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We formulate and prove an equivariant Bott periodicity theorem for infinite
dimensional Euclidean vector spaces. The main features of our argument are (i) the
construction of a non-commutative C*-algebra to play the role of the algebra of
functions on infinite dimensional Euclidean space; and (ii) the construction of a
certain index one elliptic partial differential operator which provides the basis for
an inverse to the Bott periodicity map. These tools have applications to index
theory and the Novikov conjecture, notably a proof of the Novikov conjecture
for amenable groups (the applications will be considered elsewhere). � 1998
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1. INTRODUCTION

If G is a compact group and X is a compact space then the equivariant
K-theory group K 0

G(X ) is the Grothendieck group of complex G-vector
bundles on X. There is an associated group K 1

G(X ), defined using the
suspension of X, and if X is a locally compact G-space then its equivariant
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K-theory is defined by means of the one-point compactification, in such a
way that

K*G(X� )$K*G(X )�K*G(pt).

The main result in equivariant K-theory is the Bott periodicity theorem
[17, 1], which asserts that if E is a finite dimensional Euclidean vector
space, on which G acts continuously, linearly and isometrically, then there
is an isomorphism

K*G(TE)$K*G(pt).

The purpose of this article is to prove a version of the Bott periodicity
theorem in the case where the Euclidean space E is possibly infinite dimen-
sional. Our initial impetus to do so came from index theory, more precisely
the equivariant index theory of elliptic operators on proper and co-compact
G-manifolds, but as we shall point out in a moment, our work has at least one
other significant application.

Because we are interested in infinite dimensional spaces, which are not
locally compact, and because we wish to consider noncompact groups G,
some care must be taken even in the formulation of a Bott periodicity
theorem. In particular:

v If E is infinite dimensional then it is not locally compact, and so it
lies outside of the ordinary scope of equivariant K-theory, even for compact
groups.

v If G is noncompact then the definition of equivariant K-theory as
a Grothendieck group of equivariant vector bundles is no longer appropriate.

Both problems are dealt with by means of C*-algebra K-theory. If G is
a compact group, acting on a locally compact space X, then it is known
[12] that the equivariant K-theory K*G(X ) is isomorphic to the C*-algebra
K-theory K

*
(C0(X ) < G), where C0(X ) < G denotes the crossed product

C*-algebra. So if G is locally compact, and X is any locally compact G-space,
then we shall define K*G(X ) to be K

*
(C0(X ) < G).1 More generally, if A is

any C*-algebra, equipped with a continuous action of G by C*-algebra
automorphisms, then we shall define K

*
G(A) to be K

*
(A < G). If E is a

finite dimensional Euclidean vector space then denote by C(E) the C*-algebra
of continuous functions, vanishing at infinity, from E into the complexified
Clifford algebra of E. If G acts linearly and isometrically on E then it also

2 HIGSON, KASPAROV, AND TROUT

1 If G is noncompact then there is an issue of which version of the C*-algebra C0(X )<G to
use��we shall choose the full crossed product [15].
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acts by C*-algebra automorphisms on C(E), and if we take into account
the natural Z�2-grading on C(E), then this C*-algebra serves as a non-
commutative analogue of C0(TE). In particular, the Bott periodicity
theorem may be reformulated as follows:

K
*
G(C(E))$K

*
G(C(0)).

If E is infinite dimensional then there seems to be no suitable substitute for
either C0(TE) or C(E). However if we introduce an operation of suspension,
and form the (Z�2-graded) tensor product

SC(E)=C0(R)�� C(E),

then an interesting C*-algebra may be devised in the infinite dimensional
case. To describe it, we will show in Section 2 that if E1 is a subspace of
a finite dimensional Euclidean space E2 then there is a canonical homomor-
phism of C*-algebras, SC(E1) � SC(E2) which induces the Bott periodicity
isomorphism at the level of K-theory. Our construction is functorial, not
only at the level of K-theory, but at the level of the C*-algebras themselves,
and this allows us to form a direct limit

SC(E)= �
Ea/E

SC(Ea),

taken over the directed system of all finite dimensional linear subspaces of
an infinite dimensional Euclidean vector space E.

The inclusion of the zero dimensional subspace into E induces a homo-
morphism SC(0) � SC(E), and our main theorem is this:

Theorem. If G is a countable discrete group and E is a countably infinite
dimensional Euclidean vector space then the map K

*
G(SC(0)) � K

*
G(SC(E))

is an isomorphism of abelian groups.

The hypothesis that E be of countably infinite dimensions is not really
important. It streamlines a key technical argument while being adequate
for the applications we have in mind. The periodicity map makes perfect
sense when G is any locally compact group, not necessarily discrete, and
our proof of the periodicity theorem extends to this case, at least when G
is second countable. But one or two extra calculations are required��they
will be outlined in an appendix.

To prove our theorem we shall adapt the well known argument of
Atiyah [1], which involves the construction of a left inverse map, followed
by a quite formal ``rotation'' argument to show that the left inverse is also
a right inverse. Our construction of the left inverse uses the theory of

3A BOTT PERIODICITY THEOREM
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asymptotic morphisms, and the construction of a certain index one operator
on the infinite dimensional Euclidean space E.

We have in mind two applications of our result, both of which will be
considered elsewhere (see [18] and [11]). The first is the construction of
a topological index for equivariant elliptic operators on proper, G-compact,
G-manifolds. Recall that if G is compact and if M is a smooth, closed
G-manifold then associated to an equivariant embedding e: M/�Rn (for
some linear action of G on Rn) there is a Gysin homomorphism e! : K*G(TM)
� K*G(TRn), and Bott periodicity allows us to define a topological index
map

K*G(TM) wwwww�topological index K*G(pt)

e! =

K*G(TRn) wwwww�$
Bott periodicity

K*G(pt).

The equivariant K-theory group of a point identifies with the complex repre-
sentation ring of G, and according to the Atiyah�Singer index theorem [2],
if D is an equivariant elliptic operator on M, with symbol class [_D] # KG(TM),
then the analytic index of D is equal to the image of [_D] under the topological
index map. Our Bott periodicity theorem allows us to make essentially the
same construction in the case where G is locally compact and M is a proper
and G-compact G-manifold.

The second application is quite different, and is a development of the
relationship, explored in [13], between Bott periodicity and the Novikov
higher signature conjecture, in which a version of the Bott periodicity argument,
applied to symmetric spaces of non-compact type (which are diffeomorphic to
Euclidean space, in a controlled fashion), is used to prove the Novikov conjec-
ture for discrete subgroups of connected Lie groups. In a similar fashion,
our Bott periodicity argument may be used to verify the Novikov conjecture
(as well as the stronger Baum�Connes conjecture [4]) for groups which
act both isometrically and metrically properly on Euclidean space, in the
sense of [10]. This applies, for example, to countable amenable groups [5].

The contents of the paper are as follows. In Section 2 we shall give an
account of the standard Bott periodicity theorem, from the point of view
of C*-algebra theory, and with a view to our infinite dimensional generali-
zation. In Section 3 we shall construct the C*-algebra SC(E) associated to
an infinite dimensional Euclidean space and formulate our periodicity theorem
for it. Sections 4 and 5 contain the substance of our proof. Finally there are
three appendices which review some aspects of Z�2-graded C*-algebra theory;
complete a calculation involving Mehler's formula; and provide some results
relevant to the periodicity theorem for continuous groups.

4 HIGSON, KASPAROV, AND TROUT
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2. CLIFFORD ALGEBRAS AND BOTT PERIODICITY

Let E be a finite dimensional Euclidean vector space (i.e., a real inner
product space).

1. Definition. Denote by Cliff (E) the Clifford algebra of E, that is,
the universal complex algebra with unit which contains E as a real linear
subspace in such a way that e2=&e&2 1, for every e in E.

If [e1 , ..., en] is an orthonormal basis for E then the monomials ei1
} } } eik

,
for i1< } } } <ik , form a linear basis for Cliff(E). We give Cliff(E) a Hermitian
inner product by deeming these monomials to be orthonormal; the inner
product does not depend on the choice of basis.

By thinking of the algebra Cliff (E) as acting by left multiplication on the
Hilbert space Cliff (E), we endow the Clifford algebra with the structure of
a C*-algebra, in such a way that each e # E is self-adjoint. It is a Z�2-graded
C*-algebra, with each e # E having grading degree one. The structure of
Cliff (E) is well known. See [14] for a discussion of Clifford algebras, and
[6] for a general discussion of graded C*-algebras, along with Appendix A
for a few supplementary remarks.

2. Definition. Denote by C(E) the Z�2-graded C*-algebra C0(E, Cliff(E))
of continuous, Cliff (E)-valued functions on E which vanish at infinity, with
Z�2-grading induced from Cliff (E).

3. Definition. Denote by S=C0(R) the C*-algebra of continuous
complex-valued functions on R which vanish at infinity. Grade S according
to even and odd functions. If A is any Z�2-graded C*-algebra then let SA
be the graded tensor product S�� A. In particular, let SC(E)=S�� C(E).

The C*-algebra SC(E) carries a natural Z�2-grading, as does any graded
tensor product, but when we come to consider its K-theory, we shall ignore the
grading. To make this matter clear, from now on, if A is a C*-algebra��graded
or not��then K

*
(A) will denote the K-theory of the underlying C*-algebra,

forgetting the grading. The Bott periodicity isomorphism we wish to address
is the isomorphism

K
*

(SC(0))$K
*

(SC(E)).

