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1. Introduction

This paper is an attempt to explain some aspects of the relationship between the K-theory
of C∗-algebras, on the one hand, and the categories of modules that have been developed to
systematize the algebraic aspects of controlled topology, on the other. It has recently become
apparent that there is a substantial conceptual overlap between the two theories, and this allows
both the recognition of common techniques, and the possibility of new methods in one theory
suggested by those of the other. In this first part we will concentrate on defining the C∗-algebras
associated to various kinds of controlled structure and giving methods whereby their K-theory
groups may be calculated in a number of cases.

From a ‘revisionist’ perspective1, this study originates from an attempt to relate two approaches
to the Novikov conjecture. The Novikov conjecture states that a certain assembly map is injective.
The process of assembly can be thought of as the formation of a ‘generalized signature’ [38],
and therefore to understand the connection between different approaches to the conjecture is
to understand the connection between different definitions of the ‘generalized signature’. Now,
broadly speaking, there are two approaches to the Novikov conjecture in the literature. One
approach considers the original assembly map of Wall in L-theory, and attempts to prove it
to be injective by investigating homological properties of the L-theory groups (which properties
themselves may be derived algebraically, or geometrically, by relating them to surgery problems).
The other approach proceeds via analysis, considering the assembly map to be the formation of
a generalized index of the Atiyah-Singer signature operator [3]. This approach ultimately leads
to the consideration of assembly on the K-theory of C∗-algebras. Nevertheless it can be shown
that the injectivity of assembly on the C∗-algebra level implies (modulo 2-torsion) the injectivity
of assembly on the L-theory level. All this is explained in the paper of Rosenberg [37], to which
we also refer for an extensive bibliography on the Novikov conjecture.

To proceed with the background to this paper. In the late seventies and eighties it occurred
both to the topologists and independently to the analysts that a more flexible generalized signature
theory might be developed if one neglected the group structure of the fundamental group π in
question and considered only its “large scale” or “coarse” structure induced by some translation
invariant metric; up to “large scale equivalence” the choice of such a metric is irrelevant. Some
references are [26, 29, 11, 12, 14, 16, 9, 33, 34, 35, 36, 41]. Since the two theories were based on
the same idea, it was inevitable that they would eventually come into interaction, but this did
not happen for some while. It was the insight of Shmuel Weinberger, and especially his note [40]
relating the index theory of [36] to Novikov’s theorem on the topological invariance of the rational
Pontrjagin classes2, which provoked the discussions among the present authors which eventually
led to the writing of this paper.

This paper is intended to be foundational, setting down some of the language in which one
can talk about the relationship between analysis and controlled topology. Many of its ideas have
already been worked out in the special case of bounded control in the work of the first and third
authors and G. Yu [18, 20, 19]. But it seems that there is much to be gained by considering more
general kinds of control, more general coefficients, “spacification” of the theory and so on, and it

1i.e., not what did happen but what ought to have happened.
2See [27] for the latest details on this argument.
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has therefore become necessary to rework some of the foundations. There are a few new results
here too, which will be noted later in this introduction.

Here now is an outline of the paper. Section 2 develops a general theory of bornological spaces
(also known as coarse spaces) and coarse maps. This provides a framework in which one can
discuss various kinds of control on a uniform footing: in particular, a metric on a space X defines
one kind of coarse structure (the bounded coarse structure) on it, a compactification defines a
different kind (the continuously controlled coarse structure), and there are the expected relations
between them. This theory is certainly known in some form to a number of people (Carlsson in
particular), and is in any event fairly natural, but we have not seen it written down anywhere.
There is also a generalization to the notion of bornological groupoid, which is a natural framework
in which to discuss various more general kinds of controlled problems, but we will not discuss this
in detail here.

In Section 3, following the lead of a number of authors, we introduce the controlled module
categories associated to a bornological space. This material is standard by now, and the only
innovation is the introduction of certain “bounded operator” subcategories which will be better
related to the C∗-algebra theory. This technique was introduced in the paper [27] on the coarse
analytic signature; it seems to be a necessary intermediate in any attempt to set up an actual
mapping from the algebraic theory to the C∗-theory.

Section 4 contains some notations and basic facts about C∗-algebras. This material will all
be familiar to the C∗-algebra specialist. In section 5 we introduce the C∗-algebras associated to
a bornological space, and discuss their functorial properties. When the bornological structure
arises from a metric, these are the same as the C∗-algebras discussed in [36]. In general the
definition of C∗(X) depends on the choice of an “X-module”, that is a Hilbert space over X . Two
different choices give rise to K-theory groups that can be canonically identified. This slight lack of
functoriality is treated in section 6 where an algebraic topological, categorical approach to these
K-theory spectra is given.

In section 7 we discuss assembly. The C∗-algebras C∗(X) were introduced by the third author
in order to be able to do index theory on open manifolds; the assembly map is a systematization
of the underlying idea here. It is a map from the locally finite K-homology of X (for which we use
Kasparov’s analytical model) to the K-theory of the algebra C∗(X). The treatment of assembly
here is based on an idea of the first author, expounded in [19] in the case of bounded control.

Section 8 discusses the special case of continuous control at infinity. It was observed by the four
authors of [2] that this kind of control has especially good properties; we will reinforce this point
by identifying the C∗-algebra of a continuously controlled metrizable pair with the relative Paschke
dual algebra associated to that pair. This means that the K-theory of the continuously controlled
algebra is identified with the Baum-Douglas relative K-homology of the total space relative to
the interior, and therefore by excision results of Baum-Douglas and the first author with the
K-homology (with dimension shifted by one) of the boundary space. This is entirely analogous
to the results of [2] and [5], but the strategy of proof is quite different; instead of identifying
the K-theory group as being a priori a homological functor of the boundary, and then appealing
to some version of the Eilenberg-Steenrod uniqueness theory, we make an identification on the
level of analysis with a pre-existing analytic model for the K-homology of the boundary. This
calculation has not previously appeared. Furthermore, it turns out that “good compactifications”
of a general bornological space, as considered for example in [5, 36], can be defined very simply in
terms of the existence of a coarse map to a continuously controlled coarse structure; we therefore
obtain as a corollary the splitting of the assembly map for any space admitting a good contractible
compactification. A large number of results on the Novikov conjecture are included under this
scheme.

In the final sections we introduce homological techniques for computing K∗(C
∗(X)). Section

9 deals with excision and Section 10 with contractibility, that is, with Eilenberg swindles. These
techniques are well known to workers in controlled algebra, and the analytical devices needed
to extend them to the C∗ situation were introduced in [20]; so these sections reformulate known
work. Section 11 studies the notion of coarse homotopy. This was introduced by the first and third
authors in [18], where an alarmingly analytic proof was given of the coarse homotopy invariance
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of the functor X 7→ K∗(C
∗(X)), in the case of bounded control. Subsequently a rather more

natural analytic proof was given by Yu [41]. The proof presented here uses only excision and
contractibility, and is in some sense equivalent to Yu’s proof. It is an analytic version of a
topological argument devised by the second author and Steve Ferry. Lastly, in section 12 we
show that the continuously controlled theory defines a Steenrod homology theory. Since we have
already identified continuously controlled theory with Kasparov’s K-homology, one could think of
this as a geometric proof of the homology properties of Kasparov’s theory.

2. Bornological spaces

Let G be a locally compact Hausdorff topological groupoid. The case that will be of greatest
interest to us in this paper is G = X × X , where X is a topological space, and the groupoid
operation is the trivial one (x, y) · (y, z) = (x, z), but we believe that other examples are likely
to be significant, so we will give the general definition here. Our notation for groupoids is that
G is the set of morphisms in a small category with every morphism invertible, G0 is the set of
objects (which we may think of as the ‘diagonal’ of G, that is, the set of identity morphisms), and
s, t : G→ G0 are the source and target maps.

(2.1) Definition: A bornology or coarse structure on G is a collection of open subsets E of
the set of arrows of G, called entourages, that have the following properties:

• The inverse of any entourage is contained in an entourage;
• The (groupoid) product of two entourages is contained in an entourage;
• The union of two entourages is contained in an entourage;
• Entourages are proper: that is, for any entourage E and any compact subset C of the

objects G0 of G, E ∩ s−1(C) and E ∩ t−1(C) are relatively compact;
• The union of all the entourages is G.

