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Abstract: We connect the assembly map in C∗-algebra K-theory to rigidity
properties for relative eta invariants that have been investigated by Mathai,
Keswani, Weinberger and others. We give a new and conceptual proof of
Keswani’s theorem that whenever the C∗-algebra assembly map is an iso-
morphism, the relative eta invariants associated to the signature operator
are homotopy invariants, whereas the relative eta invariants associated to
the Dirac operator on a manifold with positive scalar curvature vanish.
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1. Introduction

The purpose of this paper is to examine connections between K-homology the-
ory and relative eta invariants. Our aim is to place certain rigidity theorems for
relative eta invariants into the context of Baum’s geometric K-homology theory
[8]. We hope to persuade the reader that this is a natural environment for them.

The eta invariant of a self-adjoint linear elliptic partial differential operator
D on a closed manifold M is a regularization, introduced by Atiyah, Patodi and
Singer [2, 3], of the difference between the dimensions of the positive and negative
eigenspaces of D. It depends sensitively on the operator. A more robust version
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is the relative eta invariant, associated to D together with a map f : M → Bπ for
some discrete group π, and a pair of group homomorphisms σ1, σ2 : π → U(N).
This is, roughly speaking, half the difference of the eta invariants of the two
elliptic operators that are obtained by “twisting” D by the pull-backs, via the
map f, of the flat bundles on Bπ associated to σ1 and σ2:

ρ(D, f, σ1, σ2) = 1
2η(D1) − 1

2η(D2)

(the actual difference involves a correction term; this and the reason for the factor
of 1

2 will be reviewed in Section 2).

We shall present an analysis of relative eta invariants that is based on the
C∗-algebraic assembly map

µ : K∗(Bπ) −→ K∗(C∗(π)).

The groups K∗(Bπ) appearing here are those of the generalized homology the-
ory that is dual to Atiyah-Hirzebruch K-theory. They may be concretely defined
using either functional analysis [25, 12] (as first suggested by Atiyah [1]) or geom-
etry [8, 10]. We shall use both realizations in this paper. The target groups for
the assembly map are the K-theory groups of the group C∗-algebra for π. Thus
K0(C

∗(π)) is the usual algebraic K-theory group, while K1(C
∗(π)) is the com-

ponent group of the stable general linear group of C∗(π) (C∗-algebra K-theory
groups are Bott-periodic, so there are no further groups to define). The assembly
map, as we shall study it, here was introduced by Kasparov [25] and is central to
the C∗-algebra approach to the Novikov conjecture.

Our interest is in the following results, originally due in various formulations
to Mathai [29], Weinberger [37] and Keswani [27] (for an interesting recent treat-
ment, see the article [32] of Piazza and Schick).

1.1. Theorem. Let D be the Dirac operator on a closed, odd-dimensional spin-
manifold M with positive scalar curvature. If the assembly map

µ : K∗(Bπ) −→ K∗(C∗(π))

is an isomorphism, then for any map f : M → Bπ and any pair of representations
σ1, σ2 : π → U(N) the relative eta invariant ρ(D, f, σ1, σ2) is equal to zero.

1.2. Theorem. Let h : M ′′ → M ′ be an orientation-preserving homotopy equiv-
alence between odd-dimensional, closed, oriented manifolds. Let f ′ : M ′ → Bπ
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be any map, and let f ′′ = f ′ ◦ h : M ′′ → Bπ. Let D ′ and D ′′ be the signature
operators on M ′ and M ′′. If the assembly map

µ : K∗(Bπ) −→ K∗(C∗(π))

is an isomorphism, then for any pair of representations σ1, σ2 : π → U(N), the
relative eta invariants

ρ(D ′, f ′, σ1, σ2) and ρ(D ′′, f ′′, σ1, σ2)

are equal to one another.

There is a more refined assembly map in C∗-algebra K-theory, introduced by
Baum and Connes [6, 7]. It treats torsion in π carefully and also pays due
attention to the different ways in which the group algebra of π may be completed
into a C∗-algebra. Baum and Connes conjecture that their assembly map is an
isomorphism for all groups π. If, for example, π is a torsion-free and amenable
group, then the Baum-Connes assembly map agrees with the one studied in this
paper. The same holds more generally for torsion-free a-T-menable groups [13],
and for these the Baum-Connes conjecture was proved in [20].

To prove Theorems 1.1 and 1.2 we shall follow an approach that was pioneered
in the thesis of Keswani [27]. Indeed the main contribution of our paper is to
conceptualize Keswani’s work. Here is a brief account of our method, focused
mostly on Theorem 1.1.

In an earlier sequence of papers [22, 23, 24] we introduced and analyzed “ana-
lytic structure groups” S∗(π) that measure the failure of the assembly map to be
an isomorphism. They fit into a long exact sequence

· · · // K0(Bπ)
µ // K0(C

∗(π)) // S1(π)

// K1(Bπ)
µ // K1(C

∗(π)) // · · · ,

and are so named because they are C∗-algebra K-theory counterparts of the struc-
ture groups in surgery theory [36, 33].

Atiyah showed in [1] that each elliptic operator D on a closed manifold M

determines a class [D] ∈ K∗(M). The assembly map sends this class to an equi-
variant analytic index obtained by causing D to act on sections of a canonical
flat line bundle over M whose fibers are C∗(π)-modules [30, 25].
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Now let D be the Dirac operator on an odd-dimensional spin-manifold M that
is equipped with a positive scalar curvature metric. If f : M → Bπ is any map,
then it follows from the Lichnerowicz formula that the class f∗[D] ∈ K1(Bπ)

maps to zero under the assembly map. Therefore f∗[D] pulls back to a class in
the analytic structure group S1(π). We shall use the positive scalar curvature of
M to identify a particular such pullback that we shall denote by [M, f] ∈ S1(π).

Here is the connection with relative eta invariants. Each representation σ : π →
U(N) determines a trace functional

Trσ : K0(C
∗(π)) −→ Z.

Its composition with the assembly map µ : K0(Bπ) → K0(C
∗(π)) depends only on

the rank N of the representation. This implies that if σ1 and σ2 have the same
rank, then the difference

Trσ1
− Trσ2

: K0(C
∗(π)) −→ Z

factors through the structure group S1(π) in the analytic surgery long exact
sequence. We shall explicitly construct a commuting diagram

K0(Bπ)
µ //

²²

K0(C
∗(π)) //

Trσ1
− Trσ2

²²

S1(π) //

Trσ1,σ2

²²

K1(Bπ)
µ //

Indσ1,σ2

²²

K1(C
∗(π))

²²
0 // Z // R // R/Z // 0

that expresses this fact and also incorporates the R/Z-index of Atiyah, Patodi
and Singer [5].

We shall give a geometric account of the relative trace map

Trσ1,σ2
: S1(π) → R

starting from the geometric approach to K-homology in which cycles are given by
elliptic operators on manifolds. As we shall review in Section 3, the equivalence
relation among cycles for K-homology involves several operations (for example,
bordism) that were devised with the Atiyah-Singer index theorem in mind. Thus
all the operations preserve the analytic index of elliptic operators. A key observa-
tion, made in Section 6, is that the same operations also preserve the relative eta
invariant, modulo Z. This allows us to give a concise account of the R/Z-index.
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To obtain a relative trace with values in R rather than R/Z we need to equip
the elliptic operators that determine K-homology cycles with “cuts” in their spec-
trum, separating ±∞. As it turns out, the notion of spectral cut is precisely what
is needed to pull back classes in K1(Bπ) to the analytic structure group S1(π)

(compare [15]). It therefore seems to us that the fit between the analytic surgery
sequence of [24] and relative eta invariants is extremely close.

There is another, more analytic approach to the relative trace map, in which it
is defined as regularized difference of actual traces (this was our original approach;
hence the name). But this we shall explain elsewhere.

Returning now to the proofs of Theorems 1.1 and 1.2, if D is the Dirac operator
on an odd-dimensional spin-manifold with positive scalar curvature, and if [M, f]

is the class in S1(π) that is associated to the given positive scalar curvature metric
on M, then we shall see that, more or less by definition,

Trσ1,σ2

(
[M, f]

)
= ρ(D, f, σ1, σ2).

