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COUNTEREXAMPLES TO THE BAUM–CONNES
CONJECTURE

N. Higson, V. Lafforgue and G. Skandalis

The Baum–Connes conjecture [BC], [BCH] proposes a formula for the
operator K-theory of reduced group C∗-algebras and foliation C∗-algebras.
If G is the fundamental group of a finite CW -complex then the Baum–
Connes conjecture for G can be viewed as an analytic counterpart of the
Borel conjecture in manifold theory, which proposes a homological formula
for the L-theory of the group ring Z[G]. Moreover the Baum–Connes con-
jecture for a group G actually implies Novikov’s conjecture that the higher
signatures of a closed, oriented manifold with fundamental group G are
oriented homotopy invariants. For this reason manifold theory has been a
driving force behind work on the Baum–Connes conjecture, and in return
operator K-theory techniques have proved some of the best known results
on the homotopy invariance of higher signatures.

From the very beginning, generalizations to group actions have played
an important role in the development of the Baum–Connes conjecture.
More recently, further extensions have been proposed to general locally
compact groupoids [T1] and to coarse geometric spaces [HiR], [R]. Current
operator algebraic approaches to the Novikov conjecture rely quite heavily
on these (see for instance [Hi]).

The Baum–Connes conjecture and its generalizations have now been
verified in a variety of cases. For recent work on groups and group actions
see [HiK], [L]; for work on groupoids see [T1]; and for work on coarse
geometric spaces see [Y]. Indeed the scope of what has now been proved is
quite remarkable, especially given the scant information which Baum and
Connes had available to them at the outset. Of course the general Baum–
Connes conjecture is broader still, applying as it does to every (second
countable) locally compact groupoid, or even, in the case of the conjecture
‘with coefficients’, to every action of a such a groupoid on a C∗-algebra.
The conjecture has fascinating points of contact not only with the Novikov
conjecture but with Riemannian geometry, the representation theory of real
and p-adic groups, and the spectral theory of discrete groups.
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The conjecture asserts that a certain Baum–Connes assembly map
µ : Ktop

∗ (G) → K∗(C∗
r (G))

is an isomorphism of abelian groups, where C∗
r (G) denotes the reduced

C∗-algebra of the group or groupoid G. In the case of the conjecture with
coefficients, the conjecture asserts that for every G-C∗-algebra A a certain
generalized assembly map

µ : Ktop
∗ (G,A) → K∗(A !r G)

is an isomorphism, where A !r G denotes the reduced crossed product
C∗-algebra. The purpose of this note is to present counterexamples to:

• the injectivity and the surjectivity of the Baum–Connes map for
Hausdorff groupoids;

• the injectivity and surjectivity of the Baum–Connes map for (non-
Hausdorff) holonomy groupoids of foliations;

• the surjectivity of the Baum–Connes map for coarse geometric spaces;
• the surjectivity of the Baum–Connes map for discrete group actions

on commutative C∗-algebras, contingent on certain as yet unpub-
lished results of Gromov.

We have not obtained counterexamples to the Baum–Connes conjecture for
groups alone (as opposed to group actions) or to the conjecture for foliations
with Hausdorff holonomy groupoids, but in the light of what follows it is
difficult to be confident that no such counterexample will be found soon.

All of our examples are based on essentially the same phenomenon: a
failure of ‘exactness’ when various short exact sequences of algebras are
completed to reduced C∗-algebras. This phenomenon was previously quite
well known, at least in the context of groupoids. Our main observation
– which is really rather simple – is that the failure of exactness can be
detected at the level of K-theory. Since the various generalizations of the
Baum–Connes conjecture predict exactness at the level of K-theory, we
thereby obtain our counterexamples.

Our investigation actually began with the Baum–Connes conjecture for
coarse geometric spaces, and was inspired by the following very elegant
observation of Gromov (see the final section of [G1]). Guoliang Yu [Y]
proved that the coarse Baum–Connes conjecture is true for any bounded
geometry metric space which admits a uniform embedding into Hilbert
space. At the time Yu announced his result there were no known examples
of bounded geometry spaces which did not admit such an embedding, but
Gromov pointed out that no expanding sequence of graphs so embeds. And
indeed it turns out to be rather simple to construct a counterexample to
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the coarse Baum–Connes conjecture starting from a suitable expanding
sequence.

Gromov has taken his observation concerning expanders considerably
further: by mapping expanding sequences of graphs into suitable Cay-
ley graphs he has constructed by probabilistic means examples of finitely
generated groups, even geometrically finite groups, which do not embed
uniformly into Hilbert space. This answers a question raised by Gromov
himself (see [G2, p. 218], and [FRR, p. 67, problem 4]). Combining Gro-
mov’s examples with some simple observations about the C∗-algebras of
coarse-geometric spaces we are able to present examples of group actions
on compact spaces for which the Baum–Connes conjecture fails. In other
words, contingent on Gromov’s results, there exist countable groups G and
compact, metrizable G-spaces X such that the Baum–Connes conjecture
for G, with coefficients in the G-C∗-algebra C(X), is false.

Since the above examples are derived from a failure of exactness, we
are able to conclude that for the Gromov’s groups G the reduced C∗-
algebras C∗

r (G) are not exact. This settles an old question in abstract C∗-
algebra theory. The same result has been obtained, in a different way, by
Anantharaman-Delaroche [A], Guentner and Kaminker [GuK] and Ozawa
[O]. Their work provides a separate means of deducing from Gromov’s con-
structions that there exist discrete groups for which C∗

r (G) is not an exact
C∗-algebra.

It is worth noting that our method does not give counter-examples to the
Baum–Connes conjecture if we replace reduced C∗-algebras by L1-algebras
(the ‘generalized Bost conjecture’) or by any unconditional completion (as
discussed in [L]). In most examples, one can in fact show that the Baum–
Connes maps for unconditional completions remain isomorphisms. Further-
more we have not obtained counterexamples to the injectivity of the ‘full’
Baum–Connes map (which involves full, as opposed to reduced, group and
groupoid C∗-algebras).

1 The Main Idea

Let G be a locally compact groupoid with Haar system. The Baum–Connes
conjecture, as generalized by Tu [T1,2], proposes a formula for the K-
theory of the reduced C∗-algebra of G. We refer the reader to Tu’s papers
for details, as well as to Le Gall’s papers [Le1,2], for further information
on operator K-theory for groupoids. One of the interesting features of
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our counterexamples is that they rely on very little background informa-
tion concerning the formulation of the conjecture: our examples contradict
not only the Baum–Connes conjecture but also all possible variants of the
Baum–Connes conjecture which satisfy only a small list of axioms.

In the Baum–Connes theory one associates topological K-theory groups
Ktop

∗ (G) to each groupoid G as above. More generally to each action of G
on a C∗-algebra A one associates topological K-theory groups Ktop

∗ (G,A).
For example, if G is the fundamental group of a closed, aspherical, even-
dimensional spinc-manifold M then Ktop

∗ (G) identifies with the topological
K-theory of M , while Ktop

∗ (G,A) identifies with the C∗-algebra K-theory
of the sections of the flat C∗-algebra bundle over M which is associated
to the given action of G on A. The groups Ktop

∗ (G,A) are functorial in A
with respect to G-equivariant ∗-homomorphisms.

