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Abstract

These notes present a partial account of the local index theorem in non-
commutative geometry discovered by Alain Connes and Henri Moscovici.
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Preface

Several years ago Alain Connes and Henri Moscovici discovered a quite general
‘local’ index formula in noncommutative geometry [10]. The formula was origi-
nally studied in relation to the transverse geometry of foliations, but more recently
Connes has drawn attention to other possible areas of application, for example
compact quantum groups [6] and deformations of homogeneous manifolds [8].
Moreover elaborate structures in homological algebra have been devised in the
course of studying the formula [8], and these have found application in quantum
field theory [7] and elsewhere [11].

These notes provide an introduction to the local index formula. They empha-
size the basic, analytic aspects of the subject. This is in part because the analysis
must be dealt with first, before more purely cohomological issues are tackled, and
in part because the later issues are already quite well covered in survey articles by
Connes and others (see for example [5]). Moreover, on the cohomological side,
the final and definitive results have yet to be thoroughly investigated. I hope that
the reader will be able to use these notes to introduce himself to these issues of
current research interest.

The notes begin with a rapid account of the spectral theory of linear elliptic
operators on manifolds, which is the launching point for the local index formula.
They begin right at the beginning, and I hope that they might be accessible to
students with a very modest background in analysis. Two appendices deal with
still more basic issues in Hilbert space operator theory and Fourier theory.

The first result which goes beyond the totally standard canon (but which is
still classical) is the theorem that the zeta functions Trace(∆−z) associated to el-
liptic operators admit meromorphic continuations toz ∈ C. I shall present a
proof which is more algebraic than the usual ones, and which seems to me to well
adapted to Connes’ noncommutative geometric point of view.

Following that, manifolds are replaced by Connes’ ‘noncommutative geomet-
ric spaces’, and basic tools such as differential operator theory and pseudodiffer-
ential operator theory are developed in this context.

After the subject of cyclic cohomology theory is rapidly introduced, it be-
comes possible to formulate the basic index problem, which is the main topic of
the notes. The final sections of the paper (from 6 to 8) prove the index formula.

The notes correspond very roughly to the first four of the six lectures I gave
at the Trieste meeting. The remaining two lectures dealt with cyclic cohomology
for Hopf algebras. The interested reader can look at the overhead transparencies
from those lectures [20] to figure out more precisely what has been omitted and
what has been added (note that the division of the present notes into sections does
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not correspond to the original division into lectures). The notes borrow (in places
verbatim) from several preprints of mine [17, 18, 19] which will be published else-
where. But of course they rely most of all on the work of Connes and Moscovici.
If a result is given in the notes without attribution, the reader should not assume
that it is original in any way. Most likely the result is due, in one form or another,
to these authors.

I would like to thank Max Karoubi, Aderemi Kuku, and Claudio Pedrini for the
invitation to speak at the Trieste meeting. Many friends and colleagues helped me
alojng the way as I learned the topics presented here. In this regard I especially
want to thank Raphäel Ponge and John Roe, along with all the members of the
Geometric Functional Analysis Seminar at Penn State.

The writing of these notes was supported in part by a grant from the US Na-
tional Science Foundation, and also of course by the ICTP.
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1 Elliptic Partial Differential Operators

We are going to develop the spectral theory of elliptic linear partial differential
operators on smooth, closed manifolds. We shall approach the subject from the
direction of Hilbert space theory, which is particularly well suited for the task. In
fact Hilbert space theory was invented for just this purpose.

1.1 Laplace Operators

LetM be a smooth, closed, manifold of dimensionn. A linear operatorD map-
ping the vector space of smooth, complex-valued functions onM to itself is local
if, for every smooth functionφ, the support ofDφ is contained within the support
of φ. If D is local, then the value ofDφ at a pointm ∈ M depends only on
the values ofφ nearm, and as a result it makes sense to seek a local coordinate
description ofD.

1.1 Definition. A linear partial differential operatoris a local operator which in
every coordinate chart may be written

(1.1) D =
∑
|α|≤q

aα(x)
∂α

∂xα
.

where theaα areC∞-functions. Hereq is a non-negative integer and the sum
is over non-negative integer multi-indicesα = (α1, . . . , αn) for which |α| =
α1 + · · · + αn ≤ k. Theorder of D is the leastq required to so representD (in
any coordinate chart).

To begin with we are mainly interested in one example. This is theLaplace
operator∆, also known as theLaplace-Beltrami operatoron a closed Riemannian
manifold. It is given by the compact formula∆ = ∇∗∇, where∇ is the gradient
operator from functions to tangent vector fields, and∇∗ is its adjoint, also called
the divergence operator (up to a sign, these are direct generalizations to mani-
folds of the objects of the same name in vector calculus). In local coordinates the
Laplace operator has the form

∆ = −

n∑
i,j=1

gij(x)
∂2

∂xi∂xj
+ order one operator.

The order one term is a bit complicated (the exact formula is of no concern to us)
but at the origin of a geodesic coordinate system all the coefficients of the order
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one term vanish, and we get

∆ = −

n∑
i=1

∂2

∂x2i
at the origin,

which is the familiar formula from ordinary vector calculus.
Our goal in Section 1 is to prove the following fundamental fact.

1.2 Theorem. Let∆ be the Laplace operator on a closed Riemannian manifold.
There is an orthonormal basis{φj} for the Hilbert spaceL2(M) consisting of
smooth functionsφj which are eigenfunctions for∆:

∆φj = λjφj, for some scalarλj.

The eigenvaluesλj are non-negative and they tend to infinity asj tends to infinity.

It is possible to say a bit more. Since the functionsφj constitute an orthonor-
mal basis forL2(M), every functionφ in L2(M) can be expanded as a series

φ =

∞∑
j=0

ajφj,

where the sequence of coefficients{aj} is square-summable. It turns out thatφ ∈
L2(M) is a smooth function if and only if the sequence{aj} is of rapid decay,
which means that ifk ∈ N then

sup
j

jk|aj| < ∞.
This should call to mind a basic fact in the theory of Fourier series: a function on
the circle is smooth if and ony if its Fourier coefficient sequence is of rapid decay.
Note that the basic functions in Fourier theory, the exponentialseinx, constitute an
orthonormal basis forL2(S1) consisting of eigenfunctions for the Laplace operator
on the circle, which is just− d2

dx2 . So in some sense Theorem 1.2 establishes the
first principles of Fourier theory on any closed Riemannian manifold.

The proof of Theorem 1.2 is more or less a resumé of a first course in func-
tional analysis. In view of what we have said it will not surprise the reader to learn
that the argument relies on one or two crucial computations in Fourier theory. But
we shall also need to review various ideas from Hilbert space operator theory.
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1.2 Unbounded Operators

An unbounded operatoron a Hilbert space,H, is a linear transformation from a
dense linear subspace ofH intoH. No continuity is assumed. When dealing with
unbounded operators it is important to keep track of domains. Unbounded opera-
tors with different domains can’t generally be added together in a reasonable way.
Unbounded operators can’t generally be composed in a reasonable way unless the
range of the first is contained within the domain of the second.

An unbounded operatorT is symmetricif

〈Tv,w〉 = 〈v, Tw〉

for all v,w ∈ domT . An unbounded operator isself-adjointif it is symmetric and
if in addition

Range(T ± iI) = H.

In finite dimensions every symmetric operator is self-adjoint. In infinite dimen-
sions self-adjointness is precisely the condition needed to get spectral theory go-
ing. Observe that ifT is symmetric then

‖(T ± iI)v‖2 = ‖Tv‖2 + ‖v‖2,

which implies that ifT is self-adjoint then the operatorsT ± iI map domH one-
to-one and ontoH, so that they have well-defined inverses (which we regard as
operators fromH to itself).

1.3 Theorem.LetT be a self-adjoint operator. There is a (unique) homomorphism
from the algebra of bounded, continuous functions onR into B(H) (the algebra
of bounded operators onH) such that

(x± i)−1 7→ (T ± iI)−1.

This is one version of theSpectral Theorem. It is proved by noting that the
operators(T ± iI)−1 generate a commutativeC∗-subalgebra ofB(H), and by then
applying the basic theory of commutativeC∗-algebras.

Note that once we have the Spectral Theorem we can define ‘wave operators’
eisT , ‘heat operators’e−sT2

, and so on. Thus the result is conceptually very pow-
erful.

Self-adjoint operators are hard to come by in nature. Typically the natural
domain of an unbounded operator (e.g. the smooth, compactly supported functions
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in the case of a differential operator) must be enlarged, and the operator extended
to this larger domain, so as to obtain a self-adjoint operator. Here is one procedure,
due to Friedrichs, which we’ll illustrate using the Laplace operator.

Let ∆ be the Laplace operator on a Riemannian manifoldM. The manifold
need not be compact, or complete; it might have a boundary. Think of∆ as
an unbounded operator onH = L2(M) whose domain is the space of smooth,
compactly supported functions (on the interior ofM, if M has boundary).

Observe that ifφ ∈ dom∆ then

〈∆φ,φ〉 = 〈∇φ,∇φ〉 ≥ 0.

Let us exploit this to define a new inner product on dom∆ by the formula

〈φ,ψ〉1 = 〈(I+ ∆)φ,ψ〉.

Denote byH1 the Hilbert space completion of dom∆ in this inner product. It is,
among other things, a dense subspace ofH (more about it later). Now denote by
H2 ⊆ H1 the space of allφ for which there exists a vectorθ ∈ H (which will be
(I+ ∆)φ) such that

〈θ,ψ〉 = 〈φ,ψ〉1, ∀ψ ∈ H1.

1.4 Theorem (Friedrichs). The operatorI+ ∆ is self-adjoint onH2.

The proof is a really good exercise. To get a self-adjoint extension of∆, just
subtractI from I+ ∆.

1.3 Sobolev Spaces

We are now going to investigate in a bit more detail the Hilbert spaceH1 which
appeared above. It appears as the spaceW1 in the sequence ofSobolev spaces
W0,W1,W2, . . . associated to a closed manifold (and as it happens the Hilbert
spaceW2 is the same as the spaceH2 that we defined in the last section, at least
for a closed manifold, although the proof of that fact will be postponed for a
while).

Although we are interested in function spaces associated to a manifoldM, we
shall begin not withM but with open sets in Euclidean space.

1.5 Definition. LetΩ be an open subset ofRn and letk be a non-negative integer.
Denote byWk(Ω) the completion ofC∞

c (Ω) in the norm

‖φ‖2Wk(Ω) =
∑
|α|≤k

‖∂αφ‖2L2(Ω).
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Thus theWk-norm combines theL2-norms of all the partial derivatives ofφ
of orderk or less.

1.6 Definition. LetM be a manifold and letK be a compact subset of (the interior
of)M. Define a Hilbertian space1 Wk(M|K) as follows.

Case 1. K is contained in a coordinate ball. Fix a diffeomorphism from a
neighbourhood ofK to an open setΩ ⊆ Rn, use the diffeomorphism to transfer
the norm onWk(Ω) to the smooth functions onMwhich are compactly supported
within K, and then complete.

Case 2.K is any compact set. Choose smooth, compactly supported functions
θ1, . . . , θN onM, each supported in a coordinate ball, with

∑
θj = 1 onK, and

let Kj = suppθj. LetWk(M|K) be the completion of the smooth functions onM
which are compactly supported inK, in the norm

‖φ‖2Wk(M|K) =
∑
j

‖θjφ‖2Wk(M|Kj)
.

In either case, the norms depend on coordinate choices, etc, but the underlying
Hilbertian spaces do not. If we fix a smooth measure onM then all the spaces
Wk(M|K) can be thought of as linear subspaces ofL2(M) (they are dense, if
K = M).

The spacesWk(M|K) have the following invariance property: ifΦ is a diffeo-
morphism carryingM onto an open subset ofM ′, and ifΦmapsK toK ′, thenΦ
carriesWk(M

′|K ′) isomorphically ontoWk(M|K). Moreover pointwise multipli-
cation by a smooth function is a bounded operator on eachWk(M|K). Differential
operators of orderqmapWk+q(M|K) continuously intoWk(M|K).

If K = M, then we’ll writeWk(M) in place ofWk(M|M). In this case
(whereM is compact) we can give an alternate, more concise, definition of the
Sobolev spaces. The set of all orderk, or less, differential operators is a finitely
generated module over the ring of smooth functions onM. If {D1, . . . , DN} is a
finite generating set then

‖φ‖Wk(M) ≈ ‖D1φ‖L2(M) + · · ·+ ‖DNφ‖L2(M)

(the symbol≈ denotes equivalence of norms).
Recall that a bounded Hilbert space operator iscompactif it carries the closed

unit ball into a compact set (see Appendix A for a quick review of compact oper-
ator theory and related matters).

1A Hilbertian space is a vector space with an equivalence class of Hilbert space norms, two
norms‖ ‖1 and‖ ‖2 being equivalent if there is a constantC > 0 such thatC−1‖ ‖1 ≤ ‖ ‖2 ≤
C‖ ‖1.
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1.7 Rellich Lemma. If k > 0 then the inclusion ofWk(M|K) into L2(M) is a
compact operator.

Proof. Fix a partition of unity{θj} as in Definition 1.6, with eachθj supported in
a compact setKj within a coordinate neighbouroodUj. The inclusion

Wk(M|K) // L2(M)

can be broken down as a composition of maps

Wk(M|K)

��
Wk(M|K1)⊕ · · · ⊕Wk(M|KN) // L2(U1)⊕ · · · ⊕ L2(UN)

��
L2(M),

where the first vertical map is multiplication byθj in componentj and the other
maps are induced from the obvious inclusions. It clearly suffices to show that the
inclusionsWk(M|Kj) → L2(Uj) are compact operators. But if we embedUj as
an open set in a torusTj then in view of the commuting diagram

Wk(M|Kj)

��

// L2(Uj)

Wk(Tj) // L2(Tj),

OO

where the downward map is inclusion and the upward one is restriction toUj ⊆ Tj,
we see that it suffices to prove that the inclusion

Wk(Tj) // L2(Tj)

is a compact operator. This is easily accomplished by using Fourier theory — see
Appendix B.

1.8 Remark. The same argument shows that ifΩ is a bounded open set inRn
then the inclusionWk(Ω) ⊆ L2(M) is compact for allk > 0.

1.9 Lemma. If p andk are non-negative integers, and ifk > p+n
2

thenWk(M|K) ⊆
Cp(M|K). As a result,

∩kWk(M|K) = C∞(M|K).
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Proof. To prove that a functionφ ∈Wk(M|K) is inCp(M|K) it suffices to show
that eachθjφ ∈Wk(Uj|Kj) belongs toCp(Uj|Kj) (we are using the same notation
as in the previous proof). After embeddingUj as an open set in a torusTj, it
suffices to show thatWk(Tj) ⊆ Cp(Tj). Once again, this is easily proved using
Fourier series — see Appendix B.

1.4 Compact Resolvent

Let’s return to the Laplace operator and its self-adjoint extension. Assume that
the manifoldM is closed. Recall that the ‘intermediate’ Hilbert spaceH1 we
constructed on the way to finding the Friedrichs extension of∆was the completion
of C∞(M) in the norm

‖φ‖21 = 〈(I+ ∆)φ,φ〉 = ‖φ‖2L2 + ‖dφ‖2L2 .

From this it is easy to see thatH1 = W1(M). As a result, it follows from the
Rellich lemma that

1.10 Theorem.The bounded operator(I+ ∆)−1 onL2(M) is compact.

Now remember from functional analysis that every compact positive-definite
operator (such as(I+∆)−1) has an orthonormal eigenbasis, whose corresponding
eigenvalues constitute a sequence of positive numbers converging to zero (see
Appendix A). Hence:

1.11 Theorem. Let ∆ be the self-adjoint operator onL2(M) obtained by the
Friedrichs extension procedure from the Laplace operator onM. There is an
orthonormal basis forL2(M) consisting of functionsφj ∈ dom∆ which are
eigenfunctions for∆. The corresponding eigenvalues constitute a sequence of
non-negative numbers converging to∞.

1.12 Remark. We haven’t yet shown that theφj are smooth functions, but at any
rate we have that∆φj = λjφj in the sense of distributions.

1.5 Weyl’s Theorem

The solution to the problem of finding an orthonormal basis forL2(M) consisting
of eigenfunctions of∆ was first great triumph of Hilbert space theory (in fact this
is the problem whichbeganHilbert space theory — see [27]). Before we develop
the theory any further, let us pause to prove the following very famous theorem of
Weyl.
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1.13 Theorem.Let∆ be the (Friedrichs extension of the) Laplace operator on a
closed Riemanniann-manifold or a smooth, bounded domain inRn. LetN(λ) be
the number of eigenvalues of∆ (multiplicities counted) less thanλ. Then

lim
λ→∞

N(λ)

λ
n
2

=
Vol(M)

(4π)
n
2 Γ(n

2
+ 1)

.

This is a little bit of a detour away from our main objectives, but it began a
sequence of developments which ultimately led to the local index theory we shall
be describing in these notes. For this and other reasons, Weyl’s theorem is in some
sense the first theorem of noncommutative geometry.

We’ll deal with the case of domains inRn (the case of manifolds is just a tiny
bit harder), and to keep things as clear as possible we’ll consider the dimension
2 case (although the case of generaln is really no different). Thus for a smooth,
bounded domainΩ in R2 we aim to prove that

lim
λ→∞

N(λ)

λ
=

Vol(Ω)

4π
.

The first step is to check the result for some basic regions, namely rectangles.2

This, incidentally, will fix the constant4π.

1.14 Lemma.Weyl’s Theorem holds for rectangular domains.

Proof. Let us work with the rectangle of widtha and heightb whose bottom left
corner is the origin in the(x, y)-plane. For this domain an eigenbasis for the
Laplace operator can be explicitly computed. The eigenfunctions are

umn(x, y) = sin(mπ
a
x) sin(nπ

b
x)

and the eigenvalues areλmn = π2
(
m2

a2 + n2

b2

)
, wherem,n > 0. It follows that

N(λ) = #
{

(n,m) ∈ N× N
∣∣m2

a2
+
n2

b2
≤ λ

π2

}
∼
1

4

(
Area of Ellipse

X2

a2
+
Y2

b2
≤ λ

π2

)
=
abλ

4π
.

2Weyl’s Theorem holds for various non-smooth domains—as will become clear.
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Thus
N(λ)

λ
∼

Area(Ω)

4π
,

as required.

The proof of Weyl’s Theorem is an eigenvalue comparison argument, based
on the following simple observation.

1.15 Lemma. LetS andT be compact and positive operators on a Hilbert space
H, and denote by{λj(S)} and{λj(T)} the eigenvalue sequences ofS andT . If

〈Sv, v〉 ≥ 〈Tv, v〉 ≥ 0,

for all v ∈ H, thenλj(S) ≥ λj(T), for all j.

Proof. This follows from Weyl’s formula

λj(T) = inf
dim(V)=j−1

sup
v⊥V

‖Tv‖
‖v‖

,

which is described in Appendix A, and the fact that if a bounded operatorP is
positive then

‖P‖ = sup
‖v‖=1

〈Pv, v〉.

The main step in the proof of Weyl’s Theorem is now this:

1.16 Proposition. Suppose thatΩ0 andΩ1 are bounded open sets in the plane,
and thatΩ0 ⊆ Ω1. ThenNΩ0

(λ) ≤ NΩ1
(λ), for all λ.

Denote by∆Ω0
and∆Ω1

the Laplace operators for these two domains. The
proposition (called theDomain Dependence Inequality) will follow if we can
show thatλj(∆Ω0

) ≥ λj(∆Ω1
), for all j. This in turn will follow if we can show

thatλj(∆−1
Ω1

) ≥ λj(∆
−1
Ω0

), for all j. To this end we are of course going to apply
Lemma 1.15, but first we have to overcome the small problem that although∆−1

Ω0

and∆−1
Ω1

are compact and positive operators, they are defined on different Hilbert
spaces. To remedy this we regardL2(Ω0) as the subspace ofL2(Ω1) consisting
of functions which vanish on the complement ofΩ0 inΩ1, and extend∆−1

Ω0
to an

operator onL2(Ω1) by definining it to be zero on the orthogonal complement of
L2(Ω0). Having done so the proof of the Domain Dependence Inequality reduces
to the following lemma.
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1.17 Lemma. Suppose thatΩ0 ⊆ Ω1 and denote by∆Ω0
and∆Ω1

the Laplace
operators for these two domains. Ifψ ∈ L2(Ω1) then〈∆−1

Ω1
ψ,ψ〉 ≥ 〈∆−1

Ω0
ψ,ψ〉.

