can think ofXY andYX as compositions of
bounded operators and trace-class

L2(M) —> W,(M) =~ L}(M)
and
Wo(M) == 12(M) —> We(M)
and apply the basic trace property together with the previous remarktd’X.

An Improvement of the Main Theorem

In this concluding subsection we shall improve a little Theorem 2.2 by proving
that a number of the singularities of Tratg Dy, ..., D)), including in partic-

ular the singularity at = 0, are removable. As we shall see in Section 5, this is
quite significant for index theory. Moreover the appearance of the Gamma func-
tion in the following lemma will prepare the way for our later computations in
cyclic cohnomology.

3With a bit more effort one can show that the same thing holds forak —d and allk.
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2.13 Lemma.If I,(D,, ..., D,) is an integral of typé then the function
z— I'(z) Tracg1,(Dy,...,Dy)),
is holomorphic in the domaiReg(z) > %
The content of the lemma is that Tra€g Dy, ..., D,,)) has zeros at the non-
positive integer points in its domain Rg > %‘ which cancel out the simple

poles of thel-function. The factof{—1)? is present for tidiness; it also plays a
useful role in subsequent developments within cyclic conomology (see Section 6).

Proof. The argument used to prove Lemma 2.12 produces the formula

(—=1)PT'(z) Tracd1,(Dy,...,D}))

~ Y (1)T(z) (|k|_fp)c(k) Trace(DoDﬁk‘) e Dg“v)A*zflk\*P) .

k>0

The symbok:, which we are now applying to functions afmeans that, given any
right half-plane inC, any sufficiently large finite partial sum of the right hand side
agrees with the left hand side (on the common domain of the functions involved)
modulo a function ok which is holomorphic in that half-plane. It follows from
the functional equation fdr(z) that

_1\p TZ 0\ _(_1\ 1
0T () = I )
So we get
(—1)PI'(z) Tracg1,(Dy, ..., Dy))

~ _1)\/K

~ ) (-1) F(z—l—p+!k!)(|k‘+p)!c(k)

k>0
X Trace(D0D1 (ki) .. Dp(kp)Afzflk\fp) )
This completes the proof. -

Repeating the argument from the previous subsection we obtain the following
result:

2.14 Theorem.LetI,(D,y,...,D,) be an integral of typ&. The function
(—=1)PI'(z) Tracg1,(Dy,...,Dy))

extends to a meromorphic function @hwith only simple poles. The poles are
located within the sequenee+ k,n+k—1,.... ]
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3 Abstract Differential Operators

In this section we shall first introduce a more abstract notion of differential op-
erator, and then develop a corresponding theory of pseudodifferential operators.
Apart from the standard example coming from standard differential operators on
a smooth, closed manifold, we shall also consider a more elaborate example re-
lated to foliation theory, and a collection of examples derived from Alain Connes’
notion of spectral triple.

3.1 Algebras of Differential Operators

Let H be a complex Hilbert space. We shall assume as given an unbounded,
positive, self-adjoint operatak on H. As the notation might suggest, the main
example to keep in mind is the Laplace operator on a closed Riemannian mani-
fold, but there are many other examples too. We shall soon introduce a notion of
“order”, generalizing the notion of order of a standard differential operator, and
we should keep in mind that need not have ord&. In fact let us now fix an
integerr > 0, which will play the role in what follows of ordéA).

Fork > 0 denote byH* the domain of the operatak~. In the standartd
example, where\ is the Laplace operator and= 2, it follows from the basic
elliptic estimate that the Hilbert spad¢* may be identified with the Sobolev
spacewy(M).

LetH® = N ,H*. We shall assume as given an algebraf linear operators
on the vector spackl™. In the standard examplé) will be the algebra of all
linear differential operators oll. Let us also assume that the algebra is filtered:
thus it is given as an increasing union of linear subspaces

DoCD;yC---CD
in such a way thaD,, - D, C D, 4. We shall write ord€iX) < qif X € Dy,

3.1 Definition. We shall say that the pair comprised®findD is differential if
the following conditions hold:

() If X € D, then alsdA, X] € D, and

order([A, X]) < orde(X) +r— 1.

4Strictly speaking we should include the integesomewhere here.
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(i) If X € D, and if ordefX) < q, then there is a constant> 0 such that
1AV + (V]| > el Xv], v e H>
(the norm is that of the Hilbert spa¢é).

3.2 Remark. If we introduce the natural norm on the spddé = domA~,
namely .
[VIIE = lA¥v]1> + [v]1%,

then the estimate in item (ii) can be rewritten as
[Vllq + [V = €[ Xv]l,  vv e H

(for perhaps a differerd). In the standard example this is easily recognizable as
the basic estimate of elliptic regularity theory.

3.3 Lemma.If X € D(A), and if X has orderq or less, then for every > 0 the
operatorX extends to a bounded linear operator fréti™9 to HS.

Proof. If s is an integer multiple of the order of A then the lemma follows
immediately from the elliptic estimate above. The general case (which we shall
not actually need) follows by interpolation. O

This begs us to make the following version of Definition 2.9 in our new ab-
stract context:

3.4 Definition. A linear transformatiol: H* — H> hasanalytic orderq € R
if for all s > 0 such thats + q > 0 it extends to a bounded linear operator
T: HST9 — HS.

3.2 An Example

Let M be a smooth manifold. Assume that srtegrable smooth vector sub-
bundleF C TM is given, along with metrics on the bundlesand TM/F (the
metrics will play only a very minor role in what we are going to do here). The
bundle dertermines a foliation ®fl by sayp-dimensional submanifolds.

Let D be the algebra of linear partial differential operatorsvdnvith compact
supports. Define a filtration ofv, which makes use of the foliation awl, as
follows:

(i) If fisaC*-function onM then ordeff) = 0.
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(i) If Xis aC>-vector field onM then ordefX) < 2.

(i) If X is a C*-vector field onM which is everywhere tangent t then
ordefX) < 1.

From now onwards in this subsection we shall use the above non-standard notion
of order while discussing operatorsin

When discussing local coordinates®hwe shall use coordinates which iden-
tify a neighbourhoodl in M with an open set ifRP x R9 in such a way that the
plaques of the foliation (the connected components of the interections of the leaves
with the chart) are of the forR¥ x {pt}. Let us call theséoliation coordinates
If X € D, then in local foliation coordinates we can wrKeas a sum

X=) a“(x):%;.

If order(X) < k, then we can separate the sum into a part of okgdgius a part

of lower order,
0% 0%
X = Z aa(x)wﬁ' Z aa(x)m)

[l o=k ll ol <k
where||«|| is defined by the formula
|| = oty + -+ o + 200511 + - - + 2xq.
3.5 Definition. An operatorX € D is elliptic of orderr, relative toF, if in every

coordinate system, as above, and at every pointthe domain of the coordinate
systems the the ordermpart of X has the property that

D aa(x)E*

[[od|=r

> e (181174 &l + [Epal* 4+ - +1Edl*)

for somee, > 0 and allé.

If F = TM then this coincides with the usual definition of ellipticity. If we
define a Sobolev norm in a foliation chart by the formula

0%dp
[0 = 3 [ 52

l[odl<s

I
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then every ordek operator is continuous from/, (U, F) to W, (U, F). More-
over the arguments used to prove the elliptic estimate in Section 1 easily adapt to
show that ifX is elliptic of orderr relative toF, then

(3.1) X2+ 1115 = exl|d]lrrs

for someex > 0 and every smooth, compactly supportgd

Passing from coordinate charts to global situationMrusing partitions of
unity, we obtain global Sobolev spacds (M, F) and the corresponding global
version of the elliptic estimate (3.1). Observe also that

Wai(M) € Wi (M, F) € Wi (M),
from which it follows that
M=o Wi(M, F) = NizoWi(M) = C* (M),
We obtain the following result:

3.6 Theorem. Let M be a smooth manifold and Iétbe a smooth, integrable
subbundle of M. If A is a positive and elliptic operator oW (relative toF), and
if A and its powers are essentially self-adjoint, th@n A) is a differential pair
in the sense of Definition 3.1. ]

We can define an explicit elliptic operator
A = A7 + Ar,

composed of a “leafwise” operatdy; and a “transverse” operatdyr on M, as
follows. Using the given metric ol we can define a leafwise Laplace operator
Ay which acts just by differentiation along the leaves of the foliation. Using local
foliation coordinates we can identify a foliation chattin M with an open set

in R? x R9, and after having done so, we can use the given metricM#iF to
define Riemannian metrics on each transvepak R9, which together determine

a “transverse” Laplace operator dh The operatot, so constructed depends
on our choice of foliation coordinates. However by covemduy chartsll, and
choosing a partition of unityf .} we can form a non-canonical operator

1 1
Ar =) 03A7y,03.

We are requiring operators in our algelipa¢o be compactly supported, but if we
put this requirement to one side for a moment and think afs an element db
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then we can say that has orde#d, and that up to operators of lower order, both
A andA+ are independent of all the choices made in their construction.

For the particular differential pairD, A) we have just constructed it is a sim-
ple matter to adapt the arguments of Section 2 to prove that all the zeta functions
Tracg DA;*) admit meromorphic extensions € with only simple poles. The
proof begins from the basic formula

kD = ZDXJ +ZZDX

i=p+1

for an orderk operator, wher® is a differential operator of ordé&— 1 or less (as
computed in the given filtration d). This implies that

P
(k+p+2q)D =) [D, xI +Z
i=1

+ZZDX1 +zZ R,

i=p+1 =p+1

with the same remainder terR1 From here the proof proceeds exactly as in Sec-

tion 2. The resultis that, iD has ordek, then the zeta function TradeA, *) has
a meromorphic extension ©, with at most simple poles located at the sequence
of points

k+p+2q,k+p+29—1,....

In particular the basic zeta function Tréeeg *) has poles at+2q, p+2q—1, .. ..
An interesting feature of this result is that the ‘analytic dimension{f, F)
(measured as in Weyl's Theorem by the asymptotic behavious of the eigenvalue
sequences of elliptic operators) is natthe dimension of the manifold, but +
q=7p+2q.

An important feature of the differential paifD, A) is the invariance ofA,
modulo operators of lower order, under diffeomorphismsvbofwhich preserve
F and which moreover preserve the metics foand TM/F. As Connes and
Moscovici observe in [10], starting with a manifol and any grougs of dif-
feomorphisms obV, it is possible to build a new manifol which fibers over
M along with metrics on the vertical tangent bundland the quotient bundle
TM/F, in such at way that the action &f lifts to M, preserving the given met-
rics. Starting from this observation Connes and Moscovici are able to develop
elliptic operator theory and index theory on very complex spaces, for example the
transverse spaces of foliated manifolds.
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3.3 Pseudodifferential Operators

Let us return now to our general notion of differential pair. Starting from this
concept we can reproduce many of the computations we did in Section 2, for ex-
ample those used to prove Lemmas 2.10 and 2.12 in our new context (we already
suggested as much at the end of the last subsection). However we shall leave this
to the reader to check, and instead we shall develop the following closely notion
of abstract pseudodifferential operator.

3.7 Definition. Let (A, D) be a differential pair. Fix a positive operathir of
analytic order—oo (this means that mapsH into H*) such that the operator

Ay =A+K

is invertible. Abasic pseudodifferential operator of orderc Z is a linear oper-
atorT: H*® — H®* with the property that for everf € Z the operatol may be
decomposed as

T=XA7 +R,
whereX € D(A,D), m € Z, andR: H*® — H*, and where

ordefX) + m <k and ordefR) <.

A pseudodifferential operator of ordér € Z is a finite linear combination of
basic pseudodifferential operators of or#ter

3.8 Remark. The introduction of the operatdt is more or less a matter of con-
venience; for example we could have changgdo (I + A) without changing the
class of pseudodifferential operators determined by the definition. In particular
the choice oK has no effect on the definition. (We should add that using spectral
theory it is easy to find a suitable operakaj

3.9 Example. If T is a pseudodifferential operator of orderthen|[A, T] is a
pseudodifferential operator of ordier+ r — 1.