In the remainder of this section we shall describe the construction of a
V-homomorphism

;: SC(0) � SC(E)

5A BOTT PERIODICITY THEOREM
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which implements the Bott periodicity isomorphism, and then give Atiyah's
proof of Bott periodicity, but using the language of asymptotic morphisms.
This will set the stage for the infinite dimensional generalization in the coming
sections.

4. Definition. The Clifford operator on E is the function C: E � Cliff(E)
whose value at e # E is e # Cliff(E). It is a degree one, essentially self-adjoint,
unbounded multiplier of C(E), with domain the compactly supported functions
in C(E) (see Appendix A for some remarks concerning unbounded multipliers).

5. Definition. Denote by X the function of multiplication by x on R,
viewed as a degree one, essentially self-adjoint, unbounded multiplier of
S=C0(R) with domain the compactly supported functions in S.

The operator X�� 1+1�� C is a degree one, essentially self-adjoint,
unbounded multiplier of SC(E)=S�� C(E) (see Appendix A). Both C and X
have compact resolvents (in the sense of multiplier algebra theory), and there-
fore so does X�� 1+1�� C. So we use the functional calculus to define

;: S=SC(0) � SC(E)

by the formula

;: f [ f (X�� 1+1�� C).

We aim now to prove the following theorem:

6. Bott Periodicity Theorem. The V-homomorphism ;: SC(0) � SC(E)
induces an isomorphism ;

*
: K

*
(SC(0)) � K

*
(SC(E)).

The key to the proof is the construction of an inverse to the periodicity
map ;

*
: K

*
(SC(0)) � K

*
(SC(E)) in the form of an asymptotic morphism.

So we begin by recalling from [8] a few particulars from the theory of
asymptotic morphisms.

If A and B are C*-algebras then an asymptotic morphism from A to B
is a family of functions .t : A � B, parametrized by t # [1, �), such that
.t(a) is norm continuous in t, and

lim
t � � {

.t(a1) .t(a2)&.t(a1a2)
.t(a1)+.t(a2)&.t(a1+a2)

*.t(a1)&.t(*a1)
.t(a*1)&.t(a1)* ==0,

for all a1 , a2 # A and * # C. An asymptotic morphism from A to B determines
a V-homomorphism from A into the quotient C*-algebra Q(B) of bounded

6 HIGSON, KASPAROV, AND TROUT
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continuous functions from [1, �) into B, modulo the ideal of continuous
functions from [1, �) to B which vanish at infinity:

.: A � Q(B)=Cb([1, �), B)�C0([1, �), B).

If . and .$ are asymptotically equivalent, that is if .t(a)&.$t(a) � 0, for
every a # A, then . and .$ determine the same homomorphism from A to
Q(B). There is a one to one correspondence between V-homomorphisms
from A to Q(B) and asymptotic equivalence classes of asymptotic morphisms
from A to B. Every V-homomorphism .: A � B may be regarded as an
asymptotic morphism by setting .t=., for all t.

A homotopy of asymptotic morphisms is an asymptotic morphism from
A to C([0, 1], B). Asymptotically equivalent asymptotic morphisms are
homotopy equivalent.

An asymptotic morphism .: A � B induces a map .
*

: K
*

(A) � K
*

(B).
The induced map depends only on the homotopy class of .. It is obviously
possible to compose asymptotic morphisms with V-homomorphisms (either
on the left or the right) and the action on K-theory is functorial.

Finally, if .: A � B is an asymptotic morphism and C is a third C*-algebra
then we can form the tensor product .�1: A�C � B�C. As a rule one
must use the maximal tensor product here, but of course in the context of
nuclear C*-algebras all tensor products agree. If . is grading preserving
then there is a similar construction with the graded tensor product. Both
the graded and ungraded constructions are well defined at the level of
homotopy classes, and are functorial with respect to composition with V-homo-
morphisms.

Having reviewed these points, we are ready to proceed.

7. Definition. Denote by h(E) the Z�2-graded Hilbert space

h(E)=L2(E, Cliff (E))

of square-integrable functions from E into Cliff (E). The Dirac operator is
the unbounded operator

D= :
n

i=1

ei@
�

�xi
,

on h(E), where [e1 , ..., en] is an orthonormal basis for E, [x1 , ..., xn] is the
dual coordinate system on E, and ei@ denotes the operator of right multi-
plication by ei on h(E), twisted by the Z�2-grading:

ei@!=(&1)deg(!) !ei .

The domain of D is the Schwartz subspace of h(E).

7A BOTT PERIODICITY THEOREM
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The Dirac operator is a grading-degree one operator. As a constant
coefficient partial differential operator, it is easily checked to be essentially
self-adjoint. We can also view it as an essentially self-adjoint multiplier of
the C*-algebra K(h(E)) of compact operators on h(E), with domain those
compact operators which map h(E) continuously into the Schwartz space.

8. Definition. Using the Dirac operator, we define an asymptotic
morphism

.: SC(E) � SK(h(E))

as follows:

.t : f�� h [ ft(X�� 1+1�� D)(1�� Mht
),

where ft(x)= f (t&1x); ht(e)=h(t&1e); and Mht
denotes the operator on

h(E) of left multiplication by ht .

The fact that .t( f�� h) lies in K(h(E)) is proved as follows. It suffices to
consider the case where f is one of the generators exp(&x2) or x exp(&x2)
of the C*-algebra S, and where h is compactly supported. In the first case
.t( f�� h) is the element exp(&t&2x2)�� exp(&t&2D2) Mht

, while in the
second it is

t&1x exp(&t&2x2)�� exp(&t&2D2) Mht
+exp(&t&2x2)

�� t&1D exp(&t&2D2) Mht
.

But ft(D) Mht
# K(h(E)), for any f # C0(R): this is an elementary consequence

of the ellipticity of the Dirac operator and the Rellich lemma. Compare [16],
for instance.

Granted this, our formula for .t defines a function from the algebraic
tensor product of S and C(E) into Q(SK(h(E))). To obtain from it an
asymptotic morphism we need to note that this function is in fact a V-homo-
morphism, and hence extends to the C*-algebra tensor product. This is an
immediate consequence of the following calculation:

9. Lemma. If f # C0(R) and h # C(E) then

lim
t � �

&[ ft(X�� 1+1�� D), (1�� Mht
)]&=0,

where the brackets [ , ] denote the graded commutator.

8 HIGSON, KASPAROV, AND TROUT
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Proof. It suffices to prove this when h is smooth and compactly supported
and when f is one of the generators e&x2

or xe&x2
for C0(R). The commutator

above is the one of

e&t &2x 2 �� [e&t&2D2
, Mht

]

or

e&t&2x 2 �� [t&1De&t&2D2
, Mht

]+t&1xe&t&2x 2 �� [e&t&2D2
, Mht

].

So the lemma follows from the simpler assertion that if f # C0(R) then

lim
t � �

&[ ft(D), Mht
]&=0.

To prove this, consider the generators f (x)=(x\i)&1 and note that

[ ft(D), Mht
]=&ft(D)[t&1D, Mht

] #deg(h)( ft(D)),

where # is the grading automorphism (see Appendix A). But

[t&1D, Mht
]=t&1 :

n

i=1

ei@
�ht

�xi
,

from which it is easy to see that the norm of the commutator is t&2 times
the supremum of the gradient of h. K

10. Definition. Let P # K(h(E)) be the orthogonal projection onto the
one-dimensional subspace of h(E) spanned by the Clifford algebra-valued
function exp(&1

2&e&2) } 1.

Using the stability property of K-theory [6] it is easily checked that:

11. Lemma. If A is any graded C*-algebra then the V-homomorphism
_: A � A�� K(h(E)) defined by the formula _: a [ a�� P induces an isomor-
phism on K-theory.

We can now define a left inverse to the periodicity map by the diagram

K
*

(SC(E)) w�
.

* K
*

(SK(h(E))) ww�
_

*
&1

$ K
*

(S).

To prove that it really is a left inverse, we begin by considering the
composition

S w�; SC(E) w�. SK(h(E)).

9A BOTT PERIODICITY THEOREM
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12. Definition. Define an unbounded symmetric operator on h(E),
with domain the Schwartz space, by

B= :
n

i=1

ei@
�

�xi
+eixi .

Thus B=D+C, where D is the Dirac operator of Definition 7 and C is the
Clifford operator of Definition 4.

It is not hard to show that B is essentially self-adjoint, and has compact
resolvent. One way of doing this will be indicated in a moment.

13. Proposition. The composition

S w�; SC(E) w�. SK(h(E)),

which is an asymptotic morphism from S to SK(h(E)), is asymptotic to the
family of V-homomorphisms

f [ ft(X�� 1+1�� B).

We defer the proof of this, which is an application of Mehler's formula,
until Appendix B.

To further analyze the composition .; we need to understand the
spectral theory of B. The following is a straightforward calculation:

14. Lemma. The square of B is

B2= :
n

i=1

&
�2

�x2
i

+x2
i +N,

where N is the ``number operator'' on Cliff (E) defined by

Nei1
ei2

} } } eik
=(2k&n) ei1

ei2
} } } eik

.

The well known spectral theory for the harmonic oscillator &d 2�dx2+x2

(see for instance [9]) gives us the following:

15. Corollary. (i) B2 admits an orthonormal eigenbasis of Schwartz-class
functions, with eigenvalues 2n (n=0, 1, ...), each of finite multiplicity. Hence
B admits an orthonormal eigenbasis of Schwartz-class functions, with eigen-
values \- 2n, each of finite multiplicity.