If the assembly map is an isomorphism, then of course the structure group S1(π)

vanishes, and in particular the class [M, f] is zero. We therefore find that in this
case

ρ(D, f, σ1, σ2) = Trσ1,σ2

(
[M, f]

)
= 0,

and we have proved Theorem 1.1.

The case of the signature operator is similar. Given an orientation-preserving
homotopy equivalence h : M ′′ → M ′ between closed, oriented, odd-dimensional
manifolds, the difference

f ′∗[D
′] − f ′′∗ [D ′′] ∈ K1(Bπ)

of the signature operator classes for M ′ and M ′′ maps to zero in K1(C
∗(π)) under

the assembly map. There is a class [h, f ′, f ′′] ∈ S1(π) that accounts for this, and
moreover

Trσ1,σ2

(
[h, f ′, f ′′]

)
= ρ(D ′, f ′, σ1, σ2) − ρ(D ′′, f ′′, σ1, σ2).

Theorem 1.2 follows.
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2. Relative Eta Invariants

We shall quickly review those aspects of the theory of eta invariants that we
shall need. For further information we refer the reader to the original articles of
Atiyah, Patodi and Singer [3, 4, 5], or to the monograph of Gilkey [17].

Let D be a formally self-adjoint, first-order elliptic partial differential operator
on a closed Riemannian manifold M, acting on smooth sections of a Hermitian
bundle S over M (in all our examples, M will be odd-dimensional). Viewed as
an unbounded symmetric operator on the Hilbert space L2(M,S) with domain
the smooth sections of S, the operator D is essentially self-adjoint and its closure
has compact resolvent. There is therefore an orthonomal basis {φn} for L2(M,S)

consisting of eigenvectors for D:

Dφn = λnφn

(D acts initially in the sense of distributions, although the φn turn out to be
smooth sections of S). The eta function for D is the complex function

ηD(s) =
∑
n

sign(λn)|λn|−s,

where we define sign(0) to be 0. The series converges absolutely as long as
Re(s) À 0, and moreover ηD(s) admits a meromorphic continuation to C. An
important theorem of Atiyah, Patodi and Singer asserts that the eta function is
regular at s = 0. The eta invariant of D is by definition the value of the eta
function at this place:

η(D) = ηD(0).

Atiyah, Patodi and Singer connected the eta invariant with index theory, as
follows.

2.1. Definition. Suppose that W is a compact Riemannian manifold with bound-
ary M, and suppose that W is isometric to the Riemannian product [0, 1) ×M

in a collaring neighborhood of M. Suppose that there is a Z/2Z-graded, formally
self-adjoint, first-order elliptic partial differential operator Q on W, acting on the
smooth sections of a Z/2Z-graded Hermitian bundle over W that is isomorphic
to S ⊕ S on the collaring neighborhood. Suppose finally that in the collaring
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neighborhood Q has the form

Q =

(
0 −∂ + D

∂ + D 0

)
,

where ∂ denotes differentiation on (0, 1]. Under all these circumstances we shall
say that Q is bounded by D and that D is a boundary.

Now let P : L2(M,S) → L2(M,S) be the projection onto direct sum of the non-
negative eigenspaces of the operator D. Atiyah, Patodi and Singer showed that if
Q, as in Definition 2.1, is restricted so as to act only on smooth sections (s+, s−)

that satisfy the boundary conditions

Ps+|M = 0 and P⊥s−|M = 0,

then it becomes a Fredholm operator. We shall denote by Ind(Q,D) the index
of the part of Q that maps even sections satisfying the boundary conditions to
arbitrary odd sections; this is the Atiyah-Patodi-Singer index of Q.

Let Z be an extension of W to a closed Riemannian manifold and assume
that the operator Q extends to a Z/2Z-graded, formally self-adjoint, first-order
elliptic partial differential operator on Z (for example, Z could be the double of
W). Let ε be the grading operator. As is well known, the operators exp(−tQ2)

are trace-class for t > 0 and there is an asymptotic expansion

Trace
(
ε exp(−tQ2)

)
∼

∑

k≥− n
2

aktk.

Moreover each coefficient ak is the integral over Z of a smooth function ak(z)

that is locally computable from the coefficients of Q and their derivatives.

The fundamental Atiyah, Patodi Singer (APS) index theorem is as follows:

2.2. Theorem. ([3, Theorem 3.10].) If the operator Q on W is bounded by D,
then

Ind(Q,D) =

∫

W
a0(w)dw −

1

2

(
η(D) − dimker(D)

)
.

Now let π be a discrete group and let Bπ be a classifying space for π. Suppose
that the manifold M is equipped with a continuous map

f : M → Bπ.
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The map determines a principal π-space M̃ over M, and every group homomor-
phism σ : π → U(N) therefore determines a flat Hermitian vector bundle

Vσ = M̃×π CN.

Since Vσ is flat, we can lift D to an operator Dσ acting on sections of Vσ⊗S and
then form the eta invariant η(Dσ).

2.3. Definition. Let σ1 and σ2 be two homomorphisms from π into the unitary
group U(N). The relative eta invariant ρ(D, f, σ1, σ2) associated to a formally
self-adjoint, first-order elliptic partial differential operator on a closed Riemannian
manifold M and a map f : M → Bπ is the quantity

ρ(D, f, σ1, σ2) = 1
2

(
η(D1) − η(D2)

)
− 1

2

(
dimker(D1) − dimker(D2)

)

(we have written D1 and D2 in place of Dσ1
and Dσ2

, and we shall continue to
do so from now on).

Relative eta invariants behave in many ways more simply than the individual
eta invariants out of which they are constructed. For example, it is quite easy
to see that the difference of the eta functions that define η(D1) and η(D2) is not
only meromorphic on C but in fact entire. Indeed we can write

ηD1
(s) − ηD2

(s) =

Γ
(

s+1
2

)−1
∫∞

0

(
Trace

(
D1 e−tD2

1
)

− Trace
(
D2 e−tD2

2
))

t
s−1

2 dt,

and basic facts about heat kernel asymptotics imply that this integral is absolutely
convergent for all s.

Key for us will be the following simple consequence of the Atiyah-Patodi-Singer
index theorem (compare [4, Section 3]):

2.4. Lemma. Assume that D is bounded by some operator Q, as above, and
assume that the map f : M → Bπ extends to the compact manifold W. Under
these circumstances, the relative eta invariant ρ(D, f, σ1, σ2) is an integer.

Proof. The a0-integrals for D1 and D2 in Theorem 2.2 are equal because the
integrands are locally determined from D1 and D2, and locally these operators
are isomorphic to one another. It therefore follows from Theorem 2.2 that

Ind(Q1, D1) − Ind(Q2, D2) = −ρ(D, f, σ1, σ2),



K-Homology and Relative Eta Invariants 563

which proves integrality. ¤

2.5. Remark. This integrality result is the reason that the factor of one half,
and also the correction term involving the kernel, are included in the definition
of the relative eta invariant.

3. Geometric K-Homology

In this section we shall review Baum’s geometric definition of K-homology,
essentially as presented in his article [8] with Douglas (see also [10]). We shall
actually use the small variant of Baum’s original definition that is presented by
Keswani in [26]. It better suits our treatment of the signature operator and more
transparently explains the connection to relative eta invariants. We shall focus on
the odd-degree K-homology group, since this is the one most relevant to relative
eta invariants.

The geometric definition of K-homology involves cycles and an equivalence
relation between cycles. The cycles are based on the following notion:

3.1. Definition. Let M be an Riemannian manifold. A Dirac bundle for M is
a smooth, complex Hermitian vector bundle S on M that is equipped with a
smooth, R-linear bundle map

c : TM −→ End(S)

such that c(Y)∗ = −c(Y) and c(Y)2 = −‖Y‖2 for all tangent vectors Y. If M is
even-dimensional, then in addition we require that S be Z/2Z-graded, and that
the action c : TM → End(S) exchange the even and odd-graded components of S.

We have used the term Dirac bundle to be consistent with the monograph [21];
the term Clifford bundle is used elsewhere. We shall refer to the map c as the
Clifford action of TM on S.

3.2. Definition. Let X be any space. An (odd) geometric K-cycle for X is a triple
(M,S, f) where:

(a) M is a closed, orientable Riemannian manifold whose connected components
all have odd dimension (they need not have the same dimension).

(b) S is a Dirac bundle on M.
(c) f is a continuous map from M to X.



