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ABSTRACT. In an interesting article from the 1970’s, Mackey made a proposal to
study representation theory for a semisimple group G by developing an analogy
between G and an associated semidirect product group. We shall examine the
connection between Mackey’s proposal and C∗-algebra K-theory. In one direc-
tion, C∗-algebra theory prompts us to search for precise expressions of Mackey’s
analogy. In the reverse direction, we shall use Mackey’s point of view to give a
new proof of the complex semisimple case of the Connes-Kasparov conjecture in
C∗-algebra K-theory.

1. INTRODUCTION

One of the triumphs of Mackey’s theory of induced unitary representations is a
simple and complete description of the unitary duals of many semidirect product
groups in terms of the unitary duals of the two factors into which a semidirect
product decomposes. In contrast to this, if G is a semisimple group, then although
G may be in some sense assembled from various subgroups (for example a maxi-
mal compact and a Borel subgroup), a full understanding of the unitary represen-
tation theory of G, or even the tempered representation theory, has proved much
harder to obtain.

In a very engaging article [Mac75], Mackey made the suggestion that there
ought to be an analogy between unitary representations of a semi-simple group
and unitary representations of an associated semidirect product group. Suppose
for example that G = PGL(2, C) and let G0 be the semidirect product of SO(3)
and R3 that is constructed using the natural action of SO(3) on R3. Then G0 is the
group of orientation-preserving isometries of three-dimensional Euclidean space,
whereas G is the group of orientation-preserving isometries of three-dimensional
hyperbolic space. By rescaling, G is also the group of orientation-preserving isome-
tries of the three-dimensional space with constant curvature −R, and as R tends to
0 we can view G0 as a sort of limiting case of G. Now irreducible unitary represen-
tations of G0 have a well-known quantum-mechanical interpretation as particle
states. Since hyperbolic space, particularly the scaled version with curvature close
to zero, is a plausible model for physical space, Mackey was led to suppose that
there ought to be corresponding particle states on this curved space:
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. . . the physical interpretation suggests that there ought to exist a
“natural” one to one correspondence between almost all of the uni-
tary representations of G0 and almost all the unitary representa-
tions of G—in spite of the rather different algebraic structures of
these groups.1

Mackey made a number of calculutions in support of this proposal, the simplest
of which we shall review in this paper. However he ended his article rather cau-
tiously, as follows:

We have not yet ventured to formulate a precise conjecture along
the lines suggested by the speculations in the preceding sections
because we have not studied enough examples to be reasonably
sure that we have not overlooked some important phenomena that
a really general result must take into account. However we feel
sure that some such result exists and that a routine if somewhat
lengthy investigation will tell us what it is. We also feel that a fur-
ther study of the apparently rather close relationship between the
representation theory of a semisimple Lie group and that of its as-
sociated semi-direct product will throw valuable light on the much
more difficult semisimple case.2

The purpose of this note is to re-examine Mackey’s proposal in the light of de-
velopments since the time of its publication in C∗-algebra theory and K-theory.
Although we too shall refrain from stating a precise conjecture, the calculations
presented here for complex semisimple groups, as well as others carried out for
real groups but not reported here, support the proposal that there is a natural bi-
jection between the tempered dual of a semisimple group G and the unitary dual
of its associated semidirect product group G0 that is compatible with minimal K-
types and compatible with the natural deformation of G0 into G in a way that this
article should make fairly clear.

Whereas Mackey typically viewed the unitary dual of a group as a Borel space,
as in [Mac57], C∗-algebra theory and especially K-theory strongly suggest viewing
the dual as a topological space, and because of this a correspondence between “al-
most all” representations of G and G0 is not altogether adequate. But on the other
hand, the C∗-algebra point of view makes it natural to shift attention away from
representation spaces and toward C∗-algebra states (or equivalently the positive
definite functions on groups), since these can be used to generate representation
spaces in a uniform way. This considerably simplifies the task of cataloguing the
representations of G and G0, and then comparing the results, especially because
all the representations that we shall consider have canonical one-dimensional sub-
spaces, and are therefore determined by distinguished vector states.

We shall focus on complex semisimple groups in this article. We shall begin
by describing the associated semidirect product G0 and Mackey’s analogy be-
tween almost all irreducible representations of G and G0. Then we shall make the
rather simple observation that for complex semisimple groups Mackey’s almost-
everywhere correspondence can be elevated to a natural bijection between the uni-
tary dual of G0 and the tempered dual of G.

1See [Mac75, p. 341]. We have replaced Mackey’s SL(2,C) with PGL(2,C), and adjusted notation
accordingly.

2[Mac75, p. 362].



THE MACKEY ANALOGY AND K-THEORY 3

In an effort to carry the bijection beyond the sort of “mere coincidence of param-
etrizations” in which Mackey was uninterested we shall review some ideas con-
necting representation theory to C∗-algebras and K-theory. It was observed in
[BCH94, Sec. 4] that the Connes-Kasparov conjecture concerning K-theory for group
C∗-algebras can be viewed as a K-theoretic counterpart of Mackey’s analogy. We
shall use our bijection between the duals of G0 and G to demonstrate that the con-
tinuous field of group C∗-algebras associated to the deformation of G0 into G is
assembled from constant fields by Morita equivalences, extensions, and direct lim-
its. This will lead to a new proof of the Connes-Kasparov conjecture, and also, we
hope, help bring the Mackey analogy toward a more precise form.

However the computations presented here are hardly the final word on the mat-
ter, even for the special case of complex semisimple groups. What is missing is
a conceptual explanation for the bijection between the reduced duals of G and
G0 (perhaps making a closer connection with the Dirac operator approach to the
Connes-Kasparov conjecture). While we hope to return to this in the future, at the
present time the phenomenon remains mysterious to us.

2. THE MACKEY ANALOGY

Let G be a connected Lie group and let K be a closed subgroup of G. Form the
semidirect product group G0 = K � g/k, where g/k is the vector space quotient of
the Lie algebra of G by the Lie algebra of K, equipped with the adjoint action of K.
As a manifold, G0 is the direct product of K and g/k. Its group operation is given
by the formula

(k1, v1) · (k2, v2) = (k1k2, Adk−1
2

(v1) + v2).

Following Mackey, we should like to explore what connection there is between the
representation theories of G0 and G. Although it is possible to do this in a variety
of contexts, we shall confine our attention, as Mackey did, to the situation in which
K is a maximal compact subgroup of G. It is here that the link with C∗-algebras
and K-theory that we aim to describe seems to be the clearest and simplest.

We shall also restrict our attention to certain sorts of unitary representations:

2.1. Definition. If G is any Lie group G, then we shall denote by �G the reduced

unitary dual of G. This is the set of unitary equivalence classes of those irreducible
unitary representations of G that are weakly contained in the regular representa-
tion.

For further information about the reduced dual see [Dix77, Ch. 18] as well as
Section 3 below. For the semidirect product group G0 defined above, the reduced
dual is the entire unitary dual; for the semisimple groups that will be the focus
of our interest, the reduced dual is the same thing as the tempered dual (see
[CHH88]). Our aim is to compare the reduced duals of G and G0. To this end,
we shall quickly review what these duals look like individually.