(ii) The kernel of (the closure of ) B is spanned by exp(&1
2&e&2) } 1.

10 HIGSON, KASPAROV, AND TROUT
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Note that since B has an orthonormal eigenbasis of Schwartz class func-
tions, it is essentially self-adjoint on the Schwartz space. In addition, it has
compact resolvent, since its eigenvalue sequence converges to infinity in
absolute value.

16. Proposition. The map

K
*

(SC(E)) w�
.

* K
*

(SK(h(E))) ww�
_

*
&1

$ K
*

(S)

is left inverse to the periodicity map ;
*

: K
*

(S) � K
*

(SC(E)).

Proof. Since the asymptotic morphism f [ ft(X�� 1+1�� B) is just a
continuous family of V-homomorphisms, it is homotopic to the V-homo-
morphism f [ f (X�� 1+1�� B), via the homotopy

f [ f1&s+st(X�� 1+1�� B) s # [0, 1].

Since the operator P in Definition 10 is the orthogonal projection onto the
kernel of B, the V-homomorphism f [ f (X�� 1+1�� B) is in turn homotopic
to the V-homomorphism f [ f�� P, along the homotopy of V-homomorphisms

f [ { f (X�� 1+s&1�� B)
f�� P

s # (0, 1]
s=0.

Thus by Proposition 13 the composition .; is homotopic to _, and hence
_

*
&1 .

*
;

*
=id, as required. K

To complete the proof of the Bott periodicity theorem we must argue
that the reverse composition of the periodicity map ;

*
with the homomor-

phism _
*
&1.

*
in Proposition 16 is the identity. It is given by the diagram

;

SC(E) ww�.
SK(h(E))

_

S SC(E),

which we can ``complete'' to get the following:

;

SC(E) ww�.
SK(h(E)) ww�;�� 1

SC(E)�� K(h(E))

_ _

S SC(E).

Since the vertical maps induce isomorphisms on K-theory, to prove that
_

*
&1 .

*
gives a right inverse to ; it suffices to prove that the composition

11A BOTT PERIODICITY THEOREM
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of . with ;�� 1 along the top row of the diagram induces an isomorphism
in K-theory. To do this we introduce one more diagram:

. ; �� 1
SC(E) SK(h(E)) SC(E)�� K(h(E))

;�� 1 flip

SC(E)�� C(E) ww�
flip

SC(E)�� C(E) ww�
.~

SK(h(E))�� C(E).

The maps denoted ``flip'' are the V-isomorphisms x�� y [ (&1)deg(x) deg( y)

y�� x which exchange the factors of a graded tensor product and the
asymptotic morphism .~ is defined by

.~ t : f�� h�� k [ .t( f�� h)�� kt .

17. Lemma. The above diagram asymptotically commutes.

Proof. We shall check this on the generators exp(&x2)�� h and x exp(&x2)
�� h of SC(E). On the first generator, going around the diagram in either
direction produces the element

exp(&t&2x2)�� exp(&t&2D2) Mht
�� exp(&t&2C 2).

On the second generator we get

t&1x exp(&t&2x2)�� exp(&t&2D2) Mht
�� exp(&t&2C2)

+exp(&t&2x2)�� t&1D exp(&t&2D2) Mht
�� exp(&t&2C2)

\exp(&t&2x2)�� exp(&t&2D2) Mht
�� t&1C exp(&t&2C2),

where the sign varies according as h is of even or odd grading degree. In
other words, the diagram is exactly commutative on generators. K

18. Lemma. The flip map on C(E)�� C(E) is homotopic, through graded
V-homomorphisms, to the map h1�� h2 [ h1�� @h2 , where @ is the automorphism
of C(E) induced from the automorphism e [ &e of E.

Remark. If g: E1 � E2 is an isometric isomorphism then it extends to a
V-isomorphism g: Cliff(E1) � Cliff(E2), and there is an induced V-isomorphism
g: C(E1) � C(E2) defined by (gh)(e2)= g(h(g&1e2). This explains the auto-
morphism @ in the lemma.

Proof of Lemma 18. If E1 and E2 are finite dimensional Euclidean spaces
then there is a V-isomorphism

Cliff (E1 �E2)$Cliff (E1)�� Cliff (E2)

12 HIGSON, KASPAROV, AND TROUT
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defined by (e1 , e2) [ e1 �� 1+1�� e2 . This in turn gives an isomorphism

C(E1)�� C(E2)$C(E1 �E2)

defined by h1�� h2(e1 , e2)=h1(e1)�� h2(e2), which is a Cliff(E1)�� Cliff(E2)-
valued function on E1 �E2 .

It follows from these considerations that C(E)�� C(E) is V-isomorphic to
C(E�E), and it is easy to check that under this identification, the flip
corresponds to the automorphism of C(E�E) induced from the flip auto-
morphism (e1 , e2) [ (e2 , e1) on E�E. But this flip is homotopic to the
automorphism (e1 , e2) [ (e1 , &e2) through the family of rotations

rs : (e1 , e2) [ (sin(s) e1+cos(s) e2 , cos(s) e1&sin(s) e2),

where s # [0, ?�2]. K

Proof of Theorem 6. Returning to the last commutative diagram, and in
view of Lemma 18, to prove that the top row induces an isomorphism in
K-theory it suffices to show that the composition

SC(E) ww�;�� @
SC(E)�� C(E) w�.~ SK(h(E))�� C(E)

induces an isomorphism. For this we shall follow the proof of
Proposition 16. By Proposition 13 the composition is asymptotic to the
family of V-homomorphisms

f�� h [ ft(X�� 1+1�� B)�� @(ht).

It is thus homotopic to the single V-homomorphism f�� h [ f (X�� 1+1�� B)
�� @(h) via the homotopy

f�� h [ f1&s+st(X�� 1+1�� B)�� @(h1&s+st) s # [0, 1].

This in turn is homotopic to the V-homomorphism _�� @: f�� h [ f�� P
�� @(h) via the homotopy

f�� h [ { f (X�� 1+s&1�� B)�� @(h)
f�� P�� @(h)

s # (0, 1]
s=0.

It follows from Lemma 11 that _�� @ induces an isomorphism in K-theory.
K

13A BOTT PERIODICITY THEOREM
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3. THE C*-ALGEBRA OF AN INFINITE DIMENSIONAL
EUCLIDEAN SPACE

Let E be an infinite dimensional Euclidean vector space. We are going
to construct a C*-algebra SC(E) analogous to the one constructed in the
previous section for finite dimensional Euclidean spaces. It should be noted
that in the infinite dimensional case SC(E) will not be the suspension of
a C*-algebra C(E). Nevertheless our notation seems reasonably appropriate,
and will (we hope) not cause any confusion.

1. Definition. Let Eb be a finite dimensional Euclidean vector space
and let Ea be a linear subspace of Eb . Define a V-homomorphism

;ba : SC(Ea) � SC(Eb)

as follows. Let Eba be the orthogonal complement of Ea in Eb and note the
isomorphism

SC(Eb)$SC(Eba)�� C(Ea),

coming from the isomorphism C(Eba) �� C(Ea)$C(Eba �Ea) described in
the proof of Lemma 2.18. Using this we define

;ba=;�� 1: S�� C(Ea) � SC(Eba)�� C(Ea),

where ;: S � SC(Eba) is the Bott periodicity map from Theorem 2.6.

Remark. If we follow the V-homomorphism SC(Ea) � SC(Eb) with
the restriction map

SC(Eb)=S�� C0(Eb , Cliff (Eb)) � S�� C0(Ea , Cliff (Eb))

we get the map S�� C0(Ea , Cliff (Ea))/�S�� C0(Ea , Cliff (Eb)) induced
from the inclusion of Cliff (Ea) into Cliff (Eb). This shows that the V-homo-
morphism ;ba is injective.

2. Proposition. Suppose that Ea /Eb /Ec . The composition

SC(Ea) w�
;ba SC(Eb) w�

;cb SC(Ec)

is the V-homomorphism ;ca : SC(Ea) � SC(Ec).

Proof. The composition is as follows:

S�� C(Ea) ww�;�� 1
SC(Eba)�� C(Ea)

www�;�� 1�� 1
S�� C(Ecb)�� C(Eba)�� C(Ea).

14 HIGSON, KASPAROV, AND TROUT
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Since it is a tensor product with the identity on C(Ea), and since ;ca is of
the same type, we shall ignore the factor C(Ea) in what follows.

Let us calculate the composition on the generators exp(&x2) and
x exp(&x2) of the C*-algebra S. We obtain the elements

exp(&x2)�� exp(&C 2
cb)�� exp(&C 2

ba)

and

x exp(&x2)�� exp(&C 2
cb)�� exp(&C 2

ba)

+exp(&x2)�� Ccb exp(&C 2
cb)�� exp(&C 2

ba)

+exp(&x2)�� exp(&C 2
cb)�� Cba exp(&C 2

ba),

where Cba denotes the Clifford operator on Eba , and so on. Under the iso-
morphism C(Eca)$C(Ecb)�� C(Eba) the self-adjoint closure of Cca corresponds
to the self-adjoint closure of Ccb �� 1+1�� Cba . Hence the element exp(&C2

ca)
corresponds to exp(&C2

cb)�� exp(&C2
ba), while the element Cca exp(&Cca)2

corresponds to

Ccb exp(&C 2
cb)�� exp(&C 2

ba)+exp(&C 2
cb)�� Cba exp(&C 2

ba)

(see Appendix A). Therefore the composition ;cb;ba agrees with ;ca on
generators, and hence the two maps are equal. K

3. Definition. Let E be an infinite dimensional Euclidean space. We
define SC(E) to be the direct limit C*-algebra

SC(E)= �
a

SC(Ea),

where the direct limit is over the directed set of all finite dimensional
subspaces Ea /E, using the V-homomorphisms ;ba of Definition 1.