564 Nigel Higson and John Roe

3.3. Remark. The definition in [26] adds to the concept of cycle a suitable
connection on S. This is an inessential difference that does not alter the geometric
K-homology groups we are about to define.

3.4. Definition. Let (M,S, f) be a geometric K-cycle for X. It is a boundary if
there exist

(a) a compact Riemannian manifold W with boundary M such that W is iso-
metric to the product (0, 1]×M in a collaring neighborhood of M; and

(b) a (Z/2Z-graded) Dirac bundle on W that is isomorphic to the pullback of
S ⊕ S over the collaring neighborhood, with action of TW on the collaring
neighborhood given by

cW(∂t) =

(
0 −I

I 0

)
and cW(Y) =

(
0 cM(Y)

cM(Y) 0

)

for all Y ∈ TM.

A Dirac bundle S provides data sufficient to define an elliptic operator: there
is a formally self-adjoint, elliptic first-order differential operator D acting on
sections of S such that for any smooth scalar function φ,

[D,φ] = c(gradφ) : S −→ S.

3.5. Definition. We shall refer to any operator D, as above, as a Dirac operator
for the geometric K-cycle (M,S, f).

3.6. Remark. If the cycle (M,S, f) is a boundary, then any Dirac operator for it
is a boundary in the sense of Definition 2.1.

There is a natural operation of disjoint union on geometric K-cycles:

(M ′, S ′, f ′) t (M ′′, S ′′, f ′′) = (M ′ tM ′′, S ′ t S ′′, f ′ t f ′′).

We shall say that (M ′, S ′, f ′) is a component of the disjoint union. We shall also
define the negative of a geometric cycle (M,S, f) to be the cycle

−(M,S, f) = (M,−S, f),

where −S denotes the bundle S with the Clifford action −c.

3.7. Definition. Two geometric K-cycles are bordant if the disjoint union of one
with the negative of the other is a boundary.
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Bordism is part of the equivalence relation among geometric K-cycles that
defines K-homology. A second important part is an operation called bundle mod-
ification that relates manifolds of different dimensions. To describe it we need
some preliminary definitions.

3.8. Definition. (Compare [10, Definition 3.10].) Denote by θ the self-adjoint in-
volution of the Hermitian bundle Cliff(N) of complex Clifford algebras associated
to TN that is given by right multiplication by the element

θ = ike1 · · · e2k

of Cliff(N). Here e1, . . . , e2k is a local oriented orthonormal frame for TN (θ does
not depend on the choice of frame). Denote by

Cliffθ(N) ⊆ Cliff(N)

the +1 eigenbundle for θ, equipped with the Dirac bundle structure obtained
from the natural Z/2Z-grading of Cliff(N) and the left multiplication action of
TN on Cliff(N).

Now fix an orientation on the unit sphere S2k ⊆ R2k+1 (it does not matter
which one). The group SO(2k) acts on S2k via the standard inclusion of SO(2k)

into SO(2k + 1). In addition SO(2k) acts on Cliffθ(S2k) in such a way that the
Clifford action

c : TS2k −→ End
(
Cliffθ(S2k)

)

is SO(2k)-equivariant.

3.9. Definition. Let (M,S, f) be a geometric K-cycle for X and let P be a smooth
principal SO(2k)-bundle over M. An elementary bundle modification of a cycle
(M,S, f) associated to the principal bundle P is a geometric K-cycle (M̂, Ŝ, f̂),
where:

(a) M̂ is the fibre bundle P ×SO(2k) S2k, equipped with any Riemannian metric
that agrees with the metric of S2k on vertical tangent vectors and that agrees
with the metric of M on horizontal tangent vectors.

(b) Ŝ is the tensor product of the pullback to M̂ of S with the bundle on M̂

induced from the SO(2k)-equivariant bundle Cliffθ(S2k) on the sphere S2k.
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The action c : TM̂ → End(Ŝ) is given by the formula

c(X) =





c(X)⊗ ε if X is horizontal

I⊗ c(X) if X is vertical

where ε is the grading operator on the bundle P ×SO(2k) Cliffθ(S2k).
(c) f̂ is the composition f◦π : M̂ → X, where π : M̂ → M is the natural projection.

3.10. Definition. Let (M,S, f) be a geometric K-cycle for X. A bundle mod-
ification of (M,S, f) is any cycle obtained by elementary bundle modification of
a component of (M,S, f).

3.11. Definition. Let X be a space. We denote by K
geom
1 (X) the quotient of the

space of geometric K-cycles for X by the equivalence relation generated by the
following three relations:

(a) Direct sum/disjoint union. The cycle (M,S1 ⊕ S2, f) is equivalent to the
disjoint union (M,S1, f) t (M,S2, f).

(b) Bordism. Bordant cycles are equivalent.
(c) Bundle Modification. A cycle is equivalent to any cycle that is obtained from

it by bundle modification.

We refer to [8], [10] or [26] for further details. The straightforward isomorphism
between Baum’s K-homology groups and those defined here is described in [26].

4. Analytic K-Homology

Although we shall be mostly concerned with geometric K-homology in this
paper, it will be convenient to work with the analytic definition of K-homology
as well. We shall review the definition in this section.

In an important paper [1], Atiyah proposed a functional-analytic definition of
K-homology. This was based on what we shall call an (odd) analytic K-cycle for
a compact metrizable space X, which consists of:

(a) A Hilbert space H equipped with a representation∗ of the C∗-algebra C(X) of
continuous functions on X as bounded operators on H.

∗Throughout, we shall assume that our representations are nondegenerate, which means that

the constant function 1 on X acts as the identity operator on H.
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(b) A self-adjoint Fredholm operator F on H such that F2 = I, modulo compact
operators, and such that [F, f] = 0, modulo compact operators, for every
f ∈ C(X).

(For the even K-homology group there are additional conditions involving Z/2Z-
gradings.) The equivalence relation between analytic K-cycles is a suitable notion
of homotopy, and was worked out in detail by Kasparov [25] and by Brown,
Douglas and Fillmore [12].

4.1. Example. If D is a Dirac operator for a geometric K-cycle (M,S, f) for X,
then the operator F = sign(D) on L2(M,S) is an analytic K-cycle for X (the map
f determines a representation of C(X) on L2(M,S)).

It will be convenient for us to view the K-homology groups of X as the K-
theory groups of a certain C∗-algebra associated to X. This is an approach that
was originally suggested by Paschke [31], and then developed by the authors in
[19] and [21]. To this end, let us consider a Hilbert space H that is equipped with
a representation of the C∗-algebra C(X) as bounded operators. We define

D∗
H(X) =

{
T ∈ B(H) : [T, f] = 0 modulo compact operators, ∀f ∈ C(X)

}

and

Q∗
H(X) = Quotient of D∗

H(X) by the ideal of compact operators on H.

An analytic K-cycle determines a projection in the quotient C∗-algebra Q∗
H(X)

via the formula P = 1
2(F+1), and conversely, any projection in Q∗

H(X) determines
an analytic K-cycle by a reversal of this process.

If H1 ⊆ H is a subspace and subrepresentation of C(X), then there are inclu-
sions

D∗
H1

(X) −→ D∗
H(X) and Q∗

H1
(X) −→ Q∗

H(X)

given by extending any operator on H1 to an operator on H that is zero on
the orthogonal complement of H1. If H1 is ample, in the sense that no nonzero
function in C(X) acts as a compact operator on H1, then these inclusions induce
isomorphisms at the level of K-theory. In particular, the C∗-algebras associated
to two ample Hilbert spaces have canonically isomorphic K-theory groups.

This prompts us to define K∗(D∗(X)) (the subscript H has been dropped) to be
the K-theory of D∗

H(X) for any ample H. We define K∗(Q∗(X)) in the same way. If
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f : X → Y is a continuous map, and if H is equipped with a representation of C(X),
then denote by f∗H the same Hilbert space equipped with the representation of
C(Y) associated to the homomorphism C(Y) → C(X) induced from f. There are
inclusions

D∗
H(X) −→ D∗

f∗H(Y) and Q∗
H(X) −→ Q∗

f∗H(Y)

By including f∗H into an ample Hilbert space for Y, we functorially associate to
the map f : X → Y homomorphisms

f∗ : K∗(D∗(X)) → K∗(D∗(Y)) and f∗ : K∗(Q∗(X)) → K∗(Q∗(Y)).