Proof. Letψ1 ∈ L2(Ω1) and denote byψ0 ∈ L2(Ω0) the restriction ofψ1 toΩ0.
Writeψ1 = ∆Ω1

φ1 andψ0 = ∆Ω0
φ0, whereφ0 ∈ dom∆Ω0

andφ1 ∈ dom∆Ω1
.

Sorting out the notation, we see that what we need to prove is that

〈φ1, ∆Ω1
φ1〉 ≥ 〈φ0, ∆Ω0

φ0〉

given thatφ0 ∈ dom∆Ω0
, thatφ1 ∈ dom∆Ω1

, and that the restriction of∆Ω1
φ1

toΩ0 is equal to∆Ω0
φ0. These hypotheses certainly imply that

〈φ0, ∆Ω1
φ1〉 = 〈φ0, ∆Ω0

φ0〉.

Now apply the Cauchy-Schwarz inequality for the form〈 , ∆Ω1
〉 onW1(Ω) to

the left hand side to complete the proof.

Proof of Weyl’s Theorem.Let us first show that ifΩ is any bounded open set then

(1.2)
Area(Ω)

4π
≤ lim inf

λ→∞
NΩ(λ)

λ
.

(roughly speaking, this is50% of Weyl’s Theorem). LetI be a finite disjoint
union of openrectanglesIk within Ω. ThenNI(λ) ≤ NΩ(λ), by the Domain
Dependence Inequality. But sinceI is a disjoint union, we get that

NI(λ) =
∑

NIk(λ).

Moreover for each rectangleIk it follows from Lemma 1.14 that

lim
λ→∞

NIk(λ)

λ
=

Area(Ik)
4π

,

so that
Area(I)
4π

= lim
λ→∞

NI(λ)

λ
≤ lim inf

λ→∞
NΩ(λ)

λ
.

After approximating Area(Ω) by Area(I) we get the required inequality (1.2).
To complete the proof, putΩ into a large rectangleR and denote byΩ ′ the

complement of (the closure of)Ω in R. According to inequality (1.2),

Area(Ω)

4π
+

Area(Ω ′)

4π
≤ lim inf

λ→∞
NΩ(λ)

λ
+ lim inf

λ→∞
NΩ ′(λ)

λ
.
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But in additionNΩ(λ) +NΩ ′(λ) ≤ N(R), so that

lim inf
λ→∞

NΩ(λ)

λ
+ lim inf

λ→∞
NΩ ′(λ)

λ
≤ lim sup

λ→∞
NΩ(λ)

λ
+ lim inf

λ→∞
NΩ ′(λ)

λ

≤ lim sup
λ→∞

NR(λ)

λ

=
Area(R)

4π
.

Since Area(Ω) + Area(Ω ′) = Area(R) the proof is complete.

1.6 Elliptic Operators

We shall now return to the analysis of the Laplace operator on a closed Rieman-
nian manifoldM. In the remainder of Section 1, which is a bit technical, we shall
accomplish several things:

• Show that the domainH2 of the Friedrichs extension of∆ is precisely the
Sobolev spaceW2(M).

• Show that the eigenfunctions of∆ are in fact smooth functions onM.

• Indicate how to develop a similar eigenvalue analysis for operators more general
than∆.

The key to all this is to recognize the following local feature of the operator∆

which implies strong regularity properties for solutions of the equation∆φ = ψ:

1.18 Definition. A linear partial differential operatorD of orderq is elliptic of
orderq if, in every local coordinate system, the local expression forD,

D =
∑
|α|≤q

aα(x)
∂α

∂xα
,

has the property that∣∣∣∑
|α|=q

aα(x)ξ
α
∣∣∣ ≥ ε∣∣ξ21 + · · ·+ ξ2n

∣∣q
2

for every pointx in the coordinate chart, some constantε > 0 depending onx,
and everyξ ∈ Rn.
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1.19 Example. If M is equipped with a Riemannian metric[gij] then the asso-
ciated Laplace operator∆ is elliptic of order2. Indeed in local coordinates the
formula for∆ is

∆ = −

n∑
i,j=1

gij
∂2

∂xi∂xj
+ lower order terms.

The required inequality is therefore

n∑
i,j=1

gij(x)ξiξj ≥ ε
(
ξ21 + · · ·+ ξ2n

)
,

which is an immediate consequence of the fact that the matrix[gij(x)] is positive-
definite.

1.7 Basic Estimate

LetM be a smooth closed manifold (equipped with a smooth measure, so we can
form L2(M)).

1.20 Definition. LetD be a linear partial differential operator onM of orderq.
We shall say thatD is basic(this is not standard terminology) if

‖Dφ‖Wk(M) + ‖φ‖L2(M) ≈ ‖φ‖Wk+q(M)

for all k ≥ 0. Hereφ is a smooth function onM, and the symbol≈ means that
the left and right hand side define equivalent norms on the space of all smooth
functions onM.

1.21 Remark. The comparison. holds for any orderq operator, so the force of
the definition is that& holds too. The latter we shall refer to as thebasic estimate
for D.

We are going to show that all elliptic operators are basic:

1.22 Theorem.If D is an orderq elliptic operator on a smooth closed manifold,
then

‖Dφ‖Wk(M) + ‖φ‖L2(M) & ‖φ‖Wq+k(M).

We shall prove this in the next subsection, but for motivation let us first show
how the basic estimate implies a strong regularity property for elliptic operators.
To keep things simple we’ll focus on the Laplace operator∆ (the general case
requires some small modifications which we shall mention at the end).
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1.23 Lemma. Let φ,ψ ∈ L2(M) and assume that∆φ = ψ in the sense of
distributions. Ifφ ∈W1(M), then in factφ ∈W2(M).

Sketch of the Proof.Assume first thatφ has support in the interior of a compact
setK in a coordinate neighbourhood. Ifκ is a compactly supported, non-negative
bump function onRn with total integral1, and ifKε is the operator of convolution
with ε−nκ(ε−1x) then it can be shown that

(a) If θ ∈Wk(M|K) (supported in the coordinate neighbourhood) thenKεθ → θ

inWk(M|K) asε → 0.

(b) [∆,Kε] is uniformly bounded inε as an operator fromWk+1(M|K) toWk(M|K).

The family {Kε} is called aFriedrichs mollifier. Right now we’ll only use the
k = 0 properties of mollifiers, but later we’ll considerk > 0. From the equation

∆Kεφ = Kε∆φ+ [∆,Kε]φ

we see that{∆Kεφ}ε>0 is uniformly bounded inL2(M). It therefore follows from
the basic estimate that{Kεφ} is uniformly bounded inW2(M). SinceKεφ → φ

in L2(M) it follows, after a little functional analysis, that in fact{Kεφ} is actually
convergent inW2(M), which impliesφ ∈W2(M) as required.

In the general case, letθ be supported in a coordinate neighbourhood. Since
[∆, θ] is a differential operator of order1 we see that

∆θφ = [∆, θ]φ+ θ∆φ ∈ L2(M),

and thereforeθφ ∈ W2(M) by the special case just considered. Varyingθ, it
follows thatφ ∈W2(M), as required.

1.24 Theorem.Denote by∆ the Laplace operator on a closed Riemannian man-
ifold. The domain of the Friedrichs extension of∆ is the Sobolev spaceW2(M).

Proof. The domain of the Friedrichs extension is precisely the space of thoseφ ∈
W1(M) for which∆φ (taken in the distributional sense) belongs toL2(M). So
according to the lemma, ifφ ∈ dom∆ thenφ ∈ W2(M). The reverse inclusion
is easy.

1.25 Theorem.Letφ ∈ dom∆ and assume thatDφ = ψ in the sense of distri-
butions. Ifψ ∈Wk(M), thenφ ∈Wk+2(M).

Proof. This can be proved by the same Friedrichs mollifier method we used to
prove Lemma 1.23.
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1.26 Theorem.Let∆ be the Laplace operator on a closed Riemannian manifold.
There is an orthonormal basis forL2(M) consisting of eigenfunctions for∆, which
are in fact smooth functions onM.

Proof. As before, the Rellich Lemma implies that∆ has compact resolvent, and so
the Spectral Theorem for compact operators applies to provide an eigenbasis. The
eigenfunctions are in dom∆ = W2(M), and applying Theorem 1.25 repeatedly
to the equation∆φ = λφ we see thatφ ∈ ∩kWk(M). Henceφ is smooth by
Lemma 1.9.

1.27 Remark. If D is a symmetric elliptic operator of orderq, then Theorems
1.24, 1.25 and 1.26 above continue to hold, although with the Sobolev space index
“2” in the statements of 1.24 and 1.25 replaced by “q”. The proofs are essentially
the same once we introduce Sobolev spacesWk(M) with negativeindicesk (see
Appendix B). Once this is done, the general version of Lemma 1.23 says that
if ψ ∈ Wk(M), and ifφ is a distribution for whichDφ = ψ in the sense of
distributions, then in factφ ∈ Wk+q(M). The proof is essentially the same,
although it makes more serious use of the language of distributions.

1.8 Proof of the Basic Estimate

Before starting the proof of Theorem 1.22 we note the following fact:

1.28 Lemma. Fix an integerk > 0. For everyδ > 0 there is a constantC > 0
such that

‖φ‖Wk−1(M) ≤ δ‖φ‖Wk(M) + C‖φ‖L2(M),

for all smooth functionsφ.

Roughly speaking, this says that theWk-norm is much stronger than theWk−1-
norm — only a tiny multiple of the former is needed to dominate the latter. Like
just about everything else involving Sobolev spaces, the lemma is proved by re-
ducing to the case of a torus, and doing an explicit Fourier series calculation there.

With the lemma in hand we can proceed.

Proof of Theorem 1.22.It will be helpful to introduce the following piece of ter-
minology. We shall say that a differential operatorD which is defined on some
open setU ⊆M satisfies the basic estimate overU if for every compact subsetK
of U the inequality

‖Dφ‖Wk(U) + ‖φ‖L2(U) ≥ ε‖φ‖Wk+q(U)
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holds, for someε > 0 depending onK andk, and allφ supported inK.
The first step in the proof is to observe that ifD0 is aconstant coefficientorder

q elliptic operator, defined in some coordinate neighbourhoodU of M, thenD0
satisfies the basic estimate overU. This is an exercise in Fourier theory.

The next step is this. IfD is a general orderq elliptic operator, ifx ∈M, and
if Dx is the constant coefficient operator obtained by freezing the coefficients of
D atx, then for everyε > 0 there is a small neighbourhoodU of x for which

‖Dφ−Dxφ‖k ≤ ε‖φ‖,

for everyφ supported inU. This follows from the fact that the coefficients of
D−Dx vanish atx, as a result of which,D−Dx can be written as a sum of terms
ψE, whereψ is a smooth function vanishing atx andE is an orderq operator.

From the first two steps, it follows that for everyx ∈M there is a neighbour-
hoodU of x such that the basic elliptic estimate holds forD overU.

Now coverM by finitely many open sets over each of which the basic el-
liptic estimate forD holds, and let{θj} be a smooth partition of unity which is
subordinate to this cover. Write

‖φ‖r+k = ‖
∑
j

θjφ‖r+k

≤
∑
j

‖θjφ‖r+k

.
∑
j

‖∆θjφ‖k +
∑
j

‖θjφ‖0

≤
∑
j

‖θj∆φ‖k +
∑
j

‖[∆, θj]φ‖k +
∑
j

‖θjφ‖0

In the middle inequality we have invoked the basic elliptic estimates over the sets
in the cover; everything else is just algebra. Since multiplication byθj is continu-
ous on each Sobolev space we obtain from the above sequence of inequalities the
estimate

‖φ‖q+k . ‖∆φ‖k + ‖φ‖0 +
∑
j

‖[∆, θj]φ‖k

Finally, the operators[∆, θj] are of orderq− 1, or less, and as a result∑
j

‖[∆, θj]φ‖k . ‖φ‖k+q−1
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Combining this with Lemma 1.28 we get

‖φ‖q+k . ‖∆φ‖k + K‖φ‖0 + δ‖φ‖k+q

in which we can makeδ as small as we like, sayδ < 1. The theorem now follows
just by rearranging the terms in this inequality.
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2 Zeta Functions

In this section we shall study further the eigenvalue sequence{λj} associated to
the Laplace operator on a closed Riemannian manifoldM of dimensionn. The
main result will be Theorem 2.2 below, although not only the result but also the
proof will be important for our later purposes.

Let z ∈ C. Define a sort of zeta function forM using the formula

ζM(s) =
∑
λj 6=0

λ
− s

2
j .

The definition makes sense in view of the following computation:

2.1 Lemma. There is somed ∈ R such that ifRe(s) > d then∑
λj 6=0

|λ
− s

2
j | < ∞.

Proof. According to Weyl’s Theorem we can taked = n = dim(M), which is
the optimal value. However, if we are content with some value ford (not the best)
then we can prove the lemma with less effort. We can take, for example, any even
integerd bigger thann. It follows from the basic estimate proved in Section 1
that the operator(I + ∆)− d

2 mapsL2(M) into Wd(M), and since the inclusion
of Wd(M) into L2(M) is a trace-class operator (see Appendix B) it follows that
(I+∆)− d

2 , viewed as an operator onL2(M), is trace-class. Its eigenvalue sequence

is therefore summable, and it follows from this that
∑
λ

− d
2

j < ∞, as required.

Let us disregard Weyl’s Theorem for a moment and refer to the smallestd

with the property of the lemma as theanalytic dimensionof M. Our main result
will give an independent proof thatd = n.

Basic analysis proves thatζM(s) is analytic in the region Re(s) > d. We are
going to prove the following remarkable fact.

2.2 Theorem. Let {λj} be the eigenvalue sequence for the Laplace operator on a
closed Riemanniann-manifoldM. The zeta function

ζM(s) =

∞∑
λj 6=0

λ
− s

2
j

extends to a meromorphic function on the complex plane. The only singularities of
the zeta function are simple poles, and these are located within the set of integer
pointsn,n− 1, n− 2, . . . .
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2.3 Example. If M = S1 then the zeta functionζM is precisely twice the famous
Riemann zeta function. This explains our terminology and of course illustrates
the phenomenon of meromorphic continuation.

Theorem 2.2 was discovered in the 1940’s, by Minakshisundaram and Plei-
jel [23] in connection with attempts to refine Weyl’s Theorem. The relation with
Weyl’s Theorem is made clear by the followingTauberian Theorem(see for ex-
ample Hardy’s bookDivergent Series[16]):

2.4 Theorem. Let {µj} be a sequence of positive real numbers and assume that it
is p-summable for allp > 1. For µ > 0 denote byM(µ) the number ofj such
thatµj > µ. Then

lim
s↘1
(

(s− 1)

∞∑
j=1

µsj

)
= C ⇔ lim

µ→0µ ·M(µ) = C.

Thanks to the Tauberian theorem, puttingµj = λ
− n

2
j we see rather easily that

if ζM has a pole ats = n then the eigenvalues of∆ satisfy the asymptotic relation

N(λ) ∼
Ress=n ζM(s)

n
· λ

n
2

(hereN(λ) is the counting function from Weyl’s Theorem). It follows that the
analytic dimension ofM is equal ton, the topological dimension. Moreover
Weyl’s Theorem follows from the meromorphic continuation ofζM(s), plus a
computation of the residue of the zeta function ats = n. Or, to put it in a better
way, Weyl’s Theorem, plus the Tauberian Theorem, show that the residues of the
zeta functionζM(s) contain important geometric information aboutM. This is a
theme we shall be developing throughout the rest of these notes.

2.1 Outline of the Proof

The proof of Theorem 2.2 will involve some Hilbert spectral theory and some
algebra, notably the fundamental ‘Heisenberg commutation relation’

[
d

dx
, x] = I

in the algebra of differential operators. It is closely related to Guillemin’s proof
of Weyl’s Theorem in [15] (for a different proof based on pseudodifferential op-
erators see [25]).
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Here is the basic idea. Ifx1, . . . , xn are local coordinates onM then it follows
from Heisenberg’s relation that ifD is anydifferential operator of orderq or less
then

(2.1) qD =

N∑
i=1

[D, xi]
∂

∂xi
+ R,

whereR is a differential operator of orderq− 1 or less. As a result of this, a little
bit of algebra shows that

(2.2) (q+ n)D =

n∑
i=1

[D, xi
∂

∂xi
] +

n∑
i=1

[
∂

∂xi
, xiD] + R,

with the same remainder termR.
Now, we are going to show that the same sort of formula as (2.1) holds ifD is

replaced by a more complicated operator, roughly speaking one of the formD∆−z,
to which we shall assign the “order”q − 2Re(z). As for the operator∆−z, if the
real part ofz is positive then we can define it to be the unique bounded operator
such that on eigenfunctions∆−zφj = λ−z

j φj (we define the complex powers of
the zero eigenvalue to be zero). We shall give a more useful description of this
operator in the next subsection, but for the moment we note the key property

Trace(∆−z) =
∑
λj 6=0

λ−z
j , when Re(z) > d.

Having found an analog of (2.1) forD∆−z, it will follow that D∆−z may be
substituted into (2.2) in place ofD to give an equation

(q+ n)D∆−z =

n∑
i=1

[D∆−z, xi
∂

∂xi
] +

n∑
i=1

[
∂

∂xi
, xiD∆

−z] + Rz,

The remainder term will be a combination of operators of the same general type
asD∆−z but of “order” one less thanD∆−z.

Obtaining this formula forD∆−z is the crucial step, and from here on the
rest of the proof is simple. Taking traces, and bearing in mind that the trace of a
commutator is zero, we shall get

Trace(D∆−z) =
1

q− 2z+ n
Trace(Rz).
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If we repeat the whole process, withD∆−z replaced by the remainderRz, and then
with Rz replaced by the new remainder, and so on, then we shall get

Trace(D∆−z) =

(
J−1∏
j=0

1

q− j− 2z+ n

)
Trace(Sz),

whereSz has orderq−2z− J. But asJ gets really large then we see from the Rel-
lich Lemma that Trace(Sz) becomes well-defined and holomorphic on an increas-
ingly large half-plane inC. So the formula determines meromorphic extension of
Trace(D∆−z) to any desired half-plane inC, and hence toC itself.

2.2 Remark on Orders of Differential Operators

If D1 andD2 are differential operators then the order ofD1D2 is usually the sum
of the orders ofD1 andD2. However the order of thecommutator[D1, D2] is
never more than the sum of the orders ofD1 andD2 minus1. This drop in degree
is very important for the arguments that we are going to develop. It implies that
taking the commutator of an operatorD with a function lowers the degree ofD by
one; taking the commutator ofD with a vector field does not change the degree;
and taking the commutator ofD with ∆ raises the degree by at most one.

If we work with more general rings of differential operators (for example act-
ing on sections of vector bundles) then the general fact about[D1, D2] no longer
holds, and one must take a little care to check that the consequences listed above
hold in sufficiently generality for the arguments below to work (theydowork).

2.3 The Actual Proof

On a closed manifold there do not exist global coordinatesx1, . . . , xn. But by
using a partition of unity{φα} subordinate to a cover ofM by coordinate charts,
we can easily find functionsA1, . . . , AN and vector fieldsB1, . . . , Bn such that

N∑
j=1

[Bj, Aj] = nI

and

qD =

N∑
j=1

[D,Aj]Bj + R,
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where as beforeD is an operator of orderq or less andR has order less than
q. (The operatorsAi are of the formψα · xi, whereψα is supported in theα’th
coordinate chart and is1 on the support ofφα, and the operatorsBi are of the
formφα · ∂

∂xi
.) For the purposes of the commutator argument sketched in the last

section theAj andBj work just as well as the coordinatesxj and vector fields∂
∂xj

.
So let us begin by attempting to compute an expression of the form[∆−z, A]B.

For this purpose we shall need a way of looking at the operator∆−z which is better
suited to computation. We shall use the Cauchy formula

∆−z =
1

2πi

∫
λ−z(λ− ∆)−1 dλ.

The integral is a contour integral along a downwards pointing vertical line inC
which separates0 from the eigenvalues of∆. It is not hard to check that if Re(z) >
0 and ifφ ∈ C∞(M) then by applying the integrand toφ we get a convergent
integral in each Sobolev spaceWk(M), so the integral defines an operator from
C∞(M) to C∞(M). Cauchy’s formula from complex analysis proves that this is
the same as the operator∆−z we defined previously.