If there is an entourage that contains the diagonal G0, we will say that the coarse structure is
unital.

We will say that two coarse structures (on the same groupoid) are equivalent if every entourage
for one is contained in an entourage for the other and vice versa. We will not distinguish between
equivalent coarse structures. For example, it is easy to see that if G0 is compact then there is
only one coarse structure up to equivalence, namely that consisting of all relatively compact open
subsets of G. In particular this is true when G is a group, if regarded as a groupoid with one
object. More interesting examples arise from groupoids whose set of objects is non-compact.

By a coarse structure on a space X , we will mean a coarse structure on the groupoid X ×X .
If X is a space with a coarse structure and E is an entourage, we define, for any subset S ⊆ X ,
the E-neighbourhood NE(S) to be {x ∈ X : ∃s ∈ S, (x, s) ∈ E}. If p ∈ X , we write NE(p) for
NE({p}). The E-neighbourhoods of different points of X should all be regarded as being about
the same size; the coarse structure may be thought of as a means to compare the size of subsets
located in different regions of X .

(2.2) Definition: Let G and G′ be bornological groupoids. A coarse map from G to G′ is a
Borel groupoid homomorphism f : G→ G′ such that

• f is proper, in the sense that for each compact subset C of G′, the subset f−1(C) of G is
relatively compact;

• For each entourage E of G, there is an entourage E′ of G′ such that f(E) ⊆ E′.

We emphasize that coarse maps are not required to be continuous.
Let 2 denote the groupoid {0, 1} × {0, 1}. If G is a bornological groupoid, then G × 2 has a

natural product bornology.

(2.3) Definition: Two coarse maps f0, f1 : G → G′ are coarsely equivalent if they arise by
restriction from a coarse map G× 2 → G′.

It is equivalent to say that there is an entourage E′ ∈ G′ such that, for all γ ∈ G, f0(γ)E
′ ∩

E′f1(γ) 6= ∅.
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Remark: Suppose that X is a coarse space. The objects typically studied in controlled topology
are “spaces over X”, by which is meant spaces M equipped with a (not necessarily continuous)

proper map, called the control map, c : M → X ; such a space may be denoted by
(

M
↓
X

)
. In this

regard it is relevant to note that the control map c pulls back the coarse structure on X to a coarse
structure on M , and, for this coarse structure, c becomes, tautologically, a coarse map.

Example: Suppose that X is a proper metric space. (“Proper” means that closed bounded sets
are compact.) A coarse structure may be defined on X by declaring that the entourages are the
R-neighbourhoods of the diagonal, for real R > 0. We will call this the bounded coarse structure
coming from the metric.

Example: Suppose that (X,Y ) is a compact pair and that X = X \ Y ; we assume also, as the
notation suggests, that X is dense in X. A coarse structure on X may be defined by declaring
that an entourage is a proper neighbourhood E of the diagonal in X ×X such that the closure E
in X ×X intersects Y × Y only in the diagonal3.

We will call this the continuously controlled coarse structure arising from the given compactifi-
cation of X .

Let us relate this to the notion of continuous control at infinity studied in [2]. The following
lemma shows that (at least in the case of compact metrizable pairs) the definition of that paper
is the same as ours.

(2.4) Lemma: The set E is an entourage for the continuously controlled coarse structure defined
above if and only if it has the following property: for each y ∈ Y and each open set U ⊆ X
containing y, there is another open subset V ⊆ X containing y such that if (x, x′) ∈ E and one of
x or x′ belongs to V , the other must belong to U .

Proof: Suppose that E satisfies this condition and that xn is a sequence in X converging to
y ∈ Y . If (xn, x

′
n) ∈ E for all n, then given any open set U ⊆ X containing y, there must be

an N such that x′n ∈ U for all n > N . Thus x′n → y also. It follows that the closure of E in
Y × Y is simply the diagonal of Y ×Y . Conversely, suppose that the closure of E in Y × Y is the
diagonal. Then, given y ∈ Y and U ⊆ X open with y ∈ U , let x belong to the (compact) set X \U .
Then (x, y) does not belong to the closure of E, and so there exist disjoint open sets Ux and Vx

containing x and y respectively, such that Ux×Vx ∪Vx ×Ux does not meet the closure of E. Using
compactness, take a finite cover of X \U by the sets Ux; the intersection of the corresponding sets
Vx is the desired V . �

In the application of continuous control at infinity it is often useful to know the following fact
(the ‘half control lemma’):

(2.5) Lemma: In the above situation, if E satisfies the unsymmetrized control condition with the
same statement as above except that we only require (x, x′) ∈ E, x ∈ V ⇒ x′ ∈ U , then E is in
fact an entourage.

For the proof, see Lemma 2.8 of [5].
In the examples above, the coarse maps may be simply characterized. In the case of maps from

one boundedly controlled space to another, the coarse maps are the same as the ones defined in
[36]. In the case of continuously controlled spaces, the coarse maps are the ultimately continuous
maps: those which have continuous extensions to the given compactification Y .

Example: Generalizing the above, suppose that there is given some equivalence relation on the
space Y at infinity. Then a coarse structure may be defined by requiring that the closures at
infinity of the entourages are subsets of the graph of this equivalence relation. We will not study
this kind of control in detail, but it includes, for example, the “control along a map” which played
an important part in the paper [5].

3Because of the condition that the entourages are proper, this implies the apparently stronger fact that E ∩

(X × Y ∪ Y × X) is the diagonal of Y × Y .
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All of the above were examples of unital coarse structures. Non-unital structures may arise
from the following sort of construction. Let X be a space equipped with a proper action of some
group Γ. Then a coarse structure on X may be defined by taking the entourages to be the sets

E =
⋃

γ∈Γ

γC × γC

where C runs over the compact subsets of X . If the action is cocompact, this is a unital coarse
structure, equivalent to that one would obtain as the bounded coarse structure for some Γ-invariant
metric; but, in the non-cocompact case, this is an example of a non-unital structure.

As mentioned in the introduction, we will not develop our theory in detail for bornological
groupoids in this paper. However, let us mention two topologically significant examples. The first
is that of the fundamental groupoid of a space M , for simplicity let us say a Riemannian manifold,
with the entourages defined by the homotopy classes which can be represented by paths of length
6 R. The second, somewhat related to the “tangent groupoid” of A. Connes [7], is obtained
from a compact space X by forming X ×X × (0, 1] and declaring that the entourages are those
proper subsets which, when closed off in the natural compactification, limit to the diagonal over
the fibre at 0. This groupoid provides a way to discuss “asymptotic control” (that is, ε control for
ε→ 0) within the framework outlined above. The resulting algebra should bear a similar relation
to E-theory [8] to that which the continuously controlled algebra bears to Kasparov’s model for
K-homology.

3. Controlled algebra

Let X be a topological space and let R be a ring (usually, because of our analytical interests, we
shall take R to be a C∗-algebra). Then the X-graded category of based free R-modules, G(X ;R)),
has as objects the (right) R-modules defined as locally finite countable direct sums of copies of
R indexed by points of X , and as morphisms the properly supported (that is, row- and column-
finite) matrices of X-module morphisms.

When R is a C∗-algebra we can define a subcategory which is better related to analysis. Notice
in this case that every object of G(X ;R) is in a natural way a pre-Hilbert R-module4, but that the
morphisms need not be bounded relative to the norms induced by the pre-Hilbert structures. We
let Gb.o.(X ;R) denote the subcategory whose morphisms are required to be bounded operators in
this sense and to have bounded adjoints (compare [27]). It is a category with involution.

Of course, the category G(X ;R) does not contain much information about X . To encode more
information, one imposes certain control restrictions. Assume that X is a bornological space in
the sense of the preceding section. Then the controlled category C(X ;R) of R-modules over X
has the same objects as before, but only those morphisms which are supported in some entourage
(in the obvious sense). This is easily seen to be a category, with involution if R is a ring with
involution; moreover, if R is a C∗-algebra, then the ‘bounded operator’ subcategory, Cb.o.(X ;R),
is a category with involution too.