In what follows we shall be mostly concerned with an important spe-
cial case of this functoriality. Let G0 denote the space of objects of the
groupoid G. Then the commutative C∗-algebra C0(G0) is in a natural way
a G-C∗-algebra. If F is a closed subset of G0 which is saturated, meaning
that every morphism whose source belongs to F also has its range in F ,
then C0(F ) is a G-C∗-algebra quotient of C0(G0). Now the topological
K-theory groups Ktop

∗ (G,C0(G0)) identify with Ktop
∗ (G), while the topo-

logical K-theory groups Ktop
∗ (G,C0(F )) identify with Ktop

∗ (GF ), where GF

is the closed subgroupoid of G comprised of morphisms whose source and
range belong to F . There is therefore a natural restriction morphism

Ktop
∗ (G) → Ktop

∗ (GF )

associated to every closed, saturated subset F of G0.
Now let A !max G and A !r G be the full and reduced crossed product

algebras, respectively. These too are functorial in A. If A = C0(G0) then
the crossed products are the full and reduced groupoid algebras C∗

max(G)
and C∗

r (G), while if A = C0(F ) then they are the full and reduced algebras
of the subgroupoid GF . The associated restriction ∗-homomorphisms

C∗
max(G) → C∗

max(GF ) and C∗
r (G) → C∗

r (GF )

are nothing more than actual restriction from the dense subalgebra Cc(G)
contained within the groupoid C∗-algebras for G to the algebra Cc(GF )
contained within the groupoid C∗-algebras for GF .

As far as this note is concerned, the central object in the Baum–Connes
theory is the full assembly map

µmax : Ktop
∗ (G,A) → K∗(A !max G) .
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It is functorial in A for G-equivariant ∗-homomorphisms. In particular, if
F is a closed, saturated subset of G0 then there is a commuting restriction
diagram

Ktop
∗ (G) → Ktop

∗ (GF )
↓ ↓

K∗(C∗
max(G)) → K∗(C∗

max(GF ))
Until we discuss injectivity counterexamples in section 3 we shall need no
further information about topological K-theory and the full assembly map.

The Baum–Connes conjecture is that the reduced assembly map
µ : Ktop

∗ (G,A) → K∗(A !r G) ,

which is the composition of the full assembly map with the K-theory map
associated to the canonical surjection from A !max G onto A !r G, is an
isomorphism.

From now on the term Baum–Connes map will refer to this reduced
assembly map; we shall not need to concern ourselves directly with the full
assembly map, except to keep in mind that the Baum–Connes map factors
through it.

There is a restriction diagram for the Baum–Connes map,
Ktop

∗ (G) → Ktop
∗ (GF )

↓ ↓
K∗(C∗

r (G)) → K∗(C∗
r (GF ))

whose commutativity follows immediately from the same for the full assem-
bly map.

The main idea in all our counterexamples is to exploit the compatibility
of full and reduced assembly with restriction in the following way. Let F be
a closed, saturated subset of G0 and let U be its complement in G0. Let GF

be the groupoid associated to F , as above, and let GU be its complement
in G, which is the open subgroupoid comprised of all morphisms with source
and range belonging to U . Associated to the decomposition of G into GF

and GU is a short exact sequence of full groupoid C∗-algebras
0 → C∗

max(GU ) → C∗
max(G) → C∗

max(GF ) → 0 ,

in which the quotient map is restriction, as above, and the inclusion is
the natural one induced from the inclusion of Cc(GU ) into Cc(G). The
corresponding sequence for the reduced C∗-algebras,

0 → C∗
r (GU ) → C∗

r (G) → C∗
r (GF ) → 0

need not be exact at its middle term. Indeed this failure of exactness
can even be detected at the level of K-theory: it is possible to construct



Vol. 12, 2002 COUNTEREXAMPLES TO THE BAUM–CONNES CONJECTURE 335

examples in which the sequence
K0(C∗

r (GU )) → K0(C∗
r (G)) → K0(C∗

r (GF )) (!)
fails to be exact at its middle term (recall that K-theory is a half-exact
functor – see for example [Bl] – so this failure of exactness at the level of
K-theory certainly implies a failure of exactness at the level of C∗-algebras).
Constructions of this sort are precisely what we shall carry out in the sub-
sequent sections of the paper. In this section we merely observe that every
such construction immediately provides a counterexample to the Baum–
Connes conjecture:
Lemma 1. Assume that the sequence (!) is not exact at its middle term.

1. If the Baum–Connes map Ktop
0 (GF ) → K0(C∗

r (GF )) is injective, then
the Baum–Connes map Ktop

0 (G) → K0(C∗
r (G)) fails to be surjective.

2. If the map K0(C∗
max(GF )) → K0(C∗

r (GF )) is injective, then the map
K0(C∗

max(G)) → K0(C∗
r (G)) fails to be surjective and a fortiori the

Baum–Connes map Ktop
0 (G) → K0(C∗

r (G)) fails to be surjective.

Proof. We need only chase around the following diagram,
K0(C∗

r (GU )) → K0(C∗
r (G)) → K0(C∗

r (GF ))
↑ ↑ ↑

K0(C∗
max(GU )) → K0(C∗

max(G)) → K0(C∗
max(GF ))

↑ ↑
Ktop

0 (G) → Ktop
0 (GF ) ,

using the facts that the squares commute and that the middle line is exact at
its middle term. To prove the first part of the lemma, let x be an element
in K0(C∗

r (G)) whose image is 0 in K0(C∗
r (GF )), but which is not in the

image of K0(C∗
r (GU )). Then x is not in the range of the Baum–Connes

map. Indeed, assume for the sake of a contradiction that x is the image of
y ∈ Ktop

0 (G). Since the image of x in K0(C∗
r (GF )) is 0, it follows from our

assumption of injectivity that the image of y in Ktop
0 (GF ) is 0. Therefore

the image of y in K0(C∗
max(G)) lies in the image of K0(C∗

max(GU )) and x
lies in the image of K0(C∗

r (GU )) which leads to a contradiction, as required.
The proof of the second part of the lemma is similar. !

In most of the cases that follow the Baum–Connes map for GF will
be injective. Therefore we shall find that the Baum–Connes map for G
fails to be surjective. This failure of surjectivity can be made more starkly
evident by a simple construction involving mapping cones. Suppose we are
presented with a sequence of C∗-algebras and ∗-homomorphisms

J
α−→ A

β−→ B
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for which the composition of α and β is zero. Recall that the mapping cone
of the ∗-homomorphism β : A → B is the C∗-algebra

C(β) =
{
a ⊕ f ∈ A ⊕ C[0, 1] ⊗ B : β(a) = f(0) and f(1) = 0

}
.