2.1. Semidirect Product Groups. Let K be a compact Lie group and let X be an
abelian Lie group equipped with an action of K by automorphisms. Mackey’s
theory of induced representations describes in detail the unitary duals of a great
many semidirect product groups, including the rather elementary example K � X.
We shall quickly review Mackey’s results as they apply to K�X here (and we shall
return to them in Section 3.1).
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Let ϕ be a unitary character of X and let τ be an irreducible unitary representa-
tion of the isotropy group

Kϕ = { k ∈ K | ϕ(k(x)) = ϕ(x) ∀x ∈ X },

on a finite-dimensional space W. The map τ⊗ϕ : (k, x) �→ ϕ(x)τ(k) is a represen-
tation of the semidirect product group Kϕ � X on W, which we may induce up so
as to obtain a unitary representation of K � X.

Mackey’s theory (see [Mac49, Section 7] or [Mac76, Ch. 3]) tells us that the rep-
resentations of K � X obtained in this way are all irreducible; that up to unitary
equivalence every irreducible unitary representation of K � X results from an in-
stance of this induction construction; and that the only equivalences among these
induced representations are those obtained from conjugacy in K: the induced rep-
resentations obtained from the pairs (τ, ϕ) and (τ �, ϕ �) are equivalent to one an-
other if and only if there is some k ∈ K such that ϕ �(x) = ϕ(k(x)) for all x ∈ X,
and such that τ � = τ ◦ Adk, up to unitary equivalence. Thus

�K � X ∼=
�

(τ, ϕ)
�� ϕ ∈ �X and τ ∈ �Kϕ

� �
K.

2.2. Complex Semisimple Groups. Let G be a connected complex semsimple group.
Let G = KAN be an Iwasawa decomposition, let M be the centralizer of A in K
(M is a maximal torus in K), and let B = MAN (this is a Borel subgroup of G).
The unitary principal series representations of G are constructed by associating to
a pair (σ,ϕ) of unitary characters, one of M and one of A, the unitary charac-
ter man �→ σ(m)ϕ(a) of the Borel subgroup B and then unitarily inducing this
character from B to a representation of G.

It is known that every principal series representation is irreducible; that every
irreducible tempered representation of G is equivalent to a principal series repre-
sentation; and that the principal series representations obtained from (σ,ϕ) and
(σ �, ϕ �) are equivalent to one another if and only if (σ,ϕ) and (σ �, ϕ �) are conju-
gate under the Weyl group W of G (W is the quotient of the normalizer of MA by
MA). Hence

�G ∼=
��M× �A

��
W.

In Section 3.2 we shall review some parts of this computation of the tempered
dual.

2.3. The Mackey Analogy. Mackey’s approach in [Mac75] was to find analogies
between typical representations of G0 and typical representations of G, with a
view toward determining the representation theory of the latter group. Here is a
sketch of his approach in the case of complex semisimple groups.

Let a be the Lie algebra of the subgroup A in the given Iwasawa decomposition
of G. Every unitary character of the vector space g/k is conjugate to one which
is determined by its restriction to the image a in g/k (as detailed in Definition 2.3
below), and for which the isotropy group Kϕ therefore contains M. Generically
Kϕ is exactly equal to M, and so the data needed to specify a generic irreducible
unitary representation of G0 is a pair (σ,ϕ) consisting of a character of M and a
generic character of g/k, the pair being determined up to conjugacy by an element
of the Weyl group. In short, the generic irreducible unitary representations of
G0 are parametrized by an open and dense subset of (M̂ × Â)/W. Therefore the
generic irreducible unitary representations of G0 are parametrized in the same
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way as the (generic) irreducible tempered representations of G. More details about
this parametrization will be given in a moment.

Mackey wanted to carry the analogy beyond a “mere coincidence of parame-
ters.” To do so in the case at hand, he observed that the generic representations of
G0 are induced from characters of the group M � g/k, while the principal series
representations of G are induced from characters of the Borel subgroup B. Note
that the group M � g/k stands in relation to B in the same way that G0 stands in
relation to G. We find that generic representations of G and G0 are constructed in
closely analogous ways. It follows, for example, that the representation spaces may
be identified—and not just as Hilbert spaces but as unitary representations of the
common subgroup K of G and G0.

Mackey did not continue his analysis to all representations of G and G0. Pre-
sumably this was because in the non-generic case the analogy at the level of rep-
resentation spaces is rather poor (for example some representations of G0 are
finite-dimensional, whereas all the tempered representations of G are infinite-
dimensional), and perhaps it was also because a measure-theoretic approach to
representation theory rendered the continuation unnecessary (the non-generic rep-
resentations have zero Plancherel measure). However the C∗-algebra point of
view prompts us to regard the reduced dual as a topological space, not a mea-
sure space, and to study representations via their matrix coefficients rather than
their representation spaces. Let us therefore try to pursue Mackey’s analogy a bit
further.

In fact Mackey’s analysis for complex semisimple groups can be completed
rather simply, at least at the level of parameters, thanks to the following obser-
vation:

2.2. Lemma. Let G be a connected complex semisimple group. If ϕ is any unitary char-

acter of g/k, then the isotropy group Kϕ is connected.

Proof. The Lie algebra of G may be written as g = k+ ik, from which it follows that
g/k ∼= k as real vector spaces equipped with representations of K. Since k admits an
Ad-invariant inner product, we may identify k with its dual and so conclude that
the dual of g/k is isomorphic to k as a K-space. But the centralizer of any element
of k is a union of maximal tori in K (see [Bou05, p. 290]). �

We shall need the Cartan-Weyl classification of irreducible representations of a
compact connected Lie group K by highest weights. To review, if M and W are
a maximal torus and Weyl group for K, then the set of W-orbits in M̂ is partially
ordered by the relation

O1 ≤ O2 ⇔ Conv(O1) ⊆ Conv(O2),

where Conv(O) denotes the convex hull of the orbit O in the vector space M̂⊗Z R.
The restriction of any irreducible representation τ of K to the subgroup M ⊆ K
decomposes into a direct sum of characters of M, called the weights of τ. The set
of weights is a union of orbits, and there is a maximum orbit for the above partial
order. The correspondence between equivalence classes of irreducible represen-
tations and maximum orbits is a bijection. The characters in the maximum orbit
are called the highest weights of τ, and each occurs with multiplicity one in the
restriction of τ to M.
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2.3. Definition. Let a be the Lie algebra of A. View it as a subspace of the vector
space g/k via the quotient map, and denote by a⊥ ⊆ g/k the unique M-invariant
complement of a in g/k. Let us say that a character of g/k is balanced if it is trivial
on a⊥, so that it factors through the projection of g/k onto a and can therefore be
regarded as a character of a.

Every character of g/k is conjugate to a balanced character that is unique up to
conjugacy by an element of the Weyl group W (here viewed as the normalizer of
M in K, divided by M). By Lemma 2.2 the isotropy subgroup Kϕ of a balanced
character is connected; in addition Kϕ clearly contains the maximal torus M of K
as a maximal torus of its own. The Weyl group of Kϕ is Wϕ, the isotropy group
of ϕ in W. By the Cartan-Weyl theory, the irreducible representations of the con-
nected group Kϕ are parametrized up to equivalence by M̂/Wϕ. Inserting this
parametrization into Mackey’s classification of the irreducible unitary representa-
tions of K � g/k we conclude that

�K � g/k ∼=
�

ϕ∈â/W

�M/Wϕ
∼=

��M× �a
��

W.