It has been shown by the work of numerous authors [2, 11, 28, 29, 32, 31] that the categories
C(X ;R) for various kinds of control on X , and their K-theory and L-theory spaces, summarize
important information relating to controlled topology overX . While we envisage that most readers
will be acquainted with this theory, detailed knowledge of its results will not be assumed.

Remark: The above discussion should generalize to bornological groupoids. If G is a discrete
bornological groupoid, we may define C(G;R) as follows: the objects are locally finite direct sums
of copies of R indexed by the points of G0, and the morphisms are R-module morphisms M → N
that can be represented as formal sums ∑

γ∈G

aγγ,

4This means that it has an R-valued inner product. For more detailed discussion of Hilbert modules, see the
next section.
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where aγ : Ms(γ) → Nt(γ) is a morphism of (finite-dimensional free) R-modules and the support
{γ : aγ 6= 0} is contained in an entourage; composition of such morphisms is by the natural
convolution product.

Suppose that f : X → X ′ is a coarse map between coarse spaces (or, indeed, between bornolog-
ical groupoids). It is routine to verify that it induces a functor f∗ : C(X ;R) → C(X ′;R), for any
coefficients R. In detail, the image under f∗ of an object M = ⊕Mx of C(X ;R) is the object
M ′ defined by M ′

x′ = ⊕f(x)=x′Mx; because f is proper, this is indeed a locally finite direct sum
of finite dimensional modules. Considered simply as an R-module, M ′ is trivially isomorphic to
the original M ; the effect of f∗ on a morphism is simply to map it to itself under this trivial
isomorphism; because f is coarse, this operation preserves the support condition on morphisms.
Moreover, the procedure does not change the norm or the adjoint of a morphism, so f induces a
functor on the bounded operator subcategories (when R is a C∗-algebra) as well.

4. C∗-algebras

In this section, we will review some basic facts about C∗-algebras. Let H be a Hilbert space
(always assumed to be separable in this paper). The collection of all bounded linear operators on
H will be denoted by B(H); it is an algebra, and the collection K(H) of all compact operators is a
subalgebra. Both these algebras are involutive (the involution being defined by the Hilbert space
adjoint) and are complete in the usual operator norm ‖T ‖ = sup{‖Tx‖ : ‖x‖ 6 1}.

(4.1) Definition: A C∗-algebra of operators on H is an involutive, complete (or equivalently,
norm-closed) subalgebra of B(H). A C∗-algebra is a normed involutive algebra which is faithfully
representable as a C∗-algebra of operators on some H.

One usually gives an abstract definition of C∗-algebra, and then proves it equivalent to the
more concrete one given above. We say that A is unital if there is an element 1 ∈ A which acts
as a self-adjoint unit for the algebra structure. Such an algebra need not be unitally represented
on H , that is 1 ∈ A may not be the identity operator on H , but it will certainly be a self-adjoint
projection; so by splitting off the kernel of this projection we see that the general case is the direct
sum of a unital representation and the zero representation.

Let R be a C∗-algebra. A Hilbert R-module [22] is a right R-module M which is equipped with
an R-valued inner product 〈·, ·〉 satisfying analogues of the usual inner product axioms, and such
that M is complete in the norm

‖x‖ = ‖〈x, x〉‖1/2.

On the right of this equation, the norm is that of the C∗-algebra R. An example of a Hilbert
R-module is R itself, with inner product 〈x, y〉 = xy∗. The tensor product (suitably completed)
of R with an infinite-dimensional separable Hilbert space defines the universal Hilbert R-module
HR; the term ‘universal’ is justified by the following important result, which is known as the
stabilization theorem and is due to Kasparov [22]:

(4.2) Proposition: If M is any countably generated Hilbert R-module, then M ⊕ HR is
isomorphic as a Hilbert module to HR.

A Hilbert module operator is a linear operator between two Hilbert modules that has an adjoint
in the obvious sense. A standard application of the closed graph theorem proves that such operators
are norm continuous, but it can be shown that not every norm continuous linear map between
Hilbert modules is a Hilbert module operator. A Hilbert module operator is of finite rank if it is a
linear combination of the ‘rank one’ operators Ty,z : x 7→ 〈x, y〉z, and it is compact if it is a norm
limit of finite rank operators. Generalizing our previous notation in the case of Hilbert spaces (=
Hilbert C-modules) we write B(M) for the set of Hilbert module operators M → M and K(M)
for the set of compact operators. It can be shown that these are C∗-algebras. It can also be shown
that K(HA) is isomorphic to the C∗-tensor product of A with the algebra of compact operators
(in the ordinary sense) on a separable Hilbert space. Moreover, B(M) can be identified with the
multiplier algebra [30, Section 3.12] of K(M).
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Now we need to discuss the K-theory of C∗-algebras. Let A be a C∗-algebra, and consider the
unitary group U = U(A⊗ K+) of the unitalization of the C∗-tensor product A ⊗ K. We consider
this as a topological space, with the norm topology. It can be shown that U is an infinite loop
space; in fact, it is the first term of an Ω-spectrum that satisfies Bott periodicity (in the sense
that Ω2U ≃ U).

(4.3) Definition: We denote the infinite loop space described above (or the associated spectrum)
by Ktop(A) = Ω−1U(A⊗ K+).

We remark that a unitary in A (or in a matrix algebra over A) gives rise to an element
of π1Ktop(A), and a self-adjoint projection in e ∈ A gives an element of π0Ktop(A). These
considerations, together with the fact (a consequence of the functional calculus) that in a C∗-
algebra the set of invertibles (resp. idempotents) is homotopy equivalent to the set of unitaries
(resp. self-adjoint projections) show that there is a map from the algebraicK-theory spectrum of A
to our topological K-theory spectrum Ktop(A); this map is usually far from being an equivalence.

TopologicalK-theory is covariantly functorial for C∗-algebra homomorphisms. The homological
properties of topological K-theory for C∗-algebras are summarized by the next proposition.

(4.4) Proposition:

• Suppose that f0, f1 : A → B are homotopic C∗-homomorphisms; then the induced maps
f0∗, f1∗ : Ktop(A) → Ktop(B) are homotopic too.

• Let 0 → A → B → C → 0 be a short exact sequence of C∗-algebras; then the induced
sequence

K
top(A) → K

top(B) → K
top(C)

is a fibration of spectra.

Proofs of these facts may be found in [15], for example.
We will now give a brief discussion of Kasparov’s KK-theory [21, 23, 24] from our present

perspective. We will need to use a ‘spacified’ version of KK-theory which is not developed in
detail in the literature. Our constructions here can be related to the usual definition ofKK-theory
by generalizing the methods of [17].

(4.5) Definition: Let A and B be C∗-algebras. A Hilbert (A,B)-bimodule M is a Hilbert
B-module equipped with a representation ρ : A→ B(M). In the case B = C we will say that M is
sufficiently large if the representation ρ is nondegenerate (i.e. ρ(A)M = M) and has the property
that for every a ∈ A the operator ρ(a) is not compact. In general we will say that M is sufficiently
large if it is of the form M ′ ⊗B, where M ′ is a sufficiently large (A,C)-bimodule.

Let M be a Hilbert (A,B)-bimodule. Define C∗-algebras Ψ0(M) and Ψ−1(M) of operators on
M as follows: Ψ0(M) consists of all operators T ∈ B(M) such that Tρ(a)− ρ(a)T ∈ K(M) for all
a ∈ A, and Ψ−1(M) consists of all operators T ∈ B(M) such that Tρ(a) and ρ(a)T individually
belong to K(M). It is easy to see that Ψ0(M) is a C∗-algebra and that Ψ−1(M) is an ideal in
it. We will refer to the elements of Ψ0(M) as pseudolocal operators on M , and to the elements of
Ψ−1(M) as locally compact.

(4.6) Definition: We define the KK-theory spectrum of A and B by

KK
top(A,B) = Ω−1

K
top(Ψ0(M)/Ψ−1(M)),

for any choice of sufficiently large bimodule M .

It is implicit in this definition that Ktop(Ψ0(M)/Ψ−1(M)) is independent (up to canonical
homotopy equivalence) of the choice of sufficiently large bimodule M . This may be proved as in
[17].