With these observations in mind we now define

K1(X) ∼= K0(Q
∗(X)) and K0(X) ∼= K1(Q

∗(X)).

These are the analytic K-homology groups of Atiyah, Kasparov, and Brown-
Douglas-Fillmore. See [21] for a detailed treatment.

4.2. Example. The arguments in [10] show that the analytic K-homology class
that we associated to a geometric K-cycle (M,S, f) in Example 4.1 depends only
on the class of (M,S, f) in geometric K-homology. It is also shown in [10] that
the map

K
geom
1 (X) −→ K1(X)

thereby defined is an isomorphism, as long as X is a finite CW-complex.

4.3. Example. An analytic cycle is degenerate if the operator F commutes with
the action of C(X). A simple argument shows that any degenerate cycle defines
the zero element in K-homology (compare [21, Proposition 8.2.8]).

We shall need to deal with analytic K-homology for certain more general spaces,
specifically for CW-complexes that are equipped with the CW-topology, in which
a subset is closed if and only if its intersection with each finite subcomplex is a
closed subset of that subcomplex. We shall do so as follows:

4.4. Definition. Let W be a CW complex with the CW-topology. We define

K∗(W) = lim−→
X⊆W

K∗(X),

where the limit is over the finite subcomplexes of W.
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4.5. Example. If f : M → W is any map from a compact space into a CW-
complex, then the image of f is contained within a finite subcomplex of W, and
it therefore follows that

K
geom
1 (W) ∼= lim−→

X⊆W

K
geom
1 (X),

with the direct limit being again over finite subcomplexes. As a result, the
isomorphism from geometric to analytic K-homology for finite CW-complexes
extends to an isomorphism for arbitrary CW-complexes.

5. The Assembly Map

In this section we shall review the definitions of the assembly map and the
analytic structure groups S∗(π) that measure how far the assembly map is from
an isomorphism.

We shall stray from current custom in C∗-algebra K-theory by defining the as-
sembly map to be a homomorphism into the K-theory of the full group C∗-algebra,
as opposed to the reduced group C∗-algebra. This was the original approach of
Kasparov, but it is not the approach followed by Baum and Connes. Our defi-
nition of the structure groups S∗(π) will be similarly adapted to the full group
C∗-algebra.

We shall need to begin with some background material on Hilbert modules.
For detailed information on this topic the reader is referred to the monograph
[28].

A Hilbert module over a C∗-algebra A is a Banach space H equipped with a
right A-action by bounded operators as well as an A-valued inner product that
is related to the Banach space norm by the formula

‖s‖2
H = ‖〈s, s〉‖A ∀s ∈ H.

A Hilbert module over A = C is just a Hilbert space.

5.1. Example. The space Γ(V) of continuous sections of a Hermitian vector
bundle over a compact space X is a Hilbert module over C(X) (the inner product
is given by pointwise inner product of sections).
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If E is a Hilbert module over a C∗-algebra B, and if H is a Hilbert module over
A that is also equipped with a left action of B by bounded, adjointable operators,†

then we may form the Hilbert module interior tensor product E⊗B H, which is a
Hilbert A-module completion of the algebraic tensor product. Its inner product
is given by the formula

〈
e1 ⊗ v1, e2 ⊗ v2

〉
=

〈
v1, 〈e1, e2〉v2

〉
.

See see [28, page 41].

5.2. Example. If A = C and B = C(M), if V is a Hermitian vector bundle over
X, and if H is the Hilbert space of L2-sections of some other Hermitian bundle S

over X, then Γ(V)⊗B H is the Hilbert space of L2-sections of V ⊗ S.

Suppose that T is a bounded operator on H. In situations like the one in
Example 5.2 we should like to form the tensor product operator I⊗ T on E⊗B H.
For example we shall need to lift operators acting on sections of some bundle
S to operators acting on sections of a tensor product bundle E ⊗ S. But unless
T commutes with the action of B, the operator I ⊗ T on E ⊗B H will not be
well-defined.

The problem can be addressed as follows. First, a bounded operator between
Hilbert modules over A is said to be compact if it is a norm-limit of finite linear
combinations of elementary operators of the form v 7→ v1〈v2, v〉. If A = C, then
this is the standard notion of compact operator on Hilbert space.

Next, for each element e ∈ E, define an operator

Le : H → E⊗B H

by the formula Le(v) = e⊗ v.

5.3. Definition. Let E be a Hilbert module over a C∗-algebra B and let H be a
Hilbert module over A that is also equipped with a left action of B by bounded
operators. Let T be a bounded operator on H that commutes with the given action
of B, modulo compact Hilbert module operators. An operator TE : E ⊗B H →

†Unlike the case of Hilbert spaces, operators on Hilbert modules, even bounded A-linear

ones, need not have adjoints in general. Those that do are called adjointable, and we shall work

exclusively with them.
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E⊗B H is a lift of T if for every e ∈ E the diagrams

E⊗B H
TE // E⊗B H

H

Le

OO

T
// H

Le

OO

and

E⊗B H
TE //

L∗e
²²

E⊗B H

L∗e
²²

H
T

// H

commute modulo compact Hilbert module operators.

This concept of a lift of an operator is borrowed from [14, 35], where the term
connection is used.

5.4. Definition. We shall say that a Hilbert module over a unital C∗-algebra is
finitely generated or projective if the underlying algebraic module has the corre-
sponding property.‡

The following lemma is easily proved by embedding E into a free module (com-
pare [14, Appendix A]).

5.5. Lemma. If E is a finitely generated and projective Hilbert module over a
unital C∗-algebra, then every operator T as in Definition 5.3 has a lift, and any
two lifts differ by a compact operator. Furthermore T lifts to a compact operator
if and only if it is itself compact. ¤

5.6. Example. Let D be a first order self-adjoint elliptic partial differential oper-
ator acting on sections of a smooth Hermitian bundle S over a closed manifold M,
and let V be a second Hermitian bundle on M. If we fix a Hermitian connection
on V , then, as is well known, we may use the connection to cause D to act as an
elliptic operator DV on the smooth sections of V ⊗ S. If we set F = sign(D) and
FV = sign(DV), then FV is a lift of F in the sense of Definition 5.3.

Now, fix a countable group π. Recall that C∗(π) is a C∗-algebra completion of
the complex group algebra. It has the universal property that for any embedding
of π into the unitary group of a C∗-algebra A there is a unique ∗-homomorphism

‡It happens that finite generation actually implies projectivity for Hilbert modules, but we

shall not use this fact.
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from C∗(π) to A such that the diagram

π

||yyyyyyyy

ÂÂ?
??

??
??

?

C∗(π) // A

commutes.

Fix a classifying space Bπ for the group π. We can and shall choose Bπ to be
a CW-complex with the CW-topology. In addition, fix a map f : X → Bπ and so
a principal π-space X̃ over X.

5.7. Definition. The Mishchenko line bundle over X is the quotient space

L = X̃×π C∗(π),

by the diagonal left action of π.

The Mishchenko line bundle is an example of a vector C∗(π)-bundle, in the
sense of the following definition.

5.8. Definition. Let A be a unital C∗-algebra and let X be a topological space.
A vector A-bundle is a locally trivial bundle over X whose fibers are finitely
generated and projective Hilbert modules over A, and whose structural group is
the group of unitary Hilbert module operators, equipped with the norm topology.

5.9. Remark. In fact the Mishchenko line bundle has the additional structure of
a flat vector C∗(π)-bundle. Its space of sections is

Γ(L) ∼=
{

s : X̃
continuous−−−−−−→ C∗(π) : s(gx̃) = gs(x̃) ∀g ∈ π ∀x̃ ∈ X̃

}

and in this description a locally defined section is parallel if it is locally constant.

If X is compact, then the space of continuous sections of any vector A-bundle
is a finitely generated and projective module over the C∗-algebra C(X,A) of con-
tinuous, A-valued functions on X. Now the C∗-algebra C(X,A) is isomorphic to
the tensor product C(X) ⊗ A, and switching to the special case A = C∗(π) this
allows us to adjust the concept of lift introduced in Definition 5.3, as follows.

Let H be a Hilbert space that is equipped with a representation of C(X). Form
the Hilbert module exterior tensor product H⊗ C∗(π). This is a Hilbert module
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completion of the algebraic tensor product over C. Its C∗(π)-valued inner product
is given by the formula

〈
v1 ⊗ f1, v2 ⊗ f2

〉
= 〈v1, v2〉f∗1f2.