We have proved the following result:

2.4. Theorem. Let G = KAN be a connected complex semisimple Lie group and let M
be the centralizer of A in K. View each unitary character ϕ of a as a balanced character of

g/k. For each pair

(σ,ϕ) ∈ �M× �a,

fix an irreducible representation τσ of the isotropy group Kϕ ⊆ K with highest weight

σ. The correspondence that associates to (σ,ϕ) the irreducible unitary representation of

K � g/k induced from the representation (k, x) �→ τσ(k)ϕ(x) of the subgroup Kϕ � g/k
determines a bijection

��M× �a
�
/W ∼= �K � g/k.

Here W is the Weyl group of G. �
Of course, the abelian group a is isomorphic to A via the exponential map, and

we therefore find that
�G ∼=

��M× �A
�
/W ∼=

��M× �a
�
/W ∼= �G0.

Therefore the tempered dual of a complex semisimple group G is “the same” as
the unitary dual of the associated group G0, in the sense that we are able to exhibit
a reasonably natural bijection between the two spaces.

2.5. Remark. Parallel statements can be made for real semisimple groups. The
tempered dual is of course much more complicated, but so is the unitary dual of
G0; this is in part a consequence of the fact that the isotropy subgroups Kϕ are no
longer connected. The additional complications balance one another nicely, but
even in simple cases the computations require fairly elaborate preparations just to
summarize. As a result they will be presented elsewhere.

It should be noted that the bijection in the theorem is not a homeomorphism.
But as we shall see later on, the reduced duals of G and G0 can be partitioned into
locally closed parts, and our bijection maps each part of the dual of G homeomor-
phically to a corresponding part of the dual of G0.
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3. GROUP C*-ALGEBRAS

In the remainder of the paper we shall try to place the bijection between the
reduced duals of G and G0 provided by Theorem 2.4 into a context that we hope
will begin to elevate it above a “mere coincidence of parameters.” To do so we
shall examine G and G0 from the point of view of C∗-algebras.

3.1. Definition. The reduced group C∗-algebra of a Lie group G, denoted C∗λ(G),
is the completion of the convolution algebra C∞

c (G) in the norm obtained from
the left regular representation of C∞

c (G) as bounded convolution operators on the
Hilbert space L2(G) (the symbol λ denotes the left regular representation).

Each unitary representation of G integrates to a representation of the algebra
C∞

c (G), and, more or less by definition, a unitary representation of G is weakly
contained in the regular representation if and only if its integrated version extends
from C∞

c (G) to a representation of the C∗-algebra C∗λ(G). The reduced dual of G
may be identified in this way with the dual of C∗λ(G), that is, the set of equivalence
classes of irreducible representations of C∗λ(G).

To help orient ourselves, we pause briefly to describe the structure of the group
C∗-algebras that we shall be studying. This structure should make evident the
extent to which C∗λ(G) encodes features of the reduced dual, at least for the Lie
groups we are considering. The results we shall sketch are quite well-known—
certainly they are not original in any way.

3.1. Semidirect Products. Throughout this section we shall denote by H the Hilbert
space L2(K) equipped with both the left and right regular representations of K. We
shall denote by K(H) the C∗-algebra of compact operators on H.

As in Section 2.1 we shall denote by X any abelian Lie group that is equipped
with an action of K by automorphisms. Our aim is to describe the C∗-algebra of
the semidirect product K � X. From the point of view of C∗-algebra theory this
group is hardly more difficult to handle than an abelian group.

Fix Haar measures on K and X; together they determine a Haar measure on
K � X. Denote by Y the Pontrjagin dual group of the abelian Lie group X, and if f
is a smooth, compactly supported function on K � X then let us define its Fourier

transform, a smooth function from Y into the smooth functions on K × K by the
formula

f̂(ϕ)(k1, k2) =

�

X
f(k1k−1

2 x)ϕ(k−1
2 (x))dx.

Here ϕ ∈ Y, k1, k2 ∈ K, and x ∈ X; we are viewing both K and X as subgroups of
K � X, so that for example k1k−1

2 x ∈ K � X.
For a fixed ϕ ∈ Y we shall think of f̂(ϕ) as an integral kernel and hence as a

compact operator on H. The Fourier transform f̂ is therefore a function from Y
into K(H). This function is equivariant for the natural action of K on Y and the
conjugation action of K on K(H) induced from the right regular representation of
K on H. Let us write

C0

�
Y,K(H)

�
=

�
continuous functions, vanishing

at infinity, from Y into K(H)

�

and
C0

�
Y,K(H)

�K
=

�
K-equivariant functions in C0

�
Y,K(H)

��
.
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With this notation established, the following fact is easy to check (compare [Rie80,
Proposition 4.3]):

3.2. Theorem. Let K be a compact Lie group and let X be an abelian Lie group equipped

with an action of K by automorphisms. Let Y be the Pontrjagin dual of X. If f ∈ C∞
c (K �

X), then the Fourier transform f �→ f̂ extends to a C∗-algebra isomorphism

C∗λ(K � X) −−−→
∼=

C0

�
Y,K(H)

�K
.

�
The theorem encodes Mackey’s calculation of the irreducible unitary represen-

tations of K � X. The irreducible representations of C0(Y,K(H))K are obtained by
evaluating functions from Y to K(H) at a point ϕ ∈ Y, so as to obtain an element
of K(H)Kϕ , and then projecting onto a summand of K(H)Kϕ (this fixed-point C∗-
algebra, like any C∗-subalgebra of K(H), is isomorphic to a direct sum of subalge-
bras, each isomorphic to the C∗-algebra of compact operators on a Hilbert space).

Let us compute the fixed-point algebra. For each unitary, irreducible represen-
tation τ : Kϕ → Aut(Wτ), define a Hilbert space

Hτϕ = [H⊗Wτ ]Kϕ ,

using the right action ρ of Kϕ on H. The formula

(f⊗ v1)⊗ v2 �→ dim(Wτ)
1
2 �v2, v1�f

gives a unitary isomorphism of Hilbert spaces
�

τ
Hτϕ ⊗Wτ −→ H

(the direct sum is over all equivalence classes of irreducible unitary representa-
tions of Kϕ). The isomorphism is Kϕ-equivariant for the given actions on the rep-
resentation spaces Wτ and the right translation action of Kϕ on H, and so we find
that

K(H)Kϕ ∼=
�

τ
K(Hτϕ).

The representation of K�X corresponding to the summand K(Hτϕ) is the induced
representation obtained from ϕ and τ (compare Section 5.3).

3.2. Complex Semisimple Groups. The reduced C∗-algebra of a complex semi-
simple group is not as easily determined from first principles, and instead some
representation theory is needed to compute it.

The Hilbert space Hσϕ of the principal series representation with parameter
(σ,ϕ) may be identified with the subspace of H = L2(K) consisting of elements
for which ρ(m)f = σ(m)f, for all m ∈ M (see Section 5; ρ is the right regular
representation). In particular Hσϕ is independent of the continuous parameter
ϕ, and so the collection of all these representation Hilbert spaces forms a locally
trivial3 Hilbert space bundle H over the parameter space M̂× Â.

Now the C∗-algebra C∗λ(G) acts as compact operators in each principal series
representation, and if we denote by

C0

�
M̂× Â,K(H)

�

3Here we really mean “locally trivial” as opposed to the usually intended “locally trivializable.”
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the algebra of norm-continuous, compact operator-valued endomorphisms of this
bundle that vanish at infinity, then the totality of all principal series representa-
tions determines a ∗-homomorphism

π : C∗λ(G) −→ C0

�
M̂× Â,K(H)

�
.