3.10 Example. All of the integralsl, (D, ..., D,) for integralz are pseudodif-
ferential operators. This follows from the asymptotic expansion formula used in
the proof of Lemma 2.10.

We are going to show that the linear space of all pseudodifferential operators
Is an algebra. For this purpose we shall need to develop some of the asymptotic
expansions used in Section 2 in our new, abstract context.
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3.11 Definition. If T andTj are operators ohl*, then let us write

if, for everym, there existg, such that iff > J,, then the differencé — Z].I:1 T;
is an operator of ordem or less.

3.12 Lemma. If T is a pseudodifferential operator, andzfe C, then

A7 T~ Y (‘]") TOAT.

j=1

3.13 Remark. We defineA; =, for Rgz) > 0, by a Cauchy integral, as we did in
Section 2. Sincé\, is invertible we can choose the contour of integration to be
the (downwards pointing) imaginary axis.

Proof of the LemmaWe compute as follows:

A%, T] = L.JAZ[(A—MRT] an
2m

1

= — J ATFA—A)TV(T)A—A) T aA,

2mi
where we have writterV(T) = [A;,T]. The integral converges as long as
Re(z) > 0 (it converges absolutely to an operator on the Frechet space
and for the moment let us confine our attention to suclContinuing, we can
write

i
1

T 2mi

+ %J?\Z[(A—AH],V](T)](?\ ~ AT dA
7T

A%,T] = %JAZ(A —A)TV(T)A— AT dA

J)\_Z%(T)()\ — Aq)72dA

— ﬁjwvlm(x —Ay) 2 dA

+ L.JA—Z(A —A)TVATI A — Ay 2 dA,
2mi
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and more generally

1 1
[AZ T] = — szm (TYA—A)) 2 dA+ — JAZV%(T)(A —Ay) 3 dA
2m 2m

+ - J)\‘ZV’f(T)(A— Ay) 7T A

T om
1
r L J AE— AT (T (A — Ag) )
2mi
Using the Cauchy integral formula we can now compute

(A2 T] = (‘f)v] (MA, = 4+ (_ZZ) Vi(Ma; =

T <—kz) VE(T)A;
1
+5— J)\‘Z(A — A)TIVET)(A = AT A,

If order(T) = q, then the remainder integral in the final display converges when
Re(z) > k+1 to an operator of order—k—r Re(z). This proves the lemma.]

3.14 Proposition. The set of all pseudodifferential operators is a filtered algebra.
Proof. The set of pseudodifferential operators is a vector space. The formula

Xaf-vai~y <]7) XVi(Y)a, 7
j=0

EINE

shows that it is closed under multiplication and moreover that the product of two
pseudodifferential operators of ordérand{ is a pseudodifferential operator of
orderk + £. O

The algebra of pseudodifferential operators is a good context in which to study
the residues of the zeta functions Treoé\; ), thanks to the following beautiful
fact:

3.15 Lemma. Assume that for every differential operatbr € D, and allz €

C with sufficiently large real part, the operatddA;* is trace-class. Assume
that, in addition, for evenyD € D the zeta functioracd DA;*) extends to a
meromorphic function o€ with only simple poles. Then the residue functional

T(T) = Res_ Tracd TA;?)

is a trace on the algebra of pseudodifferential operators.
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3.16 Remark. If A itself has discrete spectrum and compact resol{entA) ',
and if we defineA~* as we did in Section 2, integrating down a vertical line which
separate® from the positive spectrum of, then the residues of TradeA =)
and Trac€TA;*) are equal.

Proof of the LemmaWe want to show that
Res_o TracgSTA;*) = Res_, Tracd TSA;?).
Using the trace property of the operator trace, this amounts to showing that
Res_, TracgSTAT* — SAT*T) = 0.
Using Lemma 3.12 we get
STA* — SAT ~ — i (_,Z> STOAZ

=1 N

As a result,

Res o TracgSTA; — SA;*T) = — ) Res o <_JZ> TracdSTVAZ 7)),
i=1

This is a finite sum since all but finitely many of the residues of TISEE/'A> )
are zero. But in fact since each trace function has at worst a simplegolee
residues in the sum are zero: the possible pole of TEBICEAT ) atz = 0 is
canceled out by the factor afin the binomial coefﬁcien(‘f). O]

3.17 Remark. This result of Wodzicki [28] was first observed in the following
algebraic context (compare for example [26] for a clear account). ALbe a
complex algebra and létbe a derivation o\. The main example is wherk is
the algebra of smooth functions on unit circle ahid ordinary differentiation:

_da

The spacd® (A) of formal ponnomiaIsZE:O a,0™in 0 with coefficients inA is
an associative algebra, with multiplication law derived from

[0,a] = 0(a).
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In the main example this is the algebra of differential operators on the circle.
Consider now the algebt(A) of formal series

N

Z a,o"

n=—oo

in 0 with coefficients inA. Infinitely many of the negative coefficients may be
nonzero, but we require that each series contain only finitely many positive powers
of 0. This is an associative algebra with multiplication derived from the formula

ta=Y (;‘) (a)o™ .
j=0

Lett: A — C be atrace functional which vanishes on the rangé. athust is a
linear functional for which

T: [A, Al + 0[A] — 0.

In the main example, wher is the algebra of smooth functions on the circle
is the ordinary integral:

T(a) = J adt.
The following is then an algebraic counterpart of Lemma 3.15:

3.18 Lemma. The functionap: ¥(A) — C defined by

p(> aid') =t(ay).

is a trace on the algebr&/(A). O

3.4 Spectral Triples

Further examples of differential paif®, A) are furnished by Connes’ notion of
spectral triple. In this subsection we shall briefly review the basic definitions.

3.19 Definition. A spectral tripleis a triple (A, H, D), composed of a complex
Hilbert spaceH, an algebraA of bounded operators oH, and a self-adjoint
operatorD on H with the following two properties:

(i) If a € A then the operatoa - (1 + D?2)~" is compact.
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(i) If a € Athena-domD) C dom(D) and the commutatdD), a] extends to
a bounded operator dn

Various examples are listed in [10]; in the standard exampie the algebra
of smooth functions on a complete Riemannian manifeldD is a Dirac-type
operator orM, andH is the Hilbert spac&?(S) of square-integrable sections of
the vector bundle on whicb acts.

3.20 Definition. Let (A, H, D) be a spectral triple. Denote lythe unbounded
derivation of B(H) given by commutator witkD|. Thus the domain aj is the set
of all bounded operatorE which map the domain @D/ into itself, and for which
the commutator extends to a bounded operatdron

3.21 Lemma. Let H* be a core ofD| (a subspace of the domain on which the
operator is essentially self-adjoint). T mapsH* into itself, and if[|D|, T] is
bounded orH*, thenT lies in the domain 0é. O

3.22 Definition. A spectral triple igegularif A and[D, A] belong ton®_,o™.

n=1

The notion of regular spectral triplA, H, D) plays a useful role in the de-
tailed analysis of Alain Connes’ spectral triples and their Chern characters. See for
example [14]. The purpose of this subsection is to show that regularity is equiva-
lent to the basic elliptic estimate which appears in item (ii) of Definition 3.1 (the
relevant pairfD, A) will be described in a moment). This equivalence is essen-
tially proved in [10, Appendix B], although in disguised form.

3.23 Definition. Let (A, H, D) be a spectral triple with the property that every
A mapsH® into itself. Denote byA the operatoD?. Thealgebra of differential
operatorsassociated t¢A, H, D) is the smallest algebr@ of operators orH>
which containsA and[D, A] and which is closed under the operatibr- [A, T].

3.24 Remarks. If the spectral triplg A, H, D) is regular, then the conditioA -

H> C H* is automatically satisfied. The above descriptio®ds in some sense
the minimal reasonable definition of an algebra of differential operators. Note
however that the operat@ is not necessarily included D.

The algebraD of differential operators is filtered, as follows. We require that
elements ofA and[D, A] have order zero, and that the operation of commutator
with A = D? raises order by at most one. Thus the spaResf operators of
orderk or less are defined inductively as follows:

(@) Dy = algebra generated by + [D, A].
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(b) D1 = [A, Dol + DolA, Dol.
(c) D= Z;:: Dj - Dij + [A, Dyl + DolA, Dyl
We want to prove the following result.

3.25 Theorem. Let (A, H, D) be a spectral triple with the property that every
a € A mapsH® into itself. It is regular if and only if D, A) is a differential pair
in the sense of Definition 3.1.

3.26 Remark. As should be clear, we assignAothe orderr = 2. Condition (i)
of Definition 3.1 is then automatically satisfied.

We shall begin by proving that a regular spectral tripde H, D) satisfies the
basic estimate.

3.27 Definition. Let (A, H, D) be a regular spectral triple. Denote Wy(A) the
algebra of operators di> generated by all the spac&{A] ands™[[D, Al], for
alln > 0.

Note that, according to the definition of regularity, every operatd¥{pA )
extends to a bounded operator ldn The notation ¥,(A)” is chosen to suggest
“pseudodifferential operator of ordér (it is indeed the case that,(A) is an
algebra of orded pseudodifferential operators associated to the differential pair
(D, A)).

3.28 Lemma. Assume thatA, H, D) is a regular spectral triple. Every operator
in D of orderk may be written as a finite sum of operatd®|‘, whereb belongs
to the algebra¥y(A) and wherel < k.

Proof. Define€, a space of operators i°, to be the linear span of the operators
of the formb|D|¥, wherek > 0 andb € Wy(A). The spac€ is an algebra since
d[Wo(A)] C Yo(A) and since

kq

k . .
biD - byD[2 = Y (;)b]&(bznmkﬁkﬂ.
j=0

Filter the algebra& by defining€, to be the span of all operatdsD|* with ¢ < k.
The formula above shows that this does define a filtration of the aldgehxow
the algebraD of differential operators is contained withé) and the lemma we
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are trying to prove amounts to the assertion that C &,. Clearly Dy C &,.
Using the formula

[A,b|DI*"] = D%, b/D[*'] = 25(b)|D|* + 8%(b)|D[*,

along with our formula fofD,, the inclusionD, C &, is easily proved by induc-
tion. [

We can now prove that every regular spectral triple satisfies the basic estimate.
According to the lemma, it suffices to prove thakif> ¢ and if X = b|D|*, where
b € B, then there exists > 0 such that

D[+ [[v]| = ellXv],
for everyv € H*. But we have
IXv]| = [[oIDI*V]| < [[b]| - [IDI*V[| = [[b]| - [[D*V]],
And since by spectral theory for evefy< k we have that
2
IDY]* < D)2 + [[v]|* < (IID*v]| + [IvI])
it follows that

D]+ []v] > [1Xv][,

1
o] +1
as required.

We turn now to the proof of the second half of Theorem 3.25. Assume from
now on that A, H, D) is a spectral triple for whiciA - H* C H* and for which
(D, A) is a differential pair. Starting from the differential pair we can form the
algebra of pseudodifferential operators, as in Subsection 3.3.

3.29 Lemma. If T is a pseudodifferential operator then sadisl' ), and moreover
orderd(T)) < orderT).

Proof. We compute that

5(T) = DT — TID| ~ AT — TA?
© 1N
~) (2> Vi(maz,
= N

This computation reduces the lemma to the assertion thasia pseudodifferen-
tial operator of ordek thenV(T) is a pseudodifferential operator of orde#- 1

or less. SincéV(T) =~ [A, T] this in turn follows from the observation made in
Example 3.9. [
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Proof that(A, H, D) is regular. By the basic estimate, every pseudodifferential
operator of order zero extends to a bounded operatdt.oBince every operator
in A or [D, A] is pseudodifferential of order zero, and sirtdd’) is pseudodif-
ferential of order zero whenevéris, we see thatib € A orb € [D, A] then
for everyn the operato™(b) extends to a bounded operator Hn Hence the
spectral triplelA, H, D) is regular, as required. Il

3.5 Dimension Spectrum

3.30 Definition. A spectral triple(A, H, D) is finitely summablé there is some
k > 0 such that the operatar- (1 + D?) ¥ is trace-class, for every ¢ A.