See [28, page 35]. The exterior tensor product has a left action of C(X)⊗ C∗(π)

by bounded operators, and so we can form the tensor product

Hπ = Γ(L)⊗C(X)⊗C∗(π)

(
H⊗ C∗(π)

)
.

We shall say that an operator Tπ on Hπ is a lift of an operator T ∈ D∗
H(X) if Tπ

is a lift of the operator T ⊗ I on H⊗ C∗(π) in the sense of Definition 5.3.

5.10. Example. If H is the space of L2-sections of a vector bundle S over X

(with respect to some measure µ on X), then Hπ is the space of L2-sections of
the C∗(π)-vector bundle formed from the tensor product of S with the Mischenko
line bundle (that is, Hπ is the completion of the space of continuous sections of
this tensor product bundle in the natural Hilbert module norm associated to µ).
We shall discuss explicit examples of liftings in this case in Section 7.

We can now give the definitions of the assembly map and of the analytic
structure groups.

5.11. Definition. Denote by D∗
Hπ

(X) the algebra of operators on Hπ that are
lifts of operators in D∗

H(X), and denote by Q∗
Hπ

(X) the quotient of D∗
Hπ

(X) by
the ideal K(Hπ) of compact Hilbert module operators on Hπ.

Since, as noted in Lemma 5.5, every T has a lifting, and since any two liftings
are equal, modulo compact operators, and since a lifting of T is compact Hilbert
module operator if and only if T is a compact Hilbert space operator, it follows
that Q∗

Hπ
(X) is isomorphic to Q∗

H(X), and that there is a short exact sequence

0 // K(Hπ) // D∗
Hπ

(X) // Q∗
H(X) // 0.

The C∗-algebra of compact operators on Hπ is canonically Morita equivalent to
C∗(π), at least as long as H 6= 0. This is a general fact about Hilbert A-modules
with the property that the space of inner products 〈v1, v2〉 generates A. There is
therefore a canonical isomorphism

K∗(K(Hπ)) ∼= K∗(C∗(π)).
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The K-theory groups K∗(D∗
Hπ

(X)) are independent of the choice of Hilbert space
H, as long as it is ample. They are covariantly functorial on the category of
compact metrizable spaces that are equipped with maps to Bπ (compare the
discussion in Section 4 about the K-theory groups K∗(D∗

H(X))). From the above-
displayed short exact sequence of C∗-algebras we obtain a long exact sequence of
the form

· · · // K0(X)
µ // K0(C

∗(π)) // K0(D
∗
π(X))

// K1(X)
µ // K1(C

∗(π)) // · · · .

As in our earlier definition of K-homology, we have dropped mention of the Hilbert
space H.

The maps labelled µ are the connecting maps in the K-theory exact sequence.
These are the assembly maps (for even and odd K-homology) associated to the
map f : X → Bπ, as introduced by Kasparov in connection with the Novikov
conjecture [25].

5.12. Example. Let (M,S, f) be a geometric K-cycle for Bπ and let D be a Dirac
operator. Let us calculate the image of its K-homology class under the assembly
map.

As is well known, the connecting homomorphism maps the class of a projection
p in the K0-group of a quotient C∗-algebra A/J to the class of the unitary operator
exp(2πip̃) in K1(J), where p̃ is any self-adjoint lift of p. We find that

µ([M,S, f]) =
[
exp

(
2πi · 1

2(Fπ + I)
)]

,

where Fπ is any lift of the operator F = sign(D) on H = L2(M,S).

As we noted in Example 5.10, the Hilbert module Hπ is the space of L2-
sections of the vector C∗(π)-bundle L⊗S, where L is the Mishchenko line bundle.
Moreover we noted in Remark 5.9, the Mishchenko line bundle carries a natural
flat connection, and we may use it to cause D to act as an operator Dπ on L⊗S.§

We would like to follow Example 5.6 to define an explicit lift of F. There is however
a crucial detail that must be attended to: the spectrum of Dπ is not discrete, and
it is therefore not generally possible to define Fπ = sign(Dπ). Indeed, if we could,
then the above-displayed exponential would be the identity operator. However

§Using the identification of Γ(L) given in Remark 5.9, we get Dπ = I⊗D.
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it is possible to apply to Dπ any bounded continuous function on the spectrum
(see for example [34]), and so for example form the operator

Fπ = Dπ(I + D2
π)− 1

2 or Fπ = 2
π arctan(Dπ)

Both of the displayed functions agree with sign(x) modulo a function that van-
ishes at infinity. As a result the corresponding operators Fπ differ by a compact
operator and they both lift F. Using the second definition of Fπ we find that

exp
(
2πi · 1

2(Fπ + I)
)

= (Dπ − iI)(Dπ + iI)−1

because exp(2i arctan(x)) = −(x − i)(x + i)−1. We conclude that

µ([M,S, f]) = [(Dπ − iI)(Dπ + iI)−1].

Thus image of a geometric cycle under the assembly map is the K-theory class
determined by the Cayley transform of the Dirac operator Dπ.

We conclude by defining the analytic structure groups.

5.13. Definition. Denote by S1(π) the direct limit

S1(π) = lim−→
X⊆Bπ

K0(D
∗
π(X)),

over finite subcomplexes of the classifying space Bπ.

We can define S0(π) similarly, using the other K-theory group, but we shall
not need to use S0(π) in this paper. The long exact sequence given above now
translates into the following analytic surgery exact sequence for the group π:

· · · // K0(Bπ)
µ // K0(C

∗(π)) // S1(π)

// K1(Bπ)
µ // K1(C

∗(π)) // · · · .

5.14. Remark. There is clearly a more general surgery exact sequence for any
map f : X → Bπ. It takes the form

· · · // K0(X)
µ // K0(C

∗(π)) // S1(f : X → Bπ)

// K1(X)
µ // K1(C

∗(π)) // · · · ,

where the structure groups are the K-theory groups of D∗
π(X). This is the coun-

terpart for C∗(π) of the general sequence considered in [22, 23, 24]. We shall not
need the more general sequence in this paper.
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6. The R/Z-Index

Fix a group π and a classifying space Bπ as in the previous section. In addition,
fix two group homomorphisms σ1, σ2 : π → U(N). Our main purpose in this
section is to return to the definition of geometric K-homology and prove the
following compatibility with relative eta invariants:

6.1. Theorem. Let (M,S, f) be a geometric K-cycle for Bπ and let D be a Dirac
operator for (M,S, f). The quantity

ρ(D, f, σ1, σ2) mod Z

depends only on the equivalence class of (M,S, f) in K1(Bπ).

We need to analyze the three relations that generate the equivalence relation
on cycles in geometric K-homology.

6.2. Lemma. If the geometric K-cycle (M,S, f) for Bπ is a boundary, and if D

is any Dirac operator for (M,S, f), then the relative eta invariant ρ(D, f, σ1, σ2)

is an integer.

Proof. This follows immediately from Lemma 2.4, since D is a boundary in the
sense of Definition 2.1, as noted in Remark 3.6. ¤

6.3. Proposition. If (M ′, S ′, f ′) and (M ′′, S ′′, f ′′) are geometric K-cycles for Bπ

that are bordant, and if D ′ and D ′′ are Dirac operators for these cycles, then the
relative eta invariants ρ(D ′, f ′, σ1, σ2) and ρ(D ′′, f ′′, σ1, σ2) are equal, modulo
integers.

Proof. If D is any Dirac operator, then it is clear that the relative eta invariant for
−D is minus the relative eta invariant for D. Moreover the relative eta invariant
for a Dirac operator on a disjoint union of manifolds is the sum of the relative
eta invariants of the operators on the components making up the disjoint union.
The proposition therefore follows by applying the previous lemma to the disjoint
union cycle

−(M ′, S ′, f ′) t (M ′′, S ′′, f ′′),

which is a boundary. ¤

6.4. Corollary. The relative eta invariant ρ(D, f, σ1, σ2), modulo Z, is indepen-
dent of the choice of Dirac operator D associated to a cycle (M,S, f). ¤
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6.5. Lemma. Two cycles for Bπ that are equivalent by the direct sum/disjoint
union relation have the same relative eta invariants, modulo Z.