According to Harish-Chandra’s Plancherel theorem [HC54] the regular represen-
tation may be decomposed into principal series representations. Since C∗λ(G) is by
definition faithfully represented in the regular representation, the ∗-homomorphism
π is injective.

To determine the image of π we invoke the following nontrivial facts:
(a) Each principal series representation is irreducible [Žel68, Wal71]. This implies

that if we follow π with evaluation at any point of M̂× Â, then the composite
∗-homomorphism into K(Hσϕ) is surjective.

(b) The conjugation action of the Weyl group W on M̂× Â lifts to a unitary action
on the Hilbert space bundle H that commutes with the action of G in each
fiber; in other words, the elements of W act as intertwiners of prinicipal series
representations [KS67].

These and some relatively straightforward calculations like those in [Lip70] and
[Fel60] lead to the following description of C∗λ(G):

3.3. Theorem. Let G be a connected complex semisimple group, and let H be the as-

sociated Hilbert space bundle of principal series representations over �M × �A. The ∗-

homomorphism

π : C∗λ(G) → C0

�
M̂× Â,K(H)

�W

is an isomorphism. �

4. THE CONNES-KASPAROV CONJECTURE

Our aim is to relate Mackey’s analogy to the Connes-Kasparov conjecture in C∗-
algebra K-theory. We shall give a quick account of the Connes-Kasparov conjecture
here, but we shall not go into much detail about K-theory. This is because when we
later give a new proof of the Connes-Kasparov conjecture (for complex semisimple
groups) we shall need only the simplest K-theoretic ideas.

4.1. Dirac Operators. Let G be a Lie group and let K be a compact and connected
subgroup. Fix a K-invariant complement p to k ⊆ g and equip the vector space p
with a K-invariant inner product. The inner product determines a complete Rie-
mannian metric on the homogeneous right G-space M = K\G. An equivariant
Dirac-type operator on M is given by the following symbol data: a linear map and
unitary representation

c : p → End(S) and τ : K → Aut(S).

such that

c(P)∗ = −c(P), c(P)2 = −�P�2I, and c(Adk(P)) = τ(k)c(P)τ(k)−1

for every P ∈ p and every k ∈ K. The usual induced bundle construction (see for
example [Bot65, Sec. 2]) associates to the representation τ an equivariant bundle
on M that we shall also denote by S. Its sections may be identified as follows:

C∞ (M, S) ∼=
�

ξ : G
smooth−−−−→ S

�� ξ(kg) = τ(k)ξ(g) ∀k ∈ K, ∀g ∈ G
�
.
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In other words,
C∞ (M, S) ∼= [S⊗ C∞ (G)]K

where K acts on C∞ (G) via the left regular representation. Using this isomor-
phism, the Dirac operator acting on sections of the bundle S is defined by

D =
n�

j=1

c(Pj)⊗ λ(Pj),

where {Pi} is any orthonormal basis for p. It is a linear, G-equivariant, formally
self-adjoint,4 first-order elliptic partial differential operator.

If p is even-dimensional and oriented, then the operator

γ = in/2c(P1) · · · c(Pn)

decomposes S into positive and negative eigenbundles, whose sections D exchanges.
In this situation one can develop index theory for D.

Bott showed in [Bot65] that if G is compact and connected, and if K is its maxi-
mal torus, then every irreducible representation of G, viewed as a generator of the
representation ring R(G), is the index of a Dirac-type operator. Atiyah and Schmid
[AS77] (following Parthasarathy [Par72]) showed that every discrete series repre-
sentation of a connected semisimple group (with finite center) is the L2-index of a
Dirac-type operator, and recovered Harish-Chandra’s parametrization of the dis-
crete series.

4.2. The Connes-Kasparov Conjecture. Especially for K-theoretic purposes, it is
convenient to take a more C∗-algebraic view of the Dirac operator that involves
passing from the space of smooth sections of the bundle S to the object

C∗λ(M, S) = [S⊗ C∗λ(G)]K

where, as with C∞ (M, S), the group K is made to act via left translation on G. This
is a right C∗λ(G)-module, and in fact a so-called Hilbert C∗λ(G)-module [Lan95].
The Dirac operator is, in an appropriate sense, a densely defined, essentially self-
adjoint, Fredholm operator on the Hilbert module C∗λ(M, S) (see [Lan95, Ch. 9]). It
has an index in the K-theory group K(C∗λ(G)) (we are assuming for simplicity that
p, and hence M, is even-dimensional).

Building on the Atiyah-Schmid work, Connes and Kasparov conjectured that
the Dirac operator can be used to account for the full reduced dual of any con-
nected Lie group, at least at the level of K-theory (for discussion and references,
see [Con94, pp. 142–150]).

The spin module Rspin(G,K) is the Grothendieck group generated by isomor-
phism classes of the symbol data (c, τ) described above. By associating to a symbol
the corresponding Dirac-type operator and then forming the index of the Dirac op-
erator we obtain a homomorphism from the abelian group Rspin(G,K) into K(C∗λ(G)).

4.1. Conjecture (Connes and Kasparov). Let G be a connected Lie group, let K be a

maximal compact subgroup of G, and assume (for simplicity) that dim(G) ≡ dim(K),
modulo 2. The index homomorphism

µ : Rspin(G,K) −→ K(C∗λ(G))

is an isomorphism of abelian groups.

4It is formally self-adjoint as written if G is unimodular; otherwise a correction term is required.
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4.2. Remark. There is an elaboration involving in addition the odd K-group K1,
which also takes care of the case where K\G is odd-dimensional.

The index map µ may be analyzed, even without going into details about C∗-
algebra K-theory, as follows. Suppose that G is a connected, complex semisimple
group (and that K is a maximal compact subgroup). For any principal series rep-
resentation πσϕ on Hσϕ we can form the Hilbert module tensor product

C∗λ(M, S)⊗C∗
λ(G) Hσϕ = [S⊗ C∗λ(G)]K ⊗C∗

λ(G) Hσϕ = [S⊗Hσϕ]K

on which the tensor product operator D ⊗ I acts. We obtain a self-adjoint endo-
morphism of a finite-dimensional Hilbert space.

If we carry out this localization construction for each fiber of the bundle H of
principal series representations that we introduced in Section 3.2, then we obtain
from the Dirac operator an endomorphism of a finite-dimensional, W-equivariant
vector bundle over the parameter space M̂× Â:

C∗λ(M, S)⊗C∗
λ(G) H

��

D⊗I �� C∗λ(M, S)⊗C∗
λ(G) H

��

M̂× Â M̂× Â.

It can be viewed as the index of the Dirac operator: the vector bundle, plus en-
domorphism, is a cycle for the topological K-theory group of the locally compact
space (M̂×Â)/W, and this K-theory group turns out to be the same as the K-theory
of C∗λ(G).

With some work the vector bundle and endomorphism can be computed ex-
plicitly. Penington and Plymen did so in [PP83] and discovered the remarkable
fact that the Dirac operators with irreducible symbols determine canonical gen-
erating cycles (Bott generators) for the K-theory of the space (M̂ × Â)/W, thus
verifying the Connes-Kasparov conjecture for complex semisimple groups. The
more complicated case of real groups was subsequently worked out in a concep-
tually similar way by Wassermann [Was87], and eventually the Connes-Kasparov
conjecture was proved for all Lie groups [CEN03].