The inclusion of the zero subspace into E induces a V-homomorphism

;: SC(0) � SC(E),

which is an ``infinite dimensional'' version of the Bott periodicity homomor-
phism considered in the last section. It follows easily from Theorem 2.6,
along with the commutation of the K-functor and direct limits [6], that this
infinite dimensional periodicity homomorphism induces an isomorphism on
K-theory. However we are interested in an equivariant form of the periodicity
isomorphism, which does not reduce so readily to the finite dimensional
case. To formulate it, we introduce the following notation.

15A BOTT PERIODICITY THEOREM
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4. Definition. Let G be a locally compact group and let A be a C*-algebra
on which G acts continuously by C*-algebra automorphisms. We define K

*
G(A)

to be the K-theory of the full crossed product C*-algebra A<G:

K
*
G(A)=K

*
(A<G).

See [15] for a discussion of crossed product C*-algebras; we shall only
use the theory for discrete groups in what follows. If .: A � B is an equivariant
V-homomorphism then there is an induced C*-algebra homomorphism from
A<G to B<G, and hence an induced map .

*
: K

*
G(A) � K

*
G(B).

Remark. It will become clear in the next section why we choose to use
the full crossed product C*-algebra.

Suppose now that a discrete group G acts linearly and isometrically on E.
For each g # G and each Ea /E there is an induced V-isomorphism g: SC(Ea)
� SC(gEa) (see the remark following Lemma 2.18). This is functorial with
respect to the V-homomorphisms ;ba , since g transforms the Clifford operator
on Ea to the Clifford operator on gEa , and so it follows that G acts on the
direct limit C*-algebra SC(E) by V-automorphisms.

The inclusion 0/E of the zero-dimensional subspace into E induces a
G-equivariant inclusion SC(0) � SC(E), and the main result of this paper
is as follows:

5. Theorem. Let E be a Euclidean vector space of countable dimension
and let G be a countable, discrete group which acts linearly and isometrically
on E. The inclusion 0/E induces an isomorphism in equivariant K-theory:

;
*

: K
*
G(SC(0)) w�$ K

*
G(SC(E)).

We shall divide the proof between the next two sections. In the first we
shall generalize the finite dimensional argument of Section 2 to the infinite
dimensional situation, and in the second we shall resolve a technical point
concerning direct limits which is needed to complete the infinite dimensional
argument.

4. PROOF OF THE PERIODICITY THEOREM

Let E be an infinite dimensional Euclidean space. Following the construc-
tion in Section 2, if Ea is a finite dimensional subspace of E then there is an
asymptotic morphism which we shall now write as

.a : SC(Ea) � SK(h(Ea)),

16 HIGSON, KASPAROV, AND TROUT
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defined using the Dirac operator on Ea . We are going to assemble these
asymptotic morphisms to obtain an asymptotic morphism

.: �
a

SC(Ea) � �
a

SK(h(Ea))

(we will explain in a moment how to form the direct limit of the C*-algebras
SK(h(Ea))). Having constructed ., we will follow the argument of Section 2
to prove the periodicity theorem.

First we must make some remarks on G-equivariant asymptotic morphisms.
Let A and B be C*-algebras equipped with actions of a discrete group G.

An equivariant asymptotic morphism from A to B is an asymptotic morphism
for which the induced V-homomorphism .: A � Q(B) is equivariant.

It follows from the universal property of the full crossed product [15]
that there is a canonical V-homomorphism

Q(B)<G � Q(B<G).

Hence an equivariant asymptotic morphism .: A � B determines an asymptotic
morphism from A<G to B<G, and therefore an induced K-theory map

.
*

: K
*
G(A) � K

*
G(B).

This is functorial with respect to composition by equivariant V-homo-
morphisms.

Returning to the construction of the asymptotic morphism . above, our
first task is to assemble the C*-algebras SK(h(Ea)) into a direct limit.

1. Definition. Suppose that Ea /Eb , and let Eba denote the orthogonal
complement of Ea in Eb . There is a natural isomorphism

h(Eba)�� h(Ea)$h(Eb)

defined by

!ba �� !a(eba+ea)=!ba(eba)�� !a(ea)

(as in Section 2 we identify the graded tensor product Cliff (Eab)�� Cliff (Ea)
with Cliff (Eb). Using it we define a V-homomorphism

#ba : SK(h(Ea)) � SK(h(Eb))

by the formula

#ba : f�� T [ f (X�� 1+1�� Bba)�� T.

17A BOTT PERIODICITY THEOREM
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Here Bba denotes the B-operator of Definition 2.12 for the finite dimensional
Euclidean vector space Eba . Using the argument of Proposition 3.2 it is readily
verified that the composition

SK(h(Ea)) ww�
#ba SK(h(Eb)) ww�

#cb SK(h(Ec)),

corresponding to a sequence of inclusions Ea /Eb /Ec , is the V-homo-
morphism

#ca : SK(h(Ea)) � SK(h(Ec)).

Consequently we can form the direct limit algebra � a SK(h(Ea)) over the
directed system of all finite dimensional subspaces of E.

Remark. This direct limit is not the suspension of a C*-algebra of
compact operators. It is in fact quite a complicated object, and we shall
have to postpone until the next section a discussion of its KG-theory.

The following proposition allows us to define the required asymptotic
morphism

.: �
a

SC(Ea) � �
a

SK(h(Ea))

by a simple direct limit procedure.

2. Proposition. The diagram

;ba #ba

SC(Ea) ww�
.a SK(h(Ea))

SC(Eb) ww�
.b

SK(h(Eb))

is asymptotically commutative.

Proof. We shall check this on the generators exp(&x2)�� h and
x exp(&x2)�� h of SC(Ea), where h # C(Ea).

To do the calculation we need to note that under the isomorphism of
Hilbert spaces h(Eb)$h(Eba)�� h(Ea) the Dirac operator Db corresponds to
Dba �� 1+1�� Da (to be precise, the self-adjoint closures of these essentially
self-adjoint operators correspond to one another). Hence, by Appendix A,
exp(&t&2D2

b) corresponds to exp(&t&2D2
ba)�� exp(&t&2D2

a).
Applying first .a , then #ba , to exp(&x2)�� h we get

exp(&t&2x2)�� exp(&t&2B2
ba)�� exp(&t&2D2

a) Mht
,

18 HIGSON, KASPAROV, AND TROUT
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while applying first ;ba , then .b , to it we get

exp(&t&2x2)�� exp(&t&2D2
ba) exp(&t&2C 2

ba)�� exp(&t&2D2
a) Mht

.

But by the calculations in Appendix B the two families of operators exp(&t2B2
ba)

and exp(&t&2D2
ba) exp(&t&2C 2

ba) are asymptotic to one another, as t � �.
The calculation for x exp(&x2)�� h is similar. K

Each .a defines a V-homomorphism .a : SC(Ea) � Q(SK(h(Ea))) and
since SK(h(Ea)) is included in � a SK(h(Ea)) we obtain a V-homomorphism

.a : SC(Ea) � Q(�
a

SK(h(Ea))).

By Proposition 2, the maps .a are compatible with the inclusion homomor-
phisms ;ba : SC(Ea) � SC(Eb), and so define a single V-homomorphism

.: �
a

SC(Ea) � Q(�
a

SK(h(Ea))),

as required.

3. Definition. Define V-homomorphisms

#a : S � SK(h(Ea)),

along with the corresponding V-homomorphism

S w�# �
a

SK(h(Ea)),

by #a : f [ f (X�� 1+1�� BEa
).

We shall prove the following result in the next section:

4. Proposition. The induced map #
*

: K
*
G(S) � K

*
G(� a SK(h(Ea))) is

an isomorphism.

5. Lemma. The sequence of K-theory maps

K
*
G(SC(E)) w�

.
* K

*
G( �

a
SK(h(Ea))) ww�

#
*
&1

K
*
G(S)

is left inverse to the periodicity map ;
*

: K
*
G(S) � K

*
G(SC(E)).
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Proof. It follows from Proposition 2.13 that the composition

S w�; SC(E) w�. �
a

SK(h(Ea))

is asymptotic to the family of V-homomorphisms f [ #( ft). This is in turn
homotopic to the V-homomorphism # via the homotopy f [ #( f1&s+st).
Hence .

*
;

*
=#

*
, as required. K

To prove #
*
&1.

*
is also a right inverse we consider, as we did in

Section 2, the diagram

;

SC(E) ww�.
�

a
SK(h(Ea))

#

S SC(E).

Following the general strategy used in Section 2, we are going to ``complete''
it to a larger diagram, although here the details are a little more complicated.