Proof. This is clear. ¤

It remains to consider bundle modification. We shall show that two cycles that
are equivalent via an elementary bundle modification have the same relative eta
invariant. This will (more than) suffice. If D is a Dirac operator, then define the
multiplicity function of D to be

multD(λ) = Multiplicity of λ as an eigenvalue of D.

The eta invariant of D depends only on its multiplicity function. Moreover if D ′

and D ′′ are two Dirac operators, and if their multiplicity functions are equivalent
in the sense that the difference multD ′ − multD ′′ is an even function that vanishes
at λ = 0, then the eta invariants of D ′ and D ′′ are equal to one another. We
shall prove the following result:

6.6. Proposition. Let (M,S, f) be an geometric K-cycle for Bπ. If the cycle
(M̂, Ŝ, f̂) is obtained from (M,S, f) by an elementary bundle modification, then
there are Dirac operators D and D̂ for (M,S, f) and (M̂, Ŝ, f̂) such that for ev-
ery homomorphism σ : G → U(N) the multiplicity functions of Dσ and D̂σ are
equivalent.

Before beginning the proof we need to record a key fact about the Dirac bundle
Cliffθ(S2k) that was introduced in Section 3.

6.7. Lemma. ([10, Proposition 3.11].) There is an SO(2k)-equivariant Dirac
operator for Cliffθ(S2k) whose kernel is a copy of the one-dimensional trivial
representation of SO(2k), concentrated in grading degree zero. ¤

Proof of Proposition 6.6. The argument that follows is almost exactly the same
as the one used in [10, Proposition 3.6] to prove that geometric cycles that are
equivalent under bundle modification give rise to the same elements of analytic
K-homology.

Let us first consider the case where principal bundle P from which the bundle
modification is built is the trivial bundle M×SO(2k). In this case M̂ is the direct



578 Nigel Higson and John Roe

product M × S2k. The bundle Ŝ is the tensor product of the bundle S over M

with the bundle Cliffθ(S2k) over the sphere, and the formula

D̂ = D⊗ ε + I⊗Dθ,

in which D is any Dirac operator for (M,S, f) and Dθ is the Dirac operator of
Lemma 6.7, defines a Dirac operator for (M̂, Ŝ, f̂). Now let

J = I⊗ iε sign(Dθ).

This is a self-adjoint operator that anticommutes with D̂. Its square is the or-
thogonal projection P onto the orthogonal complement of the subspace

L2(M,S)⊗ ker(Dθ) ⊆ L2(M,S)⊗ L2(S2k,Cliffθ(S2k)).

The projection P commutes with D̂, and so we can write

D̂ = P⊥D̂P⊥ + PD̂P.

Since ker(Dθ) is one-dimensional and concentrated in degree zero, the first oper-
ator, on L2(M,S) ⊗ ker(Dθ), is a copy of D. As for the second operator, if v is
an eigenvector for D̂ with eigenvalue λ and Pv = v, then

D̂Jv = −JD̂v = −λJv,

and of course PJv = Jv. Thus the multiplicity function for D̂ is the sum of the
multiplicity function for D (coming from P⊥D̂P⊥) and an even function (the
multiplicity function of PD̂P) that vanishes at zero.

The same argument can now be repeated for any twisting of D and D̂, since

D̂σ = Dσ ⊗ ε + I⊗Dθ,

and this completes the proof of the proposition in the case where P is the trivial
principal bundle.

In the general case, where the principal bundle P is nontrivial, we begin by
noting that

L2(M̂, Ŝ) ∼=
[
L2(P, π∗S)⊗ L2(S2k,Cliffθ(S2k))

]SO(2k)
.

As is shown in [10, Section 3], there is a first-order, formally self-adjoint, SO(2k)-
equivariant operator D acting on the sections of π∗S over P such that the same
formula we have been using,

D̂ = D⊗ ε + I⊗Dθ
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defines a Dirac operator for (M̂, Ŝ, f̂). If we define J and P exactly as above, then
we can repeat the argument given in the case where P is trivial, noting in addition
that the subspace

L2(P, π∗S)SO(2k) ⊗ ker(Dθ) ⊆
[
L2(P, π∗S)⊗ L2(S2k,Cliffθ(S2k))

]SO(2k)

(this is the range of P⊥) identifies with L2(M,S), and the restriction of D⊗ ε to
this subspace defines a Dirac operator D for (M,S, f). ¤

Let us reformulate Theorem 6.1 as follows:

6.8. Theorem. The correspondence that associates to each geometric K-cycle
(M,S, f) for Bπ the relative eta invariant, modulo Z, of a Dirac operator for
(M,S, f) determines a group homomorphism Indσ1,σ2

: K1(X) −→ R/Z. ¤

Atiyah Patodi and Singer consider essentially the same R/Z-index map in [5],
except that they work with the K-theory of TX rather than the K-homology of
X (they deal only with manifolds). The K-homology point of view has some
conceptual advantages, since built into it are invariance properties (for instance,
bordism invariance) of the R/Z-index. Here are two applications. The results,
with different proofs, are due to Weinberger [16].

6.9. Theorem. Let M be a closed, odd-dimensional spin-manifold with positive
scalar curvature, let D be the Dirac operator on M, and let f : M → Bπ be a
continuous map. For any pair of representations σ1, σ2 : π → U(N), the relative
eta invariant ρ(D, f, σ1, σ2) is a rational number.

Proof. Let π0 be the direct product of the two images of π in U(N) under σ1 and
σ2. Then π0 is a linear group and there is a group homomorphism κ : π → π0

through which both σ1 and σ2 factor:

π
κ //

σ1,σ2 !!DD
DD

DD
DD

π0

τ1,τ2||yy
yy

yy
yy

U(N)

The group homomorphism κ : π → π0 determines a map of classifiying spaces
k : Bπ −→ Bπ0, and

ρ(D, f, σ1, σ2) = ρ(D,k ◦ f, τ1, τ2).
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Now it is proved in [18] that for π0 (or any linear group) the assembly map

µ : K∗(Bπ0) → K∗(C∗(π0))

is rationally injective. But if M is an odd-dimensional, positive scalar curvature
spin manifold, and if S is its spinor bundle, then for any map g : M → Bπ0, the
K-cycle (M,S, g) determines an element of the kernel of the assembly map (see
Section 7) and hence is a torsion element of K1(Bπ0). So the relative eta invariant
of the Dirac operator is a torsion element of R/Z. In other words it is a rational
number. ¤

6.10. Remark. The same argument shows that if the assembly map for π itself
is injective (for example, if π is linear and torsion-free), then the relative eta
invariant ρ(D, f, σ1, σ2) is an integer.

6.11. Theorem. Let h : M ′′ → M ′ be an orientation-preserving homotopy equiv-
alence between odd-dimensional, closed, oriented manifolds. Let f ′ : M ′ → Bπ be
a continuous map, and let f ′′ = f ′◦h : M ′′ → Bπ. Let DM ′ and DM ′′ be the signa-
ture operators on M ′ and M ′′. For any pair of representations σ1, σ2 : π → U(N),

the relative eta invariants

ρ(DM ′ , f ′, σ1, σ2) and ρ(DM ′′ , f ′′, σ1, σ2)

are equal to one another, modulo rational numbers.

Proof. The argument is the same. The signature operators individually determine
elements in K-homology from which their relative eta invariants may be recovered,
modulo Z, and as we shall review in Section 7, the difference of these elements
maps to zero under the assembly map. ¤

6.12. Remark. The definition of the R/Z-index map on K-homology has other
uses too. For example it should allow one to conceptualize the Atiyah-Patodi-
Singer R/Z-index theorem, very much as Baum’s geometric definition of K-
homology allows one to conceptualize the original Atiyah-Singer index theorem.
But we shall not pursue this here.

7. Structures

In this section we shall define structure invariants in S1(π) associated to pos-
itive scalar curvature metrics on spin manifolds and to homotopy equivalences
between oriented manifolds.
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The invariant associated to an odd-dimensional, closed spin manifold with
postive scalar curvature is easy to descibe. Let D be the spinor Dirac operator.
The Lichnerowicz formula applies equally to D or to its lift Dπ to the Mishchenko
line bundle L, and so

D2
π = ∇∗π∇π + κ

4 ,

where κ is the scalar curvature function and ∇π is the spin-connection operator
on L⊗ S. It follows that if the scalar curvature is bounded below by k2, then the
spectrum of Dπ is disjoint from the interval (−k

2 , k
2 ). We may therefore form the

involution sign(Dπ) ∈ D∗
π(M) and the projection

Pπ = 1
2(sign(Dπ) + I)

using the continuous functional calculus.