There is an obvious ∗-homomorphism γ from J into C(β) and if the map
induced by γ on K-theory is anisomorphism then the sequence

K∗(J) → K∗(A) → K∗(B) (!!)
is exact at its middle term. Let us consider this natural map γ : J → C(β)
and construct the mapping cone of it. The K-theory of C(γ) vanishes if
and only if the ∗-homomorphism γ induces an isomorphism at the level
of K-theory. In that case (!!) is exact at its middle term. Hence if the
sequence (!!) fails to be exact at its middle term then the K-theory of
C(γ) is non-zero. If we start with a short exact sequence

0 → J → A → B → 0 ,

then the K-theory groups of C(γ) vanish. Let us apply these observations
to the short exact sequences of C∗-algebras associated to the decomposi-
tion G = GF ∪ GU that we discussed above. The associated sequence of
full groupoid C∗-algebras is exact, and so the K-theory groups of the cor-
responding ‘full’ C∗-algebra C(γ) vanish. On the other hand if we assume
that the sequence (!) fails to be exact at its middle term then the K-theory
groups of the corresponding ‘reduced’ C∗-algebra C(γ) do not vanish. Now
in both cases, the mapping cone C(γ) is a groupoid C∗-algebra – a full
groupoid C∗-algebra in the first case and a reduced in the second. If S
denotes the space obtained from a closed square by removing two adjacent
sides (thus S is a product of [0, 1[ with itself), and if E1, E2 ⊆ S are the
two remaining sides, then the groupoid in question is

G(F ) = GF × (S \ E1) ∪ GU × E2 .

(This is an open subgroupoid of a closed subgroupoid of G × S. The lat-
ter should be viewed here as a constant family of groupoids over S, and
therefore as a groupoid in its own right. In this way G(F ) carries a lo-
cally compact groupoid topology.) It follows from our general discussion of
mapping cones that

• K∗(C∗
max(G(F ))) = 0 for every G and every closed saturated set

F ⊆ G0.
• K∗(C∗

r (G(F ))) ,= 0 if the K-theory sequence (!) associated to the
closed saturated set F ⊆ G0 fails to be exact at its middle term.

Since the Baum–Connes assembly map for the groupoid G(F ) factors
through the K-theory of the full groupoid C∗-algebra we obtain the fol-
lowing result:
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Proposition 2. Let G be a locally compact groupoid with a Haar system.
If the K-theory sequence (!) associated to a closed saturated set F ⊆ G0

fails to be exact at its middle term then the Baum–Connes assembly map
for the associated groupoid G(F ) is zero, while the K-theory of the reduced
C∗-algebra for G(F ) is non-zero. In particular, if the sequence (!) fails to
be exact at its middle term then the Baum–Connes assembly map for G(F )
fails to be surjective. !

We remark that in fact the topological K-theory of G(F ) is zero, so that
the Baum–Connes map is for trivial reasons injective in these examples.

2 Surjectivity Counterexamples

Let Γ∞ be an infinite discrete group. Let {Γn}n∈ be a family of finite
groups and let {πn : Γ∞ → Γn}n∈ be a family of surjective homomor-
phisms. For convenience, let us denote by π∞ : Γ∞ → Γ∞ the identity map
from Γ∞ to itself.

Define a groupoid G in the following way. Let G0 be N, the one-point
compactification of the natural numbers, and let the space of morphisms
in G be the quotient of Γ∞ × N by the following equivalence relation:
(g, n) ∼ (h,m) if and only if n = m ∈ N and πn(g) = πn(h). Then G
is a groupoid and in fact a locally compact groupoid in the quotient topol-
ogy. It is of course just a continuous family of groups over N, whose fiber
over n is Γn. The groupoid is Hausdorff if and only if, for every g ∈ Γ∞\{1},
the set {n ∈ N,πn(g) = 1} is finite.

We recall that in the present situation the C∗-algebra C∗
r (G) is the

completion of Cc(Γ∞ × N) for the following C∗-seminorm:
‖f‖C∗

r (G) = sup
n∈

‖λn(fn)‖L(#2(Γn)) .

Here fn : Γ∞ → C is the restriction of f to Γ∞ ∼= Γ∞ × {n} and λn is the
composition of the surjection from Γ∞ to Γn with the regular representation
of Γn.

Consider the closed saturated set {∞} of G0 = N. By abuse of notation,
we write G∞ instead of G{∞} ∼= Γ∞. Let us form the following particular
instance of the sequence (!) that was analyzed in the previous section:

K0(C∗
r (G )) → K0(C∗

r (G)) → K0(C∗
r (G∞)) . (! ! !)

Proposition 3. Assume that the trivial representation of Γ∞ is isolated
in the direct sum unitary representation ⊕n∈ λn of Γ∞. Then the sequence
(! ! !) fails to be exact at its middle term.
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Proof. Each group element g ∈ Γ∞ determines a canonicalelement in
Cc(Γ∞ × N), namely the characteristic function of {g} × N, and in this
waya ∗-homomorphism π : C[Γ∞] → Cc(G) is determined. It follows from
the above definition of the norm in C∗

r (G) that if C∗
π(Γ∞) denotes the com-

pletion of C[Γ∞] in the norm associated to the representation ⊕n∈ λn then
π extends to a homomorphism of C∗-algebras from C∗

π(Γ∞) to C∗
r (G).

The hypothesis implies that the trivial representation of Γ∞ is an iso-
lated point in the dual of C∗

π(Γ∞), and therefore that there is a projection
p ∈ C∗

π(Γ∞) which, for any representation of Γ∞ weakly contained in the
direct sum ⊕n∈ λn, acts as the orthogonal projection onto the Γ∞-fixed
vectors. Let us consider the image π(p) of the projection p in the C∗-
algebra C∗

r (G). Since the regular representation of Γ∞ has no fixed vectors
it follows that π(p) maps to zero in C∗

r (G∞). We shall now show that the
K-theory class [π(p)] ∈ K0(C∗

r (G)) is not in the image of the K-theory of
C∗

r (G ). This will prove the proposition.
Obviously the groupoid G is the disjoint union

∐
n∈ Γn, with the

discrete topology. We have C∗
r (G ) = ⊕n∈ C∗

r (Γn). Now it follows from
the definition of the norm in C∗

r (G) that the representations λn : Cc(G) →
C(Γn) extend to ∗-homomorphisms from C∗

r (G) to C∗
r (Γn). This gives us

what we want: the class [π(p)] does not lie in the image of ⊕n∈ K0(C∗
r (Γn))

because λn([π(p)]) ∈ K0(C∗
r (Γn)) is non-zero for every n (since λn(π(p)) is

non-zero and C∗
r (Γn) is finite dimensional), while λn(x) is zero for almost

all n whenever x belongs to the image of ⊕n∈ K0(C∗
r (Γn)). !

Here are three concrete examples (and therefore three concrete counter-
examples to the surjectivity of the Baum–Connes map).

1st Counterexample. Let Γ∞ be a discrete group with Kazhdan’s prop-
erty (T) (see [HV]) and suppose that the Baum–Connes map Ktop

∗ (Γ∞) →
K∗(C∗

r (Γ∞)) is injective. Then, no matter what the homomorphisms πn

and groups Γn are, the hypotheses in Proposition 3 and the first part
of Lemma 1 are satisfied. Therefore the Baum–Connes map Ktop

0 (G) →
K0(C∗

r (G)) fails to be surjective.
This happens in particular when Γ∞ = SL3(Z), when Γn = SL3(Z/nZ),

and when πn are the obvious surjections. Indeed, SL3(Z) is perhaps the ex-
emplar of a property (T) group, while it follows from the work of Kasparov
[K3,5] that the Baum–Connes map (even with coefficients) is injective for
all closed subgroups of any connected Lie group.