Now, onwards with the computation, the first part of which is straightforward:

[∆−z, A]B =
1

2πi

∫
λ−z[(λ− ∆)−1, A]Bdλ

=
1

2πi

∫
λ−z(λ− ∆)−1[∆,A](λ− ∆)−1Bdλ

=

∫
λ−z(λ− ∆)−1[∆,A]B(λ− ∆)−1 dλ

+

∫
λ−z(λ− ∆)−1[∆,A](λ− ∆)−1[∆,B](λ− ∆)−1 dλ.

(In the last step we did two things at once: we commutedB past(λ−∆)−1 and we
then used the formula[S−1, T ] = S−1[T, S]S−1.) The operators[∆,A] and[∆,B]
have orders1 and2, respectively.

Before going on, we shall introduce some better notation for our contour inte-
grals.

2.5 Definition. If D0, . . . , Dp are differential operators on the closed manifold
M, then denote byIz(D0, . . . , Dp) the integral

1

2πi

∫
λ−zD0(λ− ∆)−1 · · ·Dp(λ− ∆)−1 dλ
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(in the integral, copies of(λ−∆)−1 alternate with the operatorsDj). The integral
converges if Re(z) < n, in the sense we discussed above, and defines an operator
onC∞(M).

Using our new notation, we can writeD∆−z = Iz(D) and by elaborating very
slightly the computation we just ran through, we see that

[Iz(D), A]B = Iz([D,A]B) + Iz(D, [∆,A]B) + Iz(D, [∆,A], [∆,B]).

So what? Well, after replacingA andB by Aj andBj, and summing overj, we
know that

N∑
j=1

[D,Aj]Bj = qD− R and
N∑
j=1

[∆,Aj]Bj = 2∆− S

where the ‘remainder’S has order1. We are going to plug these formulas into
our expression for[Iz(D), A]B. To prepare for this, let us introduce the following
terminology:

2.6 Definition. We shall say thatIz(D0, . . . , Dp) is anintegral of typè ∈ Z if

order(D0) + · · ·order(Dp) − 2p ≤ `.

2.7 Lemma. If Iz = Iz(D0, . . . , Dp) is any integral of typè then

N∑
j=1

[Iz, Aj]Bj = (`− 2z)Iz + Rz,

whereRz is a finite sum of integrals of typè− 1.

Proof. Let us just consider the case of the integralIz(D) (thus` = q = order(D));
the other cases are no harder. Using the formulas we have already obtained we get

N∑
j=1

[Iz(D), Aj]Bj = qIz(D) + 2Iz(D,∆) + type`− 1 integrals.

So the lemma will be proved if we can deal successfully withIz(D,∆). What we
need to show is that

(2.3) Iz(D,∆) = −zIz(D),
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at least modulo integrals of order`−1. But in fact (2.3) holdsexactly. To see why
this is so, note first that from the formula

∆(λ− ∆)−1 = λ(λ− ∆)−1 − I,

along with our definition of the integralsIz it follows that

Iz(D,∆) = Iz−1(D, I) − Iz(D)

So (2.3) is equivalent to the formula

Iz−1(D, I) = (1− z)Iz(D).

This functional equation is proved using calculus, as follows. Take the integral
which definesIz−1(D) and differentiate the integrand with respect toλ (the inte-
grand is of course a function ofλ). We get

d

dλ

(
λ1−zD(λ− ∆)−1

)
= (1− z)λ−zD(λ− ∆)−1 − λ1−zD(λ− ∆)−2.

Using the fact that the integral of this derivative is zero we get

(1− z)Iz(D) − Iz−1(D, I) = 0,

as required.

2.8 Remark. In the general case the functional equation is

(1− z)Iz(D0, . . . , Dp) =

p−1∑
j=0

Iz−1(D0, . . . , Dj, I,Dj+1, . . . , Dp).

At this stage we have almost proved our meromorphic continuation theorem.
Using the algebraic tricks described earlier we can reduce the problem of comput-
ing the trace of an integral of typèto the problem of computing the trace of an
integral of typè −1. It only remains to relate our notion of “type” to some notion
of “order” of operators, so that we can guarantee the traceability ofIz, for all z in
a suitable right half plane.

2.9 Definition. Let m be an integer (positive or negative). We shall say that a
linear operatorT : C∞(M) → C∞(M) hasanalytic orderm or lessif, for every
s ∈ Z such thats ≥ 0 ands +m ≥ 0, the operatorT extends to a continuous
linear operator fromWm+s(M) toWs(M).
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Thus for example every differential operator of orderq or less has analytic
orderq or less. If Re(z) ≤ −m then the operator∆−z has analytic order−2m, or
less.

To prove Theorem 2.2 using our commutator strategy it remains to prove the
following two results:

2.10 Lemma. If Iz(D0, . . . , Dp) is an integral of typè then

analytic order(Iz(D0, . . . , Dp)) ≤ `− 2Re(z).

2.11 Remark. The integrand which we use to defineIz(D0, . . . , Dp) is

λ−zD0(λ− ∆)−1 · · ·Dp(λ− ∆)−1.

This has orderq − 2p + 2. So when Re(z) is negative (recall that the integral is
defined as long as Re(z)+p > 0) the order estimate in the lemma (which is sharp)
is considerably better than one would expect by looking at the integrand alone.

To understand the content of the following lemma, recall that the integral
defining Iz(D0, . . . , Dp) is convergent when Re(z) > n, and that we have not
up to this point defined the integral for other values ofz. However, thanks to
the previous lemma, the quantity Trace(Iz(D0, . . . , Dp)) is defined in the domain
Re(z) > max{n, n−`

2
} (this is where the integral makes sense and converges to an

operator of order less than−n).

2.12 Lemma. If Iz(D0, . . . , Dp) is an integral of typè then the function

z 7→ Trace(Iz(D0, . . . , Dp)),

extends to a holomorphic function on the half-planeRe(z) > n−`
2

.

Lemmas 2.10 and 2.12 are both proved by the same explicit computation. To
get the basic idea, let’s pretend that the operatorsD0 commutewith the operator
∆. In this case the integralIz(D0, . . . , Dp) can be written as

1

2πi

∫
D0 . . . Dp(λ− ∆)−(p+1) dλ.

The “constant”D0 . . . Dp can be pulled out from under the integral sign, and what
is left can be evaluated by Cauchy’s integral formula. We get

Iz(D0, . . . , Dp) =

(
−z

k

)
D0 · · ·Dp∆−z−p.

With this formula in hand, both lemmas are obvious.
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Proof of Lemmas 2.10 and 2.12.The idea of the proof is to try to move all the
terms(λ− ∆)−1 which appear in the basic quantity

X0(λ− ∆)−1 · · ·Xp(λ− ∆)−1

toward the right using the identity

(λ− ∆)−1T = T(λ− ∆)−1 + [(λ− ∆)−1, T ]

= T(λ− ∆)−1 + (λ− ∆)−1[∆, T ](λ− ∆)−1.

The formula leads to the formal expansion

(λ− ∆)−1T ≈
∑
k≥0

T (k)(λ− ∆)−1−k

where we have used the notation

T (0) = T and T (k) = [∆, T (k−1)] for k ≥ 1.

The series does not converge, but instead it is an asymptotic formula in the follow-
ing sense: ifT andTα depend on a parameterλ, then we shall writeT ≈

∑
α Tα if,

for everym� 0, every sufficiently large finite partial sum agrees withT up to an
operator of analytic orderm or less, whose norm as an operator fromWs+m(M)
to Ws(M) is O(|λ|m). In our case if we truncate our series atk = K, then the
remainder term is

(λ− ∆)−1T (K+1)(λ− ∆)−K−1

and the asymptotic expansion condition is easily verified. The reason for including
theO(|λ|m) condition is that we shall then be able to integrate with respect toλ,
and obtain an asymptotic expansion for the integrated operator.

More generally one has, for any non-negative integerh, an asymptotic expan-
sion

(λ− ∆)−hT ≈
∑
k≥0

(−1)k
(

−h

k

)
Y(k)(λ− ∆)−1−k

(this can be proved by induction onh).
Before beginning the actual computation let us also define the quantities

c(k1, . . . , kj) =
(k1 + · · ·+ kj + j)!

k1! · · ·kj!(k1 + 1) · · · (k1 + · · ·+ kj + j)
,
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which depend on non-negative integersk1, . . . , kj. These have the property that
c(k1) = 1, for all k1, and

c(k1, . . . , kj)

c(k1, . . . , kj−1)
=

(
k1 + · · ·+ kj + j− 1

kj

)
(to be explicit, the right hand fraction is the product of thekj successive integers
from (k1 + · · ·+ kj−1 + j) to (k1 + · · ·+ kj + j− 1), divided bykj!).

Now we can begin. Using this notation we obtain an asymptotic expansion

(λ− ∆)−1D1 ≈
∑
k1≥0

c(k1)D
(k1)
1 (λ− ∆)−(k1+1),

and then

(λ− ∆)−1D1(λ− ∆)−1D2 ≈
∑
k1≥0

c(k1)D
(k1)
1 (λ− ∆)−(k1+2)X2

≈
∑

k1,k2≥0

c(k1, k2)D
(k1)
1 D2

(k2)(λ− ∆)−(|k|+2),

where|k| = k1 + k2, and finally

(λ− ∆)−1D1 · · · (λ− ∆)−1Dp ≈
∑
k≥0

c(k)D1
(k1) · · ·Dp(kp)(λ− ∆)−(|k|+p),

where we have writtenk = (k1, . . . , kp) and|k| = k1 + · · ·+ kp. Premultiplying
byD0, postmultiplying by(λ− ∆)−1, and integrating with respect toλ we get

1

2πi

∫
λ−zD0(λ− ∆)−1 · · ·Dp(λ− ∆)−1 dλ

≈
∑
k≥0

c(k)D0D
(k1)
1 · · ·D(kp)

p

(
−z

|k| + p

)
∆−z−|k|−p.

The terms of this expansion have analytic order

q− k− 2(Re(z) + p) = `− k− 2Re(z)

or less. This proves Lemma 2.10. If Re(z) > 1
2
(n − `) then all the terms in the

asymptotic expansion are trace-class. This proves Lemma 2.12.
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Having proved the lemmas, the proof of Theorem 2.2 follows by using the
method outlined in Subsection 2.1. Let us add one or two small remarks about
the vanishing of traces of commutators. It is a fundamental property of the trace
that if X andY and bounded, and if one of them is trace-class, then Trace(XY) =
Trace(YX). The situation here is a little more complicated because we are consid-
ering the traces of commutators of possibly unbounded operators. To see that the
traces still vanish, we use Sobolev spaces, as follows. First, we may assume that
Re(z) � 0 (if the trace of the commutator vanishes here it will vanish everywhere
the commutator is defined, by unique analytic continuation). Next we note that the
trace of an operatorZ of analytic order−`� −d is the same, whether we regard
Z as an operator onL2(M) or on any Sobolev spaceWk(M) with k� `.3 Indeed
if we denote byJ : Wk(M) → L2(M) the inclusion, and byZk the operatorZ
acting onWk(M), then we can write

Trace(Zk) = Trace(J−1ZJ).

SinceJ : Wk(M) → L2(M) is a bounded operator andJ−1Z : L2(M) → Wk(M)
is trace-class (wheǹ� d+ k) we get

Trace((J−1Z)J) = Trace(J(J−1Z)) = Trace(Z).

Finally, if we wish to show that Trace(XY) = Trace(YX) when sayX has bounded
orderq andY has order̀ � −d we can think ofXY andYX as compositions of
bounded operators and trace-class

L2(M)
Y // Wq(M)

X // L2(M)

and
Wq(M)

X // L2(M)
Y // Wq(M)

and apply the basic trace property together with the previous remark toZ = YX.

An Improvement of the Main Theorem

In this concluding subsection we shall improve a little Theorem 2.2 by proving
that a number of the singularities of Trace(Ix(D0, . . . , Dp)), including in partic-
ular the singularity atz = 0, are removable. As we shall see in Section 5, this is
quite significant for index theory. Moreover the appearance of the Gamma func-
tion in the following lemma will prepare the way for our later computations in
cyclic cohomology.

3With a bit more effort one can show that the same thing holds for all−` < −d and allk.



30

2.13 Lemma. If Iz(D0, . . . , Dp) is an integral of typek then the function

z 7→ Γ(z) Trace(Iz(D0, . . . , Dp)),

is holomorphic in the domainRe(z) > n−k
2

.

The content of the lemma is that Trace(Iz(D0, . . . , Dp)) has zeros at the non-
positive integer points in its domain Re(z) > n−k

2
, which cancel out the simple

poles of theΓ -function. The factor(−1)p is present for tidiness; it also plays a
useful role in subsequent developments within cyclic cohomology (see Section 6).

Proof. The argument used to prove Lemma 2.12 produces the formula

(−1)pΓ(z) Trace(Iz(D0, . . . , Dp))

≈
∑
k≥0

(−1)pΓ(z)

(
−z

|k| + p

)
c(k) Trace

(
D0D

(k1)
1 · · ·D(kp)

p ∆−z−|k|−p
)
.

The symbol≈, which we are now applying to functions ofz, means that, given any
right half-plane inC, any sufficiently large finite partial sum of the right hand side
agrees with the left hand side (on the common domain of the functions involved)
modulo a function ofz which is holomorphic in that half-plane. It follows from
the functional equation forΓ(z) that

(−1)pΓ(z)

(
−z

|k| + p

)
= (−1)|k|Γ(z+ p+ |k|)

1

(|k| + p)!
.

So we get

(−1)pΓ(z) Trace(Iz(D0, . . . , Dp))

≈
∑
k≥0

(−1)|k|Γ(z+ p+ |k|)
1

(|k| + p)!
c(k)

× Trace
(
D0D1

(k1) · · ·Dp(kp)∆−z−|k|−p
)
.

This completes the proof.

Repeating the argument from the previous subsection we obtain the following
result:

2.14 Theorem.Let Iz(D0, . . . , Dp) be an integral of typek. The function

(−1)pΓ(z) Trace(Iz(D0, . . . , Dp))

extends to a meromorphic function onC with only simple poles. The poles are
located within the sequencen+ k, n+ k− 1, . . . .
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3 Abstract Differential Operators

In this section we shall first introduce a more abstract notion of differential op-
erator, and then develop a corresponding theory of pseudodifferential operators.
Apart from the standard example coming from standard differential operators on
a smooth, closed manifold, we shall also consider a more elaborate example re-
lated to foliation theory, and a collection of examples derived from Alain Connes’
notion of spectral triple.

3.1 Algebras of Differential Operators

Let H be a complex Hilbert space. We shall assume as given an unbounded,
positive, self-adjoint operator∆ onH. As the notation might suggest, the main
example to keep in mind is the Laplace operator on a closed Riemannian mani-
fold, but there are many other examples too. We shall soon introduce a notion of
“order”, generalizing the notion of order of a standard differential operator, and
we should keep in mind that∆ need not have order2. In fact let us now fix an
integerr > 0, which will play the role in what follows of order(∆).

For k ≥ 0 denote byHk the domain of the operator∆
k
r . In the standartd

example, where∆ is the Laplace operator andr = 2, it follows from the basic
elliptic estimate that the Hilbert spaceHk may be identified with the Sobolev
spaceWk(M).

LetH∞ = ∩∞
k=1H

k. We shall assume as given an algebraD of linear operators
on the vector spaceH∞. In the standard example,D will be the algebra of all
linear differential operators onM. Let us also assume that the algebra is filtered:
thus it is given as an increasing union of linear subspaces

D0 ⊆ D1 ⊆ · · · ⊆ D

in such a way thatDp ·Dq ⊆ Dp+q. We shall write order(X) ≤ q if X ∈ Dq.

3.1 Definition. We shall say that the pair comprised of∆ andD is differential4 if
the following conditions hold:

(i) If X ∈ D, then also[∆,X] ∈ D, and

order([∆,X]) ≤ order(X) + r− 1.

4Strictly speaking we should include the integerr somewhere here.
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(ii) If X ∈ D, and if order(X) ≤ q, then there is a constantε > 0 such that

‖∆
q
r v‖+ ‖v‖ ≥ ε‖Xv‖, ∀v ∈ H∞

(the norm is that of the Hilbert spaceH).

3.2 Remark. If we introduce the natural norm on the spaceHq = dom∆
q
r ,

namely
‖v‖2q = ‖∆

q
r v‖2 + ‖v‖2,

then the estimate in item (ii) can be rewritten as

‖v‖q + ‖v‖ ≥ ε‖Xv‖, ∀v ∈ H∞
(for perhaps a differentε). In the standard example this is easily recognizable as
the basic estimate of elliptic regularity theory.

3.3 Lemma. If X ∈ D(∆), and ifX has orderq or less, then for everys ≥ 0 the
operatorX extends to a bounded linear operator fromHs+q toHs.

Proof. If s is an integer multiple of the orderr of ∆ then the lemma follows
immediately from the elliptic estimate above. The general case (which we shall
not actually need) follows by interpolation.

This begs us to make the following version of Definition 2.9 in our new ab-
stract context:

3.4 Definition. A linear transformationT : H∞ → H∞ hasanalytic orderq ∈ R
if for all s ≥ 0 such thats + q ≥ 0 it extends to a bounded linear operator
T : Hs+q → Hs.

3.2 An Example

Let M be a smooth manifold. Assume that anintegrablesmooth vector sub-
bundleF ⊆ TM is given, along with metrics on the bundlesF andTM/F (the
metrics will play only a very minor role in what we are going to do here). The
bundle dertermines a foliation ofM by sayp-dimensional submanifolds.

Let D be the algebra of linear partial differential operators onMwith compact
supports. Define a filtration onD, which makes use of the foliation onM, as
follows:

(i) If f is aC∞-function onM then order(f) = 0.
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(ii) If X is aC∞-vector field onM then order(X) ≤ 2.

(iii) If X is a C∞-vector field onM which is everywhere tangent toF then
order(X) ≤ 1.

From now onwards in this subsection we shall use the above non-standard notion
of order while discussing operators inD.

When discussing local coordinates onMwe shall use coordinates which iden-
tify a neighbourhoodU in M with an open set inRp × Rq in such a way that the
plaques of the foliation (the connected components of the interections of the leaves
with the chart) are of the formRp × {pt}. Let us call thesefoliation coordinates.
If X ∈ D, then in local foliation coordinates we can writeX as a sum

X =
∑
α

aα(x)
∂α

∂xα
.

If order(X) ≤ k, then we can separate the sum into a part of orderk, plus a part
of lower order,

X =
∑
‖α‖=k

aα(x)
∂α

∂xα
+

∑
‖α‖<k

aα(x)
∂α

∂xα
,

where‖α‖ is defined by the formula

‖α‖ = α1 + · · ·+ αp + 2αp+1 + · · ·+ 2αd.

3.5 Definition. An operatorX ∈ D is elliptic of orderr, relative toF, if in every
coordinate system, as above, and at every pointx in the domain of the coordinate
systems the the orderr part ofX has the property that∣∣∣∣ ∑

‖α‖=r

aα(x)ξ
α

∣∣∣∣ ≥ εx (|ξ1|2 + · · · |ξp|2 + |ξp+1|
4 + · · ·+ |ξd|

4
)

for someεx > 0 and allξ.

If F = TM then this coincides with the usual definition of ellipticity. If we
define a Sobolev norm in a foliation chart by the formula

‖φ‖2Ws(U,F) =
∑
‖α‖≤s

∥∥∥∂αφ
∂xα

∥∥∥2
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then every orderk operator is continuous fromWs+k(U, F) toWk(U, F). More-
over the arguments used to prove the elliptic estimate in Section 1 easily adapt to
show that ifX is elliptic of orderr relative toF, then

(3.1) ‖Xφ‖2s + ‖φ‖20 ≥ εX‖φ‖r+s

for someεX > 0 and every smooth, compactly supportedφ.
Passing from coordinate charts to global situation onM using partitions of

unity, we obtain global Sobolev spacesWk(M,F) and the corresponding global
version of the elliptic estimate (3.1). Observe also that

W2k(M) ⊆Wk(M,F) ⊆Wk(M),

from which it follows that

∩k≥0Wk(M,F) = ∩k≥0Wk(M) = C∞(M).

We obtain the following result:

3.6 Theorem. LetM be a smooth manifold and letF be a smooth, integrable
subbundle ofTM. If ∆ is a positive and elliptic operator onM (relative toF), and
if ∆ and its powers are essentially self-adjoint, then(D, ∆) is a differential pair
in the sense of Definition 3.1.