Remark on Notation. In what follows, when we consider V-homomorphisms
or asymptotic morphisms from one direct limit to another, constructed
from a compatible family of morphisms �a : Aa � Ba , and when we consider
for instance a compatible family of maps �a�� 1: Aa �� Ca � Ba �� Ca , we
shall denote the map on the direct limit as

��� 1: �
a

Aa�� Ca � �
a

Ba�� Ca ,

even if ��� 1 is not actually a tensor product of maps.

Returning now to the above diagram, we complete it as follows:

;

�
a

SC(Ea) ww�.
�

a
SK(h(Ea)) ww�;�� 1

�
a

SC(Ea)�� K(h(Ea))

# #~

S �
a

SC(Ea).

The map ;�� 1 is a direct limit, as explained in the remark above. In the
top right hand corner is a new direct limit C*-algebra. The limit is indexed
by the finite dimensional subspaces of E, and if Ea /Eb then the inclusion
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V-homomorphism from SC(Ea)�� K(h(Ea)) to SC(Eb)�� K(h(Eb)) is the
composition

SC(Ea)�� K(h(Ea)) ww�
;ba�� 1

SC(Eb)�� K(h(Ea)) SC(Eb)�� K(h(Eb))

flip flip

C(Eb)�� SK(h(Ea))
1�� #ba C(Eb)�� SK(h(Eb))

As in the proof of Proposition 3.2, one checks easily that the maps form a
directed system. The V-homomorphism #~ is the limit of the compositions

SC(Ea) ww�
#a�� 1

SK(h(Ea))�� C(Ea) ww�flip
SC(Ea)�� K(h(Ea)).

Finally, the diagram is asymptotically commutative.
We shall postpone the proof of the following result until the next section:

6. Proposition. There are induced isomorphisms

K
*
G(�

a
SC(Ea)) www�

(#�� 1)
*

$ K
*
G( �

a
SK(h(Ea))�� C(Ea))

ww�
flip

*
$ K

*
G( �

a
SC(Ea)�� K(h(Ea))).

Because of Proposition 6, it remains only to prove that the top row in
the completed diagram induces an isomorphism in KG-theory. For this we
introduce the asymptotically commutative diagram

.
�

a

SC(Ea) �
a

SK(h(Ea)) ;�� 1
�

a

SC(Ea)�� K(h(Ea))

;�� 1 flip

�
a

SC(Ea)�� C(Ea) ww�
flip

�
a

SC(Ea)�� C(Ea) ww�
.~

�
a

SK(h(Ea))�� C(Ea),

exactly as in Section 2 (except that here we have passed to the direct limit).
As in Section 2, the flip map on C(Ea)�� C(Ea) is homotopic through a

rotation to the map @a �� 1, where @a : C(Ea) � C(Ea) is induced from the
inversion e [ &e on Ea . This homotopy is compatible with direct limits,
and so to prove that the top row induces an isomorphism in KG-theory it
suffices to show that the composition

�
a

SC(Ea) ww�;�� @
�

a
SC(Ea)�� C(Ea) w�.~ �

a
SK(h(Ea))�� C(Ea)
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induces an isomorphism. The composition is asymptotic to the family of
V-homomorphisms

f�� h [ #( ft)�� @(ht)

and this is homotopic to f�� h [ #( f )�� @(h) via the homotopy

f�� h [ #( f1&s+st)�� @(h1&s+st) s # [0, 1].

It follows from Proposition 6 the map f�� h [ #( f )�� @(h) induces an
isomorphism in KG-theory.

5. CONCLUSION OF THE PROOF

In this section we will assume that E is a countably infinite dimensional
Euclidean vector space on which a countable discrete group G acts by
linear isometries. We shall complete our proof of the periodicity theorem in
this case by dealing with the following technical point from the last section:

1. Proposition. The V-homomorphisms

(i) #: S � �
a

SK(h(Ea))

and

(ii) #�� 1: �
a

SC(Ea) � �
a

SK(h(Ea))�� C(Ea),

which were defined in Section 4, induce isomorphisms in KG-theory.

We shall prove the Proposition by constructing suitable asymptotic
morphisms

�: �
a

SK(h(Ea)) � S�� K(h(E))

and

��� 1: �
a

SK(h(Ea))�� C(Ea) � �
a

SK(h(E))�� C(Ea).

Here h(E) is a Hilbert space constructed from the infinite dimensional
Euclidean space E as follows:
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2. Definition. Let Eb be a finite dimensional Euclidean vector space
and let Ea be a subspace of Eb . We define an isometry Tba : h(Ea) � h(Eb)
by

(Tba!)(eba+ea)=?&n�4 exp(&1
2 &eba&2) !(ea),

where ea # Ea , eba # Eba , and n is the difference of the dimensions of Eb

and Ea .

Note that the function ?&n�4 exp(&1
2 &eba &2) has norm one in h(Eba),

which ensures that the map Tba is indeed isometric.
If Ea /Eb /Ec then the composition of isometries

h(Ea) � h(Eb) � h(Ec)

is equal to the isometry h(Ea) � h(Ec) associated to the inclusion Ea /Eb ,
and because of this we can make the following definition.

3. Definition. We define h(E) to be the Hilbert space direct limit of
the spaces h(Ea), where the limit is taken over the directed system of finite
dimensional subspaces of H, using the isometric inclusions Tba : h(Ea) �
h(Eb).

Before defining the asymptotic morphisms � and �� we must develop an
infinite dimensional generalization of the operator B of Definition 2.12.
This is a little technical, and will occupy our attention for the next several
pages.

Let V be a countably infinite dimensional Euclidean space and, as above,
define h(V) to be the direct limit of Hilbert spaces h(Va), indexed by the
finite dimensional subspaces of V.

4. Definition. If Va is a finite dimensional subspace of V then denote
by s(Va) the Schwartz subspace of the L2-space h(Va). Denote by s(V) the
algebraic direct limit of the vector spaces s(Va), under the inclusions
Tba : s(Va) � s(Vb).

5. Definition. Let W be a finite dimensional subspace of V. As in
Definition 2.12 we form the operator

BW= :
n

i=1

wi@
�

�xi
+wixi ,
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where [w1 , ..., wn] is an orthonormal basis for W and [x1 , ..., xn] are
coordinates in W dual to this basis. We view it now as an operator

BW : s(V) � s(V)

by noting that it is a well defined operator on s(Va), for any Va containing
W, and that the diagram

s(Va) ww�
Tba s(Vb)

BW BW

s(Va) ww�
Tba

s(Vb)

commutes, for every inclusion Va /Vb .

The following very simple observation will be crucial for us.

6. Lemma. If W is orthogonal to Va then s(Va)/Kernel(BW).

Proof. The embedding of s(Va) into s(W�Va) maps ! # s(Va) to the
function

T!(w+ea)=?&n�4 exp(&&w&2�2) !(ea).

The function exp(&1
2 &w&2) lies in the kernel of B2

W (see Corollary 2.15)
and hence in the kernel of BW . Thus T! lies in the kernel of BW .

Suppose now that V is written as an (algebraic) orthogonal direct sum
of finite dimensional subspaces:

V=W0 �W1 �W2 � } } } .

Otherwise put, suppose that V is written as an increasing union of finite
dimensional subspaces

Vn=W0 � } } } �Wn .

Using this extra structure on V we define an operator on s(V) (actually a
family of operators, depending on a parameter t # [1, �)) as follows.

7. Definition. Let t # [1, �). Define an unbounded operator Bt on
h(V), with domain s(V), by the formula

Bt=t0BW0
+t1BW1

+t2BW2
+ } } } ,

where tn=1+t&1n.
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The infinite sum is well defined because, by Lemma 6, when Bt is applied
to any vector in s(V)=�n s(Vn) the resulting infinite series in s(V) has
only finitely many non-zero terms.

8. Lemma. The operator Bt is essentially self-adjoint on h(V) and has
compact resolvent.

Proof. Squaring Bt (considered as an operator on s(V)) we get

B2
t =t2

0 B2
W0

+t2
1B2

W1
+t2

2B2
W2

+ } } } .

If !j # s(Wj) is an eigenfunction for B2
Wj

, with eigenvalue *j , then the
function ! # s(Vn) defined by

!(w0+w1+ } } } +wn)=!0(w0)�� !0(w0)�� } } } �� !n(wn)

is an eigenfunction for B2
t with eigenvalue

*=t2
0*0+t2

1*1+ } } } +t2
n*n .

It follows that B2
t , and hence Bt has an orthonormal eigenbasis within s(V),

which proves that it is essentially self-adjoint. Furthermore the eigenvalues of
B2

t are the scalars * as above. Since the only accumulation point of the eigen-
value sequence is infinity, the operator B2

t , and hence also the operator Bt ,
has compact resolvent. K

We now investigate what happens to the operator Bt when the direct
sum decomposition

V=W0 �W1 �W2 � } } }

is altered a little.

9. Lemma. Suppose that V is provided with a second decomposition,

V=W� 0 �W� 1 �W� 2 � } } }

and let V� n=W� 0 � } } } �W� n . Let B� t be the corresponding essentially self-
adjoint operator on h(V), and let f # C0(R). If either

(i) V� j=Vj+1 , for j=0, 1, 2, ...

or

(ii) V0 /V� 0 /V1 /V� 1 / } } }

then limt � � & f (B� t)& f (Bt)&=0.
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Proof. By the Stone�Weierstrass theorem, it suffices to prove the lemma
for the function f (x)=(x+i)&1. In case (i) note that

Bt&B� t=t&1BW1
+t&1BW2

+ } } } ,

and so if ! # s(V) then

&(Bt&B� t) !&2=t&2 &BW1
!&2+t&2 &BW2

!&2+ } } } .