Note that in this case the groupoid G is Hausdorff.
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2nd Counterexample. Let Γ∞ be SL2(Z) and let πn : Γ∞ → SL2(Z/nZ)
be the obvious surjections. A well-known theorem of Selberg (see [Lu])
shows that the hypothesis in Proposition 3 is satisfied. In addition the hy-
pothesis in the second part of Lemma 1 is satisfied since SL2(Z) is known
to be K-amenable (see [Cu] and [K4]). Therefore the map K0(C∗

max(G)) →
K0(C∗

r (G)) fails to be surjective (and hence the Baum–Connes map for G
fails to be surjective also). Once again, G is Hausdorff.

3rd Counterexample. Let Γ∞ be any non-amenable but K-amenable
discrete group (for instance let Γ∞ = F2, [Cu]) and let Γn = 1 for all n ∈ N.
Then the hypothesis in Proposition 3 is obviously satisfied and in addition
the hypothesis in the second case of Lemma 1 is satisfied. Therefore the
map K0(C∗

max(G)) → K0(C∗
r (G)) and also the Baum–Connes map for G

fail to be surjective. Note that this groupoid G is not Hausdorff.

3 Injectivity Counterexamples

In this section, we shall build on the third counterexample of the previous
section in order to construct a counterexample to the injectivity of the
Baum–Connes map. The groupoid we obtain will not be Hausdorff; we
shall present a Hausdorff counterexample in section 5.

Let a and b be two distinct points on the circle S1. Denote by [b, a]
one of the closed arcs connecting a and b and denote by [a, b] the other
one. We shall write ]a, b[ for the interior of [a, b]. Let G be the quotient
of the constant family of groups F2 × S1 over the topological space S1

by the following equivalence relation : (g, x) ∼ (h, y) if and only if either
x = y ∈ ]a, b[ or x = y ∈ [b, a] and g = h (we give G the quotient topology).
Thus G is a field of groups over S1 whose fibers over [b, a] are F2 and whose
fibers over ]a, b[ are the trivial group 1. Of course G is non-Hausdorff.

The reduced C∗-algebra C∗
r (G) is the completion of Cc(F2 × S1) in the

following C∗-seminorm:
‖f‖ = max

{
sup

x∈[b,a]
‖fx‖C∗

r ( 2 ) , sup
y∈[a,b]

∣∣∣
∑

g∈ 2

fy(g)
∣∣∣
}

,

where fx denotes the restriction of f : F2 × S1 → C to F2
∼= F2 × {x} ⊆

F2 × S1.
We therefore have an obvious ∗-monomorphism

π : C∗
r (G) → C[b, a]⊗C∗

r (F2) ⊕ C[a, b] .
In fact this ∗-monomorphism is a ∗-isomorphism. To see this, recall first
that since F2 is non-amenable there is an element f ∈ C∗

max(F2) such that
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the image of f under the trivial representation of F2 is 1 while the image
of f in C∗

r (F2) is 0. Now, the obvious inclusion C[F2] ⊆ Cc(F2 × S1) which
associates to a function on F2 the function on F2 ×S1 which is constant in
the S1-direction determines a ∗-homomorphism ρ : C∗

max(F2) → C∗
max(G).

The image of the element f under the threefold composition of ρ, the map
from C∗

max(G) to C∗
r (G), and the map π above, is the element 0 ⊕ 1 ∈

C[b, a]⊗C∗
r (F2)⊕C[a, b]. This shows that the image of the ∗-homomorphism

π contains 0⊕1. The remainder of the proof of surjectivity is an easy com-
putation, based on the fact that the compositions of π with the coordinate
projections to C[b, a]⊗C∗

r (F2) and to C[a, b] are surjective.
Having shown that π is an isomorphism let us now consider, for i = 0, 1,

the following commuting diagram:
0 → Ki(C[a, b]) → Ki(C∗

r (G)) → Ki(C∗
r (F2)⊗C[b, a]) → 0

↑0 ↑ ↑0
0 → Ki(C0 ]a, b[ ) → Ki(C∗

max(G)) → Ki(C∗
max(F2)⊗C[b, a]) → 0

↑0 ↑
Ktop

i ( ]a, b[ ) → Ktop
i (G) .

The bottom left of the diagram incorporates two facts about the full assem-
bly map that we have not yet discussed. First, if U is an open saturated
subset of the object space of a groupoid G then associated to the inclusion
of GU into G there is a map from Ktop

∗ (GU ) to Ktop
∗ (G). The full assembly

map is compatible with this and with the K-theory map associated to the
inclusion of C∗

max(GU ) as an ideal in C∗
max(G). This is another instance of

the functoriality of the full assembly map that was discussed in section 1.
Second, if U is a locally compact space, and if we consider U as a trivial
groupoid (with only identity morphisms), then the Baum–Connes map is
an isomorphism for U .
Lemma 4. The first two lines of this diagram are (split) exact.

Proof of the lemma. From our computation of C∗
r (G) it is obvious that

the top line is split exact. The fact that the second line is split exact comes
from the following commutative diagram:

Ki(C∗
max(G)) −→ Ki(C∗

max(F2) ⊗ C([b, a]))
ρ↖ %↗

Ki(C∗
max(F2))

The lemma proves that the image of the generator of K0(C[a, b])
in K0(C∗

r (G)) does not come from K0(C∗
max(G)) and that the image

β ∈ Ktop
1 (G) of the Bott generator of Ktop

1 ( ]a, b[ ) has a non-zero image
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in K1(C∗
max(G)). Therefore this class β is non-zero but maps to zero in

K1(C∗
r (G)). Hence the Baum–Connes map for G is neither injective nor

surjective.

4 Foliation Counterexamples

We now show how to slightly modify the groupoid constructed in the pre-
vious section so as to obtain a counterexample which is the holonomy
groupoid of a foliation.

Let us first recall the ‘foliated bundle construction’, which is the con-
struction of a certain foliation associated to a group action. Suppose that a
discrete group Γ acts smoothly on a smooth manifold B. Suppose also that
M is a smooth manifold and that M̃ is a Galois covering of M with Galois
group Γ. Then the diagonal action of Γ on M̃ × B is free and proper, and
the quotient space

V = (M̃ × B)
/

Γ
is a smooth manifold (which is compact if M and B are compact). It is
foliated by the images of the spaces M̃ × {x}, for x ∈ B.

Returning to the Γ-action on B, form the groupoid with objects B,
set of arrows B × Γ, range and source maps (x, g) 3→ x and (x, g) 3→
g−1 · x, and composition (x, g)(y, h) = (x, gh) (note that these morphisms
are composable precisely when g−1 · x = y). If we write the action as say
θ : Γ → Diff(B) then let us write the associated groupoid as B ×θ Γ.

Recall that an action of a discrete group Γ on a locally compact space
X is said to be almost free if for every g ∈ Γ \ {1}, the interior of the set
{x ∈ X : g · x = x } is empty. If the smooth action of Γ on B above is
almost free then the restriction of the holonomy groupoid to a transversal
{m}× B in V is the groupoid B ×θ Γ.