5. MATRIX COEFFICIENTS AND INDUCED REPRESENTATIONS

We are going to use the Mackey analogy to show how the C∗-algebras C∗λ(G)
and C∗λ(G0), which do not appear to be especially alike from their descriptions in
Sections 3.2 and 3.1, are assembled from an identical set of building blocks. We
shall then use this information to prove the Connes-Kasparov conjecture.

First we shall need to carry out some simple matrix coefficient calculations.
These will be used to identify the constituent pieces of C∗λ(G) and of C∗λ(G0).

5.1. Orthogonality Relations. We begin by reviewing some well-known facts about
matrix coefficients on compact groups. Let G be a Lie group and let K be a com-
pact subgroup of G. If s is a smooth function on K, and if f is a smooth, compactly
supported function on G, then we define

(s ∗ f)(g) =
1

vol(K)

�

K
s(k)f(k−1g)dk,
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which is again a smooth, compactly supported function on G. We similarly define
the convolution product f ∗ s. The products are associative with respect to both
convolution on G (for any given left Haar measure) and convolution on K (which
we shall normalize, as above, by dividing out vol(K)).

We are interested in convolutions with matrix coefficient functions. Recall that
if τ : K → Aut(V) is an irreducible unitary representation of a compact group, and
if v1, v2, w1, w2 ∈ V , then

1

vol(K)

�

K
�v1, τ(k)v2��τ(k)w1, w2�dk =

1

dim(V)
�w1, v2��v1, w2�.

As a result, if {vα} is an orthonormal basis for V , and if

eαβ(k) = dim(V)�τ(k)vβ, vα�,

then eαβ ∗ eβγ = eαγ for all α, β and γ (in particular, eαα is a projection). We shall
also use the following small extension of these basic orthogonality relations:

5.1. Lemma. If K1 is a compact subgroup of K, if τ1 is the restriction of an irreducible

unitary representation τ : K → Aut(V) to an irreducible K1-invariant subspace W of V ,

and if we define

dαβ(k) = dim(W)�τ1(k)vβ, vα�,
then dαβ ∗ eβγ = eαγ = eαβ ∗dβγ whenever vα, vβ, vγ ∈ W (the convolution products

are over K1). �
Finally, we note that if

ξαβ(k) =
dim(V)

1
2

vol(K)
1
2

�τ(k)vβ, vα�,

then �ξαβ�2
L2(K) = 1. This follows from the convolution relations by evaluation at

the identity element of K.

5.2. Complex Semisimple Groups. Let G = KAN be a connected complex semisim-
ple group. If we define a group homomorphism δ : A → (0,∞) by the change of
variables formula �

N
f(ana−1)dn = δ(a)−2

�

N
f(n)dn,

then the formula �

G
f(g)dg =

�

K

�

A

�

N
f(kan)δ(a)2 dkdadn

defines a Haar measure on the unimodular group G (because the right-hand inte-
gral is left K-invariant and right AN-invariant). If σ and ϕ are unitary characters of
M and A, then by definition the Hilbert space of the principal series representation
πσϕ associated to the pair (σ,ϕ) is the completion of the vector space

�
ξ : G

smooth−−−−→ C
���

ξ(gman) = σ(m)−1ϕ(a)−1δ(a)−1

∀g ∈ G ∀a ∈ A ∀n ∈ N

�

in the norm associated to the inner product

�ξ1, ξ2� =

�

K
ξ1(k)ξ2(k)dk.
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The inclusion of the factor δ(a) assures that the natural left translation action of G
on this Hilbert space is unitary.

5.2. Lemma. The principal series representation πσϕ contains the K-type τ having high-

est weight σ, and contains it with multiplicity one. Every other K-type of πσϕ is greater

than τ in the highest weight partial order.

Proof. Restricting functions in the representation space for πσϕ to K and using the
Peter-Weyl theorem we see that

Hσϕ
∼=

�
Vτ ⊗ Vσ

τ

where the sum is over the equivalence classes of irreducible representations of
K and Vσ

τ denotes the σ-weight space of the representation space Vτ. The result
follows. �

5.3. Remark. This is the simplest possible instance of the very general multiplicity
one principle for minimal K-types described in [Vog79].

5.4. Definition. Let τ : K → Aut(V) be an irreducible unitary representation of K
with highest weight σ, and let vσ ∈ V be a unit vector in the σ-weight space of V .
Define a smooth, norm-one function ξσϕ : G → C in the representation space for
the induced representation πσϕ by the formula

ξσϕ(kan) =
dim(V)

1
2

vol(K)
1
2

�
τ(k)vσ, vσ

�
ϕ(a)−1δ(a)−1.

5.5. Lemma. If f ∈ C∞
c (G) and if f = eσσ ∗ f ∗ eσσ, then

�

G
f(g)�ξσϕ, πσϕ(g)ξσϕ�dg =

vol(K)

dim(V)

�

A

�

N
f(an)ϕ(a)δ(a)dadn.

Proof. Using the definition of the inner product on Hσϕ and then making the
change of variables g := g−1k we find that

�

G
f(g)�ξσϕ, πσϕ(g)ξσϕ�dg =

�

G

�

K
f(g)ξσϕ(k)ξσϕ(g−1k)dgdk

=

�

G

�

K
f(kg−1)ξσϕ(k)ξσϕ(g)dgdk.

If we now insert the definition of ξσϕ into the last integral, then we obtain the
quantity

dim(V)
1
2

vol(K)
1
2

�

G

��

K
f(kg−1)�τ(k−1)vσ, vσ�dk

�
ξσϕ(g)dg.

The inner integral is, up to a factor of dim(V)/ vol(K), the convolution of the pro-
jection eσσ with f, evaluated at g−1. Since eσσ ∗ f = f, we obtain the quantity

vol(K)
1
2

dim(V)
1
2

�

G
f(g−1)ξσϕ(g)dg.

We now insert the definition of ξσϕ, and use the formula dg = δ(a)2dkdadn to
obtain �

K

�

A

�

N
f(n−1a−1k−1)�τ(k)vσ, vσ�ϕ(a)−1δ(a)dkdadn.



14 NIGEL HIGSON

Once again, we recognize the integral over K as a convolution, giving

vol(K)

dim(V)

�

A

�

N
f(n−1a−1)ϕ(a)−1δ(a)dadn.

The changes of variables n := an−1a−1 and then a := a−1 give the required
result. �

5.3. Semidirect Product Groups. We turn now to the semidirect product G0 =
K � g/k associated to a complex semisimple group G. The results about K-types
and matrix coefficients that we shall need are closely analogous to those for G,
although the calculations are different and in fact a bit more involved.

Fix characters σ of M and ϕ of a, and view the latter as a balanced character
of g/k. Let τσ : Kϕ → Aut(W) be an irreducible unitary representation of Kϕ with
highest weight σ. The representation space for the induced representation

πσϕ = IndK�g/k
Kϕ�g/k τσ ⊗ϕ

is then the completion of the space
�

ξ : G0 → W
���

ξ(gkx) = τ(k)−1ϕ(x)−1ξ(g)

∀g ∈ G0 ∀k ∈ Kϕ ∀x ∈ g/k

�

of smooth vector-valued functions in the norm associated to the inner product

�ξ1, ξ2� =

�

K

�
ξ1(k), ξ2(k)

�
dk.

5.6. Lemma. The induced representation πσϕ of G0 contains the K-type with highest

weight σ with multiplicity one. Every other K-type is greater than this one in the highest

weight partial order.

Proof. Using Peter-Weyl, we can write the Hilbert space of πσϕ as

Hσϕ =
�

Vτ ⊗ [Vτ ⊗W]Kϕ .