7.1. Definition. Let M be a closed, odd-dimensional spin manifold with positive
scalar curvature, and let f : M → Bπ be any map. Denote by [M, f] ∈ S1(π) the
class determined by the above projection Pπ.

In order to define the structure invariant associated to a homotopy equivalence
between closed, oriented manifolds we need the following K-theory construction.

7.2. Definition. Let A be a unital C∗-algebra and let J be a closed C∗-algebra
ideal in A. Denote by Ǩ0(A) the Grothendieck group of homotopy classes of
triples (γ, p̃, p) where:

(a) p is a projection in M∞(A/J).
(b) p̃ is a lift of p to an element of M∞(A).
(c) γ : [0, 2] → GL∞(J) is a path with γ(0) = I and γ(2) = exp(2πip̃).

The addition operation on homotopy classes of triples is given by direct sum.

7.3. Remark. We recall that GLn(J) is the topological group of matrices in
GLn(A) that are equal to the identity, modulo Mn(J) and that GL∞(J) is the
inductive limit of the GLn(J) under the standard embeddings. We give it the
inductive limit topology, under which any path γ, as in item (c), automatically
lies in some GLn(J).

The notation Ǩ0(A) has the shortcoming of not making any reference to the
ideal J. But the omission is somewhat justified by of the following calculation:
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7.4. Lemma. The map from K0(A) into Ǩ0(A) that sends the class of a projection
q ∈ Mn(A) to the class of the triple (γ, q, q̇), where

(a) q̇ is the image of q in M∞(A/J), and
(b) γ(t) ≡ I

is an isomorphism of abelian groups.

Proof. Denote by K2(A) the fundamental group of GL∞(A) and define a map
from Ǩ0(A) into K2(A) by sending a triple (γ, p̃, p) to the homotopy class of the
loop

t 7→




γ(2t) 0 ≤ t ≤ 1

exp(2πi(2 − t)p̃) 1 ≤ t ≤ 2.

The composition

K0(A) −→ Ǩ0(A) −→ K2(A)

is the standard Bott periodicity isomorphism, and this shows that the map in the
statement of the lemma is a (split) injection. To prove surjectivity, consider the
diagram

K0(J) //

²²

K0(A) //

²²

K0(A/J) // K1(J)

K2(J) // Ǩ0(A) // K0(A/J) // K1(J)

in which:

(a) the first vertical map is the Bott periodicity isomorphsm and the second is
the one given in the statement of the lemma;

(b) the map of K2(J) into Ǩ0(A) sends the class of a loop γ to the class of the
triple (γ, 0, 0);

(c) the map of Ǩ0(A) into K0(A/J) sends the class of a triple (γ, p̃, p) into the
class of p; and

(d) the remaining maps are the standard ones in the K-theory exact sequence.

The rows are exact, and so a diagram chase completes the proof. ¤

Applying this calculation to the K-theory groups that are used to define the
structure group S1(π), we conclude from Definition 7.2 and Lemma 7.4 that an
element of the structure group S1(π) is determined by the following data:
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(a) a projection P in Q∗
H(X), where X is a finite subcomplex of Bπ and H is a

Hilbert space equipped with a representation of C(X), and
(b) a lift P̃ to D∗

Hπ
(X) and a path from the identity on Hπ to exp(2πiP̃) through

invertible operators that are compact perturbations of the identity operator.

7.5. Example. Consider the analytic K-cycle for X ⊆ Bπ determined by a geo-
metric K-cycle (M,S, f) with f[M] ⊆ X. If D is a Dirac operator associated to
(M,S, f), then we noted in Example 5.12 that we may form the operator

P̃π = 1
2( 2

π arctan(Dπ) + I) ∈ D∗
Hπ

(X),

which lifts the projection P = 1
2(sign(D) + I) ∈ Q∗

H(X) that determines the
analytic K-homology class of (M,S, f). Moreover, we noted that

exp(2πiP̃) = (Dπ − iI)(Dπ + iI)−1.

So to associate to (M,S, f) a structure in S1(π) (should one exist) it suffices
to choose an appropriate Dirac operator D, and then a continuous path γπ of
invertible operators, all of them compact perturbations of the identity, connecting
the Cayley transform of Dπ to the identity.

Now let h : M ′′ → M ′ be an orientation-preserving smooth homotopy equiva-
lence between oriented, smooth closed manifolds. Let f ′ : M ′ → Bπ be any map
and let f ′′ = f ′ ◦ h. Consider the geometric K-cycle

(M ′, S ′, f ′) t−(M ′′, S ′′, f ′′),

where S ′ and S ′′ are the even-degree parts of the exterior algebra bundles of M ′

and M ′′. They are given the Dirac bundle structures for which the signature
operators ±i(d ∗ − ∗ d) are Dirac operators (the signs will be specified below).
We shall describe an explicit path γπ connecting the Cayley transform of the
direct sum of D ′

π and −D ′′
π to the identity.

The construction follows [23, Section 5], to which we refer the reader for details.
Let M be either of M ′ of M ′′ and write dim(M) = 2` + 1. Define a self-adjoint
involution J of the bundle S using the Hodge ∗-operator and the formula

Jω = ip(p−1)+` ∗ω

on p-forms. The operator J anticommutes with the de Rham operator B = d+d∗,
and the signature operator is by definition

D = iBJ.
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We see therefore that

(D − iI)(D + iI)−1 = (iBJ − iI)(iBJ + iI)−1

= (B − J)(iJ)(iJ)−1(B + J)−1 = (B − J)(B + J)−1.

We need to connect the direct sum of the Cayley transforms of D ′
π and −D ′′

π to
the identity, and in view of the above calculation this amounts to connecting the
operator (Bπ − Jπ)(Bπ + Jπ)−1 to the identity, where

Bπ =

(
B ′π 0

0 B ′′π

)
and Jπ =

(
J ′π 0

0 −J ′′π

)
.

The major part of the path takes the form (Bπ − Jπ,t)(Bπ + Jπ,t)
−1 and involves

the homotopy equivalence h : M ′′ → M ′ as follows. Let ∆ ′
π and ∆ ′′

π be the Laplace
operators on forms (with coefficients in the Mishchenko line bundle) and define
a bounded (in fact compact) operator

Aπ = exp(−∆π)h∗ exp(−∆ ′′
π) : L2

π(M ′′, S ′′) −→ L2
π(M ′, S ′)

by applying exp(−∆ ′′
π) to an L2-form on M ′′ so as to obtain, by elliptic regu-

larity, a smooth form, and then pulling back this smooth form to M ′ using the
smooth map h (and then applying exp(−∆ ′

π) for good measure—this last step is
unnecessary here, but it will be used in Section 9). The operator Aπ induces an
isomorphism on de Rham cohomology groups and it follows from [23, Section 5]
that if

Jπ,t =

(
J ′π 0

0 −2tAπJ ′πA∗
π + (2t − 1)J ′′π

)
(0 ≤ t ≤ 1

2)

and

Jπ,t =

(
sin(πt)J ′π cos(πt)J ′πA∗

π

cos(πt)AπJ ′π − sin(πt)AπJ ′πA∗
π

)
(1

2 ≤ t ≤ 1),

then all the operators (Bπ − Jπ,t)(Bπ + Jπ,t)
−1 are well-defined (that is, the in-

verses exist) and form a continuous path of invertible operators, each a compact
perturbation of the identity. We obtain a path from (Bπ − Jπ)(Bπ + Jπ)−1 to
(Bπ − Jπ,1)(Bπ + Jπ,1)

−1. If we define

Jπ,t =

(
0 eπitJ ′πA∗

π

e−πitAπJ ′π 0

)
(1 ≤ t ≤ 2),
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then the path of operators (Bπ − Jπ,1)(Bπ + Jπ,t)
−1 is well-defined also, and since

Jπ,1 = −Jπ,2 ends at the identity. The concatenation of this with the previous
path connects (B− J)(B+ J)−1 to the identity, as required.

