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1 Elliptic equations

The Atiyah-Singer index theorem is concerned
with the existence and uniqueness of solutions to
linear partial differential equations of elliptic type.
To understand this concept, consider the two equa-
tions

∂f

∂x
+
∂f

∂y
= 0 and

∂f

∂x
+ i

∂f

∂y
= 0.

They differ only by the factor i =
√
−1, but nev-

ertheless their solutions have very different prop-
erties. Any function of the form f(x, y) = g(x−y)
is a solution to the first equation, but in the analo-
gous general solution g(x+ iy) of the second equa-
tion, g must be an analytic function of the com-
plex variable z = x+ iy, and it was already known
in the nineteenth century that such functions are
very special. For example, the first equation has
an infinite-dimensional set of bounded solutions,
but Liouville’s theorem in complex analysis as-
serts that the only bounded solutions of the second
equation are the constant functions.

The differences between the solutions of the two
equations can be traced to the differences between
the symbols of the equations, which are the poly-
nomials in real variables ξ, η that are obtained by
substituting iξ for ∂/∂x and iη for ∂/∂y. Thus the
symbols of the two equations above are

iξ + iη and iξ − η,

respectively. An equation is said to be elliptic
if its symbol is zero only when ξ = η = 0;
thus the second equation is elliptic but the first
is not. The fundamental regularity theorem, which
is proved using Fourier analysis, states that an el-
liptic partial differential equation (subject to suit-
able boundary conditions, if needed) has a finite-
dimensional solution space.

2 Topology of elliptic equations and
the Fredholm index

Consider now the general first-order linear partial
differential equation

a1
∂f

∂x1
+ · · ·+ an

∂f

∂xn
+ bf = 0,

in which f is a vector-valued function and the co-
efficients aj and b are complex matrix-valued func-
tions. It is elliptic if its symbol

iξ1a1(x) + · · ·+ iξnan(x)

is an invertible matrix for every ξ 6= 0 and every
x. The regularity theorem applies in this general-
ity, and it allows us to form the Fredholm index of
an elliptic equation (with suitable boundary condi-
tions), which is the number of linearly independent
solutions of the equation minus the number of lin-
early independent solutions of the adjoint equation

− ∂

∂x1
(a∗1f)− · · · − ∂

∂xn
(a∗nf) + b∗f = 0.

The reason for introducing the Fredholm index is
that it is a topological invariant of elliptic equa-
tions. This means that continuous variations in the
coefficients of an elliptic equation leave the Fred-
holm index unchanged (in contrast the number of
linearly independent solutions of an equation can
vary as the coefficients of the equation vary). The
Fredholm index is therefore constant on each con-
nected component of the set of all elliptic equa-
tions, and this raises the prospect of using topology
to determine the structure of the set of all elliptic
equations as an aid to computing the Fredholm in-
dex. This observation was made by Gelfand in the
1950s. It lies at the root of the Atiyah-Singer index
theorem.

3 An example

To see in more detail how topology can be used to
determine the Fredholm index of an elliptic equa-
tion let us consider a specific example. Consider
elliptic equations for which the coefficients aj(x)
and b(x) are polynomial functions of x, with aj of
degree m−1 or less and b of degree m or less. The
expression

iξ1a1(x) + · · ·+ iξnan(x) + b(x)
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is then a polynomial in both x and ξ of degree m or
less. Let us strengthen the hypothesis of elliptic-
ity by assuming that the terms in this expression
that have degree exactly m (jointly in x and ξ)
define an invertible matrix whenever either x or ξ
is nonzero. Let us also agree to consider only so-
lutions f of the equation or its adjoint which are
square-integrable, which means that∫
|f(x)|2 dx <∞.

All these extra hypotheses are types of bound-
ary conditions (the behaviors of the equation and
its solutions at infinity are controlled), and collec-
tively they imply that the Fredholm index is well-
defined.

A simple example is the equation

df

dx
+ xf = 0. (1)

The general solution to this ordinary differential
equation is the 1-dimensional space of multiples of
the function e−x2/2, which is square-integrable. In
contrast, the solutions of the adjoint equation

− df
dx

+ xf = 0

are multiples of the function e+x2/2, which is not
square-integrable. Thus the index of this differen-
tial equation is equal to 1.

Returning to the general equation, the degree m
terms in

iξ1a1(x) + · · ·+ iξnan(x) + b(x)

determine a map from the unit sphere in (x, ξ)-
space to the set GL(k,C) of invertible k × k com-
plex matrices. Moreover, every such map comes
from an elliptic equation (possibly of a more gen-
eral type than we have discussed up to now, but
an equation to which the basic regularity theorem
guaranteeing the existence of the Fredholm index
applies). It therefore becomes important to deter-
mine the topological structure of the space of all
maps from the sphere S2n−1 into GL(k,C).