Remark: The functoriality up to homotopy above is sufficient for some purposes, but for others
one needs a more precise functoriality. Let us indicate how this may be achieved. For simplicity
we consider the case in which B is fixed, and A runs over a category W of C∗-algebras having at
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most countably many morphisms. To begin with, for each A ∈ obW we choose a sufficiently large
(A,B)-bimodule M ′

A. We then define a larger (A,B)-bimodule MA by

MA =
⊕

f∗M
′
A′

where f ∈ morW runs over all morphisms in W from A to other objects A′, and f∗M
′
A′ means the

Hilbert (A,B)-bimodule given by f(A)M ′
A′ with A-action defined via f . Notice that, correspond-

ing to each g : A→ A′, there is now a canonical inclusion of MA′ as a submodule of MA, and this
induces homomorphisms Ψ0(MA′) → Ψ0(MA), which we may use to define the functoriality of
KK

top-theory. The upshot of this is that we have not merely made a choice of spectra KK
top(A,B)

for each A ∈ obW which define a functor up to homotopy; we have chosen (once and for all) a
functor A 7→ KK

top(A,B) from W to spectra. Moreover, given any two such choices of functor
there is a third choice (obtained from the direct sum of the corresponding bimodules) and natural
transformations from each of the original functors to the third functor which induce homotopy
equivalences on objects.

One can see that functoriality in this sense also holds for B, but we will not need this.

In our applications we will mainly be interested in the case A = C0(X), X a locally compact
metrizable space. In this case we have the following identification of KK-theory:

(4.7) Proposition: If A = C0(X), then one has

KK
top(A,B) ≃ H

l.f.(X ; Ktop(B)),

the locally finite (Steenrod) homology spectrum of X with coefficients in the spectrum Ktop(B).

In particular, taking X to be a point, we see that KK
top(C, B) ≃ Ktop(B).

5. C∗-algebras associated to a coarse structure

Now let X be a bornological space, and let R be a fixed C∗-algebra. We define an (X,R)-module
to be a Hilbert R-module M that is equipped with a unital representation B(X) → B(M) of
the C∗-algebra of bounded Borel functions on X . Notice that any sufficiently large (C0(X), R)-
bimodule is an (X,R)-module, since by the spectral theorem any action of C0(X) on a Hilbert
space extends to an action of B(X).

Example: For example, let b : B → X be a map of a countable set to X . Let M be a copy of
the universal module HR with basis indexed by B. Then M is an (X,R)-module in a natural way.
For another example, suppose that µ is a Borel measure on X , and M0 is any Hilbert R-module.
There is a natural definition of a Hilbert R-module M = L2(X,M0, µ). This is an (X,R)-module
also.

It may be helpful to think of a Hilbert (X,R)-moduleM as a ‘bisheaf’ (that is, both a sheaf and a
cosheaf) of Hilbert R-modules overX . Over each open set U one has the complemented submodule
χUM of M , where χU denotes the characteristic function of U ; and an inclusion U1 ⊆ U2 of open
sets induces both an inclusion map (the identity) and a restriction map (multiplication by χU1

)
on the corresponding Hilbert modules.

LetX1 and X2 be coarse spaces, letMi be an (Xi, R)-module (i = 1, 2), and let S : M1 →M2 be
a Hilbert module operator. Then there is a natural notion of the support of S; it is the complement
of that subset of X1 ×X2 consisting of points (x1, x2) such that there exist open sets U1 and U2

containing x1 and x2 respectively such that χU2SχU1
= 0. We denote this set Supp(S).

Suppose, in the above situation, that f : X1 → X2 is a coarse map.

(5.1) Definition: We say that S covers f if there is an entourage E for X2 such that

Supp(S) ⊆ {(x1, x2) : (f(x1), x2) ∈ E}.

If f is the identity map, we may also say that S is a finite propagation operator.

Suppose that f : X1 → X2 and f ′ : X2 → X3 are coarse maps. If S covers f and S′ covers
g, then S′S covers gf . The proof is straightforward. In particular, the composite of two finite
propagation operators is a finite propagation operator.
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(5.2) Definition: An operator T on an (X,R)-module M is called locally compact if χU1
TχU2

is a compact operator (in the sense of Hilbert module operators) for all relatively compact open
sets U1 and U2.

The locally compact finite propagation operators form an algebra, by the remarks above.

(5.3) Definition: Let M be an (X,R)-module. By C∗
R(X ;M) we mean the C∗-subalgebra of

B(M) obtained as the norm closure of the locally compact finite propagation operators on M .

Suppose that (X1,M1) and (X2,M2) are coarse spaces equipped with appropriate Hilbert
modules, and let f : X1 → X2 be a coarse map that is covered by a isometry V : M1 → M2.
Then one easily checks that Ad(V ) : B(M1) → B(M2) maps C∗

R(X ;M1) to C∗
R(X ;M2). Thus we

have made C∗
R into a functor on the category whose objects are pairs (X,M) and whose morphisms

are pairs (f, V ) as described.
We will now investigate the dependence of this functor on the choices of M and V . First, a

uniqueness statement.

(5.4) Lemma: Suppose that (X1,M1) and (X2,M2) are as above, f : X1 → X2 is a coarse map,
and that V and V ′ are two isometries covering f . Then the maps Ad(V )∗ and Ad(V ′)∗ from
KtopC∗

R(X1,M1) to KtopC∗
R(X2,M2) are homotopic.

Proof: This is a ‘spacified’ version of Lemma 3 of Section 4 of [20], and the proof is the same.
�

It need not be the case that a general coarse map is covered by a isometry. However, as soon as
the modules in question are sufficiently large, this will be the case. Note that, if M is a sufficiently
large (X,R)-module and W is any subset of X having non-empty interior, the module χWM is
isomorphic to HR.

(5.5) Proposition: Let (X1,M1) and (X2,M2) be as above, and suppose that M2 is sufficiently
large. Then any coarse map f : X1 → X2 can be covered by an isometry.

Proof: This is essentially lemma 2 of section 4 of [20], whose proof is unfortunately some-
what garbled. Choose an entourage E for X2 and partition X2 into a countable union of Borel
components Wj having nonempty interior and such that

⋃
j Wj ×Wj ⊆ E. Then write

M1 =
⊕

j

χf−1(Wj)M1, M2 =
⊕

j

χWj
M2.

By the Stabilization Theorem there exist isometries Vj : χf−1(Wj)M1 → χWj
M2; define

V =
⊕

j

Vj .

By construction, (x1, x2) ∈ Supp(V ) only if (f(x1), x2) ∈
⋃

j Wj ×Wj , so V covers f .
�

From the results above it follows that one obtains a well-defined functor from the category of
coarse spaces5 to the homotopy category of spectra by selecting once and for all a sufficiently
large (X,R)-module MX for each coarse space X , and then sending the space X to the spectrum
Ktop(C∗

R(X ;MX)). We shall sometimes allow ourselves to suppress mention of the choice of
module, and just to write C∗

R(X) for C∗
R(X ;MX). Of course, in a particular application there

may be special reasons (for example, equivariant considerations, compare [5, 6]) for making a
particular choice of module.

Remark: Once again there is an element of choice here. However, just as in the remark after
4.6, we can arrange to select our modules in such a way as to have a functor from some specified
subcategory X of the category of coarse spaces, having at most countably many morphisms, to
the category of C∗-algebras; and thereby obtain a choice of functor from X to spectra by passing
to K-theory.

5Or at least from any small subcategory.
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Now let us consider the relation between the spaces Ktop(C∗
R(X)) and the algebraic K or L

theory of the categories Cb.o.
R (X) discussed previously.

(5.6) Proposition: There are natural maps

K(Cb.o.
R (X)) → K

top(C∗
R(X)), π∗L(Cb.o.

R (X)) → π∗K
top(C∗

R(X)).

Proof: Let us note that an object M of Cb.o.
R (X) is in a natural way an (X,R)-module.

Moreover, since the basis of M is locally finite, any endomorphism of M is locally compact, and
it is by definition a Hilbert module operator supported in an entourage, by definition. Thus we
get a map

End(M) → C∗(X ;M).

From the definition of the K-theory of a category this gives us a map

K(Cb.o.
R (X)) → K

top(C∗
R(X)).

where we have also made use of the natural map from algebraic to topological K-theory. On the
level of L-theory we may similarly construct

L(Cb.o.
R (X)) → L

p(C∗
R(X)),

and we then follow this by Mischenko’s natural map from L-theory to topological K-theory for
C∗-algebras [25, 37]. �

Remark: Note that it is not asserted that the map from L-theory to K-theory is a map of
spectra.