The lemma follows from this. �

To construct a distinguished unit vector in the representation space of πσϕ we
need to fix an irreducible representation τ : K → Aut(V) with highest weight σ and
realize the representation space W for τσ as the smallest Kϕ-invariant subspace of
V that contains the σ-weight space of V .

5.7. Definition. Define a smooth, norm-one function ξσϕ in the representation
space for πσϕ by the formula

ξσϕ(kx) =
dim(V)

1
2

vol(K)
1
2 dim(W)

1
2

ϕ(x)−1
�

α

�
τ(k)vα, vσ

�
vα,

where {vα} is an orthonormal basis for the Kϕ-invariant subspace W ⊆ V .

5.8. Lemma. If f ∈ C∞
c (G0) and if f = eσσ ∗ f ∗ eσσ, then

�

G0

f(g)�ξσϕ, πσϕ(g)ξσϕ�dg =
vol(K)

dim(V)

�

g/k
f(x)ϕ(x)dx.
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Proof. Most of this calculation is very similar to the one carried out in the proof of
Lemma 5.5. Using the definition of ξσϕ, the substitution g := g−1k, and the fact
that dkdl is an invariant measure on G0 = K � g/k, we find that

�

G0

f(g)�ξσϕ, πσϕ(g)ξσϕ�dg

=
vol(K)

dim(V) dim(W)

�

α

�

g/k
(eασ ∗ f ∗ eσα)(x)ϕ(x)dx.

At this point we invoke Lemma 5.1, which implies that

eασ ∗ f ∗ eσα = eασ ∗ eσσ ∗ f ∗ eσσ ∗ eσα

= dασ ∗ eσσ ∗ f ∗ eσσ ∗ dσα = dασ ∗ f ∗ dσα.

But now using the substitution x := k−1
1 xk1 and the fact that ϕ is Kϕ-invariant, we

find that
�

g/k
(dασ ∗ f ∗ dσα)(x)ϕ(x)dx

=
1

vol(Kϕ)2

�

Kϕ

�

Kϕ

�

g/k
dασ(k1)f(k−1

1 xk2)dσα(k−1
2 )ϕ(x)dk1dk2dx

=
1

vol(Kϕ)2

�

Kϕ

�

Kϕ

�

g/k
dασ(k1)f(xk−1

1 k2)dσα(k−1
2 )ϕ(x)dk1dk2dx

=

�

g/k
(f ∗ dσα ∗ dασ)(x)ϕ(x)dx.

Since by Lemma 5.1 again f ∗ dσα ∗ dασ = f, we conclude that

vol(K)

dim(V) dim(W)

�

α

�

g/k
(eασ ∗ f ∗ eσα)(x)ϕ(x)dx =

vol(K)

dim(V)

�

g/k
f(x)ϕ(x)dx,

as required. �

6. THE MACKEY ANALOGY AND C*-ALGEBRAS

As we noted earlier, the dual of a C∗-algebra C is the set Ĉ of equivalence classes
of irreducible representations of C. The dual carries a topology in which closed
sets correspond bijectively to the closed ideals of C: to a closed ideal J one asso-
ciates the set of all equivalence classes of irreducible representations that vanish
on J.

Actually for our purposes it will be a bit more convenient to associate to an
ideal J the complementary open set, which may be identified homeomorphically
with the dual of J (note that each irreducible representation of C either restricts
to zero on J or restricts to an irreducible representation of J, and each irreducible
representation of J extends uniquely to an irreducible representation of C). We
shall always make this identification.

If I ⊆ J ⊆ C are nested closed ideals in a C∗-algebra, then the duals of I and J
identify homeomorphically with the nested open subsets of the dual of C, and we
shall identify the dual of J/I with the dual of J minus the dual of I.
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We shall reduce most of our computations to one simple C∗-algebra lemma,
which it is convenient to state using the language of multiplier algebras. A multi-

plier of a C∗-algebra C is a map m : C → C for which there exists a map m∗ : C → C
such that

�mc1, c2� = �c1, m∗c2� (c1, c2 ∈ C),

where �c1, c2� = c∗1c2. The multiplier algebra of C is the algebra of all multipliers. It
is a C∗-algebra in the operator norm on C and it contains C as an ideal since C can
be viewed as acting on itself by left multiplication. See [Lan95, Ch. 2].

As with any C∗-algebra containing C as an ideal, an irreducible representation
of C extends uniquely to an irreducible representation of the multiplier algebra.

6.1. Lemma. Let C be a C∗-algebra and let p be a projection in the multiplier algebra of

C. If for every irreducible representation π of C the operator π(p) is a rank-one projection,

then:

(a) CpC = C, while pCp is a commutative C∗-algebra;

(b) the dual �C is a Hausdorff locally compact space; and

(c) the map a �→ â from pCp to C0(Ĉ) that is defined by the formula

π(a) = â(π)π(p)

is an isomorphism of C∗-algebras . �

6.2. Remark. The bimodule Cp implements a Morita equivalence between CpC and
pCp. We shall later use the fact that the inclusion of pCp into CpC induces an iso-
morphism in K-theory; this is a consequence of the Morita invariance of K-theory.

6.1. Subquotients of Group C*-Algebras.

6.3. Definition. Let K be the maximal compact subgroup of a connected Lie group,
and fix for the remainder of the paper a linear order on the equivalence classes of
irreducible representations of K,

�K = { τ1, τ2, τ3, . . . }

with the property that if τi precedes τj in the natural partial order coming from
highest weights, as in Section 2.3, then i < j.

Such an ordering is possible since each irreducible representation τ is preceded
by only finitely many other irreducible representations in the highest weight par-
tial order, up to equivalence.

6.4. Definition. Let M be a maximal torus for K. Associate to each irreducible
representation τn of K a highest weight σn. Let v be a unit vector in the σn-weight
space and define a smooth function pn on K by

pn(k) = dim(τn)�τn(k)v, v�.

The action of pn on C∞
c (G) by convolution extends to an action on C∗λ(G) as a

multiplier.

6.5. Lemma. If π : C∗λ(G) → B(H) is any representation, then π(pn) is the orthogonal

projection onto the σn-weight space of the τn-isotypical component of the unitary repre-

sentation of K determined by π. �
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6.6. Definition. Denote by �Gn the subset of the reduced dual of G determined
by those irreducible representations of G whose restrictions to K contain τn as a
subrepresentation.

6.7. Remark. Lemma 6.5 implies that each set Ĝn is an open subset of the reduced
dual, since in fact it is the dual of the closed ideal

Jn = C∗λ(G) · pn · C∗λ(G)

of C∗λ(G) generated by the multiplier pn.

6.8. Definition. Define ideals Jn as above, and define subquotients Cn by C1 = J1

and
Cn = (J1 + · · · + Jn)

�
(J1 + · · · + Jn−1)

for n > 1.

The dual of the C∗-algebra Cn is naturally homeomorphic to the locally closed
subspace

�Gn

���G1 ∪ · · · ∪ �Gn−1

�
⊆ �G.

This is precisely the subspace of Ĝ determined by irreducible representations of G
whose lowest K-type (for the linear ordering of Definition 6.3) is τn. We therefore
obtain a partition of Ĝ into locally closed subsets

�G = �C1 � �C2 � �C3 � · · · .

In the case where G is complex semisimple we shall use this and the similar de-
composition for G0 to compare C∗λ(G) and C∗λ(G0).