On the other hand

&(Bt+i) !&2=&!&2+t2
0 &BW0

!&2+t2
1 &BW1

!&2+ } } } ,

and since t&2�t&2t2
n we get that

&(B� t&Bt) !&2�t&2 &(Bt+i) !&2.

It follows that &(B� t&Bt)(Bt+i)&1&�t&1. From the formula

(B� t+i)&1&(Bt+i)&1=(B� t+i)&1 (Bt&B� t)(Bt+i)&1

(valid on the dense set of those ' # h(V) for which (Bt+i)&1' # s(V)) and
the above inequality we get &(B� t+i)&1&(Bt+i)&1&�t&1.

The proof of the second part is quite similar. Let Xn=Vn �V� n&1 and
Yn=V� n�Vn . Then

Bt&B� t=t&1BY0
+t&1BY1

+t&1BY2
+ } } } ,

whereas

Bt=t0BX0
+t1BY0

+t1 BX1
+t2BY1

+t2BX2
+ } } } .

We see again that

&(Bt&B� t) !&2�t&2 &(Bt+i)&2,

and hence that

&(B� t+i)&1&(Bt+i)&1&�t&1. K

Let us return now to the countably infinite dimensional Euclidean vector
space E, on which a countable discrete group G is acting by isometries.

10. Definition. Fix (for the rest of the section) a sequence

E0 /E1 /E2 / } } } /E

26 HIGSON, KASPAROV, AND TROUT



File: DISTL2 170627 . By:CV . Date:23:03:98 . Time:07:51 LOP8M. V8.B. Page 01:01
Codes: 2718 Signs: 1574 . Length: 45 pic 0 pts, 190 mm

of finite dimensional linear subspaces of E such that �n En=E and such
that if g # G then gEn /En+1 , for all large enough n. (Note that we are
assuming E is countably infinite dimensional, so it is possible to arrange for
the union �n En to be all of E, not just dense in E.) Let Wn be the
orthogonal complement of En&1 in En (we set W0=E0), so that

E=W0 �W1 �W2 � } } } .

This is an algebraic direct sum.

Now let Ea be a finite dimensional subspace of E. Since Ea is contained
in En , for some n, we may write the orthogonal complement of Ea in E as
an algebraic direct sum

E =
a =Wa �Wn+1 �Wn+2 � } } } ,

where Wa is the orthogonal complement of Ea in En . It is convenient not
to necessarily choose the smallest n such that Ea /En , and because of this
our decomposition of E =

a is not canonical. However we have the following
stability result:

11. Lemma. If Bt and B� t denote the operators associated to different decom-
positions of E =

a (using different values of n) then limt � � & f (Bt)& f (B� t)&=0.

Proof. This follows immediately from part (i) of Lemma 9. K

Remark. In what follows we shall need a slight strengthening of Lemmas
9 and 11: with the same hypotheses, we have in fact that

lim
t � �

& f (s&1B� t)& f (s&1Bt)&=0,

uniformly in s # (0, 1]. To see this, just repeat the proofs with sBt in place
of Bt .

12. Lemma. Let g be an isometric isomorphism of E onto itself and let
Ug be the corresponding unitary isomorphism of h(E =

a ) onto h(gE =
a ). Let Ba

t

and B ga
t be the operators associated to the decompositions

E=
a =Wa �Wm �Wm+1 � } } }

and

gE =
a =Wga �Wn �Wn+1 � } } } .

If f # S then limt � � & f (Ba
t )&U*g f (B ga

t ) Ug&=0.
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Proof. By Lemma 11, we may assume that m=n, and that

Ea , gEa , g&1Ea /En

and

gEn+k , g&1En+k /En+k+1 k=0, 1, 2, ...

(compare Definition 10). Let E� n+k be the subspace spanned by En+k and
g&1En+k and define E� a similarly. Observe that there are inclusions

The operator Ba
t is constructed from the top row of ascending subspaces,

while the operator U*g B ga
t Ug is constructed from the bottom row. By

considering the operator B� t constructed from the middle row (that is, from
the spaces E� n+k), and by using twice the second part of Lemma 9, we get
the required result. K

Remark. At one point below we shall need to know that

lim
t � �

& f (s&1Ba
t )&Ug* f (s&1B ga

t ) Ug &=0,

uniformly in s # (0, 1]. This follows from the above argument and the
remark following Lemma 11.

13. Definition. Let Ea be a finite dimensional subspace of E, and let
Bt , for t # [1, �), be the operator on h(E =

a ) associated to a decomposition

E =
a =Wa �Wn+1 �Wn+2 � } } } .

Define an asymptotic morphism

�a : SK(h(Ea)) � SK(h(E))

by the formula

�a, t : f�� T [ f (X�� 1+1�� Bt)�� T.
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We are using here the natural isomorphism of Hilbert spaces

h(E)$h(E =
a )�� h(Ea),

coming from the isomorphisms h(Eb)$h(Eba)�� h(Ea) already noted in
Definition 4.1.

Since each �a, t is in fact a V-homomorphism, to show that �a is indeed
an asymptotic morphism we need only note that �a, t( f�� T) is norm
continuous in t. This in turn follows from the simple fact that f (Bt) is norm
continuous in t, for all f # S.

By Lemma 11, the asymptotic morphism �a is, up to asymptotic
equivalence, independent of the choice of decomposition of E =

a (in other
words it is independent of the choice of n such that Ea /En).

14. Lemma. If Ea /Eb then the diagram

SK(h(Ea)) ww�
�a SK(h(E))

#ba =

SK(h(Eb)) ww�
�b

SK(h(E))

is asymptotically commutative.

Proof. A calculation with the generators exp(&x2)�� T and x exp(&x2)
�� T shows that if we use the decompositions

E =
a =Wa �Wn+1 �Wn+2 � } } } ,

and

E =
b =Wb �Wn+1 �Wn+2 � } } } ,

(where the same n is used in both cases) to define the B-operators on E =
a

and E =
b then the diagram is exactly commutative. K

It follows from the lemma, and from the argument used in the last
section, that the asymptotic morphisms �a combine to form a single
asymptotic morphism

�: �
a

SK(h(Ea)) � SK(h(E)).

Since G acts on E by linear isometries, it acts unitarily on h(E). From
Lemma 12 we get that:
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15. Lemma. The asymptotic morphism �: � a SK(h(Ea)) � SK(h(E))
is G-equivariant.

Following the general strategy employed in Sections 2 and 4, we should
like to obtain from � an inverse, at the level of K-theory, to #.

We note first the a simple equivariant version of Lemma 2.11. Let
P # K(h(E)) be the orthogonal projection onto the kernel of Bt (which is
spanned by the single function exp(&1

2&e&2)). Note that P is the projection
onto a one-dimensional subspace of vectors in h(E) which are fixed by the
action of G.

16. Lemma. Let A be a graded C*-algebra, equipped with an action of
G. The map _: a [ a�� P induces an isomorphism _: K

*
G(A) � K

*
G(A�� K(h(E))).

17. Proposition. The composition

K
*
G( �

a
SK(h(Ea))) w�

�
* K

*
G(SK(h(E))) w�

_
*
&1

$ K g

*
(S)

is left inverse to the K-theory map #
*

: K
*
G(S) � K

*
G(� a SK(h(Ea))).

Proof. We will prove that the composition

S w�# �
a

SK(h(Ea)) w�� S�� K(h(E))

is homotopic to _: S � SK(h(E)). The composition is given by

f [ f (X�� 1+1�� Bt),

where Bt is the operator associated to the decomposition

E=W0 �W1 �W2 � } } } .

the desired homotopy is

f [ { f (X�� 1+s&1 �� Bt)
f�� P

s # (0, 1]
s=0.

Note that f (s&1Bt) is asymptotically G-invariant, as t � �, uniformly in s,
so the homotopy is a homotopy of G-equivariant asymptotic morphisms. K

Proof of Proposition 1, Part (i). It remains to show that the composi-
tion _

*
&1�

*
is also a right inverse to #

*
. We employ the same rotation

argument already used in Sections 2 and 4, beginning with the diagram
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#

�
a

SK(h(Ea)) ww��
SK(h(Ea)) ww�#�� 1

�
a

SK(h(Ea))�� K(h(Ea))

_ _

S �
a

SK(h(Ea)).

It suffices to prove that the composition along the top induces an isomor-
phism in KG-theory. We then consider the diagram

� #�� 1
S�� K(h(Ea)) S�� K(h(E)) SK(h(Ea))�� K(h(Ea))

#�� 1 flip

SK(h(Ea))�� K(h(Ea)) ww�
flip

SK(h(Ea))�� K(h(Ea)) ww�
��� 1

SK(h(E))�� K(h(Ea)),

and use the same type of rotation argument as in Sections 2 and 4: the flip
map on K(h(Ea))�� K(h(Ea)) is homotopic through a rotation to the map
@a �� 1, where @a : K(h(Ea)) � K(h(Ea)) is induced from the inversion e [ &e
on Ea . The homotopy is compatible with direct limits and so it suffices to
show that the composition

�
a

SK(h(Ea)) ww�#�� @
�

a
SK(h(Ea))�� K(h(Ea))

ww���� 1
�

a
SK(h(E))�� K(h(Ea))

induces an isomorphism in KG-theory (after first passing to direct limits).
The composition is

SK(h(Ea)) ww��#�� @
SK(h(E))�� K(h(Ea)),

which is homotopic to the map _�� @: f�� T [ f�� P�� T via the homotopy

f�� T [ { f (x�� 1+s&1�� Bt)�� T
f�� P�� T

s # (0, 1]
s=0.