We can define an explicit elliptic operator

∆ = ∆2L + ∆T ,

composed of a “leafwise” operator∆L and a “transverse” operator∆T onM, as
follows. Using the given metric onF we can define a leafwise Laplace operator
∆L which acts just by differentiation along the leaves of the foliation. Using local
foliation coordinates we can identify a foliation chartU in M with an open set
in Rp × Rq, and after having done so, we can use the given metric onTM/F to
define Riemannian metrics on each transversal{pt}×Rq, which together determine
a “transverse” Laplace operator onU. The operator∆T,U so constructed depends
on our choice of foliation coordinates. However by coveringM by chartsUα and
choosing a partition of unity{θα} we can form a non-canonical operator

∆T =
∑
α

θ
1
2
α∆T,Uαθ

1
2
α .

We are requiring operators in our algebraD to be compactly supported, but if we
put this requirement to one side for a moment and think of∆ as an element ofD
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then we can say that∆ has order4, and that up to operators of lower order, both
∆ and∆T are independent of all the choices made in their construction.

For the particular differential pair(D, ∆) we have just constructed it is a sim-
ple matter to adapt the arguments of Section 2 to prove that all the zeta functions
Trace(D∆−z

1 ) admit meromorphic extensions toC, with only simple poles. The
proof begins from the basic formula

kD =

p∑
i=1

[D, xi]
∂

∂xi
+ 2

n∑
i=p+1

[D, xi]
∂

∂xi
+ R,

for an orderk operator, whereR is a differential operator of orderk− 1 or less (as
computed in the given filtration ofD). This implies that

(k+ p+ 2q)D =

p∑
i=1

[D, xi
∂

∂xi
] +

p∑
i=1

[
∂

∂xi
, xiD]

+ 2

n∑
i=p+1

[D, xi
∂

∂xi
] + 2

n∑
i=p+1

[
∂

∂xi
, xiD] + R,

with the same remainder termR. From here the proof proceeds exactly as in Sec-

tion 2. The result is that, ifD has orderk, then the zeta function Trace(D∆
− s

4
1 ) has

a meromorphic extension toC, with at most simple poles located at the sequence
of points

k+ p+ 2q, k+ p+ 2q− 1, . . . .

In particular the basic zeta function Trace(∆
− s

4
1 ) has poles atp+2q, p+2q−1, . . . .

An interesting feature of this result is that the ‘analytic dimension’ of(M,F)
(measured as in Weyl’s Theorem by the asymptotic behavious of the eigenvalue
sequences of elliptic operators) is notn, the dimension of the manifold, butn +
q = p+ 2q.

An important feature of the differential pair(D, ∆) is the invariance of∆,
modulo operators of lower order, under diffeomorphisms ofM which preserve
F and which moreover preserve the metics onF and TM/F. As Connes and
Moscovici observe in [10], starting with a manifoldV and any groupG of dif-
feomorphisms ofV , it is possible to build a new manifoldM which fibers over
M along with metrics on the vertical tangent bundleF and the quotient bundle
TM/F, in such at way that the action ofG lifts to M, preserving the given met-
rics. Starting from this observation Connes and Moscovici are able to develop
elliptic operator theory and index theory on very complex spaces, for example the
transverse spaces of foliated manifolds.
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3.3 Pseudodifferential Operators

Let us return now to our general notion of differential pair. Starting from this
concept we can reproduce many of the computations we did in Section 2, for ex-
ample those used to prove Lemmas 2.10 and 2.12 in our new context (we already
suggested as much at the end of the last subsection). However we shall leave this
to the reader to check, and instead we shall develop the following closely notion
of abstract pseudodifferential operator.

3.7 Definition. Let (∆,D) be a differential pair. Fix a positive operatorK of
analytic order−∞ (this means thatKmapsH intoH∞) such that the operator

∆1 = ∆+ K

is invertible. Abasic pseudodifferential operator of orderk ∈ Z is a linear oper-
atorT : H∞ → H∞ with the property that for everỳ∈ Z the operatorT may be
decomposed as

T = X∆
m
r
1 + R,

whereX ∈ D(A,D),m ∈ Z, andR : H∞ → H∞, and where

order(X) +m ≤ k and order(R) ≤ `.

A pseudodifferential operator of orderk ∈ Z is a finite linear combination of
basic pseudodifferential operators of orderk.

3.8 Remark. The introduction of the operatorK is more or less a matter of con-
venience; for example we could have changed∆1 to (I+∆) without changing the
class of pseudodifferential operators determined by the definition. In particular
the choice ofK has no effect on the definition. (We should add that using spectral
theory it is easy to find a suitable operatorK.)

3.9 Example. If T is a pseudodifferential operator of orderk, then [∆, T ] is a
pseudodifferential operator of orderk+ r− 1.

3.10 Example.All of the integralsIz(D0, . . . , Dp) for integralz are pseudodif-
ferential operators. This follows from the asymptotic expansion formula used in
the proof of Lemma 2.10.

We are going to show that the linear space of all pseudodifferential operators
is an algebra. For this purpose we shall need to develop some of the asymptotic
expansions used in Section 2 in our new, abstract context.
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3.11 Definition. If T andTj are operators onH∞, then let us write

T ≈
∞∑
j=1

Tj

if, for everym, there existsJ0 such that ifJ > J0, then the differenceT −
∑J
j=1 Tj

is an operator of orderm or less.

3.12 Lemma. If T is a pseudodifferential operator, and ifz ∈ C, then

[∆z1, T ] ≈
∞∑
j=1

(
z

j

)
T (j)∆

z−j
1 .

3.13 Remark. We define∆−z
1 , for Re(z) > 0, by a Cauchy integral, as we did in

Section 2. Since∆1 is invertible we can choose the contour of integration to be
the (downwards pointing) imaginary axis.

Proof of the Lemma.We compute as follows:

[∆z1, T ] =
1

2πi

∫
λ−z[(λ− ∆1)

−1, T ]dλ

=
1

2πi

∫
λ−z(λ− ∆)−1∇1(T)(λ− ∆)−1 dλ,

where we have written∇1(T) = [∆1, T ]. The integral converges as long as
Re(z) > 0 (it converges absolutely to an operator on the Frechet spaceH∞),
and for the moment let us confine our attention to suchz. Continuing, we can
write

[∆z1, T ] =
1

2πi

∫
λ−z(λ− ∆1)

−1∇1(T)(λ− ∆1)
−1 dλ

=
1

2πi

∫
λ−z∇1(T)(λ− ∆1)

−2 dλ

+
1

2πi

∫
λ−z[(λ− ∆1)

−1,∇1(T)](λ− ∆1)
−1 dλ

=
1

2πi

∫
λ−z∇1(T)(λ− ∆1)

−2 dλ

+
1

2πi

∫
λ−z(λ− ∆1)

−1∇21(T)(λ− ∆1)
−2 dλ,
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and more generally

[∆z1, T ] =
1

2πi

∫
λ−z∇1(T)(λ− ∆1)

−2 dλ+
1

2πi

∫
λ−z∇21(T)(λ− ∆1)

−3 dλ

+ · · ·+ 1

2πi

∫
λ−z∇k1(T)(λ− ∆1)

−k−1 dλ

+
1

2πi

∫
λ−z(λ− ∆1)

−1∇k+11 (T)(λ− ∆1)
−(k+1) dλ.

Using the Cauchy integral formula we can now compute

[∆z1, T ] =

(
−z

1

)
∇1(T)∆−(z+1)

1 +

(
−z

2

)
∇21(T)∆

−(z+2)
1

+ · · ·+
(

−z

k

)
∇k1(T)∆

−(z+k)
1

+
1

2πi

∫
λ−z(λ− ∆1)

−1∇k+11 (T)(λ− ∆1)
−(k+1) dλ.

If order(T) = q, then the remainder integral in the final display converges when
Re(z) > k+1 to an operator of orderq−k−rRe(z). This proves the lemma.

3.14 Proposition.The set of all pseudodifferential operators is a filtered algebra.

Proof. The set of pseudodifferential operators is a vector space. The formula

X∆
m
2
1 · Y∆

n
2
1 ≈

∞∑
j=0

(
m
2

j

)
X∇j1(Y)∆

m+n
2

−j

1

shows that it is closed under multiplication and moreover that the product of two
pseudodifferential operators of ordersk and` is a pseudodifferential operator of
orderk+ `.

The algebra of pseudodifferential operators is a good context in which to study
the residues of the zeta functions Trace(D∆−z

1 ), thanks to the following beautiful
fact:

3.15 Lemma. Assume that for every differential operatorD ∈ D, and all z ∈
C with sufficiently large real part, the operatorD∆−z

1 is trace-class. Assume
that, in addition, for everyD ∈ D the zeta functionTrace(D∆−z

1 ) extends to a
meromorphic function onC with only simple poles. Then the residue functional

τ(T) = Resz=0 Trace(T∆−z
1 )

is a trace on the algebra of pseudodifferential operators.
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3.16 Remark. If ∆ itself has discrete spectrum and compact resolvent(I+∆)−1,
and if we define∆−z as we did in Section 2, integrating down a vertical line which
separates0 from the positive spectrum of∆, then the residues of Trace(D∆−z)
and Trace(T∆−z

1 ) are equal.

Proof of the Lemma.We want to show that

Resz=0 Trace(ST∆−z
1 ) = Resz=0 Trace(TS∆−z

1 ).

Using the trace property of the operator trace, this amounts to showing that

Resz=0 Trace
(
ST∆−z

1 − S∆−z
1 T
)

= 0.

Using Lemma 3.12 we get

ST∆−z
1 − S∆−z

1 T ≈ −

∞∑
j=1

(
−z

j

)
ST (j)∆

z−j
1

As a result,

Resz=0 Trace
(
ST∆−z

1 − S∆−z
1 T
)

= −

∞∑
j=1

Resz=0
((−z

j

)
Trace(ST (j)∆

z−j
1 )
)
.

This is a finite sum since all but finitely many of the residues of Trace(ST (j)∆
z−j
1 )

are zero. But in fact since each trace function has at worst a simple pole,all the
residues in the sum are zero: the possible pole of Trace(ST (j)∆

z−j
1 ) at z = 0 is

canceled out by the factor ofz in the binomial coefficient
(

−z
j

)
.

3.17 Remark. This result of Wodzicki [28] was first observed in the following
algebraic context (compare for example [26] for a clear account). LetA be a
complex algebra and let∂ be a derivation onA. The main example is whereA is
the algebra of smooth functions on unit circle and∂ is ordinary differentiation:

∂(a) =
da

dt
.

The spaceD(A) of formal polynomials
∑N
n=0 an∂

n in ∂ with coefficients inA is
an associative algebra, with multiplication law derived from

[∂, a] = ∂(a).
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In the main example this is the algebra of differential operators on the circle.
Consider now the algebraΨ(A) of formal series

N∑
n=−∞an∂

n

in ∂ with coefficients inA. Infinitely many of the negative coefficients may be
nonzero, but we require that each series contain only finitely many positive powers
of ∂. This is an associative algebra with multiplication derived from the formula

δn · a =

∞∑
j=0

(
n

j

)
∂j(a)∂n−j.

Let τ : A → C be a trace functional which vanishes on the range of∂. Thusτ is a
linear functional for which

τ : [A,A] + ∂[A] 7→ 0.

In the main example, whereA is the algebra of smooth functions on the circleτ
is the ordinary integral:

τ(a) =

∫
adt.

The following is then an algebraic counterpart of Lemma 3.15:

3.18 Lemma.The functionalρ : Ψ(A) → C defined by

ρ(
∑

ai∂
i) = τ(a−1).

is a trace on the algebraΨ(A).

3.4 Spectral Triples

Further examples of differential pairs(D, ∆) are furnished by Connes’ notion of
spectral triple. In this subsection we shall briefly review the basic definitions.

3.19 Definition. A spectral tripleis a triple(A,H,D), composed of a complex
Hilbert spaceH, an algebraA of bounded operators onH, and a self-adjoint
operatorD onH with the following two properties:

(i) If a ∈ A then the operatora · (1+D2)−1 is compact.
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(ii) If a ∈ A thena · dom(D) ⊆ dom(D) and the commutator[D,a] extends to
a bounded operator onH

Various examples are listed in [10]; in the standard exampleA is the algebra
of smooth functions on a complete Riemannian manifoldM, D is a Dirac-type
operator onM, andH is the Hilbert spaceL2(S) of square-integrable sections of
the vector bundle on whichD acts.

3.20 Definition. Let (A,H,D) be a spectral triple. Denote byδ the unbounded
derivation ofB(H) given by commutator with|D|. Thus the domain ofδ is the set
of all bounded operatorsT which map the domain of|D| into itself, and for which
the commutator extends to a bounded operator onH.

3.21 Lemma. LetH∞ be a core of|D| (a subspace of the domain on which the
operator is essentially self-adjoint). IfT mapsH∞ into itself, and if[|D|, T ] is
bounded onH∞, thenT lies in the domain ofδ.

3.22 Definition. A spectral triple isregular if A and[D,A] belong to∩∞
n=1δ

n.

The notion of regular spectral triple(A,H,D) plays a useful role in the de-
tailed analysis of Alain Connes’ spectral triples and their Chern characters. See for
example [14]. The purpose of this subsection is to show that regularity is equiva-
lent to the basic elliptic estimate which appears in item (ii) of Definition 3.1 (the
relevant pair(D, ∆) will be described in a moment). This equivalence is essen-
tially proved in [10, Appendix B], although in disguised form.

3.23 Definition. Let (A,H,D) be a spectral triple with the property that everya ∈
A mapsH∞ into itself. Denote by∆ the operatorD2. Thealgebra of differential
operatorsassociated to(A,H,D) is the smallest algebraD of operators onH∞
which containsA and[D,A] and which is closed under the operationT 7→ [∆, T ].

3.24 Remarks. If the spectral triple(A,H,D) is regular, then the conditionA ·
H∞ ⊆ H∞ is automatically satisfied. The above description ofD is in some sense
the minimal reasonable definition of an algebra of differential operators. Note
however that the operatorD is not necessarily included inD.

The algebraD of differential operators is filtered, as follows. We require that
elements ofA and[D,A] have order zero, and that the operation of commutator
with ∆ = D2 raises order by at most one. Thus the spacesDk of operators of
orderk or less are defined inductively as follows:

(a) D0 = algebra generated byA+ [D,A].
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(b) D1 = [∆,D0] + D0[∆,D0].

(c) Dk =
∑k−1
j=1 Dj ·Dk−j + [∆,Dk−1] + D0[∆,Dk−1].

We want to prove the following result.

3.25 Theorem. Let (A,H,D) be a spectral triple with the property that every
a ∈ AmapsH∞ into itself. It is regular if and only if(D, ∆) is a differential pair
in the sense of Definition 3.1.

3.26 Remark. As should be clear, we assign to∆ the orderr = 2. Condition (i)
of Definition 3.1 is then automatically satisfied.

We shall begin by proving that a regular spectral triple(A,H,D) satisfies the
basic estimate.

3.27 Definition. Let (A,H,D) be a regular spectral triple. Denote byΨ0(A) the
algebra of operators onH∞ generated by all the spacesδn[A] andδn

[
[D,A]

]
, for

all n ≥ 0.

Note that, according to the definition of regularity, every operator inΨ0(A)
extends to a bounded operator onH. The notation “Ψ0(A)” is chosen to suggest
“pseudodifferential operator of order0” (it is indeed the case thatΨ0(A) is an
algebra of order0 pseudodifferential operators associated to the differential pair
(D, ∆)).

3.28 Lemma.Assume that(A,H,D) is a regular spectral triple. Every operator
in D of orderkmay be written as a finite sum of operatorsb|D|`, whereb belongs
to the algebraΨ0(A) and wherè ≤ k.

Proof. DefineE, a space of operators onH∞, to be the linear span of the operators
of the formb|D|k, wherek ≥ 0 andb ∈ Ψ0(A). The spaceE is an algebra since
δ[Ψ0(A)] ⊆ Ψ0(A) and since

b1|D|k1 · b2|D|k2 =

k1∑
j=0

(
k1

j

)
b1δ

j(b2)|D|k1+k2−j.

Filter the algebraE by definingEk to be the span of all operatorsb|D|` with ` ≤ k.
The formula above shows that this does define a filtration of the algebraE. Now
the algebraD of differential operators is contained withinE, and the lemma we
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are trying to prove amounts to the assertion thatDk ⊆ Ek. ClearlyD0 ⊆ E0.
Using the formula

[∆, b|D|k−1] = [|D|2, b|D|k−1] = 2δ(b)|D|k + δ2(b)|D|k−1,

along with our formula forDk, the inclusionDk ⊆ Ek is easily proved by induc-
tion.

We can now prove that every regular spectral triple satisfies the basic estimate.
According to the lemma, it suffices to prove that ifk ≥ ` and ifX = b|D|`, where
b ∈ B, then there existsε > 0 such that

‖Dkv‖+ ‖v‖ ≥ ε‖Xv‖,

for everyv ∈ H∞. But we have

‖Xv‖ = ‖b|D|`v‖ ≤ ‖b‖ · ‖|D|`v‖ = ‖b‖ · ‖D`v‖,

And since by spectral theory for every` ≤ k we have that

‖D`v‖2 ≤ ‖Dkv‖2 + ‖v‖2 ≤
(
‖Dkv‖+ ‖v‖

)2
it follows that

‖Dkv‖+ ‖v‖ ≥ 1

‖b‖+ 1
‖Xv‖,

as required.
We turn now to the proof of the second half of Theorem 3.25. Assume from

now on that(A,H,D) is a spectral triple for whichA ·H∞ ⊆ H∞ and for which
(D, ∆) is a differential pair. Starting from the differential pair we can form the
algebra of pseudodifferential operators, as in Subsection 3.3.

3.29 Lemma. If T is a pseudodifferential operator then so isδ(T), and moreover
order(δ(T)) ≤ order(T).

Proof. We compute that

δ(T) = |D|T − T |D| ≈ ∆
1
2
1 T − T∆

1
2
1

≈
∞∑
j=1

(
1
2

j

)
∇j1(T)∆

1
2
−j.

This computation reduces the lemma to the assertion that ifT is a pseudodifferen-
tial operator of orderk then∇1(T) is a pseudodifferential operator of orderk+ 1
or less. Since∇1(T) ≈ [∆, T ] this in turn follows from the observation made in
Example 3.9.
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Proof that(A,H,D) is regular. By the basic estimate, every pseudodifferential
operator of order zero extends to a bounded operator onH. Since every operator
in A or [D,A] is pseudodifferential of order zero, and sinceδ(T) is pseudodif-
ferential of order zero wheneverT is, we see that ifb ∈ A or b ∈ [D,A] then
for everyn the operatorδn(b) extends to a bounded operator onH. Hence the
spectral triple(A,H,D) is regular, as required.

3.5 Dimension Spectrum

3.30 Definition. A spectral triple(A,H,D) is finitely summableif there is some
k > 0 such that the operatora · (1+D2)−k is trace-class, for everya ∈ A.

Suppose that the spectral triple(A,H,D) is regular, and denote byD the
associated algebra of differential operators. If(A,H,D) is finitely summable then
for everyX ∈ D the zeta function Trace(X∆−z

1 ) is defined in a right half-plane in
C, and is holomorphic there (as before,∆1 is an invertible operator obtained from
∆ by adding a positive, order−∞ operator). The following concept has been
introduced by Connes and Moscovici [10, Definition II.1].

3.31 Definition. Let (A,H,D) be a regular and finitely summable spectral triple.
It hasdiscrete dimension spectrumif5 there is a discrete subsetF of C with the
following property: for every operatorT in the algebraΨ0(A) of Definition 3.27,

the zeta function Trace(T∆
− z

2
1 ) extends to a meromorphic function onC with all

poles contained inF.

If (A,H,D) has discrete dimension spectrum then for every differential, or

indeed pseudodifferential, operatorX, the zeta function Trace(X∆
− z

2
1 ) extends to a

meromorphic function onC . Moreover ifX has orderk then the poles of this zeta
function are located inF+ q. Conversely, if(A,H,D) is a regular spectral triple,

and if, for every differential operatorX of orderk, the zeta function Trace(X∆
− z

2
1 )

extends to a meromorphic function onC whose poles are located withinF + q,
then(A,H,D) has discrete dimension spectrumF.