In the non-almost free case, the restricted groupoid is the quotient of
the groupoid B ×θ Γ by the following equivalence relation: (x, g) ∼ (x′, g′)
if and only if x = x′ and g′g−1 acts as the identity on a neighborhood of x
in B.

We are now going to build a foliation, starting from a certain family
of actions of the free group F2 by homographic transformations on the
projective line P1(R). For any t ∈ R set

αt =
(

1 t
0 1

)
and βt =

(
1 0
t 1

)
.

Lemma 5. Let α and β be generators of the free group F2. For all except
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countably many t ∈ R, the action of F2 on P1(R) for which α and β act via
the matrices αt and βt in SL2(R) is almost free.

Proof. A non-trivial element g ∈ PSL2(R) has at most two fixed points in
P1(R). It is therefore enough to show that for all but countably many t ∈ R,
the group homomorphism ϕt : F2 → SL2(R) determined by αt and βt is
injective (note that as F2 has no torsion, the map F2 → PSL2(R) will then
also be injective). It is well known that for every t ≥ 2 this homomorphism
is injective. So for any non-trivial word w ∈ F2, the associated matrix
ϕt(w) ∈ SL2(R) is polynomial in t and not identically the identity matrix.
It follows that for every non-trivial word w the set {t ∈ R,ϕt(w) = 1} is
finite. !

Now, as in the previous section, let a and b be distinct points in S1,
and let [a, b] and [b, a] be the closed arcs connecting them. Let u : S1 → R

be a smooth function which vanishes on [a, b] and which is constant on no
open interval within [b, a]. Consider the action θ of F2 on B = S1 × P1(R)
given by the following formula on the generators of F2:

α : (x, z) 3→
(
x,αu(x)(z)

)

β : (x, z) 3→
(
x,βu(x)(z)

)
.

Notice that this fibers as a family of group actions over S1. Let M be a
smooth compact manifold and let M̃ be a Galois covering of M with Galois
group F2 (for instance we could let M be a Riemann surface of genus 2
and consider its Galois covering associated to a surjective homomorphism
π1(M) → F2). Form the associated foliated manifold V , as above. It
follows from our remarks about holonomy groupoids that the restriction of
the holonomy groupoid for V to a transversal {m} × B is the quotient of
the groupoid B ×θ F2 by the following equivalence relation:

(
(x, z), g

)
∼

(
(x′, z′), g′

)
⇔

x = x′ ∈ [b, a], z = z′ and g = g′

or
x = x′ ∈ ]a, b[ and z = z′.

The groupoid G is thus a field of groupoids over S1 whose fiber at x ∈ [b, a]
is P1(R) !ϕu(x)

F2 and whose fiber at x ∈ ]a, b[ is P1(R). With the obvious
notation, the restricted groupoid G[b,a] is

G[b,a] =
(
[b, a] × P1(R)

)
!θ F2 ,

while G]a,b[ is the trivial groupoid ]a, b[×P1(R).
Just as in the last section, we use the non-amenability of F2 and the

natural morphism C∗
max(F2) → C∗

r (G) to compute that
C∗

r (G) ∼= C∗
r (G[b,a]) ⊕ C

(
[a, b] × P1(R)

)
.
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With this in hand, let us consider, for i = 0, 1, the following commuting
diagram:
0 → Ki(C([a, b] × P1(R))) → Ki(C∗

r (G)) → Ki(C∗
r (G[b,a])) → 0

↑0 ↑ ↑0
0 → Ki(C( ]a, b[×P1(R))) → Ki(C∗

max(G)) → Ki(C∗
max(G[b,a])) → 0

↑0 ↑
Ktop

i ( ]a, b[×P1(R)) → Ktop
i (G)

Lemma 6. The first two lines of this diagram are (split) exact.

The lemma proves that the image of the generator of K0(C([a,b]×P1(R)))
in K0(C∗

r (G)) does not come from K0(C∗
max(G)), and that the image in

Ktop
0 (G) of the generator of Ktop

0 ( ]a, b[×P1(R)) has a non-zero image in
K0(C∗

max(G)) but goes to 0 in K0(C∗
r (G)). Therefore the Baum–Connes

map Ktop
0 (G) → K0(C∗

r (G)) is neither injective nor surjective.
Proof of the lemma.. The first line is split exact by our computation of
C∗

r (G). For the second we consider the following commutative diagram:
Ki(C∗

max(G)) −→ Ki(C∗
max(G[b,a]))

↑ ↗
Ki(C

(
S1 × P1(R)

)
!θ,max F2)

The diagonal map is (split) surjective because of the following general
lemma. Therefore the horizontal map is (split) surjective. !

In the lemma below we shall use the notation !λ for a crossed product
associated to an action λ of a group on a C∗-algebra. The lemma works
for either the full or the reduced crossed product.
Lemma 7. Let A be a C∗-algebra and I a two-sided closed ideal in it. Let
λ be an action of F2 on the C∗-algebra A which leaves I invariant, and
denote also by λ the induced actions on I and A/I. If λ is homotopic to λ′

through C∗-algebra actions which leave I invariant, and if there is a section
A/I → A that is equivariant with respect to λ′, then the sequence

0 → K∗(I !λ F2) → K∗(A !λ F2) → K∗
(
(A/I) !λ F2

)
→ 0

is split-exact.

Proof. This is a consequence of the Baum–Connes conjecture with coeffi-
cients for F2, or equivalently the Pimsner-Voiculescu sequence for crossed
products by F2. These results imply that if C is an F2-C∗-algebra and
Ki(C) = 0 for i = 0, 1 then Ki(C ! F2) = 0 for i = 0, 1. If Λ is the
action on A[0, 1] that makes the homotopy, and still denotes the induced
action on I[0, 1] and (A/I)[0, 1], Ki(A]0, 1]) = 0 and therefore the evalua-
tion A[0, 1] !Λ F2 → A !λ F2 is a K-theory isomorphism and the same is
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true for the other evaluation and for I or A/I instead of A. We conclude
by the following diagram, where all squares commute:

Ki(I !λ F2) → Ki(A !λ F2) → Ki((A/I) !λ F2)
↑0 ↑0 ↑0

Ki(I[0, 1] !Λ F2) → Ki(A[0, 1] !Λ F2) → Ki((A/I)[0, 1] !Λ F2)
↓0 ↓0 ↓0

Ki(I !λ′ F2) → Ki(A !λ′ F2) → Ki((A/I) !λ′ F2)
Remark 8. It follows from this example that in the non-Hausdorff case
there is no fundamental cycle (see [C]) defined on the C∗-algebra of the
foliation. Indeed, although our foliation is transversally oriented, the Bott
generator of a small transversal maps to 0 in the reduced C∗-algebra of G.
Recall that, in the definition of the fundamental cycle one takes a smooth
form ω on G, restricts it to G0 and then integrates it. Now, if the groupoid
is not Hausdorff, G0 is not closed in G and the definition of C∞(G) is
modified. In particular, the restriction of a ‘closed smooth form in G’ is no
longer a closed form in G0. It follows that the formula for the ‘fundamental
cycle’ is no longer a cyclic cocycle.