6. The categorical approach

Given a bornological space X , we have constructed a C∗-algebra C∗(X ;R) and corresponding
spectrum K

topC∗(X ;R). In this section we present a categorical approach to the construction of
such spectra which is closer to the traditional way of thinking in algebraic topology.

(6.1) Definition: A C∗-category is a Banach category with involution such that ‖TT ∗‖ = ‖T ‖2

for all morphisms T (see [13] for details).

(Note that this implies that the endomorphisms of an object in a C∗-category form a C∗-
algebra.)

Given a bornological space X we have defined a category Cb.o.(X ;R) for any C∗-algebra R.
Given objects A and B in this category, any element ϕ ∈ Hom(A,B) determines a bounded
operator from the pre-Hilbert R-module given by A to the pre-Hilbert R-module given by B, thus
presenting Hom(A,B) as a subset of the bounded operators from A to B. We define Hom(A,B)
to be the closure of Hom(A,B) in the space of all bounded operators.

(6.2) Definition: C
b.o.

(X ;R) is the category with the same objects as Cb.o.(X ;R) but with
Hom-sets Hom(A,B). We shall call this category the analytical category with labels in X and
coefficients in R and denote it equivalently as

A(X ;R) = C
b.o.

(X ;R)

(6.3) Lemma: A(X ;R) is a C∗-category.

Proof: Clear from the definition. �
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Restricting the morphism to the isomorphisms we may thus think of A(X ;R) as a topological
symmetric monoidal category.

Notice there is a directed system of the objects of A(X ;R) given by A 6 B if the basis for A
is contained in the basis for B. Clearly

C∗(X ;R) = lim
→

(End(A))

Since K-theory commutes with direct limits we thus get

K
topC∗(X ;R) = lim

→
(Ktop(End(A)))

We are now in a position to use the May-Segal machinery to produce a spectrum from the category
A(X ;R) namely

KA(X ;R) = ΩB
∐

B(Aut(A))

(6.4) Theorem: The spectrum K(A(X ;R)) is a connective cover of K
top(C∗(X ;R)). We

recover the spectrum Ktop(C∗(X ;R)) from the categorical approach as the homotopy colimit

K
top

C(X ;R) = hocolimΩiK(A(X × R
i;R))

Proof: (Sketch) We shall use [1] as a standard reference on infinite loop spaces. According
to [1, section 3.2] we find that the 0’th space of K(A(X ;R)) is the product of K0(A(X ;R))
and the plus construction applied to the limit of B(Aut(A)). But since π1 is commutative the
plus construction has no effect so the space is the classifying space of of units in the limit i.e.
the units in C∗(X ;R). Since every object in A(X ;R) is a projective C∗(X ;R)-module we get a
monomorphism K0(A(X ;R)) → K0(C

∗(X ;R)). This proves the first statement. As for the second
statement notice that

K(A(X × R
i;R)) → K(A(X × R

i+1;R))

is null homotopic in two ways by Eilenberg swindles hence give a map

K(A(X × R
i;R)) → ΩK(A(X × R

i+1;R))

which is an isomorphism on homotopy groups in positive dimensions. The similarly defined map

K
topC∗(X × R

i;R) → ΩK
topC∗(X × R

i+1;R)

is a homotopy equivalence of spectra i.e. isomorphism in homotopy groups in all dimensions. The
result follows from this since each increase in i means getting isomorphism in one more negative
homotopy group. �

7. The assembly map

In this section we will define the assembly map for a coarse space X . This is a map

A : KK
top(C0(X), R) → K

top(C∗
R(X))

defined for any coefficient C∗-algebra R. Here the left-hand side is Kasparov’sKK-theory [21, 23,
24], made into a spectrum according to the procedure already described. In the case that R = C,
the complex numbers, this KK-theory spectrum is a model for the locally finite K-homology
spectrum Hl.f.(X ; KtopC), and the assembly map becomes a C∗-version (see [6]) of the assembly
map of [5]. The technique that we use to construct the assembly map is borrowed from [19]. We
begin by defining another C∗-algebra associated to a coarse space, whose K-theory spectrum will
be a kind of “analytic structure set” for the space.

(7.1) Definition: Let X be a coarse space, and let M be an (X,R)-module. We define
D∗

R(X ;M) to be the C∗-algebra generated by all pseudolocal, finite propagation operators on M .

Recall that an operator T ∈ B(M) is pseudolocal if ϕT − Tϕ is compact for all ϕ ∈ C0(M).
In the case of bimodules for which the left-hand algebra is commutative, as here, one has an
alternative characterization of pseudolocality which is extremely useful.
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(7.2) Lemma: (Kasparov [21]) An operator T is pseudolocal if and only if ϕTψ is compact
whenever ϕ and ψ are continuous functions with disjoint supports.

Clearly, C∗
R(X ;M) is an ideal in the unital algebra D∗

R(X ;M). Notice that D∗
R(X ;M) does

depend on the local topological structure of the space X , as well as on its coarse structure; for
this reason, its K-theory will be functorial only under continuous coarse maps. As before, we will
suppress mention of the module M if it is assumed that a standard choice has been made.

There is a natural induced map iX : KtopC∗
R(X) → KtopD∗

R(X). The existence and properties
of the assembly map follow easily from

(7.3) Proposition: The homotopy fibre of the map iX is KK
top(C0(X), R).

Proof: Recall that KK
top(C0(X), R) = Ω−1Ktop(Ψ0(M)/Ψ−1(M)), where M is a sufficiently

large Hilbert (C0(X), R)-bimodule. Using the long exact sequence of topological K-theory (4.4),
we see that it suffices to prove that

D∗
R(X ;M)/C∗

R(X ;M) = Ψ0(M)/Ψ−1(M).

This is an analogue of lemma 6.2 of [19]. The proof is the same, except that we have to replace
the strong topology (used in the Hilbert space case in [19]) by the strict topology. We will carry
out the details.

Recall that B(M) can be regarded as the multiplier algebra of K(M), and thus acquires a strict
topology, defined by the seminorms T 7→ ‖TA‖+ ‖AT ‖, A ∈ K(M). Let E be an entourage for X ,
and choose a partition of unity ψ2

j subordinate to a locally finite open cover Uj of X such that⋃
j Uj × Uj ⊆ E. Let T be a pseudolocal operator. We claim that the series

(∗) T ′ =
∑

j

ψjTψj

converges in the strict topology. Indeed, the partial sums are bounded in norm, and, if A belongs
to the total subset of K(M) consisting of rank one operators u 7→ 〈u, v〉w, with v and w compactly
supported6, then the series

∑
j ψjTψjA and

∑
j AψjTψj converge in norm — in fact, they become

finite sums. By a standard result on the strict topology (see, for example, [39], lemma 2.3.6), this
ensures that the series (∗) converges strictly.

Clearly, now, T ′ is an operator of finite propagation. But, if ϕ is a function of compact support,
then

(T − T ′)ϕ =
∑

j

[ψj , T ]ψjϕ

is a finite sum of compact operators, hence is compact; and, similarly, ϕ(T −T ′) is compact. Thus
T − T ′ is locally compact. We have written T as the sum of a finite propagation operator and a
locally compact operator, so we have shown that

Ψ0(M) = D∗
R(X ;M) + Ψ−1(M).

But it is clear that

C∗
R(X ;M) = D∗

R(X ;M) ∩ Ψ−1(M),

and the desired result follows immediately. �

Recall that KK
top(C0(X), R) ≃ Hl.f.(X,KtopR). Thus we have a fibration of spectra

(†) H
l.f.(X,KtopR) → K

top(C∗
R(X)) → K

top(D∗
R(X)),

which it is appropriate to think of as an analytic analogue of the (spacified) bounded surgery exact
sequence. In particular, a splitting of the first arrow gives a Novikov conjecture type statement.
For example, suppose that Γ is a finitely generated group having a compact classifying space
BΓ with universal cover EΓ. Then an appropriate splitting of the analytic assembly map in the
sequence (†) implies the usual Novikov conjecture for Γ. (This is the ‘principle of descent’ for

6That is, there is a compactly supported function χ on M with v = χv and w = χw.
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which see [5, 12].) In the next section we will develop some analytic techniques for splitting this
map.