A final item of terminology:

3.32 Definition. A regular and finitely summable spectral triple hassimpledi-
mension spectrum if it has discrete dimension spectrum and if all the zeta-type
functions above have only simple poles.

5Connes and Moscovici add a technical condition concerning decay of zeta functions along
vertical lines inC.
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It is an interesting and as yet unsolved problem to find algebraic conditions on
a regular spectral triple which will imply that it has discrete or simple dimension
spectrum.
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4 Computation of Residues

We saw in the Section 2 that if∆ is the Laplace operator on a closed Riemannian
manifoldM and ifD is any differential operator onM then the function

(4.1) Trace(D∆− z
2 )

is meromorphic onC. Moreover ifD has orderq then the poles of this zeta
function are all simple and are located at the integer pointsq+n, q+n− 1, . . . .

The purpose of this section is to explain how the residues of Trace(D∆− z
2 ) are

given by complicated but in principal explicit and computable formulas involving
the coefficients ofD and∆. This ‘local computability’ of residues is a very impor-
tant conceptual point: in the next section we shall consider a family of globally
defined index invariants of manifolds, and it will be a significant and nontrivial
fact that these global invariants are given by explicit (albeit complicated) local
residue formulae.

We shall not take the shortest route toward our goal of producing local formu-
lae for residues. Instead we shall follow a method, based on commutators, which
is loosely related to our proof of meromorphic continuation in Section 2. Nor shall
we give a very detailed or sophisticated account of this topic. Instead, for the full
story the reader is referred to [28] or [15].

4.1 Computation of the Leading Residue

We are going to find a formula for the residue atz = n + q of the function
Trace(D∆− z

2 ), whereD is an orderq differential operator. This is the residue at
the leading or rightmost pole inC. Note that

Resz=n+q Trace(D∆− s
2 ) = Ress=0 Trace(D∆− n+q+s

2 ) = τ(D∆− n+q
2 ),

whereτ is the residue trace on the algebra of pseudodifferential operators (see
Lemma 3.15). So the leading residue is the residue trace of the order−n pseu-
dodifferential operatorD∆− n+q

2 . We are going to use the trace property ofτ to
produce a formula for the residue trace of any order−n pseudodifferential opera-
tor.

In order to produce such a formula we first need to extract from a pseudodif-
ferential operator its symbol, which is a function on the cotangent sphere bundle
S∗M.
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4.1 Definition. LetD be a differential operator of orderq. Its principal symbolis
the functionσD : S∗M → C defined in local coordinates by the formula

σD(x, ξ) = iq
∑
|α|=q

aα(x)ξ
α,

where

D =
∑
|α|≤q

aα(x)
∂α

∂xα
.

In other words, to defineσD : S∗M → C we just exchange each partial deriva-
tive ∂

∂xi
in the leading order terms ofD for the corresponding coordinate function

ξi on the cotangent bundle. The reason for dropping the lower order terms ofD

is that the principal symbol is then independent of the choice of local coordinates
onM, and so well defined on all ofS∗M. This would not be the case if the lower
order terms ofD were retained.

The overall factoriq is conventional. It ensures that, for example, the symbol
of ∆, a positive operator, is a positive function. In fact the symbol of∆ is the
constant function1. For a general operatorD of orderq, the symbol extends to a
function onT ∗M which is polynomial and homogeneous of orderq in each fiber
of the cotangent bundle (in the case of the Laplace operator∆ this extension is
just the norm-squared functionξ 7→ ‖ξ‖2 obtained from the Riemannian metric).
Going in the other direction, ifσ : T ∗M → C is polynomial and homogeneous of
orderq in each fiber, then it is the symbol of some orderq differential operator.

4.2 Definition. Let T be an orderq pseudodifferential operator. Itsprincipal
symbolis the functionσT : S∗M → C obtained by representingT in the form

T = D∆
k
2 + R,

where order(R) < q, and then setting

σT = σD : S∗M → C.

The symbol is well-defined. This follows in the first place from the fact that the
symbol of∆ is the constant function1 onS∗M, so that if we writeT = D∆ ·∆k−1
thenσD = σD∆, and in the second place from the fact that the analytic order of a
differential operator is exactly equal to its differential order.

We are going to prove the following result.
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4.3 Theorem. There is a constantc such that ifT is any order−n pseudodiffer-
ential operator then

τ(T) = c

∫
S∗M

σT d vol .

Here is roughly how we are going to proceed. We shall show that if the in-
tegral vanishes, then the symbolσT can be written as a linear combination of
‘derivatives’. As we shall see, this will imply thatT can be written as a linear
combination of commutators of pseudodifferential operators, modulo an operator
R of lower order. From the trace property ofτ it will follow that τ(T) = τ(R),
and sinceR has order less than−n it follows thatτ(R) = 0. All this will show
that if the integral vanishes then so doesτ(T). Since the integral and the trace are
both linear functionas on the space of order−n operators, it will follow thatτ is
a constant multiple of the integral, as required.

To start the argument, we consider the complex of differential forms onS∗M

which are polynomial in the fiber direction (this means that the forms are local
combinations of formsp(x, ξ)dxIdξJ, wherep is polynomial in theξ-variables;
herex1, . . . , xn, together withξ1, . . . , ξn, are the standard coordinate functions on
T ∗M). This complex computes the de Rham cohomology6 of S∗M. The volume
form onS∗M is given by the formula

volS∗M =

n∑
j=1

(−1)j−1ξjdx1 · · ·dxndξ1 · · · d̂ξj · · ·dξn

and so belongs to our complex. If the integral in Theorem 4.3 is zero thenσ ·
volS∗M is exact, say

(4.2) σ · volS∗M = dα.

We are now going to transfer this equation to the spaceR∗M, obtained fromT ∗M
by deleting the zero section. Of course,S∗M is a submanifold ofR∗M. We extend
σ to a function onR∗M by requiring it to be homogeneous of order−n in each
fiber. We extend volS∗M to the form

ω =
1

r

n∑
j=1

(−1)j−1ξjdx1 · · ·dxndξ1 · · · d̂ξj · · ·dξn.

6This part of the argument would be simpler if we used the classical notion of pseudodiffer-
ential operator from analysis, in which case the relevant class of functions onS∗M would be the
class ofall smooth functions, and the relevant complex would be the standard de Rham complex.
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Herer : R∗M → R is the functionr(ξ) = ‖ξ‖. By collapsing each positive ray in
R∗M to a point we get a projection toS∗M, and using it we pull backα to a form
β onR∗M. From (4.2) we get

dβ = σ ·ω.

Multiplying both sides by the closed formdr, and observing thatdr ·ω = volR∗M
we get

dγ = σ · volR∗M

whereγ = β · dr. Writing this equation in local coordinates we arrive at the
following:

4.4 Lemma. If
∫
S∗M

σd vol = 0, thenσ, viewed as a function onR∗M, is a sum
of functions each of which is supported in a coordinate chart and is of the form

∂a

∂xj
or

∂b

∂ξj
.

The functionsa andb are quotients of functions which are polynomial in each
fiber ofR∗M by powers ofr.

Proof of Theorem 4.3.Let T be an order−n operator. It suffices to prove that if
the integral of the symbol ofT over S∗M is zero then the residue trace ofT is
zero. If the integral overS∗M of the symbol ofT is zero then the symbol is a sum
of derivatives of the type∂a

∂xj
or ∂b

∂ξj
, as in Lemma 4.4. If we construct operatorsA

andB with symbolsa or b then we find that the commutators[A, ∂
∂xj

] and[B, xj]

have symbols∂a
∂xj

or ∂b
∂ξj

, respectively. Conclusion: the operatorT is a sum of
commutators, modulo an operator of order less than−n. Since the residue trace
vanishes on commutators, and also on operators of order less than−n, it follows
that the residue trace ofT is zero, as required.

4.5 Remark. It is not difficult to see that the constantc depends only on dim(M)
(note thatc is determined by the residue trace of an operator supported in a coordi-
nate neighbourhood; given two different connected manifolds, apply Theorem 4.3
to a third manifold which contains coordinate neighbourhoods isometric to neigh-
bourhoods in the first two manifolds). By checking an explicit example, like the
flat torus, one can see thatcn = (2π)−n.
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4.2 The Lower Residues

LetD be an orderq differential operator. The problem of computing the residues
of Trace(D∆− z

2 ) (or similarly ofΓ( z
2
) Trace(D∆− z

2 )) at the “lower” polesn+q−
1, n+ q− 2, . . . can be reduced to the problem of computing the highest residue
by the scheme used in our proof of meromorphic continuation.

Before starting the computation, it is useful to note that our basic meromorphic
continuation theorem can be strengthened in the following way. An elaboration
of the Sobolev theory that we developed in Section 1 and Appendix B shows that
everyp, every operatorT : C∞(M) → C∞(M) of sufficiently large negative order
may be represented by aCp integral kernel function defined onM×M:

Tφ(x) =

∫
M

k(x, y)φ(y)dy.

It follows that if z is restricted to a suitable left half-plane inC, then any integral
Iz of the type considered in Definition 2.5 may be represented by a kernel function
kz : M×M → C which isp-times continuously differentiable. Consider now the
basic identity from the proof of Theorem 2.2: ifIz is an integral of typek then

N∑
i=1

[Iz, AiBi] +

N∑
i=1

[Bi, AiIz] = (k− 2z)Iz + Rz,

whereRz is a finite sum of integrals of lower type. As we know, the identity is
equivalent to the identity

(4.3)
N∑
i=1

[Iz, Ai]Bi + nIz = (k+ n− 2z)Iz + Rz.

Now, let us represent the integralIz by an integral kernelkz(x, y), and compute the
left hand side of (4.3). The vector fieldBi is a skew-symmetric operator, modulo
operators of lower order: this means that there is a smooth functionCi : M → R
so that ∫

M

ψ · Biφd vol = −

∫
M

Biψ · φd vol +
∫
M

Ciψ · φd vol .
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We can therefore write the left-hand side of (4.3) as an integral operator

f 7→ ∑ ∫
kz(x, y)

(
Ai(y) −Ai(x)

)
Biφ(y)dy+ n

∫
kz(x, y)φ(y)dy

= −
∑ ∫

Bi

(
kz(x, y)

(
Ai(y) −Ai(x)

))
φ(y)dy

+
∑ ∫

Ci(y)kz(x, y)
(
Ai(y) −Ai(x)

)
φ(y)dy+ n

∫
kz(x, y)φ(y)dy

(the vector fieldBi acts on they-variable). Finally,

Bi

(
kz(x, y)

(
Ai(y)−Ai(x)

))
= Bi

(
kz(x, y)

)(
Ai(y)−Ai(x)

)
+kz(x, y)Bi

(
Ai(y)

)
.

ButBi
(
Ai(y)

)
is the scalar function[Bi, Ai]. Settingx = y in the above formulas

and using the fact that
∑

[Bi, Ai] = n we now see that the left hand side of (4.3)
is represented by an integral kernel whichvanishes identicallyalong the diagonal
x = y in M ×M. The proof of Theorem 2.2 now provides the following well-
known meromorphic continuation of trace-densities for complex powers of∆:

4.6 Theorem.Let∆ be a positive, elliptic operator on a smooth, closed manifold
M, and letX be a differential operator onM. For Re(z) � 0 let Kz : M → C
be the restriction to the diagonal inM×M of the integral kernelkz(x, y) for the

operatorX∆
− z

2
1 . For everyh ∈ N the mapz 7→ Kz extends to a meromorphic

function fromC into theh-times continuously differentiable functions onM.

We see that the residues we are trying to compute are the integrals overM of
residue densitiesResz=m Trace(D∆− z

2 )(x) = Resz=m Kz(x). The leading residue
density is given by the formula

(4.4) Resz=n+q Trace(D∆− z
2 )(x) =

1

(2π)n

∫
S∗xM

σ
D∆−

q+n
2

(ξ)dξ.

which integrates the symbol ofD∆− q+n
2 over the contangent sphere atx.

To compute the lower residue densities nearx let us chooseAi andBi to be of
the formxi and ∂

∂xi
nearx. SettingIz = D∆−z and using the formula

(q+ n− 2z)Iz =

n∑
i=1

[Iz, xi
∂

∂xi
] +

n∑
i=1

[
∂

∂xi
, xiIz] + Rz,

we see as before that the trace densities of(q + n)Iz andRz are equal (since not
only are the traces of the commutators zero, but their trace densities are identically
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zero). It follows that the residue densities of(q+n−2z)Iz are equal to the residue
densities ofRz = (q−2z)Iz−

∑n
i=1[D, xi]

∂
∂xi

. In particular, looking at the residue
just one below the leading residue we get

Resz= n+q−1
2

Trace(Iz)(x) = Resz= n+q−1
2

Trace(Rz)(x).

But on the right hand side we are computing the leading residue ofRz, so that we
can invoke the explicit formula (4.4). As a result, sinceRz is explicitly computable
in terms ofIz, we obtain an explicit (but complicated) formula for the residue
density ofIz atq+ n− 1.

Repeating this argument we get explicit formulas (which get more and more
complicated) for all the residue densities of Trace(Iz).
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5 The Index Problem

In this section we shall introduce the problem in Fredholm index theory whose
solution will occupy the remained of the notes. This will require us to introduce
cyclic cohomology. Since there are several good introductions to the latter subject
(for example [22] or [4]) we shall do so quite rapidly.

5.1 Index of Elliptic Operators

From now on we are going to work in theZ/2-graded situation which is standard
in index theory. We shall assume that∆, a linear partial differential operator
on closed manifoldM, is the square of a self-adjoint, first order, elliptic partial
differential operatorD. We shall assume thatD acts not on scalar functions but on
the sections of some smooth vector bundleS overM. We shall assume moreover
that S is written as a direct sumS = S+ ⊕ S− (in other words thatS is Z/2-
graded), and that, with respect to this direct sum decomposition, the operatorD

has the form

D =

(
0 D−

D+ 0

)
,

so that

∆ = D2 =

(
D−D+ 0

0 D+D−

)
.

Denote byε thegrading operator

ε =

(
1 0

0 −1

)
.

As is customary in theZ/2-graded world we shall call operators which commute
with ε evenand those which anticommute withε odd. Even operators are diagonal
in the2× 2matrix notation and odd operators are off-diagonal.

5.1 Definition. An unbounded Hilbert space operatorT : H+ → H− is Fredholm
if it is Fredholm as a linear transformation from domT intoH−. In other words,T
is Fredholm if and only if its kernel is a finite dimensional subspace of domT and
its range has finite codimension inH−. In this case theindexof T is the integer

Index(T) = dim ker(T) − dim coker(T).

5.2 Lemma. The unbounded operatorD+ : L2(S+) → L2(S−) is Fredholm.
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Proof. We want to show that, when viewed as a bounded operator from its domain
intoH−,D+ is a Fredholm operator in the usual sense, meaning that its kernel and
cokernel are finite-dimensional. By the basic elliptic esitmate, the domain ofD+

is the Sobolev spaceW1(S+) of W1-sections ofS+. Denote byQ : L2(S−) →
L2(S+) compression of the operator(D+ i)−1. Thus in matrix form we have

(D+ i)−1 =

(
? Q

? ?

)
: L2(S+)⊕ L2(S−) → L2(S+)⊕ L2(S−).

By the basic elliptic estimate again, the range ofQ is contained withinW1(S+).
If we regardQ as an operator fromL2(S−) to W1(S+) then it follows from the
Rellich Lemma thatQ is an inverse ofD+, modulo compact operators. As is well
known, an operator which is invertible modulo the compact operators is Fredholm
(this is Atkinson’s Theorem), so the lemma is proved.

5.3 Remark. By elliptic regularity theory, the kernel ofD+ consists of smooth
functions. Moreover the cokernel identifies with the kernel ofD−, which again
consists of smooth functions.

We can therefore pose the very famous problem of computing the Fredholm
index ofD+. The full solution to the problem is provided by the Atiyah-Singer
index theorem [2], and is known to involve in a very subtle way information not
only about the operatorD but also about the global topology of the underlying
manifoldM. But Atiyah and Bott [1] pointed out a very simple formula for the
index involving residues of zeta functions, as follows. Fix an even, positive, order
−∞ operatorK such that the sum

∆1 = ∆+ K

is invertible.

5.4 Proposition. Index(D+) = Resz=0
(
Γ(z) Trace(ε∆−z

1 )
)
.

Proof. It is not difficult to see that the residue is independent of the choice ofK,
and therefore we may takeK to be the orthogonal projection on to the kernel of
∆. We shall work with this choice below.

Let {φj} be an orthonormal eigenbasis for∆ acting the orthogonal complement
of ker(∆) in L2(S+). Define

ψj =
1√
λj
Dφj ∈ L2(S−).
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It is easy to check that∆ψj = λjψj and that the collection of allψj constitutes
an orthonormal basis for∆ acting on the orthogonal complement of ker(∆) in
L2(S−). Computing the trace in these orthonormal basis we see that

Trace(ε∆−z
1 ) = dim ker(∆|L2(S+)) − dim ker(∆|L2(S−)) = Index(D+).

The formula
Index(D+) = Resz=0

(
Γ(z) Trace(ε∆−z

1 )
)

follows immediately from this.

The significance of this result is that, as we saw in Subsection 2.3 and Sec-
tion 4, the residue ofΓ(z) Trace(ε∆−z

1 ) can in principle be determined by a com-
pletely mechanical computation, involving ultimately integrals over the cosphere
bundle ofM of various polynomial combinations of the symbol of∆ and its par-
tial derivatives. This is quite remarkable sincea priori the index problem is very
global in nature, and is not at all obviously reducible to a definite sequence of
computations in coordinate patches.

From this point onwards a viable approach to the index theorem is to de-
velop means to organize the complicated computations involved in determining
the residue atz = 0 of Γ(z) Trace(ε∆−z

1 ), so as to put the result of the compu-
tations into recognizable form. See for example [13]. But rather than carry that
out, we shall spend the remaining parts of these notes developing a considerable
elaboration of Proposition 5.4, in which the numerical index of an elliptic operator
D is replaced by a much more detailed invariant in cyclic cohomology.

5.2 Square Root of the Laplacian

Let (D, ∆) be a general differential pair, in the sense of Definition 3.1. In order
to develop index theory in this context we shall now assume that∆ is the square
of a self-adjoint operatorD. We shall assume that the underlying Hilbert spaceH

is Z/2-graded; that the operatorD is odd; and that the algebraD is stable under
multiplication by the grading operatorε.

We shall also assume that an algebraA ⊆ D(∆) is specified, consisting of
operators of differential order zero (the operators inA are therefore bounded op-
erators onH) which are even with respect to the grading. We shall assign the order
r
2

toD (recall thatr is the order of∆), and we shall assume that ifa ∈ A, then
order

(
[D,a]

)
≤ order(D) − 1.

In the standard example of a smooth manifold,A will be the ring of smooth,
compactly supported functions onM.
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5.5 Example. In the case of a differential pair which is generated from a regular
spectral triple(A,H,D), we shall assume that the spectral triple iseven, which
means thatH is Z/2-graded,A is comprised of even operators, andD is odd.
We enlarge the algebraD of Definition 3.23 by guaranteeing it to be closed under
multiplication by the grading operatorε. Then we can letD itself be our square
root of∆, and takeA to be the algebra of order zero operators.

5.3 Cyclic Cohomology Theory

In this subsection we shall establish some notation and terminology related to
cyclic cohomology theory. We shall follow Connes’ approach to cyclic cohomol-
ogy, which is described for example in his book [4, Chapter 3], to which we refer
the reader for more details.

LetA be an associative algebra overC and for the moment let us assume that
A has a multiplicative unit. IfV is a complex vector space andp is a non-negative
integer, then let us denote byCp(V) space of(p + 1)-multi-linear maps fromA
intoV . Usually one is interested in the case whereV = C, but for our purposes it
is useful to consider other cases too.

We are going to define the periodic cyclic cohomology ofA with coefficients
in V , and to do so we introduce the operators

b : Cp(V) → Cp+1(V) and B : Cp+1(V) → Cp(V),

which are defined by the formulas

(5.1) bφ(a0, . . . , ap+1) =

p∑
j=0

(−1)jφ(a0, . . . , ajaj+1, . . . , ap+1)

+ (−1)p+1φ(ap+1a0, . . . , ap)

and

(5.2) Bφ(a0, . . . , ap) =

p∑
j=0

(−1)pjφ(1, aj, aj+1, . . . , aj−1)

+

p∑
j=0

(−1)p(j−1)φ(aj, aj+1, . . . , aj−1, 1).