A remarkable theorem of Bott provides the an-
swer. The Bott periodicity theorem associates an
integer, which we shall call the Bott invariant, to
each map S2n−1 → GL(k,C). Furthermore, Bott’s

theorem asserts that provided k ≥ n, one such map
can be continuously deformed into another if and
only if the Bott invariants of the two maps agree.
In the special case n = k = 1, where we are deal-
ing with maps from the one-dimensional circle into
the non-zero complex numbers, or in other words
closed paths in C that do not pass through the ori-
gin, the Bott invariant is just the classical winding
number, which measures the number of times such
a path winds around the origin. We may therefore
regard the Bott invariant as a generalized winding
number.

The index theorem for equations of the type that
we are considering in this section asserts that the
Fredholm index of an elliptic equation is equal to
the Bott invariant of its symbol. For instance,
in the case of the simple example (1) considered
above, the symbol iξ + x corresponds to the iden-
tity map from the unit circle in (x, ξ)-space to the
unit circle in C. Its winding number is equal to 1,
in agreement with our computation of the index.

The proof of the index theorem depends strongly
on Bott periodicity and proceeds as follows. Be-
cause elliptic equations are classified topologically
by the Bott invariant, and because the Bott in-
variant and the Fredholm index have analogous
algebraic properties, one need only verify the the-
orem in a single example: that corresponding to
a symbol with Bott invariant 1. It turns out that
this Bott generator can be represented by an n-
dimensional generalization of our example (1), and
a computation in this case completes the proof.

4 Elliptic equations on manifolds

It is possible to define elliptic equations not just for
functions f of n variables, but for functions defined
on a manifold. Particularly accessible to analy-
sis are the elliptic equations on closed manifolds,
that is, on manifolds that are finite in extent and
that have no boundary. For closed manifolds it is
not necessary to specify any boundary conditions
in order to obtain the basic regularity theorem for
elliptic equations (after all, there is no boundary).
As a result, every elliptic partial differential equa-
tion on a closed manifold has a Fredholm index.

The Atiyah-Singer index theorem concerns el-
liptic equations on closed manifolds and it has
roughly the same form as the index theorem that
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we studied in the previous section. One builds out
of the symbol an invariant called the topological
index which generalizes the Bott invariant. The
Atiyah-Singer index theorem then asserts that the
topological index of an elliptic equation is equal to
the Fredholm or analytical index of the equation.
The proof has two stages. In the first, theorems
are proved that allow one to transform an ellip-
tic equation on a general manifold into an elliptic
equation on a sphere without changing the topo-
logical or analytical indices. For example, it may
be shown that two elliptic equations on different
manifolds that are the common “boundary” of an
elliptic equation on a manifold of one higher di-
mension must have the same topological and an-
alytical indices. In the second stage of the proof
the Bott periodicity theorem and an explicit com-
putation are applied to identify the topological and
analytical indices of elliptic equations on spheres.
Throughout both stages, an important tool is K-
theory, which is a branch of algebraic topol-
ogy invented by Atiyah and Hirzebruch.

Although the proof of the Atiyah-Singer index
theorem makes use of K-theory, the final result
can be translated into terms that do not mention
K-theory explicitly. In this way one obtains an
index formula roughly like this:

Index =
∫

M

IM · ch(σ).

The term IM is a differential form determined
by the curvature of the manifold M on which the
equation is defined. The term ch(σ) is a differential
form obtained from the symbol of the equation.

5 Applications

In order to prove the index theorem, Atiyah and
Singer were obliged to study a very broad class of
generalized elliptic equations. However the appli-
cations they first had in mind were related to the
simple equation with which we began this article.
Solutions of the equation

∂f

∂x
+ i

∂f

∂y
= 0

are precisely the analytic functions of the complex
variable z = x + iy. There is a counterpart to
this equation on any Riemann surface and the

Atiyah-Singer index formula, applied in this in-
stance, is equivalent to a foundational result about
the geometry of surfaces called the Riemann-Roch
theorem. The Atiyah-Singer index theorem gives
a means to generalize the Riemann-Roch theorem
to a complex manifold of any dimension.

The Atiyah-Singer index theorem also has im-
portant applications outside of complex geometry.
The simplest example involves the elliptic equa-
tion dω + d∗ω = 0 on differential forms on a man-
ifold M . The Fredholm index may be identified
with the Euler characteristic of M—the alternat-
ing sum of the numbers of r-dimensional cells in a
cell decomposition of M . For 2-dimensional mani-
folds the Euler characteristic is the familiar quan-
tity V −E + F . In the 2-dimensional case, the in-
dex theorem reproduces the Gauss-Bonnet the-
orem, which asserts that the Euler characteristic
is a multiple of the total Gaussian curvature.

Even this simple case, the index theorem can
be used to produce topological restrictions on the
ways a manifold can curve. Many important appli-
cations of the index theorem proceed in the same
direction. For example, Hitchin used a more re-
fined application of the Atiyah-Singer index theo-
rem to show that there is a 9-dimensional manifold
which is homeomorphic to the sphere but which is
not positively curved in even the weakest sense (in
contrast, the usual sphere is positively curved in
the strongest possible sense).
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