8. The special case of continuous control at infinity

LetX be a locally compact, metrizable space. LetX be a compactification ofX , with Y = X\X
the ‘space at infinity’ of the compactification, and X dense in X. Recall that this data allows us
to define the continuously controlled coarse structure on X , by decreeing that entourages should
‘close off to the diagonal at infinity’. In this section we will compute the K-theory of C∗

R(X)
when X is endowed with this coarse structure. It will usually be necessary to assume that the
compactification X is metrizable.

Suppose that M is a sufficiently large Hilbert (C0(X), R)-bimodule. We may also regard it as
a Hilbert (C(X), R)-bimodule, since a continuous function on X is uniquely determined by its
restriction to a (bounded) function on X . We will use the notation M for M thought of as a
bimodule in this latter sense.

(8.1) Proposition: Let X be endowed with the continuously controlled coarse structure coming
from a metrizable compactification X. Then

D∗
R(X ;M) = Ψ0(M).

Proof: We prove the two inclusions separately.

Proof of ⊆: To prove that D∗
R(X ;M) ⊆ Ψ0(M), we make use of Kasparov’s lemma (7.2). It

suffices to show that if ϕ and ψ are continuous functions on X with disjoint supports, and T is a
pseudolocal operator supported in an entourage E, then ϕTψ is compact. Notice first that ϕTψ
is certainly locally compact, since by pseudolocality of T it differs by a locally compact operator
from Tϕψ = 0. Thus we need only prove that ϕTψ is compactly supported. But this is clear:
since Suppϕ× Suppψ does not meet the diagonal in X ×X, it follows from the definition of the
continuously controlled coarse structure that E ∩ Suppϕ× Suppψ is a compact subset of X ×X .
Thus ϕTψ is compactly supported and locally compact, hence it is compact.

Proof of ⊇: By lemmas 2.4 and 2.5, it is enough to show that any T ∈ Ψ0(M) can be
approximated (in norm) by pseudolocal operators that are half controlled in the sense that given
any compact K ⊆ Y and open V ⊆ X with K ⊆ V , there exists an open U with K ⊆ U ⊆ V and
such that T ′ does not propagate from outside V to inside U (in other words, fT ′g = 0 whenever
g is supported outside V and f is supported within U).

I claim that it is in fact enough to show the following: given any ε > 0 and T ∈ Ψ0(M),
and any V and K as above, there exists a U as above and an operator T ′ ∈ Ψ0(M), such that
Supp(T ′) ⊆ Supp(T ), ‖T − T ′‖ < ε, and fT ′g = 0 whenever g is supported outside V and f is
supported within U . The reason that this weaker claim suffices is the following. Because (X,Y )
is a compact metric pair, one can find a sequence of pairs Vn ⊇ Kn of open subsets of X and
compact subsets of Y , such that for any pair V ⊇ K there is an n such that V ⊇ Vn ⊇ Kn ⊇ K.
Using the claim, construct inductively a sequence of operators Tn such that ‖Tn − Tn−1‖ < ε2−n,
Supp(Tn) ⊆ Supp(Tn−1), and Tn does not propagate from outside Vn to inside Un, where Un is
some open set containing Kn. The sequence Tn is Cauchy, so tends to a limit operator T which
does not propagate from outside any Vn to inside any Un; in particular, therefore, it does not
propagate from outside V to inside some neighbourhood of K.

Now let us prove the claim. Choose a bump function ϕ on X equal to 1 off V and equal to zero
on a neighbourhood W of K. Write T = Tϕ+T (1−ϕ). Then χWTϕ is a compact operator. Let
now Wn, with W0 = W , be a decreasing sequence of neighbourhoods of K, with intersection K.
The multiplication operators χWn

∈ B(M) then tend strictly to zero, so χWn
Tϕ = χWnχWTϕ

tend in norm to zero. Thus one can find an n such that ‖χWn
Tϕ‖ < ε. Take U = Wn and take

T ′ = (1 − χU )Tϕ+ T (1 − ϕ). It is easy to check that fT ′g = 0 if f is supported within U and g
is supported outside V . �
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We may now identify the K-theory of D∗
R(X ;M) = Ψ0(M). There is a quotient map Ψ0(M) →

Ψ0(M)/Ψ−1(M), which induces a map

K
top(D∗

R(X)) → ΩKK
top(C(X), R) ≃ ΩH(X ; Ktop(R)).

The homotopy fibre of this map is Ktop(Ψ−1(M), which since X is compact is simply a copy of
Ktop(R). In fact it is not hard to see that this gives us an equivalence

K
top(D∗

R(X)) ≃ ΩH̃(X ; Ktop(R)),

where H̃ denotes reduced Steenrod homology. Thus we obtain the following definitive result on the
isomorphism properties of the analytic assembly map for continuous control at infinity:

(8.2) Proposition: Let X be a locally compact, metrizable space equipped with a continuously
controlled coarse structure coming from a metrizable compactification X. Then the bounded ana-
lytic assembly map for X (the first map in the sequence (†) above) is an equivalence if and only
if the inclusion of a point in X induces an isomorphism on (Steenrod) homology with Ktop(R)
coefficients. In particular, if X is contractible, then assembly is an isomorphism.

Remark: One can identify the entire exact sequence (†) in this case with the reduced homology
exact sequence of the pair (X,Y ). One notes that, as a consequence of 8.1, one can identify
C∗

R(X ;M) with Ψ0(M) ∩ Ψ−1(M). Now an appropriate generalization of the ‘relative Paschke

duality theory’ of [17] shows that Ktop(C∗
R(X)) ≃ ΩH̃(Y ; Ktop(R)), and that the maps are those

of the relative homology sequence.

This gives a result on the splitting of assembly for more general coarse structures which admit
appropriately good compactifications. The relevance of such compactification conditions to the
Novikov conjecture was first made explicit by Farrell and Hsiang [10] (see also [5]).

(8.3) Definition: Let X be a coarse space and let X be a compactification of X; by this we
mean that there is given a compact pair (X,Y ) and a homeomorphism h : X → X \ Y . We say
that X is a coarse compactification (or that Y is a coarse corona) of X if the homeomorphism
h, considered as a map from X with its ambient coarse structure to X \ Y with the continuously
controlled structure induced by the compactification, is a coarse map.

It is equivalent (provided everything is metrizable) to say that whenever xn and x′n are two
sequences in X such that (xn, x

′
n) lies in some entourage for all n, then xn and x′n must both

converge to the same point of Y if one of them converges there at all. In particular, if a group Γ
acts cocompactly on X and the coarse structure is Γ-invariant, then a coarse compactification of
X is precisely one in which ‘compact sets become small at infinity under translation’ in the sense
of [10, 5].

(8.4) Proposition: Let X be a coarse space. If X admits a contractible coarse compactification,
then the bounded analytic assembly map for X is a split monomorphism.

Proof: Let X∗ denote X with the continuously controlled coarse structure. By the functo-
riality of the exact sequence (†) one has a commutative diagram of ‘bounded analytic surgery
sequences’,

Hl.f.(X,KtopR) Ktop(C∗
R(X)) Ktop(D∗

R(X))

Hl.f.(X∗,KtopR) Ktop(C∗
R(X∗)) Ktop(D∗

R(X))

α
//

=

��

//

�� ��

α∗

// //

By the previous result α∗ is an equivalence. Hence α is a split monomorphism, as required. �
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9. Excision

We will now discuss excision in the general context of coarse spaces for the C∗-algebras that
we have introduced. For metric coarse structures this is essentially carried out in [20].

(9.1) Definition: An ideal in a coarse space X is a collection J of subsets of X with the
properties that

• if j ∈ J , then any subset of j is in J ;
• if j ∈ J and E is an entourage, then NE(j) is in J .