5.6 Lemma. b2 = 0, B2 = 0 andbB+ Bb = 0.
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As a result of the lemma, we can assemble from the spacesCp(V) the follow-
ing double complex, which is continued indefinitely to the left and to the top.

...
...

...
...

. . . B // C3(V)

b

OO

B // C2(V)

b

OO

B // C1(V)

b

OO

B // C0(V)

b

OO

. . . B // C2(V)

b

OO

B // C1(V)

b

OO

B // C0(V)

b

OO

. . . B // C1(V)

b

OO

B // C0(V)

b

OO

. . . B // C0(V)

b

OO

5.7 Definition. Theperiodic cyclic cohomology ofA, with coefficients inV is the
cohomology of the totalization of this complex. Thanks to the symmetry inherent
in the complex, all even periodic cyclic cohomology groups are the same, as are all
the odd groups. So we shall use the notationsPHCeven(A,V) andPHCodd(A,V).

A cocycle forPHCeven(A,V) is a sequence

(φ0, φ2, φ4, . . . ),

whereφ2k ∈ C2k(V), φ2k = 0 for all but finitely manyk, and

bφ2k + Bφ2k+2 = 0

for all k ≥ 0. A cocycle forPHCodd(A,V) is a sequence

(φ1, φ3, φ5, . . . ),

whereφ2k+1 ∈ C2k+1(V), φ2k+1 = 0 for all but finitely manyk, and

bφ2k+1 + Bφ2k+3 = 0

for all k ≥ 0 (and in additionBφ1 = 0).
The periodic cyclic cohomology groups ofA can be computed from a variety

of complexes, so we shall refer to cocycles of the above sort as(b, B)-cocycles,
with coefficients inV .
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If we totalize the(b, B)-bicomplex by taking a directproduct of cochain
groups along the diagonals instead of a direct sum, then we obtain a complex with
zero cohomology. We shall refer to cocycles for this complex (consisting in the
even case of sequences(φ0, φ2, φ4, . . . ), all of whose terms may be nonzero) as
improper(b, B)-cocycles. On their own, improper periodic(b, B)-cocycles have
no cohomological significance, but nevertheless the concept will be a convenient
one for us.

If the algebraA has no multiplicative unit then by a(b, B)-cocycle forA we
shall mean a(b, B)-cocycle{φ2k} or {φ2k+1} for the algebraÃ obtained fromA
by adjoining a unit, which gives the value zero when the value1 ∈ C is placed in
any but the first argument of any of the multilinear mapsφj (in the even case one
also requires thatφ0(1) = 0). This vanishing condition defines a subcomplex of
the(b, B)-bicomplex.

5.8 Example. Let M be a smooth, closed manifold and denote byC∞(M) the
algebra of smooth, complex-valued functions onM. For p ≥ 0 denote byΩp

the space ofp-dimensional de Rham currents (dual to the spaceΩp of smooth
p-forms). Each currentc ∈ Ωp determines a cochainφc ∈ Cp(C) for the algebra
C∞(M) by the formula

φc(f
0, . . . , fp) =

∫
c

f0df1 · · ·dfp.

One has that
bφc = 0 and Bφc = p · φd∗c,

whered∗ : Ωp → Ωp−1 is the operator adjoint to the de Rham differential. This
leads one to consider the following bicomplex:

...
...

...
...

. . . 4d∗ // Ω3

0

OO

3d∗ // Ω2

0

OO

2d∗ // Ω1

0

OO

d∗ // Ω0

0

OO

. . . 3d∗ // Ω2

0

OO

2d∗ // Ω1

0

OO

d∗ // Ω0

0

OO

. . . 2d∗ // Ω1

0

OO

d∗ // Ω0

0

OO

. . . d∗ // Ω0

0

OO
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A fundamental result of Connes [3, Theorem 46] asserts that this complex com-
putes periodic cyclic cohomology forA = C∞(M):

5.9 Theorem.The inclusionc 7→ φc of the above double complex into the(b, B)-
bicomplex induces isomorphisms

HCPeven
cont(C

∞(M)) ∼= H0(M)⊕H2(M)⊕ · · ·

and
HCPodd

cont(C
∞(M)) ∼= H1(M)⊕H3(M)⊕ · · ·

HereHCP∗cont(C
∞(M)) denotes the periodic cyclic cohomology ofM, computed

from the bicomplex ofcontinuousmulti-linear functionals onC∞(M).

It follows that an even/odd(b, B)-cocycle forC∞(M) is something very like
a family of closed currents onM of even/odd degrees. This close connection with
de Rham theory makes the(b, B)-description of cyclic cohomology particularly
well suited to index theory problems.

5.10 Definition. A multi-linear functionalφp ∈ Cp(V) is said to becyclic if

φp(a
0, a1, . . . , ap) = (−1)pφp(a

p, a0, . . . , ap−1),

for all a0, . . . , ap in A.

If φp is cyclic then it is clear from the formula (5.2) thatBφp = 0. As a result,
if in additionbφp = 0, then we obtain a(b, B)-cocycle

(0, . . . , 0, φp, 0, . . . )

by placingφp in positionp and0 everywhere else. These are thecyclic cocy-
clesof Connes [3], using which Connes first formulated the definition of cyclic
cohomology.

5.11 Lemma. Every(b, B)-cocycle is cohomologous to a cyclic cocycle of some
degreep.

5.4 Chern Character and Pairings with K-Theory

One of the most important cyclic cocycles is defined as follows. LetA be an
algebra of bounded operators on a Hilbert spaceH and letF be a bounded operator
onH such thatF2 = 1. Assume in addition that the Hilbert spaceH is Z/2-graded,
and thatA consists of even operators, whileF is odd.
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5.12 Theorem.Letn be aneveninteger and assume that for alla0, . . . , an in A
the product[F, a0][F, a1] · · · [F, an] lies in the trace ideal. The formula

(5.3) chFn
(
a0, . . . , an

)
=
Γ(n

2
+ 1)

2 · n!
Trace

(
εF[F, a0][F, a1] . . . [F, an]

)
defines a cyclicn-cocycle whose class in periodic cyclic cohomology is indepen-
dent ofn (as can be seen by insertingε at the front of the formula above for
ψn+1).

This is Connes’(even) cyclic Chern characterof F. The constant in front of
the trace is chosen in such a way that the periodic cyclic cohomology class of the
(b, B)-cocycle determined by chFn is independent ofn. To see that this is so, one
can define

ψn+1(a
0, . . . , an+1) =

Γ(n
2

+ 2)

(n+ 2)!
Trace

(
εa0F[F, a1][F, a2] . . . [F, an+1]

)
.

and then compute thatbψn+1 = − chFn+2 whileBψn+1 = chFn.7

Each even(b, B)-cocycle determines a homomorphism from the algebraicK-
theory groupK0(A) to C, depending only on the periodic cyclic cohomology
class of the cocycle. Ife is an idempotent inA then we can form the element
[e] ∈ K0(A). Under the pairing between cyclic theory andK-theory the class[e]
is mapped by an even(b, B)-cocycleφ = (φ0, φ2, . . . ) to the scalar

(5.4) φ
(
[e]
)

= φ0(e) +

∞∑
k=1

(−1)k
(2k)!

k!
φ2k(e−

1

2
, e, e, . . . , e).

Compare [12]. In the case of the even cyclic Chern character defined in the last
section, the pairing is

(5.5) chF
(
[e]
)

= Index(eFe : eH0 → eH1),

whereH0 andH1 are the degree zero and degree one parts of theZ/2-graded
Hilbert spaceH.

This connection with index theory makes it a very interesting problem to com-
pute the cyclic Chern character in various instances, and it is this problem to which

7This formula actually proves Theorem 5.12 sinceb2 = 0 and the image of the differentialB
is comprised entirely of cyclic multi-linear functionals.
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we want to turn our attention. For example, in the case of an ordinary elliptic op-
erator on a closed manifold, where the cyclic cohomology ofA = C∞(M) identi-
fies with the de Rham homology ofM, the identification of the class of the Chern
character with a specific homology class onM is equivalent to the Atiyah-Singer
Index Theorem.

Our goal will be not so much to compute the Chern character in this (or any
other) specific instance. Instead we aim to show that in general the Chern char-
acter is cohomologous to a cocycle constructed entirely out of residues of zeta
functions. As we saw in Section 4, in at least the classical case this leads to com-
plicated but explicit formulas from which Fredholm indexes may in principle be
computed. The problem of actually organizing and simplifying these formulas
in various cases is both interesting and important, but we shall not consider it in
these notes.

5.5 Zeta Functions

Let us continue to assume as given an differential pair(D, ∆) of generalized dif-
ferential operators, along with a square-root decomposition∆ = D2.

We are now going to define certain zeta-type functions associated with the
algebra. To simplify matters we shall now assume that the operator∆ is invertible.
This assumption will remain in force until Section 8, where we shall consider the
general case.

5.13 Definition. The differential pair(D, ∆) hasfinite analytic dimensionif there
is somed ≥ 0 with the property that ifX ∈ D has orderq or less, then for every
z ∈ C with real part greater thanq+d

r
the operatorX∆−z extends by continuity to

a trace-class operator onH (herer is the order of∆, as described in Section 3.1).

Assume that(D, ∆) has finite analytic dimensiond. If X ∈ D(∆) and if
order(X) ≤ q then the complex function Trace(X∆−z) is holomorphic in the right
half-plane Re(z) > q+d

r
.

5.14 Definition. An differential pair(D, ∆) which has finite analytic dimension
has themeromorphic continuation propertyif for every X ∈ D(∆) the analytic
function Trace(X∆−z), defined initially on a half-plane inC, extends to a mero-
morphic function on the full complex plane.

Actually, for what follows it would be sufficient to assume that Trace(X∆−s)
has an analytic continuation toC with only isolated singularities, which could
perhaps be essential singularities.
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5.15 Definition. Let (D, ∆) be a differential pair which has finite analytic dimen-
sion. Define, for Re(z) > 0 andX0, . . . , Xp ∈ D,8 the quantity

(5.6) 〈X0, X1, . . . , Xp〉z =

(−1)p
Γ(z)

2πi
Trace

(∫
λ−zεX0(λ− ∆)−1X1(λ− ∆)−1 · · ·Xp(λ− ∆)−1 dλ

)
(the factors in the integral alternate between theXj and copies of(λ − ∆)−1).
The contour integral is evaluated down a vertical line inC which separates0 and
Spectrum(∆).

5.16 Remark. If order(X0)+ · · ·+order(Xp) ≤ q and if the integrand in equation
(5.6) is viewed as a bounded operator fromHs+q toHs, then the integral converges
absolutely in the operator norm whenever Re(z)+p > 0. In particular, if Re(z) >
0 then the integral converges to a well defined operator onH∞.

Of course, apart from the insertion of the grading operatorε, this is precisely
the sort of integral we encountered in our discussion of meromorphic continuation
in Section 2. In our former notation,

〈X0, X1, . . . , Xp〉z = (−1)pΓ(z)Iz(εX
0, X1, . . . , Xp).

Using the arguments we developed in Section 2 we obtain the following results:

5.17 Proposition. Let (D, ∆) be a differential pair and letX0, . . . , Xp ∈ D. As-
sume that

order(X0) + · · ·+ order(Xp) ≤ q.
If (D, ∆) has finite analytic dimensiond, and ifRe(z) + p > 1

r
(q + d), then the

integral in Equation(5.6) extends by continuity to a trace-class operator onH,
and the quantity〈X0, . . . , Xp〉z defined by Equation(5.6) is a holomorphic func-
tion ofz in this half-plane. If in addition the algebra(D, ∆) has the meromorphic
continuation property then the quantity〈X0, . . . , Xp〉z extends to a meromorphic
function onC.

5.18 Definition. Let k = (k1, . . . , kp) be a multi-index with non-negative integer
entries. Define a constantc(k) by the formula

c(k) =
(k1 + · · ·+ kp + p)!

k1! · · ·kp!(k1 + 1) · · · (k1 + · · ·+ kp + p)
.

8Occasionally we shall take one or more of theXj to lie within a larger algebra, for example
the algebra generated byD, I andD.
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5.19 Proposition.Let (D, ∆) be a differential pair with the meromorphic contin-
uation property and letX0, . . . , Xp ∈ D. There is an asymptotic expansion

〈X0, . . . , Xp〉z ≈
∑
k≥0

(−1)|k|Γ(z+ p+ |k|)
1

(|k| + p)!
c(k)

× Trace

(
εX0X1

(k1)
· · ·Xp

(kp)
∆−z−|k|−p

)
,

where the symbol≈ means that, given any right half-plane inC, any sufficiently
large finite partial sum of the right hand side agrees with the left hand side modulo
a function ofz which is holomorphic in that half-plane.

5.6 Formulation of the Local Index Theorem

The following result is the local index formula of Connes and Moscovici:

5.20 Theorem.Let (D, ∆) be a differential pair with the meromorphic continua-
tion property and letD be a square root of∆. The formula

ψp(a
0, . . . , ap) =

∑
k≥0

(−1)|k|c(k)

(|k| + p)!

× Ress=0

(
Γ(s+

p

2
+ |k|) Tr

(
εa0[D,a1](k1) · · · [D,ap](kp)∆− p

2
−|k|−s

))
defines an periodic(b, B)-cocycle{ψ2k} for A which is cohomologous to the
cyclic Chern character of the operatorF = D|D|−1.

5.21 Remark. If |k| + p > d then the(p, k)-contribution to the above sum of
residues is actually zero. Hence for everyp the sum is in fact finite (and the sum
is 0 whenp > d).

5.22 Remark. If all the poles of the zeta functions Trace(X∆−z) are simple then
the above cocycle can be rewritten as

ψp(a
0, . . . , ap)

=
∑
k≥0

Cp,k Ress=0 Tr
(
εa0[D,a1](k1) · · · [D,ap](kp)∆− p

2
−|k|−s

)
,



64

where

Cpk =
(−1)k

k!

Γ(|k| + p
2
)

(k1 + 1)(k1 + k2 + 2) · · · (k1 + · · ·+ kp + p)
.

(Note: the constantC00 = Γ(0) is not well defined in our formula since0 is a pole
of theΓ -function. To cope with this problem we must treat thep = 0, k = 0 term
separately and replaceC00 Ress=0

(
Tr(εa0∆−s)

)
with Ress=0

(
Γ(s) Tr(εa0∆−s)

)
.)
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6 The Residue Cocycle

6.1 Improper Cocycle

In this section we shall assume as given a differential pair(D, ∆) with the mero-
morphic continuation property, a square rootD of ∆, and an algebraA ⊆ D, as
in the previous section.

We are going to define a periodic cyclic cocycleΨ = (Ψ0, Ψ2, . . . ) for the
algebraA. The cocycle will beimproper—all theΨp will be nonzero. Moreover
the cocycle will assume values in the field of meromorphic functions onC. But in
the next section we shall convert it into a proper cocycle with values inC itself.

We are going to assembleΨ from the quantities〈X0, . . . , Xp〉z defined in Sub-
section 5.5.9 We begin by establishing some ‘functional equations’ for the quan-
tities 〈· · · 〉z. In order to keep the formulas reasonably compact, ifX ∈ D then
we shall write(−1)X to denote either+1 or −1, according asX is an even or odd
operator on theZ/2-graded Hilbert spaceH.

6.1 Lemma.The meromorphic functions〈X0, . . . , Xp〉z satisfy the following func-
tional equations:

〈X0, . . . , Xp−1, Xp〉z+1 =

p∑
j=0

〈X0, . . . , Xj−1, 1, Xj, . . . , Xp〉z(6.2)

〈X0, . . . , Xp−1, Xp〉z = (−1)X
p〈Xp, X0, . . . , Xp−1〉z(6.3)

Proof. The first identity follows from the fact that

d

dλ

(
λ−zX0(λ− ∆)−1 · · ·Xp(λ− ∆)−1

)
= (−z)λ−z−1X0(λ− ∆)−1 · · ·Xp(λ− ∆)−1

−

p∑
j=0

λ−zX0(λ− ∆)−1 · · ·Xj(λ− ∆)−2Xj+1 · · ·Xp(λ− ∆)−1

9In doing so we shall follow quite closely the construction of the so-called JLO cocycle in
entire cyclic cohomology (see [21] and [12]), which is assembled from the quantities

(6.1) 〈X0, . . . , Xp〉JLO = Trace

(∫
Σp

εX0e−t0∆ . . . Xpe−tp∆ dt

)
(the integral is over the standardp-simplex). The computations which follow in this section are
more or less direct copies of computations already carried out for the JLO cocycle in [21] and
[12].
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and the fact that the integral of the derivative is zero. As for the second identity,
if p � 0 then the integrand in Equation (5.6) is a trace-class operator, and Equa-
tion (6.3) is an immediate consequence of the trace-property. In general we can
repeatedly apply Equation (6.2) to reduce to the case wherep� 0.

6.2 Lemma.

(6.4) 〈X0, . . . , [D2, Xj], . . . , Xp〉z =

〈X0, . . . , Xj−1Xj, . . . Xp〉z − 〈X0, . . . , XjXj+1, . . . Xp〉z

Proof. This follows from the identity

Xj−1(λ− ∆)−1[D2, Xj](λ− ∆)−1Xj+1

= Xj−1(λ− ∆)−1XjXj+1 − Xj−1Xj(λ− ∆)−1Xj+1.

6.3 Lemma.

(6.5)
p∑
j=0

(−1)X
0···Xj−1〈X0, . . . , [D,Xj], . . . , Xp〉z = 0

Proof. The identity is equivalent to the formula

Trace

(
ε
[
D,

∫
λ−zX0(λ− ∆)−1 · · ·Xp(λ− ∆)−1 dλ

])
= 0,

which holds since the supertrace of any (graded) commutator is zero.

With these preliminaries out of the way we can obtain very quickly our im-
proper(b, B)-cocycle.

6.4 Definition. If p is a non-negative and even integer then define a(p + 1)-
multi-linear functional onA with values in the meromorphic functions onC by
the formula

Ψp(a
0, . . . , ap) = 〈a0, [D,a1], . . . , [D,ap]〉s− p

2

6.5 Theorem. The even(b, B)-cochainΨ = (Ψ0, Ψ2, Ψ4 · · · ) is an improper
(b, B)-cocycle with coefficients in the space of meromorphic functions onC.
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Proof. First of all, it follows from the definition ofB and Lemma 6.1 that

BΨp+2(a
0, . . . , ap+1) =

p+1∑
j=0

(−1)j〈1, [D,aj], . . . , [D,aj−1]〉s− p+2
2

=

p+1∑
j=0

〈[D,a0], . . . , [D,aj−1], 1, [D,aj], . . . , [D,ap+1]〉s− p+2
2

= 〈[D,a0], [D,a1], . . . , [D,ap+1]〉s− p
2
.

Next, it follows from the definition ofb and the Leibniz rule[D,ajaj+1] =
aj[D,aj+1] + [D,aj]aj+1 that

bΨp(a
0, . . . , ap+1) =

(
〈a0a1, [D,a2], . . . , [D,ap+1]〉s− p

2

− 〈a0, a1[D,a2], . . . , [D,ap+1]〉s− p
2

)
−
(
〈a0, [D,a1]a2, [D,a3], . . . , [D,ap+1]〉s− p

2

− 〈a0, [D,a1], a2[D,a3], . . . , [D,ap+1]〉s− p
2

)
+ · · ·
+
(
〈a0, [D,a1], . . . , [D,ap]ap+1〉s− p

2

− 〈ap+1a0, [D,a1], . . . , [D,ap+1]〉s− p
2

)
.

Applying Lemma 6.2 we get

bΨp(a
0, . . . , ap+1) =

p+1∑
j=1

(−1)j−1〈a0, [D,a1], . . . , [D2, aj], . . . , [D,ap+1]〉s− p
2

SettingX0 = a0 andXj = [D,aj] for j ≥ 1, and applying Lemma 6.3 we get

BΨp+2(a
0, . . . , ap+1) + bΨp(a

0, . . . , ap+1)

=

p+1∑
j=0

(−1)X
0···Xj−1〈X0, . . . , [D,Xj], . . . , Xp+1〉s− p

2
= 0.