6.9. Definition. Let G = KAN be a connected complex semisimple group. If f is a
smooth, compactly supported function on G, then define a function f̂ : Â → C by
the formula

f̂(ϕ) = vol(K)

�

A

�

N
f(an)ϕ(a)δ(a)dadn

(see Section 5.2 for the definition of δ).

6.10. Proposition. Let G = KAN be a connected complex semisimple group. The corre-

spondence that associates to each smooth compactly supported function f on G the function

dim(τn)−1f̂ determines an isomorphism of C∗-algebras

pnCnpn −→
∼=

C0(Â/Wn),

where Wn is the subgroup of the Weyl group W that fixes the highest weight σn of the

representation τn.

Proof. The irreducible representations of Cn correspond to the irreducible repre-
sentations of G in the reduced dual with lowest K-type τn. By Lemma 5.2, these are
precisely the principal series representations πσϕ with discrete parameter σ = σn;
and for these, the projection πσϕ(pn) has rank one. Moreover it was shown in
Lemma 5.5 that

πσϕ(f) =
f̂(ϕ)

dim(τn)
πσϕ(pn)

for every smooth, compactly supported function f on G such that f = pnfpn. Be-
cause f̂ is a continuous function of ϕ, and because the Riemann-Lebesgue lemma
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shows that f̂ vanishes at infinity, the correspondence ϕ �→ πσϕ defines a continu-
ous and proper bijection from Â/Wn to Ĉn. Since by Lemma 6.1 the space Ĉn is
locally compact and Hausdorff, this bijection must in fact be a homeomorphism.
The proposition now follows from the rest of Lemma 6.1. �
6.11. Definition. Let G be a connected complex semisimple group and let G0 be
its associated semidirect product group. If f is a smooth, compactly supported
function on G0, then define a function f̂ : â → C by the formula

f̂(ϕ) = vol(K)

�

g/k
f(x)ϕ(x)dx,

in which the characters ϕ of a are viewed as balanced characters of g/k.

Of course, this f̂ is not the same as the Fourier transform that was considered in
Section 3.1.
6.12. Proposition. Let G be a connected complex semisimple group and let G0 be its

associated semidirect product group. The correspondence that associates to a smooth com-

pactly supported function f on G the function dim(τn)−1f̂ determines an isomorphism of

C∗-algebras

pnCnpn −→
∼=

C0(�a/Wn).

Proof. The proof is exactly the same as that of Proposition 6.10, but this time using
Lemma 5.6 and 5.8. �
6.2. Continuous Fields of Group C*-Algebras. In the previous section we showed
how the C∗-algebra of a complex semisimple group G and its associated semidirect
product G0 decompose into subquotients, each Morita equivalent to the commu-
tative C∗-algebra of C0-functions on the space Â/Wn

∼= â/Wn. We are going to
show that these decompositions for G and G0 are compatible with one another
in a very strong sense. To this end we are going to fit C∗λ(G) and C∗λ(G0) into a
continuous field of C∗-algebras.

The first stage of the construction involves only smooth manifolds. Let N be a
closed submanifold of a smooth manifold M and let νN be the normal bundle for
N ⊆ M; that is, the quotient of the tangent bundle of M, restricted to N, by the
tangent bundle of N. Then let

ν(N, M) = νN× {0} � M× R×

(disjoint union). There are unique smooth manifold structures on the sets ν(N, M)
such that:
(a) If U is an open subset of M and if V = U∩N, then ν(V,U) is an open subman-

ifold of ν(N, M).
(b) Every diffeomorphism from M to M � that carries N onto N � induces a diffeo-

morphism from ν(N, M) onto ν(N �, M �).
(c) If N = Rn and M = Rn+k, then the map from ν(N, M) onto Rn+k+1 defined

by
(x, y, t) �→ (x, t−1y, t) (x ∈ Rn, y ∈ Rk, t �= 0)

and
(x, X, 0) �→ (x, X, 0) (x,∈ Rn, X ∈ νxN)

is a diffeomorphism (we identify the fibers of the normal bundle with Rk in
the natural way).
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The spaces ν(N, M) are the smooth manifold analogues of the deformation to the

normal cone construction in algebraic geometry [Ful98, Ch 5].
The construction of ν(N, M) is functorial, and if it is applied to a closed sub-

group K of a Lie group G, then it produces a smooth family of Lie groups over R
(in a sense that the reader will readily make precise). All the fibers in this family
are copies of the Lie group G, except for the fiber over t = 0, which is the Lie group
G0 = K � g/k that we have been studying.

Let K be a maximal compact subgroup of a connected Lie group G and denote
the fibers of ν(K, G) by Gt. Choose a smoothly varying family of Haar measures
on the groups Gt and form the C∗-algebras C∗λ(Gt). The following fact is easy to
check using the fact that the group G0 is amenable.

6.13. Lemma. Let f be a smooth, compactly supported function on ν(K, G). Let ft be its

restriction to a compactly supported function on Gt, and view ft as an element of C∗λ(Gt).
The function t �→ �ft� is continuous on R.

Proof. The function is certainly continuous at each t �= 0 because all the C∗-algebras
are isomorphic via scalar multiplication with the smooth function of t that rescales
our choices of Haar measures. The lower semicontinuity of the norm function is a
simple feature of the reduced C∗-algebra construction (compare [Rie89, Thm. 2.5]
where the different but related case of twisted group C∗-algebras is considered),
whereas upper semicontinuity is a feature of the full group C∗-algebra construc-
tion (compare [Rie89, Prop. 2.2]). Since G0 is amenable, its full group C∗-algebra
is the same as its reduced group C∗-algebra, and continuity at t = 0 follows (com-
pare [Rie89, Cor. 2.7]). �

We therefore obtain a continuous field of C∗-algebras {C∗λ(Gt)}, as in [Dix77, Ch.
10] whose continuous sections are generated by the smooth, compactly supported
functions on ν(K, G).

6.3. Analysis of the Continuous Field. We shall now specialize the construction
of the previous section to the case where G is a connected complex semisimple
group with maximal compact subgroup K. We are going to analyze the continuous
field {C∗λ(Gt)} in the same way that we analyzed the individual C∗-algebras C∗λ(G)
and C∗λ(G0) in Section 6.1.

It will be convenient to restrict the continuous field {C∗λ(Gt)} to the closed inter-
val [0, 1] in R. Thus we shall introduce the following notation:

6.14. Definition. Denote by C the C∗-algebra of continuous sections of the restric-
tion of the continuous field {C∗λ(Gt)} to the interval [0, 1]. Thus C is the completion
of the fiberwise convolution algebra of smooth, compactly supported functions on
ν(K, G)|[0,1] in the norm

�f�C = sup
�
�ft�

�� t ∈ [0, 1]
�
.

Let us retain the ordering {τ1, τ2, . . . } on equivalence classes of irreducible rep-
resentations of K that we introduced in Definition 6.3. The functions pn on K from
Definition 6.4 act by fiberwise convolution on smooth compactly supported func-
tions on ν(K, G), so that

(s · f)t(g) =
1

vol(K)

�

K
s(k)ft(k

−1g)dk.

They define multipliers of C.
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6.15. Definition. Let Jn be the ideal Jn = CpnC of C. Define subquotient C∗-
algebas Cn by the formulas C1 = J1 and

Cn = (J1 + · · · + Jn)
�
(J1 + · · · + Jn−1).

In the following definition we shall identify the nonunitary character δ of the
Lie group A with a nonunitary character of a by means of the exponential map.