It follows from Lemma 16 that _�� @ induces an isomorphism on KG-theory.
K

The proof of the second part of Proposition 1 is essentially the same. We
assemble the asymptotic morphisms

�a�� 1: SK(h(Ea))�� C(Ea) � SK(h(E))�� C(Ea)
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to get an asymptotic morphism

��� 1: �
a

SK(h(Ea))�� C(Ea) � �
a

SK(h(E))�� C(Ea).

By incorporating an extra factor of C(Ea) into the argument for �, we see
that ��� 1 determines an inverse to #�� 1, at the level of KG-theory, as
required.

APPENDIX A

Graded C*-Algebras, Tensor Products and Multipliers

A.1. Graded Commutators

Let A be a Z�2-graded algebra with grading automorphism #(a)=
(&1)deg(a) a. The graded commutator of two elements in A is

[a1 , a2]=a1a2&(&1)deg(a1) deg(a2) a2 a1

(this formula is valid for homogeneous elements, and is extended by
linearity to all of A). A useful identity is

[x&1, y]=&x&1[x, y] #deg( y)(x&1).

The formula is written for homogeneous y, and extends by linearity to all y.
Similarly

[x, y&1]=&#deg(x)( y&1)[x, y] y&1.

A.2. Tensor Products

If A and B are Z�2-graded C*-algebras then the graded tensor product
of A and B, as Z�2-graded algebras, may in general be completed in more
than one way to a C*-algebra.

The minimal, or spatial C*-algebra completion of A�� C B is obtained by
representing A and B faithfully on Z�2-graded Hilbert spaces hA and hB ;
then representing A�� C B via the formula

?A, B(a�� b)(v�w)=(&1)deg(b) deg(v) ?A(a) v�?B(b)w;

then taking the completion in the operator norm topology. This does not
depend on the choice of representations.
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The maximal C*-algebra completion of A�� C B has the characteristic
property that a pair of V-homomorphisms

A � C and B � C,

into a Z�2-graded C*-algebra whose images graded commute with one another
induces a morphism

A�� max B � C.

If one of A or B is a nuclear C*-algebra (forgetting the grading) then the
maximal norm is equal to the minimal one. Since this will be the case
throughout the paper we shall just write A�� B for the C*-algebraic graded
tensor product.

A.3. Multipliers

Let A be a Z�2-graded C*-algebra. An unbounded selfadjoint multiplier of
A is an A-linear map D from a dense, Z�2-graded, right A-submodule,
A/A, into A such that

(i) (Dx, y) =(x, Dy) , for all x, y # A, where the angle brackets
denote the pairing ((x, y) =x*y; and

(ii) The operators D\iI are isomorphisms from A onto A.

(iii) deg(Dx)#deg(x)+1, mod 2, for all x # A.

Compare [7, 3]. Note that we have built into our definition that D have
grading degree one (because all our examples will be this way).

If A is a dense, Z�2-graded, right A-submodule of A and if D: A � A
satisfies

(i) (Dx, y) =(x, Dy) , for all x, y # A;

(ii) deg(Dx)#deg(x)+1, mod 2, for all x # A;

(iii) the operators D\iI have dense range;

then the closure of D (whose graph is the norm closure in A�A of the graph
of D) is a self-adjoint multiplier. We shall call D an essentially self-adjoint
multiplier of A. To avoid cluttering our notation we use the same symbol
for both D and its closure.

If D is an unbounded self-adjoint multiplier of A then the resolvent operators
(D\iI)&1 (viewed as maps of A into itself) are bounded multipliers of A, in
the ordinary sense of C*-algebra theory [15]. If Cb(R) denotes the C*-algebra
of bounded, continuous complex-valued functions on R, and M(A) denotes
the multiplier C*-algebra of A, then there is a unique functional calculus
homomorphism
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Cb(R) � M(A)

f [ f (D),

mapping the resolvent functions (x\i)&1 to (D\iI )&1. Compare [7]. It
has the property that if xf (x)= g(x) then g(D)=Df (D). The functional
calculus homomorphism is grading preserving, if we grade Cb(R) by even
and odd functions.

A.4. Tensor products and multipliers

If D is a self-adjoint (or essentially self-adjoint) unbounded multiplier
of A, and if B is a second Z�2-graded C*-algebra, then the operator D�� 1,
with domain A�� alg B is an essentially self-adjoint multiplier of A�� B. The
functional calculus homomorphism for D�� 1 is f (D�� 1)= f (D)�� 1.

Lemma [3]. If C and D are essentially self-adjoint multipliers of A and
B then C�� 1+1�� D is an essentially self-adjoint multiplier of A�� B, with
domain the algebraic tensor product of the domains of C and D.

Lemma. exp(&(C�� 1+1�� D)2)=exp(&C2)�� exp(&D2).

Remarks. The notation means that we apply the function e&x2
to the

essentially self-adjoint operators C, D and C�� 1+1�� D. We shall say that
C has compact resolvent if f (C) # A, for every f # C0(R). From the lemma
it is clear that if C and D have compact resolvents then so does C�� 1+
1�� D.

Proof. The formula is certainly correct if C and D are bounded operators,
for then we can expand both sides as power series. But if . # C0(R) is
compactly supported then C and D define bounded multipliers on the
C*-algebra closures of .(C) A.(C) and .(D) B.(D). The result follows
from the fact that as . ranges over all compactly supported functions, the
union of .(C) A.(C)�� .(D) B.(D) is dense in A�� B. K

APPENDIX B

Mehler's Formula

Our aim is to prove the following result from Section 2.

Proposition. The composition

SC(0) w�; SC(E) w�. SK(h(E)),
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which is an asymptotic morphism from S to SK(h(E)), is asymptotic to the
family of V-homomorphisms f [ ft(X�� 1+1�� B).

The main tool will be Mehler's formula from quantum theory:

Mehler's Formula. If d=&id�dx and if :>0 then

exp(&:(d 2+x2))=exp(&;x2) exp(&#d 2) exp(&;x2),

as bounded operators on L2(R), where ;=(cosh(2:)&1)�2 sinh(2:) and
#=sinh(2:)�2. In addition,

exp(&:(d 2+x2))=exp(&;d 2) exp(&#x2) exp(&;d 2),

for the same ; and #.

See for example [9]. Note that the second identity follows from the first
upon taking the Fourier transform on L2(R), which interchanges the
operators d and x.

In view of Mehler's formula and the formula for B2 (Lemma 2.14), we
get

exp(&t&2B2)=exp(&uC2) exp(&vD2) exp(&uC2) exp(&t&2N),

where

u=(cosh(2t&2)&1)�sinh(2t&2), v=sinh(2t&2)�2.

In addition,

exp(&t&2B2)=exp(&uD2) exp(&vC 2) exp(&uD2) exp(&t&2N).

Lemma. If X is any unbounded self-adjoint operator then there are asymptotic
equivalences

exp(&uX 2)texp(&1
2 t&2X 2), exp(&vX 2)texp(&t&2X2)

and

t&1X exp(&uX 2)tt&1X exp(&1
2 t&2X2),

where u and v are the above defined functions of t.

Remark. By ``asymptotic equivalence'' we mean here that the differences
between the left and right hand sides in the above relations all converge to
zero, in the operator norm, as t tends to infinity.

Proof of the Lemma. By the spectral theorem it suffices to consider the
same problem with the self-adjoint operator X replaced by a real variable
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x and the operator norm replaced by the supremum norm on C0(R). The
lemma is then a simple calculus exercise, based on the Taylor series
expansions u= 1

2 t&2+o(t&2) and v=t&2+o(t&2). K

Lemma. If f, g # S=C0(R) then [ f (t&1C), g(t&1D)]t0.

Proof. For any fixed f, the set of g for which the lemma holds is a
C*-subalgebra of C0(R). So by the Stone�Weierstrass theorem it suffices to
prove the lemma when g is one of the resolvent functions (x\i)&1. In this
case, for a C�-function f we have

&[ f (t&1C), g(t&1D)]&�&[ f (t&1C), t&1D]&

by the commutator identity for resolvents. But as f (t&1c) is a smooth,
Clifford algebra-valued function on E we have that

&[ f (t&1C), t&1D]&=t&1 &[ f (t&1C), D]&

=t&1 &grad( f (t&1C))&=t&2 &grad( f (C))&.

This proves the lemma. K

Proof of the Proposition. The lemmas imply that there are asymptotic
equivalences:

exp(&t&2B2)texp(&t&2D2) exp(&t&2C2)

and

t&1B exp(&t&2B2)texp(&t&2D2) t&1C exp(&t&2C2)

+t&1D exp(&t&2D2) exp(&t&2C2).