6.2 Residue Cocycle

By taking residues ats = 0 we map the space of meromorphic functions onC
to the scalar fieldC, and we obtain from any(b, B)-cocycle with coefficients in
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the space of meromorphic functions a(b, B)-cocycle with coefficients inC. This
operation transforms the improper cocycleΨ that we constructed in the last section
into apropercocycle Ress=0Ψ. Indeed, it follows from Proposition 5.17 that ifp
is greater than the analytic dimensiond of (D, ∆) then the function

Ψp(a
0, . . . , ap)s = 〈a0, [D,a1], . . . , [D,ap]〉s− p

2

is holomorphic ats = 0.
The following proposition identifies the proper(b, B)-cocycle Ress=0Ψ with

the residue cocycle studied by Connes and Moscovici. The proof follows imme-
diately from our computations in Section 2, as summarized in Subsection 5.5.

6.6 Theorem.For all p ≥ 0 and alla0, . . . , ap ∈ A,

Ress=0Ψp(a
0, . . . , ap) =

∑
k≥0

(−1)|k|c(k)

(|k| + p)!

× Ress=0

(
Γ(s+

p

2
+ |k|) Tr

(
εa0[D,a1](k1) · · · [D,ap](kp)∆− p

2
−|k|−s

))
,

where

c(k) =
(k1 + · · ·+ kp + p)!

k1! · · ·kp!(k1 + 1) · · · (k1 + · · ·+ kp + p)
.

6.3 Complex Powers in a Differential Algebra

In this subsection we shall try to sketch out a more conceptual view of the im-
proper cocycle which was constructed in Section 6.1. This involves Quillen’s
cochain picture of cyclic cohomology [24], and in fact it was Quillen’s account of
the JLO cocycle from this perspective which first led to the formula for the quan-
tity 〈X0, . . . , Xp〉z given in Definition 5.15. Since our purpose is only to view the
cocycleΨ in a more conceptual way we shall not carefully keep track of analytic
details.

As we did when we looked at cyclic cohomology in Subsection 5.3, let us fix
an algebraA. But let us now also fix a second algebraL. Forn ≥ 0 denote by
Homn(A, L) the vector space ofn-linear maps fromA to L. By a 0-linear map
from A to L we shall mean a linear map fromC to L, or in other words just an
element ofL. Let Hom∗∗(A, L) be the direct product

Hom∗∗(A, L) =

∞∏
n=0

Homn(A, L).
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Thus an elementφ of Hom∗∗(A, L) is a sequence of multi-linear maps fromA to
L. We shall denote byφ(a1, . . . , an) the value of then-th component ofφ on the
n-tuple(a1, . . . , an).

The vector space Hom∗∗(A, L) is Z/2-graded in the following way: an ele-
mentφ is even (resp. odd) ifφ(a1, . . . , an) = 0 for all oddn (resp. for all even
n). We shall denote by degM(φ) ∈ {0, 1} the grading-degree ofφ. (The letter
‘M’ stands for ‘multi-linear’; a second grading-degree will be introduced below.)

6.7 Lemma. If φ,ψ ∈ Hom∗∗(A, L), then define

φ∨ψ(a1, . . . , an) =
∑
p+q=n

φ(a1, . . . , ap)ψ(ap+1, . . . , an)

and

dMφ(a1, . . . , an+1) =

n∑
i=1

(−1)i+1φ(a1, . . . , aiai+1, . . . , an+1).

The vector spaceHom∗∗(A, L), so equipped with a multiplication and differential,
is aZ/2-graded differential algebra.

Let us now suppose that the algebraL is Z/2-graded. Ifφ ∈ Hom∗∗(A, L)
then let us write degL(φ) = 0 if φ(a1, . . . , an) belongs to the degree-zero part
of L for everyn and everyn-tuple(a1, . . . , an). Similarly, if φ ∈ Hom∗∗(A, L)
then let us write degL(φ) = 1 if φ(a1, . . . , an) belongs to the degree-one part of
L for everyn and everyn-tuple(a1, . . . , an). This is a newZ/2-grading on the
vector space Hom∗∗(A, L). The formula

deg(φ) = degM(φ) + degL(φ)

defines a thirdZ/2-grading—the one we are really interested in. Using this last
Z/2-grading, we have the following result:

6.8 Lemma. If φ,ψ ∈ Hom∗∗(A, L), then define

φ �ψ = (−1)degM(φ) degL(ψ)φ∨ψ

and
dφ = (−1)degL(φ)d ′φ

These new operations once again provideHom∗∗(A, L) with the structure of a
Z/2-graded differential algebra (for the totalZ/2-gradingdeg(φ) = degM(φ)+
degL(φ)).
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We shall now specialize to the situation in whichA and∆ = D2 are as in
previous sections, andL is the algebra of all operators on theZ/2-graded vector
spaceH∞ ⊆ H.

Denote byρ the inclusion ofA intoL. This is of course a1-linear map fromA
to L, and we can therefore think ofρ as an element of Hom∗∗(A, L) (all of whose
n-linear components are zero, except forn = 1). In addition, let us think ofD
as a0-linear map fromA to L, and therefore as an element of Hom∗∗(A, L) too.
CombiningD andρ let us define the ‘superconnection form’

θ = D− ρ ∈ Hom∗∗(A, L)

This has oddZ/2-grading degree (that is, deg(θ) = 1). LetK be its ‘curvature’:

K = dθ+ θ2,

which has evenZ/2-grading degree. Using the formulas in Lemma 6.8 the ele-
mentKmay be calculated, as follows:

6.9 Lemma. One has

K = ∆− E ∈ Hom∗∗(A, L),

whereE : A → L is the1-linear map defined by the formula

E(a) = [D, ρ(a)].

In all of the above we are following Quillen, who then proceeds to make the
following definition, which is motivated by the well-known Banach algebra for-
mula

eb−a =

∞∑
n=0

∫
Σn

e−t0abe−t1a · · ·be−tna dt.

6.10 Definition. Denote bye−K ∈ Hom∗∗(A, L) the element

e−K =

∞∑
n=0

∫
Σn

e−t0∆Ee−t1∆ . . . Ee−tn∆ dt.

Then-th term in the sum is ann-linear map fromA toL, and the series should
be regarded as defining an element of Hom∗∗(A, L) whosen-linear component is
this term. As Quillen observes, in [24, Section 8] the exponentiale−K defined in
this way has the following two crucial properties:
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6.11 Lemma (Bianchi Identity). d(e−K) + [e−K, θ] = 0.

6.12 Lemma (Differential Equation). Suppose thatδ is a derivation ofHom∗∗(A, L)
into a bimodule. Then

δ(e−K) = −δ(K)e−K,

modulo (limits of) commutators.

Both lemmas follow from the ‘Duhamel formula’

δ(e−K) =

∫ 1
0

e−tKδ(K)e−(1−t)K dt,

which is familiar from semigroup theory and which may be verified for the notion
of exponential now being considered. (Once more, we remind the reader that we
are disregarding analytic details.)

Suppose we now introduce the ‘supertrace’ Traceε(X) = Trace(εX) (which
is of course defined only on a subalgebra ofL). Quillen reinterprets the Bianchi
Identity and the Differential Equation above as coboundary computations in a
complex which computes periodic cyclic cohomology (using improper cocycles,
in our terminology here). As a result he is able to recover the following basic fact
about the JLO cocycle — namely that it really is a cocycle:

6.13 Theorem (Quillen).The formula

Φ2n(a
0, . . . , a2n) =∫

Σn

Trace
(
εa0e−t0∆[D,a1]e−t1∆[D,a2] . . . [D,an]e−tn∆

)
dt

defines a(b, B)-cocycle.

With this in mind, let us consider other functions of the curvature operatorK,
beginning with resolvents.

6.14 Lemma. If λ /∈ Spectrum(∆) then the element(λ − K) ∈ Hom∗∗(A, L) is
invertible.

Proof. Since(λ− K) = (λ− ∆) + E we can write

(λ− K)−1 = (λ− ∆)−1 − (λ− ∆)−1E(λ− ∆)−1

+ (λ− ∆)−1E(λ− ∆)−1E(λ− ∆)−1 − · · ·

This is a series whosenth term is ann-linear map fromA to L, and so the sum
has an obvious meaning in Hom∗∗(A, L). One can then check that the sum defines
(λ− K)−1, as required.
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6.15 Definition. For anyz ∈ C with positive real part defineK−z ∈ Hom∗∗(A, L)
by the formula

K−z =
1

2πi

∫
λ−z(λ− K)−1 dλ,

in which the integral is a contour integral along a downward vertical line inC
separating0 from Spectrum(∆).

The assumption that Re(z) > 0 guarantees convergence of the integral (in
each component within Hom∗∗(A, L) the integral converges in the pointwise norm
topology ofn-linear maps fromA to the algebra of bounded operators onH; the
limit is also an operator fromH∞ toH∞, as required). The complex powersK−z

so defined satisfy the following key identities:

6.16 Lemma (Bianchi Identity). d(K−z) + [K−z, θ] = 0.

6.17 Lemma (Differential Equation). If δ is a derivation ofHom∗∗(A, L) into a
bimodule, then

δ(K−z) = −zδ(K)K−z−1,

modulo (limits of) commutators.

These follow from the derivation formula

δ(K−z) =
1

2πi

∫
λ−z(λ− K)−1δ(K)(λ− K)−1 dλ.

In order to simplify the Differential Equation it is convenient to introduce the
Gamma function, using which we can write

δ
(
Γ(z)K−z

)
= −δ(K)Γ(z+ 1)K−(z+1)

(modulo limits of commutators, as before). Except for the appearance ofz + 1

in place ofz in the right hand side of the equation, this is exactly the same as
the differential equation fore−K. Meanwhile even after introducing the Gamma
function we still have available the Bianchi identity:

d
(
Γ(z)K−z

)
+
[
Γ(z)K−z, θ

]
= 0.

The degreen component ofΓ(z)K−z is the multi-linear function

(a1, . . . , an) 7→ (−1)n

2πi
Γ(z)

∫
λ−z(λ− ∆)−1[D,a1] . . . [D,an](λ− ∆)−1 dλ,

Quillen’s approach to JLO therefore suggests (and in fact upon closer inspection
proves) the following result:
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6.18 Theorem.If we define

Ψsp(a
0, . . . , ap) =

(−1)pΓ(s− p
2
)

2πi
Trace

(∫
λ

p
2

−sεa0(λ− ∆)−1[D,a1] . . .

[D,ap](λ− ∆)−1 dλ

)
,

thenbΨsp + BΨsp+2 = 0.

This is of course precisely the conclusion that we reached in Section 6.1.
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7 Comparison with the Chern Character

Our goal in this section is to identify the cohomology class of the residue cocycle
Ress=0Ψwith the cohomology class of the Chern character cocycle chF

n associated
to the operatorF = D|D|−1 (see Section 5.3). Heren is any even integer greater
than or equal to the analytic dimensiond. It follows from the definition of analytic
dimension and some simple manipulations that

[F, a0] · · · [F, an] ∈ L1(H),

for suchn, so that the Chern character cocycle is well-defined.
We shall reach the goal in two steps. First we shall identify the cohomology

class of Ress=0Ψwith the class of a certain specific cyclic cocycle, which involves
no residues. Secondly we shall show that this cyclic cocycle is cohomologous to
the Chern character chFn.

The following result summarizes step one.

7.1 Theorem.Fix an even integern strictly greater thand− 1. The multi-linear
functional

(a0, . . . , an) 7→
1

2

n∑
j=0

(−1)j+1〈[D,a0], . . . , [D,aj], D, [D,aj+1], . . . , [D,an]〉− n
2
.

is a cyclicn-cocycle which, when considered as a(b, B)-cocycle, is cohomolo-
gous to the residue cocycleRess=0Ψ.

7.2 Remark. It follows from Proposition 5.17 that the quantities

〈[D,a0], . . . , [D,aj], D, [D,aj+1], . . . , [D,an]〉z
which appear in the theorem are holomorphic in the half-plane Re(z) > −n

2
+

1
r
(d − (n + 1)). Therefore it makes sense to evaluate them atz = −n

2
, as we

have done. Appearances might suggest otherwise, because the termΓ(z) which
appears in the definition of〈. . . 〉z has poles at the non-positive integers (and in
particular atz = −n

2
if n is even). However these poles are canceled by zeroes of

the contour integral in the given half-plane.

Theorem 7.1 and its proof have a simple conceptual explanation, which we
shall give in a little while (after Lemma 7.7). However a certain amount of el-
ementary, if laborious, computation is also involved in the proof, and we shall
get to work on this first. For this purpose it is useful to introduce the following
notation.
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7.3 Definition. If X0, . . . , Xp are operators in the algebra generated byD, then
define

〈〈X0, . . . , Xp〉〉z =

p∑
k=0

(−1)X
0···Xk〈X0, . . . , Xk, D, Xk+1, . . . , Xp〉z,

which is a meromorphic function ofz ∈ C.

The new notation allows us to write a compact formula for the cyclic cocycle
appearing in Theorem 7.1:

(a0, . . . , an) 7→ 1
2
〈〈[D,a0], . . . , [D,an]〉〉− n

2
.

We shall now list some properties of the quantities〈〈· · · 〉〉z which are analo-
gous to the properties of the quantities〈· · · 〉z that we verified in Section 6.1. The
following lemma may be proved using the formulas in Lemmas 6.1 and 6.2.

7.4 Lemma. The quantity〈〈X0, . . . , Xp〉〉z satisfies the following identities:

〈〈X0, . . . , Xp〉〉z = 〈〈Xp, X0, . . . , Xp−1〉〉z(7.1)
p∑
j=0

〈〈X0, . . . , Xj, 1, Xj+1, . . . , Xp〉〉z+1 = 〈〈X0, . . . , Xp〉〉z(7.2)

In addition,

(7.3) 〈〈X0, . . . , Xj−1Xj, . . . , Xp〉〉z − 〈〈X0, . . . , XjXj+1, . . . , Xp〉〉z
= 〈〈X0, . . . , [D2, Xj], . . . , Xp〉〉z − (−1)X

0···Xj−1〈X0, . . . , [D,Xj], . . . , Xp〉z.

(In both instances within this last formula the commutators are graded commuta-
tors.)

We shall also need a version of Lemma 6.3, as follows.

7.5 Lemma.

(7.4)
p∑
j=0

(−1)X
0···Xj−1〈〈X0, . . . , [D,Xj], . . . , Xp〉〉z

= 2

p∑
k=0

〈X0, . . . , Xk−1, D2, Xk, . . . , Xp〉z.
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Proof. This follows from Lemma 6.3. Note that[D,D] = 2D2, which helps
explain the factor of2 in the formula.

The formula in Lemma 7.5 can be simplified by means of the following com-
putation:

7.6 Lemma.
p∑
j=0

〈X0, . . . , Xj, D2, Xj+1, . . . , Xp〉z = (z+ p)〈X0, . . . , Xp〉z

Proof. If we substitute into the integral which defines〈X0, . . . , D2, . . . , Xp〉z the
formula

D2 = λ− (λ− ∆)

we obtain the (supertrace of the) terms

(−1)p+1 Γ(z)

2πi

∫
λ−z+1X0(λ− ∆)−1 · · · 1(λ− ∆)−1 · · ·Xp(λ− ∆)−1 dλ

− (−1)p+1 Γ(z)

2πi

∫
λ−zX0(λ− ∆)−1 · · ·Xp(λ− ∆)−1 dλ

Using the functional equationΓ(z) = (z − 1)Γ(z − 1) we therefore obtain the
quantity

(z− 1)〈X0, . . . , Xj, 1, Xj+1, . . . , Xp〉z−1 + 〈X0, . . . , Xp〉z

(the change in the sign preceding the second bracket comes from the fact that the
bracket contains one fewer term, and the fact that(−1)p+1 = −(−1)p). Adding
up the terms for eachj, and using Lemma 6.1 we therefore obtain

p∑
j=0

〈X0, . . . , Xj, D2, Xj+1, . . . , Xp〉z = (z− 1)〈X0, . . . , Xp〉z + (p+ 1)〈X0, . . . , Xp〉z

= (z+ p)〈X0, . . . , Xp〉z
as required.

Putting together the last two lemmas we obtain the formula

(7.5)
p∑
j=0

(−1)X
0···Xj−1〈〈X0, . . . , [D,Xj], . . . , Xp〉〉z = 2(z+ p)〈X0, . . . , Xp〉z.

With this in hand we can proceed to the following computation:
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7.7 Lemma. Define multi-linear functionalsΘp onA, with values in the space of
meromorphic functions onC, by the formulas

Θp(a
0, . . . , ap) = 〈〈a0, [D,a1], . . . , [D,ap]〉〉s− p+1

2
.

Then
BΘp+1(a

0, . . . , ap) = 〈〈[D,a0], . . . , [D,ap]〉〉s− p
2
.

and in addition

bΘp−1(a
0, . . . , ap) + BΘp+1(a

0, . . . , ap) = 2sΨp(a
0, . . . , ap)

for all s ∈ C and alla0, . . . , ap ∈ A.

Proof. The formula forBΘp+1(a
0, . . . , ap) is a simple consequence of Lemma 7.4.

The computation ofbΘp−1(a
0, . . . , ap) is a little more cumbersome, although still

elementary. The reader who wants to see it carried out (rather than do it himself)
is referred to [19].

7.8 Remark. The statement of Lemma 7.7 can be explained as follows. If we
replaceD by tD and∆ by t2∆ in the definitions of〈· · · 〉z andΨp, so as to obtain
a new improper(b, B)-cocycleΨt = (Ψt0, Ψ

t
2, . . . ), then it is easy to check from

the definitions that

Ψtp(a
0, . . . , ap) = t−2sΨp(a

0, . . . , ap).

Now, we expect that ast varies the cohomology class of the cocycleΨt should not
change. And indeed, by borrowing known formulas from the theory of the JLO
cocycle (see for example [12], or [14, Section 10.2], or Section 7.1 below) we can
construct a(b, B)-cochainΘ such that

BΘ+ bΘ+
d

dt
Ψt = 0.

This is the sameΘ as that which appears in the lemma.

The proof of Theorem 7.1 is now very straightforward:

Proof of Theorem 7.1.According to Lemma 7.7 the(b, B)-cochain

(
Ress=0

( 1
2s
Θ1
)
,Ress=0

( 1
2s
Θ3
)
, . . . ,Ress=0

( 1
2s
Θn−1

)
, 0, 0, . . .

)
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cobounds the difference of Ress=0Ψ and the cyclicn-cocycle Ress=0
(
1
2s
BΘn+1

)
.

Since

Ress=0
( 1
2s
BΘn+1

)
(a0, . . . , an) =

1

2
〈〈[D,a0], . . . , [D,an]〉〉− n

2

the theorem is proved.

We turn now to the second step. We are going to alterD by means of the
following homotopy:

Dt = D|D|−t (0 ≤ t ≤ 1)

(the same strategy is employed by Connes and Moscovici in [9]). We shall simi-
larly replace∆ with ∆t = D2t , and we shall use∆t in place of∆ in the definitions
of 〈· · · 〉z and of〈〈· · · 〉〉z.

To simplify the notation we shall drop the subscriptt in the following com-
putation and denote bẏD = −Dt · log |D| the derivative of the operatorDt with
respect tot.

7.9 Lemma. Define a multi-linear functional onA, with values in the analytic
functions on the half-planeRe(z) + n > d−1

2
, by the formula

Φtn(a
0, . . . , an) = 〈〈a0Ḋ, [D,a1], . . . , [D,an]〉〉z.

ThenBΦtn is a cyclic(n− 1)-cochain and

bBΦtn(a
0, . . . , an)

=
d

dt
〈〈[D,a0], . . . , [D,an]〉〉z + (2z+ n)

n∑
j=0

〈Ḋ, [D,aj], . . . , [Dj−1]〉z.

7.10 Remark. Observe that the operator log|D| has analytic orderδ or less, for
everyδ > 0. As a result, the proof of Proposition 5.17 shows that the quantity is
a holomorphic function ofz in the half-plane Re(z) + n > d−1

2
. But we shall not

be concerned with any possible meromorphic continuation toC.

Proof. See [19].

We can now complete the second step, and with it the proof of the Connes-
Moscovici Residue Index Theorem:
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7.11 Theorem (Connes and Moscovici).The residue cocycleRess=0Ψ is coho-
mologous, as a(b, B)-cocycle, to the Chern character cocycle of Connes.