One should be able to bypass this difficulty by working with the ‘max’
C∗-algebra of G and integrating over G and slightly modifying the fun-
damental cycle. Note that the fundamental cycle in K-homology (con-
structed over the ‘max’ C∗-algebra) as defined in [HilS] makes sense in the
non-Hausdorff setting.

5 An Improved Injectivity Counterexample

The purpose of this section is to present a Hausdorff groupoid for which
the Baum–Connes map fails to be injective.

Let Γ be a discrete group with property (T), let K be a compact Lie
group and ι : Γ → K an injective group homomorphism with dense image.
Let k be the Lie algebra of K. Then K, and therefore Γ, act on k by the
adjoint action and we denote by k ! Γ the associated semi-direct product
group.

The total space of the normal bundle of Γ in K is a group isomorphic
to k ! Γ. The deformation to the normal cone (see [HilS]) produces from
the inclusion of Γ into K a C∞-groupoid G0 which is a field of groups over
R whose fiber at 0 is k ! Γ and whose restriction to R \ {0} is the trivial
field with fiber K.

Let u : S1 → R be any C∞-function which vanishes on F = [b, a] and
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which is nowhere zero on the complementary interval U =]a, b[. Let G be
the restriction to the graph of u of the C∞-groupoid S1 ×G0 (the latter is
a field of groups over S1 × R). Then G is a C∞-groupoid. It is a field of
groups over S1 whose fiber over F is k ! Γ and whose fiber over U is K.

The K-theory of the full groupoid C∗-algebra is easy to compute via
the short exact sequence

0 → C∗
max(GU ) → C∗

max(G) → C∗
max(GF ) → 0 .

Since G restricts to constant fields of groups over U and F we get
C∗

max(GU ) ∼= C∗(K) ⊗ C0(U) and C∗
max(GF ) ∼= C∗

max(k ! Γ) ⊗ C(F ) .

The trivial representations of the groups K and k!Γ yield a homomorphism
ε : C∗

max(G) → C(S1).
Let p0 ∈ C∗(K) be the projection associated to the trivial representation

of K. The product of p0 with the Bott generator on U determines a K1-
class for C∗

max(GU ) and therefore a K1-class β for C∗
max(G). Note that

β ,= 0 since its image by ε is the Bott generator of S1. This class lies in the
image of the full assembly map for G, thanks to the commuting diagram

K∗(C∗
max(GU ))

∼=−→ K∗(C∗
max(G))

↑ ↑
Ktop

∗ (GU ) −→ Ktop
∗ (G)

and the fact that the full assembly map for a constant field of compact
groups, such as the groupoid GU , is an isomorphism.

We are going to show that the class β maps to zero in K1(C∗
r (G)). This

will of course prove that the Baum–Connes map for the groupoid G fails
to be injective.

Let p be the Kazhdan projection in C∗
max(Γ), which acts as the ortho-

gonal projection onto the Γ-fixed vectors in any unitary representation of Γ.
In view of the obvious groupoid morphism from S1×Γ to G, every element
of C∗

max(Γ) acts as a multiplier of C∗
r (G) and of C∗

max(G). We can therefore
form the C∗-subalgebras pC∗

max(G)p and pC∗
r (G)p of the full and reduced

groupoid algebras, respectively. Following the pattern set in earlier sections
we find that

pC∗
r (G)p ∼= C(F ) .

Hence K1(pC∗
r (G)p) = 0. But the class β is contained within the image

of the map from K1(pC∗
max(G)p) to K1(C∗

max(G)), and it therefore follows
immediately from the commuting diagram

K1(pC∗
r (G)p) → K1(C∗

r (G))
↑ ↑

K1(pC∗
max(G)p) → K1(C∗

max(G))
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that β maps to zero in K1(C∗
r (G)), as required.

6 Coarse Counterexamples

The coarse Baum–Connes conjecture proposes a formula for the K-theory
of the coarse C∗-algebra of a proper metric space X of bounded coarse
geometry. We begin by very briefly reviewing some definitions; for more
details see [HiR] and [STY].

We shall assume here that X is discrete and of bounded geometry, the
latter condition meaning that for every R > 0 there is some N such that
no ball of radius R in X contains more than N points. This does not really
entail a loss of generality since every proper metric space of bounded coarse
geometry is equivalent within coarse geometry to such a discrete space.

If X is discrete and of bounded geometry then denote by B(X) the space
of those X × X matrices [axx′ ] which have the following two properties:

• Uniform boundedness: sup{ |axx′ | : x, x′ ∈ X } < ∞;
• Finite propagation: sup{ d(x, x′) : axx′ ,= 0 } < ∞.

Then B(X) is a ∗-algebra under the usual matrix operations, and it may be
represented faithfully as bounded operators on the Hilbert space -2(X). We
denote by B∗(X) its norm-completion. This is what is called the uniform
algebra or the uniform Roe algebra of X.

The coarse algebra or coarse Roe algebra of X is defined in a similar
way, but starting now with the space of matrices [axx′ ] whose entries axx′

are compact operators on a fixed separable Hilbert space H. As with the
matrices in B(X), the new operator matrices are required to be uniformly
norm-bounded and of finite propagation. The ∗-algebra obtained in this
way is represented faithfully as bounded operators on -2(X) ⊗ H, and the
coarse C∗-algebra C∗(X) is the norm-completion.

The coarse Baum–Connes theory associates to X certain topological
groups Ktop

∗ (X), and the coarse Baum–Connes conjecture is that an asso-
ciated assembly map

µ : Ktop
∗ (X) → K∗(C∗(X))

is an isomorphism of abelian groups. The main reason for studying the
coarse Baum–Connes conjecture is the following descent principle (which is
very closely related to similar statements in controlled topology): if Γ is a
geometrically finite group then the coarse Baum–Connes conjecture for the
word-length metric space underlying Γ implies Novikov’s higher signature
conjecture for manifolds with fundamental group Γ.
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Although a geometric construction of counterexamples to the coarse
Baum–Connes conjecture is possible, having studied groupoids at some
length already in this note it will suit us better to recall that the coarse
Baum–Connes conjecture can be reformulated as a special case of the
Baum–Connes conjecture for groupoids (with coefficients). We recall from
[STY] that the groupoid in question is an étale groupoid G(X) whose ob-
ject space is the Stone-Čech compactification βX of X. If we view points
of βX as {0, 1}-valued, finitely additive measures on X, then a morphism
from one such measure, µ1, to another, µ2, is represented by a bijection
f : X1 → X2, where:

• X1 and X2 are subsets of X, with µ1(X1) = 1 and µ2(X2) = 1,
• µ1(E) = µ2(f [E]), for every E ⊆ X1,
• sup{ d(x, f(x)) : x ∈ X1 } < ∞.

Two such bijections are regarded as defining the same morphism if they
are equal modulo null sets. The reduced C∗-algebra of G(X) identifies
with the uniform C∗-algebra B∗(X); the coarse algebra C∗(X) identifies
with the reduced crossed product associated to a natural action of G(X)
on the C∗-algebra AX = -∞(X,K(H)). It is shown in [STY] that the
coarse Baum–Connes conjecture for X is the same thing as the groupoid
Baum–Connes conjecture for G(X), with coefficients in AX .