Suppose that the spectral tripld, H, D) is regular, and denote b¥ the
associated algebra of differential operatorg Af H, D) is finitely summable then
for everyX € D the zeta function Tra¢XA;*) is defined in a right half-plane in
C, and is holomorphic there (as before, is an invertible operator obtained from
A by adding a positive, orderoco operator). The following concept has been
introduced by Connes and Moscovici [10, Definition 11.1].

3.31 Definition. Let (A, H, D) be a regular and finitely summable spectral triple.
It hasdiscrete dimension spectruifit there is a discrete subsetof C with the
following property: for every operatar in the algebraV,(A) of Definition 3.27,

the zeta function Tra¢@A, ?) extends to a meromorphic function @hwith all
poles contained iff.

If (A,H,D) has discrete dimension spectrum then for every differential, or

indeed pseudodifferential, operakrthe zeta function Tra@(AT%) extends to a
meromorphic function o . Moreover ifX has ordek then the poles of this zeta
function are located it + q. Conversely, if A, H, D) is a regular spectral triple,

and if, for every differential operatot of orderk, the zeta function Tra¢XA, ?)
extends to a meromorphic function @hwhose poles are located within+ q,
then(A, H, D) has discrete dimension spectrim

A final item of terminology:

3.32 Definition. A regular and finitely summable spectral triple tsspledi-
mension spectrum if it has discrete dimension spectrum and if all the zeta-type
functions above have only simple poles.

SConnes and Moscovici add a technical condition concerning decay of zeta functions along
vertical lines inC.
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Itis an interesting and as yet unsolved problem to find algebraic conditions on
a regular spectral triple which will imply that it has discrete or simple dimension
spectrum.
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4 Computation of Residues

We saw in the Section 2 thatf is the Laplace operator on a closed Riemannian
manifoldM and if D is any differential operator o then the function

(4.1) TracéDA ™)

is meromorphic onC. Moreover if D has orderq then the poles of this zeta
function are all simple and are located at the integer pajratsn, g +n—1,....

The purpose of this section is to explain how the residues of TEate?2) are
given by complicated but in principal explicit and computable formulas involving
the coefficients oD andA. This ‘local computability’ of residues is a very impor-
tant conceptual point: in the next section we shall consider a family of globally
defined index invariants of manifolds, and it will be a significant and nontrivial
fact that these global invariants are given by explicit (albeit complicated) local
residue formulae.

We shall not take the shortest route toward our goal of producing local formu-
lae for residues. Instead we shall follow a method, based on commutators, which
is loosely related to our proof of meromorphic continuation in Section 2. Nor shall
we give a very detailed or sophisticated account of this topic. Instead, for the full
story the reader is referred to [28] or [15].

4.1 Computation of the Leading Residue

We are going to find a formula for the residuezat= n + q of the function
Tracd DA~ 2), whereD is an orderq differential operator. This is the residue at
the leading or rightmost pole i@. Note that

n+q-+s

Res _n.qTrac§DA™ %) = Res_oTracdDA~" 7 ) =1(DA~"2"),

whereT is the residue trace on the algebra of pseudodifferential operators (see
Lemma 3.15). So the leading residue is the residue trace of the -erd@seu-
dodifferential operatoDA~"z". We are going to use the trace propertyrab
produce a formula for the residue trace of any ordarpseudodifferential opera-
tor.

In order to produce such a formula we first need to extract from a pseudodif-
ferential operator its symbol, which is a function on the cotangent sphere bundle
S*M.
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4.1 Definition. Let D be a differential operator of order. Its principal symbols
the functionop: S*M — C defined in local coordinates by the formula

op(x, &) =19 Y aa(x)E%,

lod=q

where

In other words, to definep: S*M — C we just exchange each partial deriva-
tive % in the leading order terms @ for the corresponding coordinate function
&; on the cotangent bundle. The reason for dropping the lower order terms of
is that the principal symbol is then independent of the choice of local coordinates
on M, and so well defined on all & M. This would not be the case if the lower
order terms oD were retained.

The overall factoiid is conventional. It ensures that, for example, the symbol
of A, a positive operator, is a positive function. In fact the symboAAat the
constant functiori. For a general operat@ of orderq, the symbol extends to a
function onT*M which is polynomial and homogeneous of orden each fiber
of the cotangent bundle (in the case of the Laplace operathis extension is
just the norm-squared functidn— ||&]|? obtained from the Riemannian metric).
Going in the other direction, i6: T*"M — C is polynomial and homogeneous of
orderq in each fiber, then it is the symbol of some ordettifferential operator.

4.2 Definition. Let T be an orderq pseudodifferential operator. Il{wincipal
symbolis the functionot: S*M — C obtained by representingin the form

T =DA? 4R,
where ordefR) < ¢, and then setting
o1 =0p: SM — C.
The symbol is well-defined. This follows in the first place from the fact that the
symbol ofA is the constant functiohon S*M, so that if we writeT = DA - A*!
thenop = opa, and in the second place from the fact that the analytic order of a

differential operator is exactly equal to its differential order.
We are going to prove the following result.
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4.3 Theorem. There is a constant such that ifT is any order—n pseudodiffer-
ential operator then
T(T) = CJ ordvol.
*M

Here is roughly how we are going to proceed. We shall show that if the in-
tegral vanishes, then the symbo} can be written as a linear combination of
‘derivatives’. As we shall see, this will imply thdt can be written as a linear
combination of commutators of pseudodifferential operators, modulo an operator
R of lower order. From the trace property ofit will follow that ©(T) = t(R),
and sinceR has order less thann it follows thatt(R) = 0. All this will show
that if the integral vanishes then so da€$). Since the integral and the trace are
both linear functionas on the space of ordet operators, it will follow thatr is
a constant multiple of the integral, as required.

To start the argument, we consider the complex of differential formS on
which are polynomial in the fiber direction (this means that the forms are local
combinations of forms(x, £)dx'd&’, wherep is polynomial in thet-variables;
herex,, ..., x., together withé;, . .., &, are the standard coordinate functions on
T*M). This complex computes the de Rham cohomofagfyS*M. The volume
form onS*M is given by the formula

n

Volsipe = Y (1) gdxy -+ dxndéy - A&+ dEn

=1

and so belongs to our complex. If the integral in Theorem 4.3 is zerod¢hen
vols«p IS exact, say

(42) o - VOls*M =da.

We are now going to transfer this equation to the sgidd, obtained froml'*mM
by deleting the zero section. Of cour§éM is a submanifold oR*M. We extend
o to a function onR*M by requiring it to be homogeneous of orden in each
fiber. We extend valn, to the form
] — : —
W=D (~1)7gdx - dxndiy - s i

j=1

5This part of the argument would be simpler if we used the classical notion of pseudodiffer-
ential operator from analysis, in which case the relevant class of functioBsMnwould be the
class ofall smooth functions, and the relevant complex would be the standard de Rham complex.
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Herer: R*M — R is the functionr(&) = ||&||. By collapsing each positive ray in
R*M to a point we get a projection ®© M, and using it we pull baclk to a form
3 onR*M. From (4.2) we get

dp =0 w.

Multiplying both sides by the closed foradr, and observing thatr - w = volg-m
we get

dy =0- VOlR*M

wherey = 3 - dr. Writing this equation in local coordinates we arrive at the
following:

4.4 Lemma. If [, odvol =0, theno, viewed as a function oR*M, is a sum
of functions each of which is supported in a coordinate chart and is of the form

%a o, O
an aE]

The functionsa and b are quotients of functions which are polynomial in each
fiber ofR*M by powers of-. O]

Proof of Theorem 4.3Let T be an ordern operator. It suffices to prove that if
the integral of the symbol of over S*M is zero then the residue trace bfis
zero. If the integral ove$*M of the symbol ofT is zero then the symbol is a sum
of derivatives of the typ§— or == aa , asin Lemma 4.4. If we construct operatédrs

andB with symbolsa or b then we find that the commutatdi, =2 5 =] and[B, x;]

have symbolsaa—“ or =2 aa , respectively. Conclusion: the operafbris a sum of
commutators, modulo an operator of order less than Since the residue trace
vanishes on commutators, and also on operators of order less-thahfollows
that the residue trace afis zero, as required. O

4.5 Remark. It is not difficult to see that the constantlepends only on difiM )

(note that is determined by the residue trace of an operator supported in a coordi-
nate neighbourhood; given two different connected manifolds, apply Theorem 4.3
to a third manifold which contains coordinate neighbourhoods isometric to neigh-
bourhoods in the first two manifolds). By checking an explicit example, like the
flat torus, one can see that = (2t) ™.
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4.2 The Lower Residues

Let D be an orden differential operator. The problem of computing the residues
of Tracd DA~2) (or similarly ofI'(5) Tracg DA~2)) at the “lower” polesn + q —
1,n+q—2,... can be reduced to the problem of computing the highest residue
by the scheme used in our proof of meromorphic continuation.

Before starting the computation, it is useful to note that our basic meromorphic
continuation theorem can be strengthened in the following way. An elaboration
of the Sobolev theory that we developed in Section 1 and Appendix B shows that
everyp, every operatof: C*°(M) — C* (M) of sufficiently large negative order
may be represented by& integral kernel function defined dwl x M.:

T (x) szk(x,m(y)dy.

It follows that if z is restricted to a suitable left half-plane@ then any integral

I, of the type considered in Definition 2.5 may be represented by a kernel function
k,: M x M — C which isp-times continuously differentiable. Consider now the
basic identity from the proof of Theorem 2.2:Iifis an integral of typé then

N N
D [LABI+ ) By ALl = (k—22)L.+R,,

i=1 i=1

whereR, is a finite sum of integrals of lower type. As we know, the identity is
equivalent to the identity

N
(4.3) Y L, AdBi+nl, = (k+n—2z)I, +R..

i=1

Now, let us represent the integialby an integral kernét, (x, y), and compute the
left hand side of (4.3). The vector fieRl is a skew-symmetric operator, modulo
operators of lower order: this means that there is a smooth funCtioM — R
so that

J w-BqudvoI:—J B{Lb-(l)dVO|+J Cip-ddvol.
M

M M
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We can therefore write the left-hand side of (4.3) as an integral operator
fo 3 [ lxo ) (Adty) — A Bily) dy + [ kel u)bly) dy
== 3 [ B (kelr ul(Auly) — Alx) )bty dy
+) J Cily)kz(x,y) (Ai(y) — Ai(x)) d(y) dy + anz(x,y)tb(y) dy
(the vector fieldB; acts on they-variable). Finally,
Bi<kz(x,y) (Ai(y)_Ai(X))) = Bi(kz(x,1)) (At(y)—Ai(x)) +k2(x,y)Bi (Ai(y)).

But B;(Ai(y)) is the scalar functiofB;, A;]. Settingx = y in the above formulas
and using the fact that [B;, A;] = n we now see that the left hand side of (4.3)
is represented by an integral kernel whianishes identicallalong the diagonal
x =y in M x M. The proof of Theorem 2.2 now provides the following well-
known meromorphic continuation of trace-densities for complex powefs of

4.6 Theorem. Let A be a positive, elliptic operator on a smooth, closed manifold
M, and letX be a differential operator oM. For Re(z) < OletK,: M — C
be the restriction to the diagonal iM x M of the integral kernek,(x,y) for the

operatorXA, 2. For everyh € N the mapz — K, extends to a meromorphic
function fromC into theh-times continuously differentiable functionsdh [

We see that the residues we are trying to compute are the integralsooer
residue densitieRes_,,, Tracd DA2)(x) = Res_,, K,(x). The leading residue
density is given by the formula

L
(4.4) Res .4 Tracd DA 2)(x) = 2 L;MGDAq;n(i)d&.

which integrates the symbol &FA—"Z" over the contangent spherexat
To compute the lower residue densities ne#at us choos&\ ; andB; to be of
the formx; and=% nearx. Settingl, = DA% and using the formula

aXi

= d =9
(g+n—22)I, = Z[Iz,xia—Xi] + ;[a_xi’XiIZ] + R,

i=1

we see as before that the trace densitiegqof n)I, andR, are equal (since not
only are the traces of the commutators zero, but their trace densities are identically
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zero). It follows that the residue densities g+ n—2z)1, are equal to the residue
densities oR, = (q—2z)I,—) " ,[D, Xi]a_i; In particular, looking at the residue
just one below the leading residue we get

Regzwzﬁ Tracdl,)(x) = Regzw TracdR,)(x).