The set of all subsets of X is an ideal (which by abuse of notation we will sometimes write as
X also). The empty set is an ideal. If L is any subset of X , the set

〈L〉 = {j ⊆ NE(L) for some entourage E}

is an ideal, called the ideal generated by L. If (X,Y ) is a coarse compactification of X and W is
an open subset of Y , the set

W ◦ = {j ⊆ X : j ∩W = ∅}

is an ideal, called the annihilator of W . If I and J are ideals, the sets

I ∨ J = {i ∪ j : i ∈ I, j ∈ J}, I ∧ J = {k ⊆ i ∩ j : i ∈ I, j ∈ J}

are ideals, called the join and meet of I and J .
Let M be an (X,R)-module. If I is an ideal in X , denote by C∗

R(I,X ;M) the norm closure
of the set of all locally compact finite propagation operators on M whose support is contained in
i × i for some i ∈ I. (We will refer to such operators simply as ‘supported in I’. As usual, we
will omit mention of M if it is unimportant or obvious from the context.) It is easy to see that
C∗

R(I,X) is a closed two-sided ideal in C∗
R(X).

(9.2) Proposition: Let I and J be ideals in a coarse space X. Then

C∗
R(I ∨ J ;X) = C∗

R(I;X) + C∗
R(J ;X), C∗

R(I ∧ J ;X) = C∗
R(I;X) ∩ C∗

R(J ;X).

Proof: (Compare [20], Lemma 5.2) A simple partition of unity argument shows that any
locally compact finite propagation operator supported in I ∨J can be decomposed into the sum of
two such operators, one supported in I and one supported in J ; therefore, C∗

R(I;X) + C∗
R(J ;X)

is dense in C∗
R(I ∨ J ;X). The first result now follows from Lemma 1 in Section 3 of [20], applied

in the C∗-algebra C∗
R(I ∨ J ;X). The second follows from the observations that

C∗
R(I ∧ J ;X) ⊆ C∗

R(I;X) ∩ C∗
R(J ;X), C∗

R(I;X) · C∗
R(J ;X) ⊆ C∗

R(I ∧ J ;X),

together with the fact (a consequence of the functional calculus) that in a C∗-algebra the inter-
section of two closed ideals is equal to their product. �

(9.3) Corollary: Let I and J be above. There is a homotopy Cartesian square

KtopC∗
R(I ∧ J ;X) −−−−→ KtopC∗

R(I;X)
y

y

KC∗
R(J ;X) −−−−→ KtopC∗

R(I ∨ J ;X)

Proof: Consider the commutative diagram of short exact sequences of C∗
R- algebras

C∗
R(I ∧ J ;X) −−−−→ C∗

R(I;X) −−−−→ C∗
R(I;X)/C∗

R(I ∧ J ;X)
y

y
y

C∗
R(J ;X) −−−−→ C∗

R(I ∨ J ;X) −−−−→ C∗
R(I ∨ J ;X)/C∗

R(J ;X)

The right-hand vertical arrow is an isomorphism of C∗-algebras, by the proposition above. How-
ever, a short exact sequence of C∗-algebras gives rise to a homotopy fibration on (topological)
K-theory (Proposition 4.4) so the result follows. �
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To apply this result one needs to understand the meet and join of two ideals, in the cases where
the ideals arise from the geometric constructions that we mentioned earlier.

Consider first the case of generated ideals. Here one has the following observation. Let L ⊆ X
be an inclusion of coarse spaces. To define the functorially induced map on the K-theory of the
corresponding C∗-algebras we use the homomorphism Ad(V ) : C∗

R(L) → C∗
R(X), where V is any

isometry covering the inclusion map. It is easy to see that the range of this homomorphism (for
any choice of V ) is contained in C∗(〈L〉, X), and that two choices of V give rise to homotopic
maps KtopC∗

R(L) → KtopC∗
R(〈L〉, X). In fact

(9.4) Proposition: Let L ⊆ X be an inclusion of coarse spaces. Then the induced map
KtopC∗

R(L) → KtopC∗
R(X) is a homotopy equivalence onto KtopC∗

R(〈L〉;X).

The proof is exactly as in [20].

If L and M are subsets of X , it is always true that 〈L〉 ∨ 〈M〉 = 〈L∪M〉. However, as pointed
out by Carlsson in the metric context [4], it is not always the case that 〈L〉 ∧ 〈M〉 = 〈L ∩M〉.
When this is so, we say that L,M form a coarsely excisive pair (in the metric case, this coincides
with the definition of ‘ω-excisive’ in [20]).

Then we have

(9.5) Corollary: If X = L ∪M is a coarsely excisive decomposition of a coarse space X, then
there is a homotopy Cartesian square

KC∗
R(L ∩M) −−−−→ KtopC∗

R(L)
y

y

KtopC∗
R(M) −−−−→ KC∗

R(X)

giving rise to a Mayer-Vietoris sequence of K-theory groups.

It is particularly appropriate to consider generated ideals, and their associated excision proper-
ties, in the boundedly controlled case. By contrast, annihilator ideals seem particularly appropriate
to the case of continuous control at infinity, and give an analytic counterpart to the excision results
in section 2 of [5]. Indeed, let X be continuously controlled with boundary Y , and let W ⊆ Y
be open. Then the C∗-algebra C∗(W ◦, X) corresponds to the category B(X,Y )Y \W of [5], and
the quotient algebra C∗(X)/C∗(W ◦, X) corresponds to the ‘germ category’ B(X,Y )W . The short
exact sequence of C∗-algebras

0 → C∗(W ◦, X) → C∗(X) → C∗(X)/C∗(W ◦, X) → 0

gives rise to a fibration of Ktop-spectra corresponding to the fibration of algebraicK-theory spectra
in Corollary 2.30 of [5].

For future reference we remark that the analogue of the coarsely excisive condition is always
true for annihilator ideals; it is always the case that (U ∪V )◦ = U◦∧V ◦ and (U ∩V )◦ = U◦ ∨V ◦.
This corresponds to the fact that the homology theory of the space at infinity defined by taking the
K-theory of the continuously controlled category satisfies the strong excision axiom [5, Theorem
2.36]. See section 12.

10. Contractibility

This section is about Eilenberg swindles. Let X be a coarse space. We will say that X if flasque
if there is a coarse map t : X → X such that

• For any compact K ⊆ X , there is an n0 ∈ N such that Im(tn)∩K = ∅ for all n > n0. (In
other words, the action of t eventually leaves any compact set.)

• The powers of t are uniformly coarse: given an entourage E, there is another entourage
E′ such that tn maps E into E′ for all n.

• The map t is coarsely equivalent to the identity map.
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(10.1) Proposition: If X is flasque then KtopC∗
R(X) is contractible. The same applies to

KCb.o.
R (X) and LCb.o.

R (X).

The usual proof applies. To check that it works in an analytic context, we need only to see that
if T ∈ C∗

R(X ;M), then the infinite sum

T ⊕ tT t−1 ⊕ t2T t−2 ⊕ · · ·

is a bounded operator onM⊕M⊕· · · . But this is true, because conjugation by t is an isometry, and
the norm of an orthogonal direct sum of this kind is the supremum of the norms of its constituent
summands. For the details (in the case of bounded control), see [20, Proposition 7.1].

11. Lipschitz homotopy invariance

In [18], the notion of coarse homotopy was introduced as an equivalence relation between coarse
maps, and it was proved that coarsely homotopic coarse maps induce the same homomorphism on
the C∗-algebra K-theory groups. In [42], the same result was proved for the notion of Lipschitz
homotopy due to Gromov [14]. The precise relation between the notions of Lipschitz homotopy
and coarse homotopy is rather unclear, but what is clear is that they perform similar functions,
and that all of the applications of which we are aware could be based on either concept. Thus, for
example, the radial contraction maps on an open cone, the exponential and logarithm maps of a
Hadamard manifold, and so on, are both coarse homotopy equivalences and Lipschitz homotopy
equivalences. In this paper we will work with Lipschitz homotopy as it seems more suitable for
the kind of argument that we want to give.

(11.1) Definition: Let X and Y be coarse spaces. A Lipschitz homotopy is a coarse map
H : X × R+ → Y × R+ of the form H(x, t) = (Ht(x), t) which has the property that for each
compact K ⊆ X there is tK ∈ R+ such that Ht(x) is constant in t for x ∈ K and t > tK .