In what follows we shall present a counterexample to the groupoid con-
jecture for G(X) with coefficients in AX . Actually, to keep the notation
simple, we shall drop the coefficients and just deal with G(X) alone. It is
elementary to restore the coefficients. We write G instead of G(X).

We shall attack the conjecture using the same weapon that we intro-
duced in section 1. For this we need a closed, saturated subset F of the ob-
ject space βX, and we shall choose for this purpose the Stone-Čech corona
– that is, we define F to be the complement of X in βX (and therefore, in
the notation of section 1, the open set U is X). The open subgroupoid GX

which is complementary to GF is easy to describe: its object space is the
discrete set X and there is exactly one morphism between any two objects.
Its associated groupoid C∗-algebra identifies with the compact operators on
-2(X) under the isomorphism which identifies C∗

r (G) with B∗(X). As in
section 1, we will construct a projection in C∗

r (G) whose image in C∗
r (GF )

vanishes. To prove the latter we will use the following lemma:
Lemma 9. If an étale Hausdorff groupoid G acts on a C∗-algebra A, then
the map Cc(G;A) → C0(G;A) extends to an injection (functorial in A) from
A !r G to C0(G;A).
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Proof. By definition, A !r G is the completion of Cc(G;A) with respect to
the norm f 3→ sup{‖f ! g‖2 : g ∈ Cc(Gx;A), ‖g‖2 ≤ 1, x ∈ G0}, where
‖ ‖2 is the norm of the Hilbert Ax-module -2(Gx;A). Taking g to be a
function vanishing outside x ∈ Gx, we find ‖f‖A rG ≥ ‖f‖∞, whence the
map Cc(G;A) → C0(G;A) extends to a map u (functorial in A), from A!rG
to C0(G;A). For f ∈ A!rG and g ∈ Cc(Gx;A), we find λx(f)(g) = u(f)!g,
whence u is injective. Here λx : A !r G → L(-2(Gx;A)) is the left regular
representation. !

We are now ready to discuss the counterexample, which will use the
notion of an expander graph. Recall that a finite, undirected, connected
graph X is said to be a (k, ε)-expander if

• it has valence k or less (that is, no more than k edges emanate from
any vertex),

• the lowest non-zero eigenvalue of the Laplace operator ∆ for X is at
least ε.

Here the Laplace operator ∆ is the linear operator acting on -2(X0), where
X0 is the vertex set of X, which is defined by the quadratic form

〈f, ∆f〉 =
∑

d(x,x′)=1

∣∣f(x) − f(x′)
∣∣2.

The sum is over all pairs of adjacent vertices. See [Lu] for a comprehensive
treatment of expander graph theory.

Now, fix k and ε and suppose that {Xn}∞n=1 is a sequence of (k, ε)-
expander graphs such that the number of vertices in Xn converges to infinity
as n tends to infinity (specific examples will be discussed in a moment). Let
X be a metric space, as follows:

• the underlying set of X is the disjoint union of the vertex sets of the
graphs Xn,

• the distance between two vertices lying in a single Xn is the graph
distance – the shortest length of a path connecting them,

• the smallest distance between a vertex of Xn and a vertex of any Xm

with m ,= n converges to infinity as n → ∞.
Since the graphs Xn have uniformly bounded valence, the metric space X
has bounded geometry.

Define the Laplace operator ∆ on -2(X) ∼= ⊕-2(X0
n) to be the direct sum

of the Laplace operators ∆n for the graphs Xn. Since the lowest non-zero
eigenvalues for these ∆n are bounded uniformly away from zero it follows
that 0 is an isolated point of the spectrum of the bounded operator ∆.
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Now the operator ∆ belongs to the C∗-algebra B∗(X) (in fact it belongs
to the subalgebra B(X)) and it therefore follows from spectral theory that
the orthogonal projection p onto the kernel of ∆ belongs to the C∗-algebra
B∗(X) too. This projection is of course easy to describe: its range is the
direct sum of the constant functions in each -2(X0

n). As a matrix it is block-
diagonal with respect to the decomposition -2(X) ∼= ⊕-2(X0

n) and the nth
block is the X0

n × X0
n matrix all of whose entries are |X0

n|−1. Hence the
entries pxx′ converge to zero as x, x′ → ∞. It follows from Lemma 9 that p
maps to zero in C∗

r (GF ).
However the class of the projection p in the K-theory group K0(B∗(X))

does not lie in the image of the K-theory map associated to the inclusion of
K(-2(X)) into B∗(X). Indeed, by the hypothesis on the pairwise distance
of the Xn’s, it follows that C∗(X) is contained in the sum of K(-2(X)) with
the -∞-product

∏
n K(-2(Xn)). We therefore get amorphism

C∗(X)/K(-2(X)) →
∏

n

K(-2(Xn))
/ ⊕

n

K(-2(Xn)) .

The sequence ofthe evaluation maps yields a homomorphism

K0

(∏

n

K(-2(Xn))
)
→ Z .

The image of p through this morphism is (1, 1, . . . , 1, . . . ), from which fact
it follows that the image of p in K0

( ∏
n K(-2(Xn))

/ ⊕
n K(-2(Xn))

)
is

nonzero.
We have arrived at the following conclusion: if G is the groupoid G(X)

associated to the discrete metric space obtained from an expanding se-
quence, as above, and if F is the Stone-Čech corona βX \ X, then the
sequence of K-theory groups

K0(C∗
r (GX)) → K0(C∗

r (G)) → K0(C∗
r (GF ))

fails to be exact at the middle. As a result, it follows from the observations
made in section 1 that either the Baum–Connes map for GF fails to be
injective or the Baum–Connes map for G itself fails to be surjective.

By reintroducing the coefficient algebra AX that we have up to now
suppressed we get the following result:

Proposition 10. Let the metric space X, the groupoid G and the closed
saturated set F be as above. If the Baum–Connes map for the groupoid
GF , with coefficients, is injective then the coarse Baum–Connes map for X
fails to be surjective. !
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If Γ is a finitely generated group, if {Γn}∞n=1 is a sequence of finite
quotients which increase to infinity in size, and if the trivial representation
of Γ is isolated in the ‘left regular’ representation of Γ on ⊕n-2(Γn), then
the sequence of Cayley graphs of the Γn, formed with respect to a fixed
finite generating set of Γ, is an expanding sequence of graphs of the sort we
require. If it happens that each g ∈ Γ apart from the identity element maps
to the identity element in only finitely many of the Γn then the groupoid
GF is easy to compute: it is just the crossed product groupoid associated
to the action of the group Γ on the Stone-Čech corona of ∪nΓn. So if Γ is a
group for which the injectivity of the Baum–Connes map, with coefficients,
is proved, then it must follow that the coarse Baum–Connes map for the
space X fails to be surjective. Hence, for example:
Proposition 11. Let k ≥ 2 and form the Cayley graphs of the quotients
SLk(Z/nZ) with respect to a fixed finite generating set of SLk(Z). Let
X = ∪nSLk(Z/nZ) and assign to X a metric which is the Cayley graph
metric on each SLk(Z/nZ) and for which the separation of SLk(Z/nZ) from
its complement in X increases to infinity, as n tends to infinity. Then the
coarse Baum–Connes assembly map for the space X fails to be surjective. !