But on the right hand side we are computing the leading residie, &o that we
can invoke the explicit formula (4.4). As a result, si;as explicitly computable
in terms ofI,, we obtain an explicit (but complicated) formula for the residue
density ofl, atq + n — 1.

Repeating this argument we get explicit formulas (which get more and more
complicated) for all the residue densities of Trdcg
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5 The Index Problem

In this section we shall introduce the problem in Fredholm index theory whose
solution will occupy the remained of the notes. This will require us to introduce
cyclic cohomology. Since there are several good introductions to the latter subject
(for example [22] or [4]) we shall do so quite rapidly.

5.1 Index of Elliptic Operators

From now on we are going to work in tl#%/2-graded situation which is standard
in index theory. We shall assume thaf a linear partial differential operator
on closed manifold\, is the square of a self-adjoint, first order, elliptic partial
differential operatoD. We shall assume th&t acts not on scalar functions but on
the sections of some smooth vector burllever M. We shall assume moreover
that S is written as a direct sur8 = S, & S_ (in other words thaf is Z/2-
graded), and that, with respect to this direct sum decomposition, the opBErator

has the form
0 D_
o=(5, %)

., (DD, o0
A=D _( o DD )

so that

Denote bye thegrading operator

£:<(1) _01).

As is customary in th& /2-graded world we shall call operators which commute
with ¢ evenand those which anticommute wittodd Even operators are diagonal
in the2 x 2 matrix notation and odd operators are off-diagonal.

5.1 Definition. An unbounded Hilbert space operaliarH, — H_ is Fredholm
if itis Fredholm as a linear transformation from ddnmto H_. In other wordsT
is Fredholm if and only if its kernel is a finite dimensional subspace of d@md
its range has finite codimensionkh_. In this case thendexof T is the integer

IndeX(T) = dimkerT) — dim coke(T).

5.2 Lemma. The unbounded operat®_, : L*(S,) — L?(S_) is Fredholm.
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Proof. We want to show that, when viewed as a bounded operator from its domain
intoH_, D, is a Fredholm operator in the usual sense, meaning that its kernel and
cokernel are finite-dimensional. By the basic elliptic esitmate, the domdin, of

is the Sobolev spac®/;(S.) of W;-sections ofS,. Denote byQ: L*(S_) —
L2(S.) compression of the operatd +i)~'. Thus in matrix form we have

(D-Fn4::(: S):L%S+M9L%SJ-4L%S+M9L%5J.

By the basic elliptic estimate again, the rangeQofs contained withinWV,(S ).

If we regardQ as an operator frorh?(S_) to W;(S,) then it follows from the
Rellich Lemma thaf) is an inverse oD ,, modulo compact operators. As is well
known, an operator which is invertible modulo the compact operators is Fredholm
(this is Atkinson’s Theorem), so the lemma is proved. Il

5.3 Remark. By elliptic regularity theory, the kernel dD, consists of smooth
functions. Moreover the cokernel identifies with the kerneDof, which again
consists of smooth functions.

We can therefore pose the very famous problem of computing the Fredholm
index of D,. The full solution to the problem is provided by the Atiyah-Singer
index theorem [2], and is known to involve in a very subtle way information not
only about the operatdp but also about the global topology of the underlying
manifold M. But Atiyah and Bott [1] pointed out a very simple formula for the
index involving residues of zeta functions, as follows. Fix an even, positive, order
—oo operatorK such that the sum

Ay =A+XK
Is invertible.
5.4 Proposition. IndeX D) = Res_o(I'(z) TraceeA;?)).

Proof. It is not difficult to see that the residue is independent of the choidg of
and therefore we may také to be the orthogonal projection on to the kernel of
A. We shall work with this choice below.

Let{};} be an orthonormal eigenbasis hiacting the orthogonal complement
of ker(A) in L?(S.). Define

Py = =Dy € L35 ).
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It is easy to check thahp; = Anp; and that the collection of alp; constitutes
an orthonormal basis foA acting on the orthogonal complement of k&f in
[2(S_). Computing the trace in these orthonormal basis we see that

TracdeA *) = dimker(Al2 (s, )) —dimker{Al2s ) = Index D).

The formula
Index D) = Res_o(I'(z) TraceeA; %))

follows immediately from this. Il

The significance of this result is that, as we saw in Subsection 2.3 and Sec-
tion 4, the residue of (z) TracgeA;*) can in principle be determined by a com-
pletely mechanical computation, involving ultimately integrals over the cosphere
bundle ofM of various polynomial combinations of the symbolsfand its par-
tial derivatives. This is quite remarkable sire@riori the index problem is very
global in nature, and is not at all obviously reducible to a definite sequence of
computations in coordinate patches.

From this point onwards a viable approach to the index theorem is to de-
velop means to organize the complicated computations involved in determining
the residue at = 0 of I'(z) TracdeA;*), so as to put the result of the compu-
tations into recognizable form. See for example [13]. But rather than carry that
out, we shall spend the remaining parts of these notes developing a considerable
elaboration of Proposition 5.4, in which the numerical index of an elliptic operator
D is replaced by a much more detailed invariant in cyclic conomology.

5.2 Square Root of the Laplacian

Let (D, A) be a general differential pair, in the sense of Definition 3.1. In order
to develop index theory in this context we shall now assumeshatthe square
of a self-adjoint operatdD. We shall assume that the underlying Hilbert spHce
is Z,/2-graded; that the operat@ is odd; and that the algebfa is stable under
multiplication by the grading operater

We shall also assume that an algeBraC D(A) is specified, consisting of
operators of differential order zero (the operatordiare therefore bounded op-
erators orH) which are even with respect to the grading. We shall assign the order
5 to D (recall thatr is the order ofA), and we shall assume thatdfe A, then
order([D, a]) < orde(D) — 1.

In the standard example of a smooth manifddwill be the ring of smooth,
compactly supported functions on.
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5.5 Example. In the case of a differential pair which is generated from a regular
spectral triple(A, H, D), we shall assume that the spectral tripleven which
means thaH is Z/2-graded,A is comprised of even operators, abdis odd.

We enlarge the algebfa of Definition 3.23 by guaranteeing it to be closed under
multiplication by the grading operater Then we can leD itself be our square
root of A, and takeA to be the algebra of order zero operators.

5.3 Cyclic Cohomology Theory

In this subsection we shall establish some notation and terminology related to
cyclic cohomology theory. We shall follow Connes’ approach to cyclic cohomol-
ogy, which is described for example in his book [4, Chapter 3], to which we refer
the reader for more details.

Let A be an associative algebra ov&mrand for the moment let us assume that
A has a multiplicative unit. IV is a complex vector space apds a non-negative
integer, then let us denote [6y”(V) space of(p + 1)-multi-linear maps fromA
into V. Usually one is interested in the case where- C, but for our purposes it
Is useful to consider other cases too.

We are going to define the periodic cyclic cohomologyAoivith coefficients
in V, and to do so we introduce the operators

b: CP(V) — C*"(V) and B: CPT(V) = CP(V),
which are defined by the formulas

P
(5.1) bp(a®...,a") =D (=1Vd(a’...,dd", ... 0"
j=0

)
+ (=1 dp(a? 1’ .. aP)

and

P

(5.2) Bd(a’...,a") =D (-1)7o(1,d,d", .. d)

5.6 Lemma.b? =0, B2 =0andbB + Bb = 0. m
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As a result of the lemma, we can assemble from the spae@g) the follow-
ing double complex, which is continued indefinitely to the left and to the top.

b b b

T b
B o3(v) =B c2(v) —B- (V) B CO(v)
(

B oc2v) Bl (v) B copv)

. —B o)

5.7 Definition. Theperiodic cyclic cohomology 6%, with coefficients iV is the
cohomology of the totalization of this complex. Thanks to the symmetry inherent
in the complex, all even periodic cyclic cohomology groups are the same, as are all
the odd groups. So we shall use the notatBHE®® A, V) andPHC(A, V).

A cocycle forPHC®*(A| V) is a sequence

(d)0> d)lv d)4> cee ))
whered,, € C?(V), ¢ = 0 for all but finitely manyk, and

bk + B2 =0

for all k > 0. A cocycle forPHC®¥(A | V) is a sequence

(d)1ad)3>d)5>"-)>

wheredo € CP*(V), o = 0 for all but finitely manyk, and

b1 + BdPaiz =0

for all k > 0 (and in additiorBd; = 0).

The periodic cyclic cohomology groups Afcan be computed from a variety
of complexes, so we shall refer to cocycles of the above sai d)-cocycles
with coefficients inV.
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If we totalize the(b, B)-bicomplex by taking a direcproduct of cochain
groups along the diagonals instead of a direct sum, then we obtain a complex with
zero cohomology. We shall refer to cocycles for this complex (consisting in the
even case of sequencief,, ¢z, ¢4, ... ), all of whose terms may be nonzero) as
improper (b, B)-cocycles. On their own, improper periodie, B)-cocycles have
no cohomological significance, but nevertheless the concept will be a convenient
one for us.

If the algebraA has no multiplicative unit then by (@, B)-cocycle forA we
shall mean db, B)-cocycle{¢d} or {d, 1]} for the algebraA obtained fromA
by adjoining a unit, which gives the value zero when the valgeC is placed in
any but the first argument of any of the multilinear mag<in the even case one
also requires thab,(1) = 0). This vanishing condition defines a subcomplex of
the (b, B)-bicomplex.

5.8 Example. Let M be a smooth, closed manifold and denotedy(M) the

algebra of smooth, complex-valued functionseh Forp > 0 denote byQ,

the space op-dimensional de Rham currents (dual to the sp@¢eof smooth
p-forms). Each current € ), determines a cochaip. € CP(C) for the algebra
C*(M) by the formula

be(f0,..., ) :J fodf’. .. dfv.

One has that

bd. =0 and Bbe=p: bac,
whered*: O, — Q,_; is the operator adjoint to the de Rham differential. This
leads one to consider the following bicomplex:
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A fundamental result of Connes [3, Theorem 46] asserts that this complex com-
putes periodic cyclic conomology fét = C*(M):

5.9 Theorem. The inclusiorc — ¢ of the above double complex into ttte B )-
bicomplex induces isomorphisms

HCPGR(C* (M) = Ho(M) & Ho(M) @ - - -

and
HCPY4(C®(M)) = H;(M) @ H3(M) & - - -

Here HCP{,,(C>(M)) denotes the periodic cyclic cohomologyMf computed
from the bicomplex o€ontinuousmulti-linear functionals orC*>(M). O

It follows that an even/oddb, B)-cocycle forC* (M) is something very like
a family of closed currents oM of even/odd degrees. This close connection with
de Rham theory makes ttié, B)-description of cyclic cohomology particularly
well suited to index theory problems.

5.10 Definition. A multi-linear functionald,, € CP(V) is said to becyclicif
(I)p(aoa a]> L] ap) - (_1)pd)p(ap» aO) cr ) ap71)>
forall a® ..., a?in A.

If ¢, is cyclic then itis clear from the formula (5.2) thag,, = 0. As aresult,
if in addition bg,, = 0, then we obtain &b, B)-cocycle

(0,...,0,dp,0,...)

by placing¢,, in positionp and0 everywhere else. These are ttylic cocy-
clesof Connes [3], using which Connes first formulated the definition of cyclic
cohomology.