Hence there are asymptotic equivalences

exp(&t&2X2)�� exp(&t&2B2)

texp(&t&2X2)�� exp(&t&2D2) exp(&t&2C2)

and

t&1X exp(&t&2X2)�� exp(&t&2B2)

+exp(&t&2X2)�� t&1B exp(&t&2B2)

tt&1X exp(&t&2X2)�� exp(&t&2D2) exp(&t&2C 2)

+exp(&t&2X2)�� exp(&t&2D2) t&1C exp(&t&2C2)

+exp(&t&2X2)�� t&1D exp(&t&2D2) exp(&t&2C2).
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But on the left hand sides are the results of the morphism f [ ft(X�� 1+
1�� B), applied to the generators exp(&x2) and x exp(&x2) of S, while on
the right hand sides are the results of the composition S w�; SC(E) w�.

SK(h(E)), applied to the same generators. K

APPENDIX C

Continuous Groups

Suppose that E is a Euclidean space which is not necessarily of countably
infinite dimensions. If E is at least separable in the norm topology then there
is an increasing sequence of finite dimensional subspaces

E1 /E2 / } } } /E

whose union is dense in E. It is easy to check that:

1. Lemma. The natural inclusion

�
n

SK(h(En)) � �
a

SK(h(Ea))

is an isomorphism of C*-algebras.

Because of this, our arguments in the previous sections generalize immediately
to the case of a countable discrete group acting on a separable Euclidean
space. In particular our Bott periodicity theorem holds for separable
Hilbert space.

Suppose now that G is a second countable, locally compact Hausdorff
topological group, and that G acts isometrically and continuously on E, in
the sense that the map G_E � E is continuous when E is given its norm
topology. We also leave to the reader the following calculation:

2. Lemma. The natural actions of G on SC(E) and � a SK(h(Ea)) are
continuous.

Let us consider how the arguments of the previous sections carry over to
the case of a non-discrete group. We define the notion of G-equivariant
asymptotic morphism just as we did in Section 4 for discrete groups.
A G-equivariant asymptotic morphism induces an asymptotic morphism of
full crossed product C*-algebras and the entire argument of Section 4
carries over verbatim to the case of a non-discrete group G. A little more
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complicated is the argument of Section 5. The problem is to show that for
a suitable increasing sequence of finite dimensional subspaces

E1 /E2 / } } } /E,

whose union is dense in E, the asymptotic morphism � of Definition 5.13
is G-equivariant. Once this is done the remainder of Section 5 carries over
to the non-discrete case.

The subspaces En are constructed as follows:

3. Lemma. There is an increasing sequence of finite dimensional subspaces
En as above with the property that for every =>0, every g # G can be written
as a product of isometric isomorphisms g= g1 g2 , where

(i) g1 and g&1
1 both map En into En+1 , for sufficiently large n; and

(ii) &1& g2&<=.

Remark. The isometries g1 and g2 do not necessarily belong to the
group G. They are simply isometries of E.

Proof of the Lemma. Let [Kn] be an increasing sequence of compact
subsets of G whose union is all of G. It suffices to inductively choose En

large enough that for every g # Kn , every vector in gEn or g&1En is within
2&n of En+1 (and of course such that the union of the En is dense in E).
It is then a simple matter to construct small norm perturbations g1 of any
g with the required properties. K

Fix a sequence [En] as in the lemma. Using Lemma 1 and the formula
in Definition 5.13 we construct an asymptotic morphism

�: �
a

SK(h(Ea))= �
a

SK(h(En)) � SK(h(E)).

We are going to prove:

4. Proposition. The asymptotic morphism � is G-equivariant.

Form the unbounded, essentially self-adjoint operator

B=BW1
+BW2

+BW3
+ } } }

on h(E). This is a fully equivariant version of the operator considered in
Section 5. Note however that B does not have compact resolvent; the
eigenvalues of B2 are 0, 2, 4, ..., and each except 0 has infinite multiplicity.

If g is an isometric isomorphism of E onto itself then let ?(g) be the
corresponding unitary operator on h(E).
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5. Lemma. Let h2n(E)/h(E) be the 2n-eigenspace of the operator B2.
For every =>0 there is a $>0 (depending on n) such that if &1& g&<$ then
&1&?(g)&h(E)2n

<=.

Proof. Let Ea be a finite dimensional subspace of E, and note that h(Ea)$
L2(Ea)�4*(E), where 4* denotes the (complexified) exterior algebra.
Let hj, k(Ea)/h(Ea) denote the span of the elements p(e)exp(&1

2&e&2)�|,
where p(x) is a homogeneous polynomial of degree j and | is a form of
degree k. Let hj, k(E)/h(E) be the direct limit of the spaces hj, k(Ea) under
the inclusions described in Definition 5.2. From Lemma 2.14 and the spectral
theory of the harmonic oscillator it follows that the 2n-eigenspace of B2

a lies
within �j+k�n hj, k(E), so to prove the lemma it suffices to prove a similar
statement for each hj, k(E). But hj, k(E)$S j (E)�4k(E), where S j (E) is the
jth symmetric power of (the completion of) E and 4k(E) is the k th anti-
symmetric power, and the statement of the lemma is clear for S j (E)�4k(E).

K

Proof of Proposition 4. We must show that if x # � a SK(h(Ea)) and
g # G then there is an asymptotic equivalence g(�t(x))t�t(g(x)). In fact it
suffices to prove this for all g and all x in a dense subalgebra of the direct
limit, and we shall consider those x lying within the union of the subalgebras

C0(&K, K)�� K(h[N](Ea)),

where h[N](Ea)/h(Ea) denotes the direct sum of all eigenspaces of B2
a corre-

sponding to eigenvalues less than or equal to N. By so restricting x we ensure
that for all t, �t(x) is supported on the subspace h[K 2+N](E)/h(E) comprised
of the eigenspaces of B2 corresponding to eigenvalues less than K2+N.

Let us use the notation

Xt t
:

Yt � lim sup
t

&Xt&Yt&�:.

We will show that for every =>0,

�t(g(x)) t
4=

g(�t(x)).

As in Lemma 3, write g= g1 g2 in such a way that g1En , g&1
1 En /En+1 for

large enough n and &1& g2&<$, where $ is small enough that ?(g2) is
within = of the identity on the Hilbert space h[K2+N](E). By the argu-
ment in Section 5, �t(g1(x))tg1(�t(x)). Furthermore &g2(x)&x&<2= and
&g2(�t(x))&�t(x)&<2=, and so
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�t(g(x))=�t(g1 g2(x)) t
2=

�t(g1(x))

tg1(�t(x))

t
2=

g1 g2(�t(x))= g(�t(x)). K

REFERENCES

1. M. F. Atiyah, Bott periodicity and the index of elliptic operators, Quart. J. Math. Oxford
19 (1968), 113�140.

2. M. F. Atiyah and I. M. Singer, The index of elliptic operators, I, Ann. Math. 87 (1968),
484�530.

3. S. Baaj and P. Julg, The� orie bivariante de Kasparov et ope� rateurs non borne� s dans les
C*-modules hilbertiens, C. R. Acad. Sci. Paris Se� rie 1 296 (1983), 876�878.

4. P. Baum, A. Connes, and N. Higson, Classifying space for proper G-actions and K-theory
of group C*-algebras, Contemp. Math. 167 (1994), 241�291.

5. M. E. B. Bekka, P.-A. Cherix, and A. Valette, Proper affine isometric actions of amenable
groups, in ``Novikov Conjectures, Index Theorems and Rigidity,'' Volume 1'' (S. Ferry,
A. Ranicki, and J. Rosenberg, Eds.), pp. 1�4, Cambridge Univ. Press, Cambridge, 1995.

6. B. Blackadar, ``K-Theory for Operator Algebras,'' MSRI Publication Series 5, Springer-
Verlag, New York�Heidelberg�Berlin�Tokyo, 1986.

7. A. Connes, An analogue of the Thom isomorphism for crossed products, Adv. Math. 39
(1981), 31�55.

8. A. Connes and N. Higson, De� formations, morphismes asymptotiques et K-the� orie
bivariante, C. R. Acad. Sci. Paris Se� rie 1 311 (1990), 101�106.

9. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, ``Schro� dinger Operators, with
Applications to Quantum Mechanics and Global Geometry,'' Springer-Verlag, New York�
Berlin�Heidelberg, 1987.

10. M. Gromov, Asymptotic invariants of infinite groups, in ``Geometric Group Theory''
(G. A. Niblo and M. A. Roller, Eds.), pp. 1�295, Cambridge Univ. Press, Cambridge,
1993.

11. N. Higson and G. Kasparov, Operator K-theory for groups which act properly and iso-
metrically on Hilbert space, E.R.A. Amer. Math. Soc. 3 (1997), 131�142.

12. P. Julg, K-the� orie equivariante croise� s, C. R. Acad. Sci. Paris Se� rie 1 292 (1981), 629�632.
13. G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Inventiones Math.

91 (1988), 147�201.
14. H. B. Lawson, Jr. and M-L. Michelsohn, ``Spin Geometry,'' Princeton Univ. Press, Princeton,

NJ, 1989.
15. G. K. Pedersen, ``C*-algebras and Their Automorphism Groups,'' Academic Press,

London�New York�San Francisco, 1979.
16. J. Roe, Coarse cohomogoy and index theory on complete Riemanian manifolds, Mem.

Amer. Math. Soc. 497 (1993).
17. G. Segal, Equivariant K-theory, Publ. Math. IHES 34 (1968), 129�151.
18. J. D. Trout, ``Asymptotic Morphisms of C*-Algebras and Index Theory,'' Ph.D. thesis

Pennsylvania State University, 1995.

� � � � � � � � � �

40 HIGSON, KASPAROV, AND TROUT