Intuitively, a Lipschitz homotopy is one that runs at unit speed, but perhaps for a longer and
longer time before finishing. In these circumstances we say that f0(x) = H(0, x) and f∞(x) =
limt→∞H(t, x) are (elementary) Lipschitz homotopic.

The relation of elementary Lipschitz homotopy is obviously reflexive, but it is not clear that
it is either symmetric or transitive. We let Lipschitz homotopy be the equivalence relation (on
coarse maps) generated by elementary Lipschitz homotopy, and we define the notion of Lipschitz
homotopy equivalence (between coarse spaces) in the obvious way.

(11.2) Theorem: Lipschitz homotopic coarse maps induce homotopic maps on the K
top-theory

of the C∗-algebras.

Proof: It is enough to prove this for an elementary Lipschitz homotopy. Given such a
homotopy H we extend it (constantly) over R

−, so that H becomes a coarse map from W = X×R

to Y . By definition of coarse homotopy, H(x, t) is constant in x outside some region Z of the form

Z = {(x, t) : 0 6 t 6 ϕ(x)},

for a suitable (perhaps rapidly increasing) function ϕ : X → R+. Let X0 ⊂ W be the space
{(x, 0) : x ∈ X}, which is simply a copy of X in W . Let X1 ⊂W be the space {(x, ϕ(x)) : x ∈ X};
there is an obvious coarse map q : X1 → X .

Consider the commuting diagram

X0 Z X1

X Y X

i0 //

id

��
H

��

i1oo

q

��f0 // f∞oo

.

We will prove the homotopy invariance by showing that the maps i0, i1, and q each induce homo-
topy equivalences on Ktop. In fact, it will be enough to show that i0 and i1 induce equivalences,
and that the obvious projection p : Z → X induces the homotopy inverse of the map induced
by i0; this is because q = pi1. We will do this by comparing the Mayer-Vietoris sequences
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corresponding to different ω-excisive decompositions of W . Let W− = {(x, t) : t 6 0} ⊂ W and
let W+ = {(x, t) : t > ϕ(x)}. To prove that i0 induces an equivalence whose inverse is induced by
p, we compare the decomposition W = A ∪B where

A = W−, B = Z ∪W+

with the decomposition W = A′ ∪B′ where

A′ = W− ∪ Z, B′ = Z ∪W+.

Notice that A ∩B = X0 and A′ ∩B′ = Z. From these decompositions and corollary 9.5 we get a
cube diagram

KtopC∗(A′ ∩B′) KtopC∗(A′)

KtopC∗(A ∩B) KtopC∗(A)

KtopC∗(B′) KtopC∗(W )

KtopC∗(B) KtopC∗(W )

//

�� ��

llllllllllll55

//

��

oooooooooo77

��

//

//
llllllllllll55 oooooooooooooooooooo

in which the front and back faces are homotopy Cartesian. We want to prove that the top left-hand
arrow is a homotopy equivalence, and to do this it will be enough to prove that KtopC∗(A),
KtopC∗(B), KtopC∗(A′), and KtopC∗(B′) are trivial. But A, B, A′, and B′ are all flasque by
appropriate right or left shifts, so this follows from the result of the previous section. A similar
argument works for i1, completing the proof. �

The same result as above holds for algebraic K-theory and for L-theory. Since this is not
recorded in the literature we state

(11.3) Theorem: Lipschitz homotopic coarse maps X → Y , induce homotopic maps on the
algebraic K- and L-theory of the categories C(X ;R) → C(Y ;R) for any ring R (with involution
in the case of L-theory).

Proof: The proof in algebraic K-theory is exactly the same, replacing the C∗-algebras by the
categories and Ktop by K−∞. In L-theory we need to worry about decorations. From [32] or [5]
we get the following diagram with notation as in the theorem above

LpC(A′ ∩B′;R) LhC(A′;R)

LpC(A ∩B;R) LhC(A;R)

LhC(B′;R) LhC(W ;R)

LhC(B;R) LhC(W ;R)

//

�� ��

lllllllllllll66

//

��

oooooooooo 77

��

//

//
llllllllllll 66 oooooooooooooooooooo

The p-decorations are due to the flasqueness of the categories C(A′;R), C(B′;R), C(A;R) and
C(B;R). This flasqueness makes L-theory trivial, so we get an equivalence L

p
C(A ∩B;R) →

LpC(A′ ∩B′;R). To get isomorphism in Lh from the isomorphism in Lp, we use the Rothenberg-
Ranicki exact sequence and the fact that the map induces isomorphism in algebraic K-theory.
�
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Remark: Notice that we get Lipschitz homotopy invariance in L-theory with any decoration by
the argument above, once we have invariance for one decoration. This follows from the K-theory
statement and Rothenberg-Ranicki exact sequences.

12. Continuous control and Steenrod homology

For a compact metrizable space X , let cX denote the (closed) cone on X . Let OX denote the
open cone cX \X with the continuously controlled coarse structure coming from its compactifi-
cation to cX . The object of this section is to prove

(12.1) Proposition: For a fixed C∗-algebra R, the functor X 7→ KtopC∗
R(OX) is a reduced

Steenrod homology functor.

Remark: Notice that the results of section 8 already give us an identification KtopC∗
R(OX) ≃

ΩK̃K
top

(C(X), R) (reduced KasparovK-homology). Thus our proposition follows from the identi-
fication ofKK-theory in which the first algebra is commutative with Steenrod homology. However,
in this section we will proceed directly; by reversing the argument we may use the proposition as
a proof of the homological properties of KK-theory.

Proof: According to [5], to show that k(X) = KtopC∗
R(OX) is a Steenrod functor we have to

prove three things.

(i) k(cX) is contractible for every X ;
(ii) For a closed subset A ⊆ X there is a fibration

k(A) → k(X) → k(X/A);

(iii) for a ‘strong wedge’ of countably many metric spaces, X =
∨

i Xi, the projection maps
induce a weak equivalence

k
(∨

Xi

)
≃

∏
k(Xi).

We should check first that we do have a functor! Indeed, a continuous map X → Y naturally
induces a coarse map OX → OY , hence a map on K-theory.

To verify property (i) we follow the argument of [2]. As a topological space, Z =df OcX =
OX × R

+. It is not known whether or not this space is flasque (in the continuously controlled
structure); however, it clearly is flasque in the product coarse structure, and it is shown in [2]
that there are sufficiently many coarse maps from Z with the product structure to Z with the
continuously controlled structure that their images generate the whole of K-theory. The result
follows.

We check property (ii). Let A ⊆ X and let I be the annihilator ideal of the open subset X \A
of X . Because we are working with continuous control, this is the same as the ideal generated by
OA ⊆ OX . Thus the K-theory of the C∗-algebra C∗

R(I;OX) is equal to k(A). On the other hand
there is an isomorphism of C∗-algebras

C∗
R(OX)/C∗

R(I;OX) ≡ C∗
R(O(X/A))/C∗R(〈O(∗)〉;O(X/A)).

Since KtopC∗R(〈O(∗)〉;O(X/A)) is contractible by (i), Proposition 4.4 shows that the K-theory
of this quotient C∗-algebra is homotopy equivalent to k(X/A), and hence that there is a fibration

k(A) → k(X) → k(X/A)

as required.
Finally we check (iii). Let ∗ be the wedge point. We use the result, which was just shown, that it

makes no difference up to homotopy if we consider k′(Xi) = KtopC∗
R(O(Xi))/C

∗R(〈O(∗)〉;O(Xi))
in place of k(Xi). Let us do this. Now all elements in these quotient C∗-algebras can be represented
as operators supported near infinity and away from the wedge point. The continuous control
condition therefore gives

K
topC∗

R(O(
∨
Xi))/C

∗R(〈O(∗)〉;O(
∨
Xi)) =

⊕
K

topC∗
R(O(Xi))/C

∗R(〈O(∗)〉;O(Xi)).
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From this and the continuity of topological K-theory with respect to direct limits we get the
desired result. �

Remark: It is also possible to prove the analogous theorem when OX refers to the open cone
equipped with bounded (metric) control, rather than continuous control. The wedge axiom is rather
harder to prove in this case: one must rescale the OXi using Lipschitz homotopy invariance, so as
to obtain representatives for homology classes which have a common propagation bound, which
can then be glued together. See [11, Theorem 16.7] for an algebraic version of this.
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