5.11 Lemma. Every(b, B)-cocycle is cohomologous to a cyclic cocycle of some
degreep. O

5.4 Chern Character and Pairings with K-Theory

One of the most important cyclic cocycles is defined as follows. A.die an
algebra of bounded operators on a Hilbert sgd@nd letF be a bounded operator
onH such thaF? = 1. Assume in addition that the Hilbert spades Z/2-graded,
and thatA consists of even operators, whiies odd.
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5.12 Theorem.Letn be aneveninteger and assume that for alf, ..., a™in A
the productF, a®l[F, a'] - - - [F, a™ lies in the trace ideal. The formula

F(T—‘+1)
2-n!

(5.3) ch(a®...,a") = Trace(eF[F, a®l[F, a'] ... [F, a™])
defines a cycliei-cocycle whose class in periodic cyclic cohomology is indepen-
dent ofn (as can be seen by insertirggat the front of the formula above for

d)n+1)- O

This is Connes{even) cyclic Chern charactef F. The constant in front of
the trace is chosen in such a way that the periodic cyclic cohomology class of the
(b, B)-cocycle determined by éhis independent ofi. To see that this is so, one
can define

Ynpa(a® ... a™) = &E—?Trace(ea a'llF,a?...[Fa™).

and then compute that),, 1 = — ch],_, while By, = ch]..’

Each everib, B)-cocycle determines a homomorphism from the algebifaic
theory groupKy(A) to C, depending only on the periodic cyclic cohomology
class of the cocycle. I¢ is an idempotent irA then we can form the element
le] € Ko(A). Under the pairing between cyclic theory aketheory the clasée]
is mapped by an evelb, B)-cocycled = (bo, d2, ... ) to the scalar

(5.4) d([e]) Z (IDZk( ! e,e, ..., e).
-

Compare [12]. In the case of the even cyclic Chern character defined in the last
section, the pairing is

(5.5) cH ([e]) = Index(eFe: eHy — eHy),

whereH, and H; are the degree zero and degree one parts ofjiZegraded
Hilbert spaceH.

This connection with index theory makes it a very interesting problem to com-
pute the cyclic Chern character in various instances, and itis this problem to which

"This formula actually proves Theorem 5.12 siftide= 0 and the image of the differential
is comprised entirely of cyclic multi-linear functionals.
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we want to turn our attention. For example, in the case of an ordinary elliptic op-
erator on a closed manifold, where the cyclic conomologik e C* (M) identi-

fies with the de Rham homology 4., the identification of the class of the Chern
character with a specific homology classhis equivalent to the Atiyah-Singer
Index Theorem.

Our goal will be not so much to compute the Chern character in this (or any
other) specific instance. Instead we aim to show that in general the Chern char-
acter is cohomologous to a cocycle constructed entirely out of residues of zeta
functions. As we saw in Section 4, in at least the classical case this leads to com-
plicated but explicit formulas from which Fredholm indexes may in principle be
computed. The problem of actually organizing and simplifying these formulas
in various cases is both interesting and important, but we shall not consider it in
these notes.

5.5 Zeta Functions

Let us continue to assume as given an differential fRirA) of generalized dif-
ferential operators, along with a square-root decompositien D2.

We are now going to define certain zeta-type functions associated with the
algebra. To simplify matters we shall now assume that the opetaginvertible
This assumption will remain in force until Section 8, where we shall consider the
general case.

5.13 Definition. The differential pai{D, A) hasfinite analytic dimensioif there

is somed > 0 with the property that iX € D has orderg or less, then for every
z € C with real part greater thaﬂlj—d the operatoXA~* extends by continuity to
a trace-class operator &h(herer is the order ofA, as described in Section 3.1).

Assume that D, A) has finite analytic dimensiod. If X € D(A) and if
orderX) < g then the complex function TraQ€A =) is holomorphic in the right
half-plane Réz) > 4.

5.14 Definition. An differential pair(D, A) which has finite analytic dimension
has themeromorphic continuation properiy for every X € D(A) the analytic
function TracéXA =), defined initially on a half-plane i, extends to a mero-
morphic function on the full complex plane.

Actually, for what follows it would be sufficient to assume that Tracs =)
has an analytic continuation t0 with only isolated singularities, which could
perhaps be essential singularities.
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5.15 Definition. Let (D, A) be a differential pair which has finite analytic dimen-
sion. Define, for R&) > 0 andX?®, ..., X? € D B the quantity

(5.6) (X°, X' ... XP), =

r
(—1 )P% Trace(J AZeEXPA=A) XTI A=A) T XP(A=A) ! d)\)
(the factors in the integral alternate between Xieand copies of A — A)™).
The contour integral is evaluated down a vertical lin€iwhich separated and
SpectrungA).

5.16 Remark. If order(X°®) + - - - +orde(X?) < g and if the integrand in equation
(5.6) is viewed as a bounded operator frbiit to H*, then the integral converges
absolutely in the operator norm whenevefRe-p > 0. In particular, if R¢z) >

0 then the integral converges to a well defined operatdi®n

Of course, apart from the insertion of the grading operatdhis is precisely
the sort of integral we encountered in our discussion of meromorphic continuation
in Section 2. In our former notation,

(X0 X1 XPY, = (—=1)PT(2)1,(eXO, X, ... XP).
Using the arguments we developed in Section 2 we obtain the following results:

5.17 Proposition. Let (D, A) be a differential pair and leX°,...,X? € D. As-
sume that
orde(X°) + - - - + order(X?) < q.

If (D, A) has finite analytic dimensiod, and ifRe(z) +p > %(q + d), then the
integral in Equation(5.6) extends by continuity to a trace-class operatortan
and the quantityX°, ..., X?), defined by Equatiof6.6)is a holomorphic func-
tion of z in this half-plane. If in addition the algebr@d, A) has the meromorphic

continuation property then the quantitx®, ..., X?), extends to a meromorphic
function onC. Il
5.18 Definition. Letk = (k;, ..., k,) be a multi-index with non-negative integer

entries. Define a constaatk) by the formula

(k1 + -+ kp +p)!
kiloookpl(ky 4+ 1) (kg + -+ kp +p)

80ccasionally we shall take one or more of Hieto lie within a larger algebra, for example
the algebra generated Y, I andD.

c(k) =
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5.19 Proposition. Let (D, A) be a differential pair with the meromorphic contin-
uation property and lex?, ... XP € D. There is an asymptotic expansion

(X% ..., XP), ~ Z(—U‘k‘r(z—i—p + [k|)

k>0

i+ pyict

)

(k (kp)
xTrace(exox‘ CLxe A—z—u_p))

where the symbet means that, given any right half-plane @ any sufficiently
large finite partial sum of the right hand side agrees with the left hand side modulo
a function ofz which is holomorphic in that half-plane. [

5.6 Formulation of the Local Index Theorem

The following result is the local index formula of Connes and Moscovici:

5.20 Theorem.Let (D, A) be a differential pair with the meromorphic continua-
tion property and leD be a square root aA. The formula

o v (C1)¥e(k)
wp(a)'-wa) kZZO (|k“|‘p)’

x Res_o (F(S + ‘g + |k|) Tr (EGO[D, a1](k1) - [D) aP](ho)AEks))

defines an periodi¢b, B)-cocycle{\,} for A which is cohomologous to the
cyclic Chern character of the operatér= D|D|~".

5.21 Remark. If [k| +p > d then the(p, k)-contribution to the above sum of
residues is actually zero. Hence for everthe sum is in fact finite (and the sum
is 0 whenp > d).

5.22 Remark. If all the poles of the zeta functions Trd@@\ =) are simple then
the above cocycle can be rewritten as

Yyl a")

— Z Cp,k Regzo Tr (eaO[D, al](k1) . [D, ap] (kp)Afgfﬂqfs) )

k>0
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where

(—1)* F(fkf+5)
k! (ki+1)(ki+ka+2) (ki +-+kp+p)

Cox =

(Note: the constant,, = I'(0) is not well defined in our formula sinceis a pole
of theT'-function. To cope with this problem we must treat the- 0, k = 0 term
separately and replac®, Res_o (Tr(ea®A)) with Res_ (T'(s) Tr(ea®A™*)).)
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6 The Residue Cocycle

6.1 Improper Cocycle

In this section we shall assume as given a differential ({#&irA) with the mero-
morphic continuation property, a square rébof A, and an algebrd C D, as
in the previous section.

We are going to define a periodic cyclic cocytfe= (¥,,V¥,,...) for the
algebraA. The cocycle will bemproper—all theV,, will be nonzero. Moreover
the cocycle will assume values in the field of meromorphic function§.daut in
the next section we shall convert it into a proper cocycle with valuésiteelf.

We are going to assembléfrom the quantitiegX®, ..., X?), defined in Sub-
section 5.5. We begin by establishing some ‘functional equations’ for the quan-
tities (---),. In order to keep the formulas reasonably compack i D then
we shall write(—1)* to denote either-1 or —1, according a¥ is an even or odd
operator on th&./2-graded Hilbert spacH.

6.1 Lemma. The meromorphic functionX®, ..., X?), satisfy the following func-
tional equations:

P
(6.2) (X0, XPTLXP) g =) (X0 XX, LX),
j=0

(6.3) (X0 .. XPTLXPY, = (=) (XP X0 L XPTY,
Proof. The first identity follows from the fact that

d%\ (A2XOA=A)- - XP(A—=A)T)
= (—2) A7 XOA=A) - XP(A=A)!
— i AZXOA—=A) T XA = A) X XP(A = A)
j=0

%In doing so we shall follow quite closely the construction of the so-called JLO cocycle in
entire cyclic conomology (see [21] and [12]), which is assembled from the quantities

(6-1) <XO, A ,XD>JLO = Trace(J ExoeftoA L XveftpA dt>
P
(the integral is over the standapdsimplex). The computations which follow in this section are

more or less direct copies of computations already carried out for the JLO cocycle in [21] and
[12].
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and the fact that the integral of the derivative is zero. As for the second identity,
if p > 0 then the integrand in Equation (5.6) is a trace-class operator, and Equa-
tion (6.3) is an immediate consequence of the trace-property. In general we can
repeatedly apply Equation (6.2) to reduce to the case whexe0. Il

6.2 Lemma.
(6.4) (X° ..., [D*X],...,XP), =

(X0, .. XITIX, LU XPY, — (X0 XX LX),
Proof. This follows from the identity

X TA=A) D2, XA —A) X
= XITTA = A)TIXOXHT — XTI (A — AT,
O

6.3 Lemma.

)

P
(6.5) (=1 X X0, .. D, X)L, XP), =0
=0

Proof. The identity is equivalent to the formula
Trace(s [D, J AEXCA=A) T XP(A—A) T d)\]) =0,

which holds since the supertrace of any (graded) commutator is zero. [

With these preliminaries out of the way we can obtain very quickly our im-
proper(b, B)-cocycle.

6.4 Definition. If p is a non-negative and even integer then defife & 1)-
multi-linear functional onA with values in the meromorphic functions éhby
the formula

‘Pp(ao, ...,a?)=(a’[D,d'],...,[D, ap]>s_%

6.5 Theorem. The even(b, B)-cochain¥ = (W,,¥,,¥4---) is an improper
(b, B)-cocycle with coefficients in the space of meromorphic functiorfS.on
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Proof. First of all, it follows from the definition oB and Lemma 6.1 that

p+1

BlyTH—Z(aOa ) aD-H) = Z(_1 )]<1) [Dy aj]) ) [D> aj_1]>s—sz2
j=0
p+1

=> (D,a%,...,[D,d,1,[D,d,...,[D,a" ) pi2
j=0

2

- <[D> ao]) [D» a1]) SR [D» apHDs—g.