7 Counterexamples for Group Actions

In this final section we shall consider the Baum–Connes conjecture for
group actions on spaces, or in other words the Baum–Connes conjecture
for groups, with coefficients in commutative C∗-algebras.

In a recent paper [G1], M. Gromov has announced the existence of
finitely generated groups which do not uniformly embed into Hilbert space.
His argument, which he sketches very briefly, is based on two things: the
simple but elegant observation that no expanding sequence of graphs em-
beds uniformly in Hilbert space; and a far more intricate probabilistic
scheme for constructing groups into whose Cayley graphs certain expanding
sequences of graphs may be mapped.

What follows below is almost entirely based on Gromov’s constructions.
Since the details have not yet appeared, let us make precise what we shall
need. We shall assume the existence of a finitely generated discrete group Γ,
of a sequence of (k, ε) expanding graphs Xn, as in the previous section, and
of a sequence of maps ϕn : X0

n → Γ from the vertex sets of these graphs
into Γ such that:

• There is a constant K such that d(ϕn(x),ϕn(x′)) ≤ Kd(x, x′) for
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all n and for all x, x′ ∈ X0
n. Here the distance is computed in X0

n

using the graph distance, and in Γ using the left translation invariant
word-length metric for some set of generators which will be fixed
throughout.

• limn→∞(max{#ϕ−1
n [x]/#Xn : x ∈ Γ}) = 0.

We shall prove that there exists a compact metrizable space Z and an action
of Γ on Z by homeomorphisms such that the Baum–Connes map fails to
be an isomorphism for the reduced crossed product of C(Z) by Γ.

Consider first the (non-separable) abelian C∗-algebra A = -∞(N; c0(Γ)).
The C∗-algebraA !r Γ is faithfully represented in -2(Γ × N).

For n ∈ N, define a partial isometry θn : -2(Γ) → -2(Xn) by

θn(f)(x) =
1√

#ϕ−1
n [ϕn(x)]

f(ϕn(x))

for f ∈ -2(Γ), x ∈ Xn. The positive operator
Dn = θ∗n∆nθn + (1 − θ∗nθn) : -2(Γ) → -2(Γ)

has a one-dimensional kernel, which is spanned by the -2-normalized func-
tion y 3→

√
#ϕ−1

n [y]/#Xn, and on the orthogonal complement of its kernel
Dn is bounded below by min(ε, 1). Let D be the direct sum of the opera-
tors Dn on -2(Γ × N). Then D belongs to the algebra Ã !r Γ obtained by
adjoining a unit to A !r Γ (it is in fact in ˜Cc(Γ, A)), the point 0 is isolated
in its spectrum, and the orthogonal projection onto the kernel of D, which
is by spectral theory an element p of A !r Γ ⊂ -∞(N;K(-2(Γ))), is the
sequence pn of matrices with entries

pn,y,z =

√
#ϕ−1

n [y]#ϕ−1
n [z]

#Xn
, y, z ∈ Γ .

It therefore follows from our hypotheses that the supremum of the matrix
coefficients pn,y,z converge to zero as n → ∞. We show that:

• The class of p in K0(A!r Γ) does not come from K0(c0(N×Γ)!r Γ).
• The image of p in (A/c0(N × Γ)) !r Γ is zero.

To prove the first assertion, denote by πn : -∞(N, c0(Γ))!rΓ → c0(Γ)!Γ the
evaluation at n. Using πn, we get a map K0(A!r Γ) → K0(c0(Γ)! Γ) = Z.
Since πn(p) = pn is a rank one projection, we find πn([p]) = 1. Therefore
the K-theory class of p in K0(A!r Γ) does not come from K0(c0(N×Γ)!r Γ)
(which is an algebraic sum ⊕n∈ Z).

As for the second assertion, the above computation tells us that the
function from Γ to A associated with p by Lemma 9 takes its values in
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c0(N × Γ). By Lemma 9, the image of p is 0, since the function from Γ to
A/c0(N × Γ) associated with the image of p is 0.

This shows that the K-theory sequence

K0(c0(N × Γ) !r Γ) → K0(A !r Γ) → K0
(
(A/c0(N × Γ)) !r Γ

)

fails to be exact at its middle term, and from this we obtain our counterex-
ample as before.

Having found a commutative but non-separable counterexample to the
Baum–Connes conjecture it follows from a direct limit argument that there
is a separable Γ-C∗-subalgebra which is also a counterexample. Taking
the one-point compactification of the Gelfand dual of such a separable C∗-
subalgebra we obtain a compact metrizable Γ-space for which the Baum–
Connes conjecture is false.

Remark 12. The above argument just shows that the Baum–Connes map
fails to be surjective for some space, or else it fails to be injective for another.
In fact Guoliang Yu has pointed out that the former always occurs: the
Baum–Connes map for the crossed-product A !r Γ, in the above notation,
is never surjective.

On the other hand, the mapping cone trick in section 1 allows one to
construct from our counterexample a second-countable, locally compact
Hausdorff space W such that

K0(C0(W ) !max Γ) = 0 and K0(C0(W ) !r Γ) ,= 0 .

For such a space the Baum–Connes map of course fails to be surjective
(although it is injective since in this case the topological K-theory is zero).
The same is true of the one-point compactification of W .

Remark 13. N. Ozawa has found a counterexample similar to ours,
but with a trivial action on a non-commutative C∗-algebra instead of a
non-trivial action of Γ on a commutative C∗-algebra. One can apply
the mapping cone trick to Ozawa’s example in order to construct a C∗-
algebra A with trivial Γ action such that Ktop

∗ (Γ, A) = K∗(A !max Γ) =
K∗

(
A ⊗max C∗

max(Γ)
)

= 0 but K∗(A !r Γ) = K∗
(
A ⊗min C∗

r (Γ)
)
,= 0.
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et fonctorialité en théorie de Kasparov, Ann. Sci. E.N.S. 4e Série 20, (1987),
325–390.

[K1] G.G. Kasparov, Topological invariants of elliptic operators, I. K-
homology, Izv. Akad. Nauk SSSR Ser. Mat. 39:4 (1975) 796–838.

[K2] G.G. Kasparov, Operator K-theory and its applications: elliptic opera-
tors, group representations, higher signatures, C∗-extensions, Proc. of the
Int. Cong. of Math. (Warsaw, 1983), 987–1000.

[K3] G.G. Kasparov, K-theory, group C∗-algebras, and higher signatures
(conspectus)- 1981, Novikov conjectures, index theorems and rigidity, Vol.
1 (Oberwolfach, 1993), London Math. Soc. LNS 226, (1995), 101–146.

[K4] G.G. Kasparov, Lorentz groups: K-theory of unitary representations
and crossed products, Dokl. Akad. Nauk SSSR, 275 (1984), 541–545.



354 N. HIGSON, V. LAFFORGUE AND G. SKANDALIS GAFA

[K5] G.G. Kasparov, Equivariant KK-theory and the Novikov conjecture, In-
vent. Math. 91 (1988), 147–201.
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