6.16. Definition. Let G be a connected complex semisimple group. If f is a smooth,
compactly supported function on the manifold ν(K, G), then define a function
f̂ : â× [0, 1] → C by

f̂(ϕ, t) =






vol(K)

�

g/k
f(x, 0)ϕ(x)dx t = 0

t−n vol(K)

�

a

�

n
f(exp(a) exp(n), t)ϕ(t−1a)δ(a)dadn t �= 0.

6.17. Lemma. Let f be a smooth, compactly supported function on ν(K, G). Its transform

f̂ is a smooth function on â× [0, 1] that vanishes at infinity.

Proof. The product of K with the Lie algebra a + n is diffeomorphic to G via the
map that sends (k, a + n) to k exp(a) exp(n). It follows from the properties (a),
(b) and (c) that we used to characterize ν(K, G) in the previous section that the
bijection

K× a× n× R −→ ν(K, G)

defined by the formula

(k, a, n, t) �→
�

(k, a + n, 0) (t = 0)

(k exp(ta) exp(tn)), t) (t �= 0)

is a diffeomorphism (on the right we are identifying a + n ∈ a + n with its image
in the quotient g/k). As a result, every smooth, compactly supported function f on
ν(K, G) has the form

�
f(k, a + n, 0) = F(k, a, n, 0)

f(k exp(ta) exp(tn), t) = F(k, a, n, t) t �= 0

for some smooth and compactly supported function F on K × a × n × R. We see
that the transform of f is given by the formula

f̂(ϕ, t) = vol(K)

�

a

�

n
F(e, a, n, 0)ϕ(a)δ(ta)dadn

for all t, from which the result follows. �
The algebra Z = C[0, 1] of continuous functions on the interval [0, 1] lies in the

center of the multiplier algebra of Cn. If t ∈ [0, 1], then let

Zt =
�

h ∈ C[0, 1]
�� h(t) = 0

�
.

The product ZtCn is a closed ideal in Cn, and the evaluation map induces an iso-
morphism from Cn/ZtCn to the algebra Cn, as in Definition 6.8, associated to the
group Gt (this is a consequence of the upper semicontinuity of the field {C∗λ(Gt}).
Since by Schur’s lemma the algebra of multipliers Z acts as multiples of the iden-
tity in any irreducible representation of C, we see that the dual of Cn is the disjoint
union over t ∈ [0, 1] of the sets Ĝt,n determined by the irreducible representations
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πσϕ,t of Gt with lowest K-type τn (here σ = σn). As a set, the dual of Cn therefore
identifies with â/Wn × [0, 1].

6.18. Theorem. Let G = KAN be a connected complex semisimple group. Then CnpnCn =
Cn. Moreover the correspondence that associates to a smooth compactly supported func-

tion f on ν(K, G) the function dim(τn)−1f̂ determines an isomorphism of C∗-algebras

pnCnpn −→
∼=

C0

�
â/Wn × [0, 1]

�
,

where Wn is the subgroup of the Weyl group W that fixes the highest weight σn of the

representation τn.

Proof. The multiplier pn acts as a rank-one projection in each irreducible represen-
tation of Cn. Exactly as in the proof of Proposition 6.10, we find that the corre-
spondence (ϕ, t) �→ πσϕ,t defines a homeomorphism from Â/Wn × [0, 1] to Ĉn,
and the theorem follows from Lemma 6.1. �

7. THE MACKEY ANALOGY AND K-THEORY

Finally we are ready to use the Mackey analogy in the form given in the last
section to prove the Connes-Kasparov conjecture for complex semisimple groups.
Aside from the novelty of the argument, our reason for giving a new proof is to
promote the idea that the Connes-Kasparov isomorphism should be viewed as
only a K-theoretic reflection of a much more precise statement in representation
theory.5

If we extend each f ∈ C∗λ(G0) to a continuous section of the continuous field
{C∗λ(Gt)} and denote by µt(f) its value at t, then from continuity of the field (in
fact from upper continuity of the field) it follows that

lim
t→0






µt(α1f1 + α2f2) − α1µt(f1) + α2µt(f2)

µt(f1f2) − µt(f1)µt(f2)

µt(f
∗) − µt(f)

∗





= 0.

As a result, the family of maps µt : C∗λ(G0) → C∗λ(G) is an asymptotic morphism
in the sense of [CH90].6 As explained in [CH90] and reviewed below, asymp-
totic morphisms induce homomorphisms on K-theory groups, and as was noted
in [BCH94, p. 263], the following is equivalent to the Connes-Kasparov conjecture:

7.1. Conjecture. Let G be a connected Lie group and let K be a maximal compact subgroup

of G. The K-theory map

µ : K∗(C
∗
λ(G0)) −→ K∗(C

∗
λ(G))

associated to the asymptotic morphism {µt} obtained from the deformation ν(K, G) is an

isomorphism.

For a proof of the equivalence, see [Con94, Prop. 9, p. 141]. Of course, since we
noted earlier that the Connes-Kasparov conjecture has now been proved for all G,
the same goes for Conjecture 7.1.

5This idea is already strongly suggested by the form of the Penington-Plymen proof described in
Section 4.

6Although here we have parametrized the functions µt by t ∈ (0,1] rather than t ∈ [1,∞), as is
done in [CH90].
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The K-theory map in Conjecture 7.1 can be constructed from the diagram

K∗(C)

������������

������������

K∗(C∗λ(G0))
µ

���������� K∗(C∗λ(G))

in which the downward maps are induced from the evaluation maps at t = 0 and
t = 1. The left downward map is an isomorphism because, as a result of triviality
of the field {C∗λ(Gt)} away from zero, the kernel of evaluation at t = 0 is isomorphic
to the algebra of continuous functions from [0, 1] into C∗λ(G) that vanish at t = 0,
and this C∗-algebra has zero K-theory. The dashed arrow can therefore be filled in
so as to make the diagram commute.

To prove Conjecture 7.1 we shall show that the right downward arrow is an
isomorphism, and to this it suffices to show that, for every n, evaluation at t = 1
gives an isomorphism

K∗(J1 + · · · + Jn) −−−−−→
∼=

K∗(J1 + · · · + Jn).

This is because ∪n(J1+ · · ·+Jn) is dense in C, so that by the continuity of K-theory,

K∗(C) = K∗
�
lim−→(J1 + · · · + Jn)

�
= lim−→ K∗

�
J1 + · · · + Jn

�
,

and the same for C∗λ(G). By the five lemma, excision in K-theory and induction,
the isomorphism statement that we now wish to prove will follow from the fact
that the evaluation map on subquotients

K∗(Cn) −→ K∗(Cn)

is an isomorphism for all n. Finally, in the diagram

K∗(Cn) �� K∗(Cn)

K∗(pnCnpn)

��

�� K∗(pnCnpn),

��

the vertical maps, induced from inclusions, are isomorphisms. Indeed we noted
earlier that if p is a projection in the multiplier algebra of any C∗-algebra C, then
the map K∗(pCp) → K∗(CpC) is an isomorphism. But our calculations of pnCnpn

and pnCnpn show that there is a diagram

K∗(pnCnpn) �� K∗(pnCnpn)

K∗
�
C0(â/Wn × [0, 1])

�
∼=

��

�� K∗
�
C0(â/Wn)

�
,

∼=

��

and by homotopy invariance of K-theory the bottom map, also induced from eval-
uation at t = 1, is evidently an isomorphism.
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