Next, it follows from the definition ofo and the Leibniz rulgD, dd’*!] =
d[D, d*' + [D, d]d*! that
0 1y (/A0 2 1
b¥,(a’...,a?") = ((a°d',[D,a’,...,[D,a’ sz
0 1 2 1
—(a%d'D,a?,...,[D,a"" ])S_%)
— ((a%[D,a"la% [D,a%,...,[D,a" M), s
0 n o2 3 +1
—(a%[D,a'l,a’D,a’,...,[D,a" ) 3)
+...
+ ((a® D, d'],...,[D,a"a""") s

—(a*"1a% D, a'],...,[D,a" M), z).

Applying Lemma 6.2 we get

p+1
bYp(a’..,a” ) = ) (1% D, a'],..., D% dl),.., [D, @ )y

j=1
SettingX® = a® andX’ = [D, d/] forj > 1, and applying Lemma 6.3 we get

BY,.,(a%...,a?™) +b¥,(a’...,a"")
p+1

=Y (1) XNUXO, DXL XY =0,
j=0

6.2 Residue Cocycle

By taking residues at = 0 we map the space of meromorphic functions@®n
to the scalar fieldC, and we obtain from anyb, B)-cocycle with coefficients in
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the space of meromorphic functiongt@ B)-cocycle with coefficients iit©. This
operation transforms the improper cocy®léhat we constructed in the last section
into apropercocycle Res V. Indeed, it follows from Proposition 5.17 thatyif

is greater than the analytic dimensidrof (D, A) then the function

‘Pp(ao, ...,a")s=(a%[D,d"],..., D, ap]>3_%

is holomorphic at = 0.

The following proposition identifies the propgs, B)-cocycle Res_o VW with
the residue cocycle studied by Connes and Moscovici. The proof follows imme-
diately from our computations in Section 2, as summarized in Subsection 5.5.

6.6 Theorem.Forallp > 0and alla®,...,a? € A,

(—1)Me(k)

Res oY, (a’...,aP) =
oy )= M

k>0
X Reg_o(r(s + % + [Kk[) Tr (saO[D, a'l®™)...[D, ap]<kv)A3‘<S)),
where

(k1 + -+ k%, +p)!

SN DY I e

6.3 Complex Powers in a Differential Algebra

In this subsection we shall try to sketch out a more conceptual view of the im-
proper cocycle which was constructed in Section 6.1. This involves Quillen’s
cochain picture of cyclic conomology [24], and in fact it was Quillen’s account of
the JLO cocycle from this perspective which first led to the formula for the quan-
tity (X°,...,XP), given in Definition 5.15. Since our purpose is only to view the
cocycleV¥ in a more conceptual way we shall not carefully keep track of analytic
details.

As we did when we looked at cyclic cohomology in Subsection 5.3, let us fix
an algebraA. But let us now also fix a second algeliraForn > 0 denote by
Hom™(A, L) the vector space ai-linear maps fronA to L. By a0-linear map
from A to L we shall mean a linear map frofto L, or in other words just an
element ofL. Let Homi™(A, L) be the direct product

Hom™(A,L) = | [ Hom™(A, L).

n=0
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Thus an elemenp of Hom™ (A, L) is a sequence of multi-linear maps frohto
L. We shall denote by (a’, ..., a™) the value of ther-th component ofy on the
n-tuple(a',..., am).

The vector space Hof(A, L) is Z/2-graded in the following way: an ele-
mentd is even (resp. odd) ib(a’,...,a™) = 0 for all oddn (resp. for all even
n). We shall denote by deg($) € {0, 1} the grading-degree ap. (The letter
‘M’ stands for ‘multi-linear’; a second grading-degree will be introduced below.)

6.7 Lemma. If ¢, € Hom™ (A, L), then define

bVa,...,aM = Y dd,...,a") (e, a")

p+q=n

and

n

dumd(al,...,a™) = Z(—U”]d)(a],...,aia”], coatth).

i=1

The vector spacelom™(A, L), so equipped with a multiplication and differential,

is aZ/2-graded differential algebra. O
Let us now suppose that the algelirés Z/2-graded. If¢ € Hom™ (A, L)
then let us write deg¢$) = 0 if d(a',..., a™) belongs to the degree-zero part

of L for everyn and everyn-tuple (a', ..., a™). Similarly, if § € Hom*(A, L)
then let us write degdd) = 1if ¢p(a’, ..., a™) belongs to the degree-one part of
L for everyn and everyn-tuple (a', ..., a™). This is a newZ/2-grading on the

vector space Hoffi(A, L). The formula

ded ¢) = degy(¢) + deg (P)

defines a thirdZ/2-grading—the one we are really interested in. Using this last
7./2-grading, we have the following result:

6.8 Lemma. If ¢, € Hom™(A, L), then define
b o = (—1)96m(PIdeg (W) gy \/
and
dd = (—1)%a®lq’¢

These new operations once again providem™ (A, L) with the structure of a
Z./2-graded differential algebra (for the totd/2-gradingded ¢) = degy,($) +

deg (¢)). O
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We shall now specialize to the situation in whidhandA = D? are as in
previous sections, andis the algebra of all operators on tAg2-graded vector
spaceH™ C H.

Denote byp the inclusion ofA into L. This is of course a-linear map fromA
to L, and we can therefore think pfas an element of Hoffi(A, L) (all of whose
n-linear components are zero, except foe= 1). In addition, let us think oD
as a0-linear map fromA to L, and therefore as an element of HGfA, L) too.
CombiningD andp let us define the ‘superconnection form’

0 =D —pecHom™(A,L)
This has oddZ/2-grading degree (that is, dgty = 1). LetK be its ‘curvature’
K =do + 6%

which has ever?./2-grading degree. Using the formulas in Lemma 6.8 the ele-
mentK may be calculated, as follows:

6.9 Lemma. One has
K=A—E € Hom™(A, L),
wherek: A — Lis thel-linear map defined by the formula
E(a) = [D, p(a)l. O

In all of the above we are following Quillen, who then proceeds to make the
following definition, which is motivated by the well-known Banach algebra for-
mula

[e¢]

e = ZJ e 0%e M. e madt,

n=0vx"

6.10 Definition. Denote bye ® € Hom*(A, L) the element

[e¢]

e K= ZJ e WAEeTUA | EehA(dt,

n=0v%"

Then-th termin the sum is an-linear map fromA to L, and the series should
be regarded as defining an element of HoiA, L) whosen-linear component is
this term. As Quillen observes, in [24, Section 8] the exponeati&ldefined in
this way has the following two crucial properties:
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6.11 Lemma (Bianchi Identity). d(e %) + [e 7%, 0] = 0. O

6.12 Lemma (Differential Equation). Suppose thatis a derivation oHom™* (A, L)
into a bimodule. Then
5(e™) = —=5(K)e ™,

modulo (limits of) commutators. O

Both lemmas follow from the ‘Duhamel formula’
1
5(e ™) = J e K5(K)e -9k g,
0
which is familiar from semigroup theory and which may be verified for the notion
of exponential now being considered. (Once more, we remind the reader that we
are disregarding analytic details.)
Suppose we now introduce the ‘supertrace’ Tgg¥e = TracdeX) (which
is of course defined only on a subalgebrd pf Quillen reinterprets the Bianchi
Identity and the Differential Equation above as coboundary computations in a
complex which computes periodic cyclic cohomology (using improper cocycles,
in our terminology here). As a result he is able to recover the following basic fact
about the JLO cocycle — namely that it really is a cocycle:

6.13 Theorem (Quillen). The formula
®,n(a’,...,a

J Trace(ea’e °?[D, a'le V4D, a?...[D, ae ") dt

defines @b, B)-cocycle. H

With this in mind, let us consider other functions of the curvature opekgtor
beginning with resolvents.

6.14 Lemma. If A ¢ SpectrungA) then the elemenfA — K) € Hom™ (A, L) is
invertible.

Proof. Since(A — K) = (A — A) + E we can write
A=K)T=A=A)T"—A=A)TTEA-A)"
+A=A)TEA-A)TTEAN-—A) T — ..

This is a series whoseth term is amn-linear map fromA to L, and so the sum
has an obvious meaning in H6MA, L). One can then check that the sum defines
(A —K)7!, as required. O
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6.15 Definition. For anyz € C with positive real part defink—=* € Hom™ (A, L)

by the formula
1
K*#=—— J AF(A —K) T dA,
2mi
in which the integral is a contour integral along a downward vertical lin€ in
separating from SpectrunA).

The assumption that Re) > 0 guarantees convergence of the integral (in
each component within Hof A, L) the integral converges in the pointwise norm
topology ofn-linear maps fromA to the algebra of bounded operatorsténthe
limit is also an operator fromi>™ to H*, as required). The complex powe{s*
so defined satisfy the following key identities:

6.16 Lemma (Bianchi Identity). d(K—=) + [K™%, 6] = 0. O

6.17 Lemma (Differential Equation). If & is a derivation oHom™* (A, L) into a
bimodule, then
8(K™#) = —z8(K)K =1

modulo (limits of) commutators. Il
These follow from the derivation formula

1

- 2m

In order to simplify the Differential Equation it is convenient to introduce the
Gamma function, using which we can write

5(K™3) J?\Z(?\ —K)7T8(K)(A —K) " dA.

5(r(z)1<*7~) — §(K)M(z + 1)K~ =)

(modulo limits of commutators, as before). Except for the appearangei-of

in place ofz in the right hand side of the equation, this is exactly the same as
the differential equation foe . Meanwhile even after introducing the Gamma
function we still have available the Bianchi identity:

d(F(z)K‘Z> + [r(z)K—Z, e} —0.

The degreew component of (z) K™= is the multi-linear function

(="

(a',...,a") — >

r'(z) J?\Z(A —A)7'D,a"...[D,aM(A—A)""dA,

Quillen’s approach to JLO therefore suggests (and in fact upon closer inspection
proves) the following result:
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6.18 Theorem.If we define

s(~0 _
Yi(as,...,a") =

(=1 — %) Trace(JAEseaO(A —A)'D,d"...

D, aP]A—A)"! dA),

thenb¥; + BY; ., = 0. O

This is of course precisely the conclusion that we reached in Section 6.1.
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7 Comparison with the Chern Character

Our goal in this section is to identify the cohomology class of the residue cocycle
Res_, ¥ with the cohomology class of the Chern character cocyclesBociated

to the operatoF = D|D|~" (see Section 5.3). Heneis any even integer greater
than or equal to the analytic dimensidnlt follows from the definition of analytic
dimension and some simple manipulations that

[F,a%---[F,a™ € L'(H),

for suchn, so that the Chern character cocycle is well-defined.

We shall reach the goal in two steps. First we shall identify the cohomology
class of Res o W with the class of a certain specific cyclic cocycle, which involves
no residues. Secondly we shall show that this cyclic cocycle is cohomologous to
the Chern character £h

The following result summarizes step one.

7.1 Theorem. Fix an even integen strictly greater thand — 1. The multi-linear
functional

1 > (-1Y*{D,a%,...,[D,d],D,[D,d",...,[D,a") .
j=0

N

is a cyclicn-cocycle which, when considered ast B)-cocycle, is cohomolo-
gous to the residue cocydres_ V.

7.2 Remark. It follows from Proposition 5.17 that the quantities
(D,a,...,[D,d],D,[D,d "], ..., [D,a"),

which appear in the theorem are holomorphic in the half-plang)Re —5 +
%(d — (n + 1)). Therefore it makes sense to evaluate them at —7, as we
have done. Appearances might suggest otherwise, because thi(tgrwhich
appears in the definition df .. ), has poles at the non-positive integers (and in
particular az = —3 if n is even). However these poles are canceled by zeroes of

the contour integral in the given half-plane.

Theorem 7.1 and its proof have a simple conceptual explanation, which we
shall give in a little while (after Lemma 7.7). However a certain amount of el-
ementary, if laborious, computation is also involved in the proof, and we shall
get to work on this first. For this purpose it is useful to introduce the following
notation.
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7.3 Definition. If X° ... XP are operators in the algebra generatedigythen
define

P
(X0, XP)e =) (=D XXO, L XK DXL XP),

k=0
which is a meromorphic function afe C.