Proof. Thanks to Theorem 7.1 it suffices to show that the cyclic cocycle

(7.6)
1

2
〈〈[D,a0], . . . , [D,an]〉〉− n

2

is cohomologous to the Chern character. To do this we use the homotopyDt
above. Thanks to Lemma 7.9 the coboundary of the cyclic cochain∫ 1

0

BΨtn(a
0, . . . , an−1)dt

is the difference of the cocycles (7.6) associated toD0 = D andD1 = F. ForD1
we haveD21 = ∆1 = I and so

1

2
〈〈[D1, a0], . . . , [D1, an]〉〉z

=
1

2

n∑
j=1

(−1)j+1
(−1)n+1Γ(z)

2πi
×

Trace

(∫
λ−zε[F, a0] · · · [F, aj]F · · · [F, an](λ− I)−(n+2) dλ

)
SinceF anticommutes with each operator[F, aj] this simplifies to

1

2

n∑
j=1

(−1)n+1Γ(z)

2πi
Trace

(∫
λ−zεF[F, a0] · · · [F, an](λ− I)−(n+2) dλ

)
.

The terms in the sum are now all the same, and after applying Cauchy’s formula
we get

n+ 1

2
(−1)n+1Γ(z) · Trace

(
εF[F, a0] · · · [F, an]

)
·
(

−z

n+ 1

)
.

Using the functional equation for theΓ -function this reduces to

Γ(z+ n+ 1)

2 · n!
Trace

(
εF[F, a0] · · · [F, an]

)
and evaluating atz = −n

2
we obtain the Chern character of Connes.
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7.1 Homotopy Invariance and Index Formula

By combining the Theorem 7.11 with the formula (5.5) for the pairing between
cyclic theory andK-theory we obtain the index formula

Index
(
eDe : eH0 → eH1

)
=
(
Ress=0Ψ

)(
[e]
)

for a projectionp in A (there is a similar equation for projections in matrix alge-
bras overA). In this section we shall very briefly indicate a shorter route to this
formula.

The starting point is the following transgression formula for the basic improper
cocycleΨ that we have been studying: informally, if∆t = D2t is a smooth family
of operators satisfying our basic hypotheses (for a fixed algebraA) then

BΘtp+1 + bΘtp−1 +
d

dt
Ψtp = 0,

where
(7.7)

Θp(a
0, . . . , ap) =

p∑
j=0

(−1)j−1〈a0, . . . , [D,aj], Ḋ, [D,aj+1], . . . , [D,ap]〉s− p+1
2
.

It is a little tedious to precisely formulate and prove this result in any general-
ity (one problem is to understand the analytic continuation property for algebras
which contain the operatorsdD

dt
). But fortunately we are only interested in a very

easy special case, where
Dt = D+ tX,

and whereX is a differential order-zero operator in the algebraD. The formula
(7.7) can be proved without any real difficulty in this case by following the meth-
ods used in the proofs of Lemmas 7.7 and 7.9.

With the transgression formula (7.7) in hand the proof of the index formula
can be finished rather quickly, using a trick due to Connes. Given a projectionp,
define

De = eDe+ e⊥De⊥ = D+ X,

whereX is of course an order zero operator inD, and letDt = D+ tX, as above.
Thanks to the transgression formula, it suffices to show that the residue cocycle
Ress=0Ψe of De, paired with theK-theory class of the projectione, gives the
Fredholm index ofeDe (considered as an operator fromeH0 to eH1). Now, by
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Equation (5.4),

Ress=0Ψ
e
(
[e]
)

= Ress=0Ψ
e
0(e)

+
∑
k≥1

(−1)k
(2k)!

k!
Ress=0Ψ

e
2k(e−

1

2
, e, . . . , e).

But the terms in the series are all zero since they all involve the commutator ofe

with De, which is zero. Hence

Ress=0Ψ
e
(
[e]
)

= Ress=0Ψ
e
0(e)

= Ress=0
(
Γ(s) Trace(εe (∆eK)

−s
)
)

= Index
(
eDe : eH0 → eH1

)
,

as required (the last step is the index computation made by Atiyah and Bott that
we mentioned in the Subsection 5.1).
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8 The General Case

Up to now we have been assuming that the self-adjoint operator∆ is invertible (in
the sense of Hilbert space operator theory, meaning that∆ is a bijection from its
domain to the Hilbert spaceH). We shall now remove this hypothesis.

To do so we shall begin with an operatorD which is not necessarily invertible
(with D2 = ∆). We shall assume that all our assumptions from Subsection 5.2
concerning the differential pair(D, ∆), the the square rootD, and the algebraA
hold. Fix a bounded self-adjoint operatorK with the following properties:

(i) K commutes withD.

(ii) K has analytic order−∞ (in other words,K ·H ⊆ H∞).

(iii) The operator∆+ K2 is invertible.

Having done so, let us construct the operator

DK =

(
D K

K −D

)
acting on the Hilbert spaceH⊕Hopp, whereHopp is theZ/2-graded Hilbert space
H but with the grading reversed. It is invertible.

8.1 Example.If D is a Fredholm operator then we can choose forK the projection
onto the kernel ofD.

Let ∆K = (DK)
2 and denote byDK the smallest algebra of operators on

H ⊕ Hopp which contains the2 × 2 matrices overD and which is closed under
multiplication by operators of analytic order−∞.

The conditions set forth in Subsection 5.2 for the pair(DK, ∆K), the square
rootDK and the algebraA, which we embed intoDK as matrices( a 00 0 ).

8.2 Lemma. Assume that the operatorsK1 andK2 both have the properties(i)-
(iii) listed above. ThenDK1

= DK1
. Moreover the algebra has finite analytic

dimensiond and has the analytic continuation property with respect to∆K1
if and

only if it has the same with respect to∆K2
. If these properties do hold then the

quantities〈X0, . . . , Xp〉z associated to∆K1
and∆K2

differ by a function which is
analytic in the half-planeRe(z) > −p.
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Proof. It is clear thatDK1
= DK2

. To investigate the analytic continuation prop-
erty it suffices to consider the case whereK1 is a fixed function of∆, in which
caseK1 andK2 commute. Let us write

X∆−z =
1

2πi

∫
λ−zX(λ− ∆)−1 dλ

for Re(z) > 0. Observe now that

(λ− ∆K1
)−1 − (λ− ∆K2

)−1 ∼ M(λ− ∆K1
)−2 −M(λ− ∆K1

)−3 + · · · ,

whereM = ∆K1
− ∆K2

(this is an asymptotic expansion in the sense described
prior to the proof of Proposition 5.17). Integrating and taking traces we see that

(8.1) Trace
(
X∆−z

K1

)
− Trace

(
X∆−z

K2

)
≈

∑
k≥1

(−1)k−1
(

−z

k

)
Trace

(
XM∆−z−k

K1

)
,

which shows that the difference Trace
(
X∆−z

K1

)
− Trace

(
X∆−z

K2

)
has an analytic

continuation to an entire function. Therefore∆K1
has the analytic continuation

property if and only if∆K2
does (and moreover the analytic dimensions are equal).

The remaining part of the lemma follows from the asymptotic formula

〈X0, . . . , Xp〉z ≈
∑
k≥0

(−1)|k|Γ(z+ p+ |k|)
1

(|k| + p)!
c(k)

× Trace

(
εX0X1

(k1)
· · ·Xp

(kp)
∆−z−|k|−p

)
that we proved earlier.

8.3 Definition. The residue cocycleassociated to the possibly non-invertible op-
eratorD is the residue cocycle Ress=0Ψ associated to the invertible operatorDK,
as above.

Lemma 8.2 shows that ifp > 0 then the residue cocycle given by Defi-
nition 8.3 is independent of the choice of the operatorK. In fact this is true
whenp = 0 too. Indeed Equation (8.1) shows that not only is the difference
Trace(εa0∆−s

K1
) − Trace(εa0∆−s

K2
) analytic ats = 0, but it vanishes there too.

Therefore

Ress=0Ψ
K1
0 (a0) − Ress=0Ψ

K2
0 (a0)

= Ress=0 Γ(s)
(
Trace(εa0∆−s

K1
) − Trace(εa0∆−s

K2
)
)

= 0.
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8.4 Example. If D happens to be invertible already then we obtain the same
residue cocycle as before.

8.5 Example. In the case whereD is Fredholm, the residue cocycle is given by
the same formula that we saw in Theorem 5.20:

Ress=0Ψp(a
0, . . . , ap)

=
∑
k≥0

cp,k Ress=0 Tr
(
εa0[D,a1](k1) · · · [D,ap](kp)∆− p

2
−|k|−s

)
.

The complex powers∆−z are defined to be zero on the kernel ofD (which is also
the kernel of∆). Whenp = 0 the residue cocycle is

Ress=0
(
Γ(s) Trace(εao∆−s)

)
+ Trace(εa0P),

where the complex power∆−s is defined as above andP is the orthogonal projec-
tion onto the kernel ofD.

Now Connes’ Chern character cocycle is defined for a not necessarily invert-
ible operatorD by forming firstDK, thenFK = DK|DK|

−1, then chFK
n . See Ap-

pendix 2, and also Section 5, of [3, Part I]. The following result therefore follows
immediately from our calculations in the invertible case.

8.6 Theorem. For any operatorD, invertible or not, the class in periodic cyclic
cohomology of the residue cocycleRess=0Ψ is equal to the class of the Chern
character cocycle of Connes.

8.7 Remark. There is another way that the index theorem can be generalized —
by considering the ‘odd-dimensional’ case instead of the even-dimensional one
that we have been examining. This involves the construction of an odd cyclic
cocycle starting from data the same as we have been using, except that all as-
sumptions about theZ/2-grading of the Hilbert spaceH are dropped. There is a
completely analogous local index formula in this case (indeed it was the odd case
that Connes and Moscovici originally considered). For remarks on how to adapt
our approach to the odd case see [19].
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A Appendix: Compact and Trace-Class Operators

In this appendix we shall take a rapid walk through the elementary theory of com-
pact Hilbert space operators.

A.1 Definition. A bounded linear operator on a Hilbert spaceH is compact(or
completely continuous, in old-fashioned terms) if it maps the closed unit ball ofH

to a (pre)compact set in usual norm topology.

We write ‘(pre)compact’ because it turns out that if the image of the closed
unit ball has compact closure, then it is in fact already closed, and therefore com-
pact. Here are various ways of using the compactness of a bounded Hilbert space
operatorT :

(i) If {vj} is a bounded sequence of vectors, then the sequence{Tvj} contains a
norm-convergent subsequence.

(ii) If {vj} is a bounded sequence of vectors, and if it converges weakly tov (this
means that〈vj, w〉 converges to〈v,w〉, for everyw), then{Tvj} converges in
the norm topology toTv.

(iii) The quadratic functionalv 7→ 〈Tv, v〉 is continuous from the closed unit ball
with its weak topology intoC. Since the closed unit ball is compact in the
weak topology, the functional has extreme values.

The first two items are actually equivalent formulations of compactness. The last
item, has a very important consequence:

A.2 Lemma. If T is a compact and self-adjoint operator (which means that〈Tv,w〉 =
〈v, Tw〉, for all v andw), thenT has a non-zero eigenvector.

Proof. Let v be a unit vector which is an extreme point of the functional in item
(iii). If w is a unit vector orthogonal tov, then by differentiating the function

s 7→ 〈
T
(
cos(s)v+ sin(s)w

)
, cos(s)v+ sin(s)w

)
〉

ats = 0 (which is an extreme point) we find thatTv is orthogonal tow. HenceTv
must be a scalar multiple ofv, which is to say an eigenvector.

We can now restrict the operatorT of the lemma to the orthogonal complement
of v, and then apply the lemma again to get a second eigenvector. Continuing in
this way we get Hilbert’s Spectral Theorem for compact, self-adjoint operators:
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A.3 Spectral Theorem. If T is a compact and self-adjoint operator on a Hilbert
spaceH, then there is an orthonormal basis forH consisting of eigenvectors for
T . The corresponding eigenvalues are all real, and converge to zero.

Conversely, if a bounded operatorT has such an eigenbasis, then it is readily
checked thatT must be compact. Examples of compact operators tend to come
either from this source, or from one of the following two observations:

(i) If T is a norm limit of finite-rank operators, thenT is compact (moreover
every compact operator is a norm limit of finite-rank operators).

(ii) If T is an operator onL2(X), and if T can be represented as an integral
operator

Tf(x) =

∫
X

k(x, y)f(y)dy,

where the kernelk(x, y) is square-integrable onX × X, then T is com-
pact (these are theHilbert-Schmidt operators; not every compact operator
onL2(X) is of this type).

It follows from the Spectral Theorem that the theory of compact self-adjoint
operators has much in common with the theory of real sequences which converge
to 0. It is therefore quite natural to consider subclasses of compact operators
for which the eigenvalue sequence is summable,p-summable, and so on, and to
develop, for example, Holder inequalities, and so on. This program has in fact
been carried out very far.

We can apply many of the same ideas to non-self-adjoint compact operators
by means of the following device.

A.4 Definition. Let T be a bounded operator on a Hilbert spaceH. Thesingular
valuesµ1(T), µ2(T), . . . of T are the non-negative scalars defined by the formula

µj(T) = inf
dim(V)=j−1

sup
v⊥V

‖Tv‖
‖v‖

.

Thusµ1(T) is the norm ofT , andµj(T) measures the norm ofT acting on all
codimensionj− 1 subspaces ofH. Observe thatµ1(T) ≥ µ2(T) ≥ . . . and that

T is compact ⇔ lim
j→∞µj(T) = 0.

(If T is not compact, then the singular value sequence is typically not very inter-
esting — often it is constant.)
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A.5 Lemma. Let T be compact andpositiveHilbert space operator (this means
〈Tv, v〉 ≥ 0 for all v, which implies thatT is self-adjoint). Let{λj} be the
eigenvalue sequence forT , arranged in decreasing order, and with multiplicities
counted. Thenµj(T) = λj(T), for all j.

Proof. This follows readily from the Spectral Theorem, which gives a concrete
representation forT as a diagonal matrix:

T =


λ1

λ2
λ3

...

 .

Apart from being quite meaningful for arbitrary compact operators, the advan-
tage of the singular values over the eigenvalues is that by virtue of their definition
it is rather easy to prove inequalities involving them. For example:

A.6 Lemma. LetT1 andT2 be compact operators on a Hilbert space and letS be
a bounded operator. Then

µj(T1 + T2) ≤ µj(T1) + µj(T2) ≤ µ2j(T1 + T2).

and
µj(ST), µj(TS) ≤ ‖S‖µj(T).

With these inequalities to hand we can make the following definition:

A.7 Definition. Let H be a Hilbert space and denote byB(H) the algebra of
bounded operators onH. Thetrace idealin B(H) is

L1(H) =
{
T |

∑
µj(T) < ∞ }

.

Every trace-class operator is compact. Thanks to the inequalities in Lemma A.6
the trace ideal really is a two-sided ideal in the algebraB(H). It is not closed in
the norm-topology, in fact its closure is the ideal of all compact operators.

From the definition of the singular valuesµj(T) it follows that if {v1, . . . , vN}

is any orthonormal set inH, then
N∑
j=1

|〈vj, Tvj〉| ≤
N∑
j=1

µj(T).

As a result of this new inequality we can make the following definition.
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A.8 Definition. If T ∈ L1(H), then thetraceof T is the scalar

Trace(T) =

∞∑
j=1

〈vj, Tvj〉,

where the sum is over an orthonormal basis ofH.

The series converges absolutely, so our definition makes some sense. Simple
algebra (reinforced by the guarantee of absolute convergence of all the series in-
volved in the argument) shows that Trace(T) does not depend on the choice of
orthonormal basis, and that

S ∈ B(H), T ∈ L1(H) ⇒ Trace(ST) = Trace(TS).

Thus the operator-trace has the fundamental property of the trace on matrices, to
the fullest extent itcanhave it.

If S andT are Hilbert-Schmidt operators, then it may be shown thatST is a
trace-class operator (incidentally, an operatorT on L2(X) belongs to the Hilbert-
Schmidt class if and only if

∑
µj(T)

2 < ∞). The trace of many integral operators
may be computed using the following result:

A.9 Lemma. LetM be a closed manifold which equipped with a smooth measure.
If k is a smooth function onM×M, then the operatorT defined by the formula

Tf(x) =

∫
M

k(x, y)f(y)dy,

is a trace-class operator. Moreover

Trace(T) =

∫
M

k(x, x)dx.

A.10 Remark. One can replace ‘smooth’ by ‘differentiable sufficiently many
times’, but the order of differentiability depends on the dimension of the mani-
fold (assuming that the kernelk is merely continuous is not enough).
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B Appendix: Fourier Theory

If φ : Tn → C is a smooth function on then-torusTn ∼= Rn/Zn then itsFourier
Transformis the functionφ̂ : Zn → C defined by

φ̂(j) =

∫
Tn

φ(x)e−2πi j·x dx.

The Fourier transformφ 7→ φ̂ extends to an isometric isomorphism of Hilbert
spaces

L2(Tn) // `2(Zn).

This is thePlancherel Theorem. If φ : Tn → C is smooth then the Fourier trans-
forms of its partial derivatives∂αφmay be computed from the formula

∂̂αφ(j) =
jα

(2πi)α
φ̂(j).

Thanks to this and the Plancherel Theorem, the norm in the Sobolev spaceWk(Tn)
may be computed from the formula

‖φ‖2Wk(Tn) ≈
∑
j∈Zn

(1+ j2)
k
2 |φ̂(j)|2.

B.1 Lemma. If k > 0 then the inclusion ofWk(Tn) into L2(Tn) is a compact
operator.

Proof. If j ∈ Zn then denote byej the functione2πi j·x on T . Using our formula
for the norm inWk(Tn) we see that the Hilbert spacesL2(Tn) andWk(T

n) have
an orthonormal bases

{ej} and {fj = (1+ j2)− k
2 ej},

respectively. Using these bases, the inclusion ofWk(Tn) into L2(Tn) takes the
form

fj 7→ (1+ j2)− k
2 ej.

If k > 0 then the scalar coefficient sequence converges to zero, and so the inclu-
sion operator is compact.

B.2 Remark. If k > n then the coefficient sequence is summable, and therefore
the inclusion is a trace-class operator.
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If φ is a smooth function onTn then according to the Plancherel Theorem,

φ =
∑
j∈Zn

φ̂(j)ej,

where as aboveej(x) = e2πi j·x. To begin with, the series converges inL2(Tn), so
that the coefficient family{φ̂(j)} is square-summable, but from the formula

∂αφ =
∑
j∈Zn

∂̂αφ(j)ej =
∑
j∈Zn

jα

(2πi)α
φ̂(j)ej

we see that the coefficient family{φ̂(j)} remains square-summable after multipli-
cation by any polynomial inj. So by the Cauchy-Schwarz inequality the series∑
j∈Zn φ̂(j)ej is in fact absolutely summable, and therefore converegent in the

uniform norm. A refinement of this computation proves the following lemma:

B.3 Lemma. If p and k are non-negative integers, and ifk > p + n
2

then
Wk(Tn) ⊆ Cp(Tn).

Proof. Letφ be a smooth function onTn. We have that

‖φ‖Cp(Tn) = max
|α|≤p

sup
x∈Tn

|∂αφ(x)|.

Since∂αφ(x) =
∑
j∈Zn ∂̂αφ(j)ej(x) we get

|∂αφ(x)| ≤
∑
j∈Zn

|∂̂αφ(j)| .
∑
j∈Zn

|j|p · |φ̂(j)|.

If k > p+ n
2

then the Cauchy Schwarz inequality implies that∑
j∈Zn

|j|p · |φ̂(j)| . ‖φ‖Wk(Tn),

and therefore‖φ‖Cp(Tn) . ‖φ‖Wk(Tn), as required.

The Fourier Transform of a smooth, compactly supported functionφ : Rn →
C is the functionφ̂ : Rn → C given by the formula

φ̂(ξ) =

∫
Rn

φ(x)e2πi ξ·x dx.
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Once again, the Fourier transform extends to an isometric isomorphism of Hilbert
spaces, but this time fromL2(Rn) to itself. If Ω is an open set inRn then the
Sobolev norm‖ ‖Wk(Ω) of Definition 1.5 can be given, up to equivalence, by the
formula

‖φ‖2Wk(Ω) =

∫
Rn

(1+ ξ2)
k
2 |φ̂(ξ)|2 dξ.

With this formula available we can obviously now define Sobolev spacesWk(Ω)
for any realk ∈ R just by completing the smooth, compactly supported functions
in the above norm. Using partitions of unity and local coordinates we can now
define Sobolev spacesWk(M) for anyk ∈ R and any closed manifold, just as
we did in the case wherek was a non-negative integer. These are the spaces we
briefly referred to in Remark 1.27.
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