The new notation allows us to write a compact formula for the cyclic cocycle
appearing in Theorem 7.1:

(a® ..., a") — %({[D,ao],...,[D,a“]», .

N3

We shall now list some properties of the quantities- )), which are analo-
gous to the properties of the quantities- ), that we verified in Section 6.1. The
following lemma may be proved using the formulas in Lemmas 6.1 and 6.2.

7.4 Lemma. The quantity(X°, ..., X)), satisfies the following identities:

(7.1) (X0 ... XPY), = (XP, X0 ..., XP~1),

(7.2) D X0, XX X = (X0, X)),
j=0

In addition,

(7.3) (XO, ..., XX L XPY — (X0, XX XPY),
= (X°,..., D2 X, ... XP), — (=1 X X0, L D, XL XP),

(In both instances within this last formula the commutators are graded commuta-
tors.) O

We shall also need a version of Lemma 6.3, as follows.

7.5 Lemma.

(7.4) Y (=1 XX, DXL XP),
j=0
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Proof. This follows from Lemma 6.3. Note thaD, D] = 2D?, which helps
explain the factor of in the formula. ]

The formula in Lemma 7.5 can be simplified by means of the following com-
putation:

7.6 Lemma.
P

(X0, ..., X, D2 X XPY, = (24 p)(X°,..., XP),
=0

Proof. If we substitute into the integral which defings®, ..., D? ... X?), the
formula
D?=A—(A—A)

we obtain the (supertrace of the) terms

(—m’“M J?\Z“XO()\ —A)T L TA=A) T XPA—=A) T A

2mi
rz)

o _] p+1
(=1) 2mi

J?\ZXOU\ —A)T L XPA=A) T dA
Using the functional equatioRi(z) = (z — 1)I'(z — 1) we therefore obtain the
quantity

(z—1)(X0 ..., X0 1, X0 XPY, 4+ (XO, L XP),

(the change in the sign preceding the second bracket comes from the fact that the
bracket contains one fewer term, and the fact that)?*' = —(—1)). Adding
up the terms for each and using Lemma 6.1 we therefore obtain

P
D (X0 X, DX LX), = (2= (X, X (p (XL X,
j=0

= (Z+p)<XO, .o ,Xp>z
as required. Il

Putting together the last two lemmas we obtain the formula
P ' .
(7.5) Y (DX UXO, DXL XP). = 2(z 4+ p) (X0, XP).
j=0

With this in hand we can proceed to the following computation:
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7.7 Lemma. Define multi-linear functional®,, on A, with values in the space of
meromorphic functions o@, by the formulas

@p(ao, ...,a”) = (a’[D,d'],...,[D, all))  ver.

2

Then
B@p-H(aOa R ap) = <<[D> aO]’ tey [Dv ap]»sf%'

and in addition
b@D_l(aO, oo, ab)+ B®p+1(a°, co,ab) = Zst(ao, ..., ab)
foralls € Candalla® ..., a? € A.

Proof. The formulafoBO,,1(a° ..., a?)is a simple consequence of Lemma 7.4.
The computation 0b@,,_1(a°, ..., aP) is alittle more cumbersome, although still
elementary. The reader who wants to see it carried out (rather than do it himself)
is referred to [19]. Il

7.8 Remark. The statement of Lemma 7.7 can be explained as follows. If we
replaceD by tD andA by t?A in the definitions of - - - ), andV¥,,, so as to obtain

a new impropefb, B)-cocycle¥* = (W§, W5 ...), then itis easy to check from
the definitions that

‘P;(ao,...,ap) =t 2V, (a%...,a").

Now, we expect that aisvaries the cohomology class of the cocy¢leshould not
change. And indeed, by borrowing known formulas from the theory of the JLO
cocycle (see for example [12], or [14, Section 10.2], or Section 7.1 below) we can
construct b, B)-cochain® such that

d
BO+ b0+ —V¥' =0.
+bO+

This is the sam® as that which appears in the lemma.
The proof of Theorem 7.1 is now very straightforward:
Proof of Theorem 7.1According to Lemma 7.7 théb, B)-cochain

1

1 1
(Regzo(Z@)]), Re§:o<Z®3>, ceey Regzo(Z@)n,]),O, O, .. )
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cobounds the difference of RegV and the cyclion-cocycle Re;o(zlsB@nH).
Since

—

Res o(5-BOw 1) (@, a") = 2([D,a%),....[D, a")

the theorem is proved. O

We turn now to the second step. We are going to dlldby means of the
following homotopy:

D.=DID|"* (0<t<1)

(the same strategy is employed by Connes and Moscovici in [9]). We shall simi-
larly replaceA with A, = DZ, and we shall usa, in place ofA in the definitions
of (---),and of((- - -)),.

To simplify the notation we shall drop the subscriph the following com-
putation and denote by = —D; - log|D| the derivative of the operat®, with
respect ta.

7.9 Lemma. Define a multi-linear functional o\, with values in the analytic
functions on the half-planRe(z) + n > 41, by the formula

@t (al ..., a") = (a®D,[D,a'],...,[D,a"),.
ThenB®F is a cyclic(n — 1)-cochain and

bBD: (a’...,a")

d no . .
— a<<[D, a%,...,[D,a"y), + (2z+n) ;m, D,d],..., D),

7.10 Remark. Observe that the operator 1dg| has analytic ordeé or less, for
everyd > 0. As a result, the proof of Proposition 5.17 shows that the quantity is
a holomorphic function ot in the half-plane Re) + n > dT*V But we shall not

be concerned with any possible meromorphic continuatid. to

Proof. See [19]. O

We can now complete the second step, and with it the proof of the Connes-
Moscovici Residue Index Theorem:
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7.11 Theorem (Connes and Moscovici)The residue cocyclBes_, V¥ is coho-
mologous, as &b, B)-cocycle, to the Chern character cocycle of Connes.

Proof. Thanks to Theorem 7.1 it suffices to show that the cyclic cocycle

] n
5{[D,a%,...,[D,a") 5
is cohomologous to the Chern character. To do this we use the hombtppy

above. Thanks to Lemma 7.9 the coboundary of the cyclic cochain

(7.6)

1
J BY!(a®...,a™ ") dt
0

is the difference of the cocycles (7.6) associateDgo= D andD; = F. ForD;
we haveD? = A; = I and so

—

z“Dbaﬂw~JDhaﬂm
= 3 ; J+1 n;;r(z) y
TraCG(J 0] - [F’ Clj]F . [F, an] (}\ . I)_(TH_Z) d}\)

SinceF anticommutes with each operat®ya’] this simplifies to

2w

The terms in the sum are now all the same, and after applying Cauchy’s formula
we get

n+1

(2) Trace(J A ZeF[F, a’ - - - [F, a™(A — 1)~ ("2 d)\) .

N —

n+1 nt1 0 " o
BN Trace(eF o) R - ()

Using the functional equation for thefunction this reduces to

Nz+n+1)
2-n!

and evaluating at = —3 we obtain the Chern character of Connes. O

Trace(eF[F, a’ - - - [F, a™)
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7.1 Homotopy Invariance and Index Formula

By combining the Theorem 7.11 with the formula (5.5) for the pairing between
cyclic theory ancK-theory we obtain the index formula

Index(eDe: eHo — eH;) = (Res_o¥)([el])

for a projectionp in A (there is a similar equation for projections in matrix alge-
bras overA). In this section we shall very briefly indicate a shorter route to this
formula.

The starting point is the following transgression formula for the basic improper
cocycleV that we have been studying: informallyAf = D? is a smooth family
of operators satisfying our basic hypotheses (for a fixed alg&bthen

d

B@.;C}H ‘I’ b@.};_] ‘I‘ a\y.}g — 0,
where
(7.7)
P ) o )
Op(a’,...,a") =) (-1 Ha’...,[D,d],D,[D,a™",...,[D,a]), vir.
j=0

It is a little tedious to precisely formulate and prove this result in any general-
ity (one problem is to understand the analytic continuation property for algebras
which contain the operator¥?). But fortunately we are only interested in a very
easy special case, where

Dt — D + tX,

and whereX is a differential order-zero operator in the algeira The formula
(7.7) can be proved without any real difficulty in this case by following the meth-
ods used in the proofs of Lemmas 7.7 and 7.9.

With the transgression formula (7.7) in hand the proof of the index formula
can be finished rather quickly, using a trick due to Connes. Given a projggtion
define

D¢ =eDe+ etDelt =D + X,

whereX is of course an order zero operatorlinand letD, = D + tX, as above.
Thanks to the transgression formula, it suffices to show that the residue cocycle
Res_, V¢ of D¢, paired with theK-theory class of the projectioa, gives the
Fredholm index okDe (considered as an operator frathly to eH;). Now, by
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Equation (5.4),

Res_o ¥¢([e]) = Res_o ¥5(e)

2k)!
+ Z(—Hkm Res_o Y5, (e — %, e, ...,e.

k!
>1

But the terms in the series are all zero since they all involve the commutator of
with D¢, which is zero. Hence

Res_oW¢(le]) = Res—o ¥§(e)
= Res_o (I(s) Tracdee (Ag) "))
= Index(eDe: eHo — eH;),

as required (the last step is the index computation made by Atiyah and Bott that
we mentioned in the Subsection 5.1).
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8 The General Case

Up to now we have been assuming that the self-adjoint opefatomvertible (in
the sense of Hilbert space operator theory, meaningAhsata bijection from its
domain to the Hilbert spadd). We shall now remove this hypothesis.

To do so we shall begin with an operatorwhich is not necessarily invertible
(with D2 = A). We shall assume that all our assumptions from Subsection 5.2
concerning the differential pairD, A), the the square rodd, and the algebra
hold. Fix a bounded self-adjoint operatomwith the following properties:

(i) K commutes wittD.
(i) K has analytic orderoo (in other wordsK - H C H*®).
(i) The operaton + K? is invertible.

Having done so, let us construct the operator

D X
o= (X o)

acting on the Hilbert spade & H°PP, whereH°"P is theZ/2-graded Hilbert space
H but with the grading reversed. It is invertible.

8.1 Example.If D is a Fredholm operator then we can chooseftne projection
onto the kernel oD.

Let Ax = (DK)2 and denote byDy the smallest algebra of operators on
H & H°PP which contains th& x 2 matrices overD and which is closed under
multiplication by operators of analytic ordefo.

The conditions set forth in Subsection 5.2 for the géi, Ax), the square
root Dy and the algebrd, which we embed int® as matrices § § ).

8.2 Lemma. Assume that the operatoks, and K, both have the propertie@)-
(iii) listed above. ThefDx, = Dy,. Moreover the algebra has finite analytic
dimensiond and has the analytic continuation property with respecAig if and
only if it has the same with respect £, . If these properties do hold then the
quantities(X°, ..., XP), associated ta\x, and Ay, differ by a function which is
analytic in the half-plandRe(z) > —p.
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Proof. Itis clear thatDx, = Dx,. To investigate the analytic continuation prop-
erty it suffices to consider the case whérgeis a fixed function ofA, in which
caseK; andK, commute. Let us write

1

XA = —
2m

J)\ZX(?\ —A)Taa

for Re(z) > 0. Observe now that
A =Ak) " = (A =Ak) T~ MA = A ) = MA = A) P+

whereM = Ay, — A, (this is an asymptotic expansion in the sense described
prior to the proof of Proposition 5.17). Integrating and taking traces we see that

(8.1) TracéXAg?) — TraceXA?) ~ Y (—1)*! (;Z) Tracg XMA ),

k>1

which shows that the difference TredeA,”) — Tracg XA *) has an analytic

continuation to an entire function. Therefofg, has the analytic continuation

property if and only ifAx, does (and moreover the analytic dimensions are equal).
The remaining part of the lemma follows from the asymptotic formula

1
XO...XDZ% -1 \k\r K ek
k>0
(k1) (kp)
X Trace(sXOX‘ v . XP Aka)
that we proved earlier. -

8.3 Definition. Theresidue cocyclassociated to the possibly non-invertible op-
eratorD is the residue cocycle Res ¥ associated to the invertible operaioy,
as above.

Lemma 8.2 shows that ip > 0 then the residue cocycle given by Defi-
nition 8.3 is independent of the choice of the operdor In fact this is true
whenp = 0 too. Indeed Equation (8.1) shows that not only is the difference
Tracgea®A’) — Tracgea®A?) analytic ats = 0, but it vanishes there too.
Therefore

Res_o¥§' (a®) — Res_o W52 (a?)
= Res_oT'(s) (Tracdea’A’) — Tracdea®A’)) = 0.
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8.4 Example. If D happens to be invertible already then we obtain the same
residue cocycle as before.

8.5 Example. In the case wher® is Fredholm, the residue cocycle is given by
the same formula that we saw in Theorem 5.20:

Regzo‘yp(ao, ...,ab)
=Y cprResoTr (eaD, a0 (D, @) )a -5 s).

k>0

The complex powerd—* are defined to be zero on the kernel@{which is also
the kernel ofA). Whenp = 0 the residue cocycle is

Res_o(I'(s) Tracdea®A™*)) + Tracgea®P),

where the complex poweXx—* is defined as above aitlis the orthogonal projec-
tion onto the kernel oD.

Now Connes’ Chern character cocycle is defined for a not necessarily invert-
ible operatorD by forming firstDy, thenFx = Dg|Dx|™", then crﬁf. See Ap-
pendix 2, and also Section 5, of [3, Part I]. The following result therefore follows
immediately from our calculations in the invertible case.

8.6 Theorem. For any operatorD, invertible or not, the class in periodic cyclic
cohomology of the residue cocydRes_, V¥ is equal to the class of the Chern
character cocycle of Connes. O

8.7 Remark. There is another way that the index theorem can be generalized —
by considering the ‘odd-dimensional’ case instead of the even-dimensional one
that we have been examining. This involves the construction of an odd cyclic
cocycle starting from data the same as we have been using, except that all as-
sumptions about th&/2-grading of the Hilbert spacH are dropped. There is a
completely analogous local index formula in this case (indeed it was the odd case
that Connes and Moscovici originally considered). For remarks on how to adapt
our approach to the odd case see [19].
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A Appendix: Compact and Trace-Class Operators

In this appendix we shall take a rapid walk through the elementary theory of com-
pact Hilbert space operators.

A.1 Definition. A bounded linear operator on a Hilbert spadas compact(or
completely continuoyn old-fashioned terms) if it maps the closed unit balkof
to a (pre)compact set in usual norm topology.

We write ‘(pre)compact’ because it turns out that if the image of the closed
unit ball has compact closure, then it is in fact already closed, and therefore com-
pact. Here are various ways of using the compactness of a bounded Hilbert space
operatofT:

(i) If {v;} is a bounded sequence of vectors, then the seqyéngecontains a
norm-convergent subsequence.

(i) If {v;} is a bounded sequence of vectors, and if it converges weakl{this
means thatv;, w) converges tdv, w), for everyw), then{Tv;} converges in
the norm topology tdv.

(iii) The quadratic functional — (Tv,v) is continuous from the closed unit ball
with its weak topology intdC. Since the closed unit ball is compact in the
weak topology, the functional has extreme values.

The first two items are actually equivalent formulations of compactness. The last
item, has a very important consequence:

A.2 Lemma. If T is a compact and self-adjoint operator (which means thafw) =
(v, Tw), for all v andw), thenT has a non-zero eigenvector.

Proof. Letv be a unit vector which is an extreme point of the functional in item
(ii). If wis a unit vector orthogonal te, then by differentiating the function

S <T(Cos(s)v + Sin(s)w) ,cogs)v + Siﬂ(s)w))

ats = 0 (which is an extreme point) we find th&t is orthogonal tov. HenceTv
must be a scalar multiple of which is to say an eigenvector. H

We can now restrict the operatbiof the lemma to the orthogonal complement
of v, and then apply the lemma again to get a second eigenvector. Continuing in
this way we get Hilbert's Spectral Theorem for compact, self-adjoint operators:
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A.3 Spectral Theorem.If T is a compact and self-adjoint operator on a Hilbert
spaceH, then there is an orthonormal basis fbt consisting of eigenvectors for
T. The corresponding eigenvalues are all real, and converge to zero. Il

Conversely, if a bounded operatbhas such an eigenbasis, then it is readily
checked thai must be compact. Examples of compact operators tend to come
either from this source, or from one of the following two observations:

(i) If T is a norm limit of finite-rank operators, thénis compact (moreover
every compact operator is a norm limit of finite-rank operators).

(i) If T is an operator ori?(X), and if T can be represented as an integral
operator

Tf(x) = Lk(x,y)f(y) ay,

where the kernek(x,y) is square-integrable oX x X, thenT is com-
pact (these are thilbert-Schmidt operatorsnot every compact operator
onL?(X) is of this type).

It follows from the Spectral Theorem that the theory of compact self-adjoint
operators has much in common with the theory of real sequences which converge
to 0. It is therefore quite natural to consider subclasses of compact operators
for which the eigenvalue sequence is summapteummable, and so on, and to
develop, for example, Holder inequalities, and so on. This program has in fact
been carried out very far.

We can apply many of the same ideas to non-self-adjoint compact operators
by means of the following device.

A.4 Definition. Let T be a bounded operator on a Hilbert sp&teThesingular
valuesy(T), u2(T), ... of T are the non-negative scalars defined by the formula

: [Tv]]
(T)= inf  sup-——-.
H(T) amV)=51 oy V]

Thusp,(T) is the norm ofT, andp;(T) measures the norm dfacting on all
codimension — 1 subspaces dfl. Observe thaf;(T) > u,(T) > ... and that

Tiscompact &  lim py;(T) =0.
j— o0

(If T is not compact, then the singular value sequence is typically not very inter-
esting — often it is constant.)
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A.5 Lemma. Let T be compact angbositive Hilbert space operator (this means
(Tv,v) > 0 for all v, which implies thatT is self-adjoint). Let{A;} be the
eigenvalue sequence for arranged in decreasing order, and with multiplicities
counted. Themy(T) = A;(T), for all j.

Proof. This follows readily from the Spectral Theorem, which gives a concrete
representation fof as a diagonal matrix:

A1
A2
T= As

[]

Apart from being quite meaningful for arbitrary compact operators, the advan-
tage of the singular values over the eigenvalues is that by virtue of their definition
it is rather easy to prove inequalities involving them. For example:

A.6 Lemma. LetT; and T, be compact operators on a Hilbert space andSdde
a bounded operator. Then

(T +T2) < () + w5(T2) < py(Ty + To).

and
Hi(ST), w5 (TS) < [IS][m(T).

O
With these inequalities to hand we can make the following definition:

A.7 Definition. Let H be a Hilbert space and denote #{H) the algebra of
bounded operators di. Thetrace idealin B(H) is

LTH) ={T| ) u(T)<oo}.

Every trace-class operator is compact. Thanks to the inequalities in Lemma A.6
the trace ideal really is a two-sided ideal in the algeB(al). It is not closed in
the norm-topology, in fact its closure is the ideal of all compact operators.

From the definition of the singular valugs(T) it follows that if {vy, ..., vN}
is any orthonormal set iH, then

N N
D v Tl < ) ().
j=1 j=1

As a result of this new inequality we can make the following definition.



88

A.8 Definition. If T € L'(H), then thetraceof T is the scalar

o0

TracdT) = ) (v;, Tvy),

j=1
where the sum is over an orthonormal basi$lof

The series converges absolutely, so our definition makes some sense. Simple
algebra (reinforced by the guarantee of absolute convergence of all the series in-
volved in the argument) shows that Tr&€¢ does not depend on the choice of
orthonormal basis, and that

SeBMH), TeL'(H) = TracdST) = TracdTS).

Thus the operator-trace has the fundamental property of the trace on matrices, to
the fullest extent itcanhave it.

If S andT are Hilbert-Schmidt operators, then it may be shown fflats a
trace-class operator (incidentally, an operatam L?(X) belongs to the Hilbert-
Schmidt class if and only if_ ;(T)? < oo). The trace of many integral operators
may be computed using the following result:

A.9 Lemma. LetM be a closed manifold which equipped with a smooth measure.
If k is a smooth function oM x M, then the operatoll defined by the formula

THx) = | ke, u)flu) dy,
M
is a trace-class operator. Moreover

TracdT) = J k(x,x) dx.
M

]

A.10 Remark. One can replace ‘smooth’ by ‘differentiable sufficiently many
times’, but the order of differentiability depends on the dimension of the mani-
fold (assuming that the kernklis merely continuous is not enough).
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B Appendix: Fourier Theory

If : T — Cisa smootAh function on the-torusT™ = R™/Z™" then itsFourier
Transformis the functiond: Z™ — C defined by

() = J plx)e T,

The Fourier transforn — cT> extends to an isometric isomorphism of Hilbert
spaces

L2(T™) —— (7).
This is thePlancherel Theoremif ¢: T™ — C is smooth then the Fourier trans-
forms of its partial derivative8*¢$ may be computed from the formula

%4

0°9()) = 3y ®l):

Thanks to this and the Plancherel Theorem, the norm in the Sobolev8Raté)
may be computed from the formula

bRy, oy = Y (1432 Z1GG) 2

jezm

B.1 Lemma. If k > 0 then the inclusion oWy (T™) into L?(T™) is a compact
operator.

Proof. If j € Z™ then denote by; the functione®™™* on T. Using our formula
for the norm inW, (T™) we see that the Hilbert space¥ T™) andW,(T™) have
an orthonormal bases

(e} and {f;=(1+7%) e,

respectively. Using these bases, the inclusioM@f{T™) into L?(T™) takes the
form .
;- (14+35%) 2e;.

If k > 0 then the scalar coefficient sequence converges to zero, and so the inclu-
sion operator is compact. Il

B.2 Remark. If k > n then the coefficient sequence is summable, and therefore
the inclusion is a trace-class operator.
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If ¢ is a smooth function ofi™ then according to the Plancherel Theorem,

where as above;(x) = e?™*. To begin with, the series convergeslif{ T"), so
that the coefficient familyd(j)} is square-summable, but from the formula

0% =) 0liley=)_

jez™ jezZ™

jO(

(27i)

(TD(j)ej

we see that the coefficient fami{;?)(j)} remains square-summable after multipli-
cation by any polynomial in. So by the Cauchy-Schwarz inequality the series
Zjezn E)(j)e,- is in fact absolutely summable, and therefore converegent in the
uniform norm. A refinement of this computation proves the following lemma:

B.3 Lemma. If p and k are non-negative integers, and if > p + 3 then
Wy (T™) C CP(T™).

Proof. Let ¢ be a smooth function ofi™. We have that

|d||cv (rn) = max sup (0% (x)|.
[od<p xen

Sinced“d(x) = 3 _;czn ﬂ)(j)ej(x) we get
) < > 105G S D P- 19
jez™ jezZ™

If k > p + 7 then the Cauchy Schwarz inequality implies that

D P 106 S lldbllw i),
jezn
and thereford{d||cr rn) < ||d|lw, (mn), @S required. O

The Fourier Iransform of a smooth, compactly supported funepio®R™ —
C is the functiondp: R™ — C given by the formula

b(E) = J ) d(x)e?Ex dx.
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Once again, the Fourier transform extends to an isometric isomorphism of Hilbert
spaces, but this time frob?(R™) to itself. If Q is an open set iR™ then the
Sobolev normy| ||w, (o) of Definition 1.5 can be given, up to equivalence, by the
formula

[9lFior = | (1 €)B(E)P e,

With this formula available we can obviously now define Sobolev spaég<))

for any realk € R just by completing the smooth, compactly supported functions
in the above norm. Using partitions of unity and local coordinates we can now
define Sobolev spacad/ (M) for anyk € R and any closed manifold, just as
we did in the case wherle was a non-negative integer. These are the spaces we
briefly referred to in Remark 1.27.
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