7.6. Definition. Let h : M ′′ → M ′ be an orientation-preserving homotopy equiv-
alence between odd-dimensional, closed, oriented manifolds. Let f ′ : M ′ → Bπ be
any map, and let f ′′ = f ′ ◦ h : M ′′ → Bπ. Denote by [h, f ′, f ′′] ∈ S1(π) the class
determined by the disjoint union

(M ′, S ′, f ′) t−(M ′′, S ′′, f ′′),

where S ′ and S ′′ are the Dirac bundle determining the signature operators D ′

and D ′′ on M ′ and M ′′, together with the path γπ described above connecting
the Cayley transform of the direct sum of D ′

π and −D ′′
π to the identity.

8. The Relative Trace

In this section we shall define the relative trace Trσ1,σ2
: S1(π) → R, discussed

in the introduction, which fits into a commuting diagram

K0(C
∗(π)) //

Trσ1
− Trσ2

²²

S1(π) //

Trσ1,σ2

²²

K1(Bπ)

Indσ1,σ2

²²
Z // R // R/Z .

We shall do so by introducing a version of the structure group S1(π), denoted
S2(σ1, σ2), that is specifically tailored to the pair of representations σ1, σ2 : π →
U(N). There will be a natural map from S1(π) into S1(σ1, σ2). We shall also
define a geometric group S

geom
1 (σ1, σ2) using ideas borrowed from geometric K-

homology theory, and then define a functional ρ : S
geom
1 (σ1, σ2) → R using relative

eta invariants (compare Section 6). Finally, we shall construct an isomorphism

S
geom
1 (σ1, σ2) −→

∼=
S1(σ1, σ2)

and obtain the relative trace from the diagram

S1(π) // S1(σ1, σ2)

S
geom
1 (σ1, σ2)

∼=

OO

ρ // R.
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Let X be a compact space and let f : X → Bπ be any map. Let H be a separable
Hilbert space that is equipped with a representation of C(X). Denote by V1 and
V2 the flat Hermitian vector bundles over X associated to the representations σ1

and σ2 and the map f, and form the Hilbert spaces

H1 = Γ(V1)⊗C(X) H and H2 = Γ(V2)⊗C(X) H.

Both H1 and H2 carry representations of C(X) associated to the natural left action
of C(X) on the modules Γ(V1) and Γ(V2). In the following definition we shall use
the notion of a lift of an operator in D∗

H(X) that was introduced in Definition 5.3.

8.1. Definition. Let D∗
H1,H2

(X) be the C∗-algebra

D∗
H1,H2

(X) =
{

(T1, T2) ∈ DH1
(X)⊕DH2

(X) :
T1 and T2 lift some
common T ∈ D∗

H(X)

}
.

8.2. Remark. The map that associates to an element (T1, T2) ∈ D∗
H1,H2

(X) the
class in Q∗

H(X) of any operator T that T1 and T2 both lift gives rise to a short
exact sequence of C∗-algebras

0 // K(H1)⊕K(H2) // D∗
H1,H2

(X) // Q∗
H(X) // 0

(recall that Q∗
H(X) is the quotient of D∗

H(X) by the compact operators).

8.3. Definition. Let H be a separable Hilbert space equipped with an ample
representation of C(X). Denote by S1(σ1, σ2, X) the K-theory group

S∗(σ1, σ2, X) = K0(D
∗
H1,H2

(X)).

This is independent of the choice of H, up to canonical isomorphism. The group
S1(σ1, σ2, X) is covariantly functorial in X on the category of compact metrizable
spaces X that are equipped with maps to Bπ, and we can therefore define the
structure group S1(σ1, σ2) as follows:

8.4. Definition. We shall write

S1(σ1, σ2) = lim−→
X⊆Bπ

S1(σ1, σ2, X),

where the direct limit is over finite subcomplexes of Bπ.

The Hilbert spaces H1 and H2 can be described as tensor products

H1 = Hπ ⊗C∗(π) CN
σ1

and H2 = Hπ ⊗C∗(π) CN
σ2

,
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where CN
σ1

and CN
σ2

denote copies of the Hilbert space CN that are equipped with
the left actions of C∗(π) determined by the representations σ1 and σ2. Because
of this, the formula

Tπ 7→ (Tπ ⊗ I, Tπ ⊗ I)

gives a natural homomorphism of C∗-algebras from D∗
Hπ

(X) into D∗
H1,H2

(X), and
hence a natural homomorphism of abelian groups

S1(π) −→ S1(σ1, σ2).

Before defining the geometric group S
geom
1 (σ1, σ2), let us analyze further the

relationship between S1(σ1, σ2) and S1(π) using the following calculation:

8.5. Lemma. If H is equipped with an ample representation of C(X), then the
image of the connecting homomorphism

K1(Q
∗
H(X)) // K0

(
K(H1)⊕K(H2)

)

associated to the short exact sequence in Remark 8.2 is the diagonal copy of Z in
the group K0

(
K(H1)⊕K(H2)

)
∼= Z⊕ Z.

Proof. Since the bundles V1 and V2 used to define H1 and H2 are flat, there is a
positive integer k such that the k-fold direct sums

Vk
1 = V1 ⊕ · · · ⊕ V1 and Vk

2 = V2 ⊕ · · · ⊕ V2

are both trivializable as smooth vector bundles. Since

Γ(V1)⊗C(X) Hk = Γ(Vk
1 )⊗C(X) H and Γ(V2)⊗C(X) Hk = Γ(Vk

2 )⊗C(X) H,

it follows from the stability of K-theory that the K-theory sequence we are con-
sidering identifies with the one associated to the short exact sequence

0 // K(HkN)⊕K(HkN) // D∗
HkN,HkN(X) // Q∗

HkN(X) // 0,

where

D∗
HkN,HkN(X) =

{
(T1, T2) ∈ DHkN(X)⊕DHkN(X) : T1 − T2 ∈ K(H)

}
.

The lemma follows from this. ¤

8.6. Definition. If n ∈ Z, then denote by [n] ∈ S1(σ1, σ2) the K-theory class of
any projection (e1, e2) ∈ D∗

H1,H2
(X), where e1 and e2 have finite rank, and

rank(e1) − rank(e2) = n
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(by the lemma, all these projections have the same K-theory class).

Because of Lemma 8.5 and the vanishing of K1 for the compact operators, the
K-theory sequence in Lemma 8.5 gives rise (after passing to a direct limit over
the finite subcomplexes X ⊆ Bπ) to a short exact sequence

0 // Z // S1(σ1, σ2) // K1(Bπ) // 0,

in which the integer n ∈ Z is sent to the class [n] ∈ S1(σ1, σ2). We obtain a
commuting diagram

K0(C
∗(π)) //

Trσ1
− Trσ2

²²

S1(π)

²²

// K1(Bπ)

=

²²
0 // Z // S1(σ1, σ2) // K1(Bπ) // 0,

in which the map from K0(C
∗(π)) to Z assigns to a projection matrix p over

C∗(π) the difference of the traces of p in the representations σ1 and σ2.

We turn now to the definition of the geometric structure group S1(σ1, σ2).

8.7. Definition. An (odd) geometric (σ1, σ2)-cycle is a quintuple (M,S, f,D, n)

where

(a) (M,S, f) is a geometric K-cycle for Bπ.
(b) D is a specific choice of Dirac operator for (M,S, f).
(c) n is an integer.

8.8. Remark. As it stands the definition of geometric cycle does not involve
the representations σ1 and σ2. However the equivalence relation on cycles that
determines the geometric structure group S1(σ1, σ2) will depend on σ1 and σ2.

8.9. Definition. A geometric (σ1, σ2)-cycle (M,S, f, D, n) is a boundary if there
is a Dirac operator Q on a compact manifold W whose boundary is the operator
D on M, if the map f extends to W, and if

Ind(Q1, D1) − Ind(Q2, D2) = n.

Here, as usual, the subscripts 1 and 2 indicate twistings by the flat vector bundles
V1 and V2.

8.10. Lemma. If a geometric (σ1, σ2)-cycle (M,S, f,D, n) is a boundary, then

ρ(D, f, σ1, σ2) + n = 0.
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Proof. This follows immediately from the formula in the proof of Lemma 2.4. ¤

8.11. Definition. We shall call the quantity ρ(D, f, σ1, σ2) + n the relative eta
invariant of the geometric cycle (M,S, f, D, n).

There is a natural notion of disjoint union of geometric (σ1, σ2)-cycles,

(M ′, S ′, f ′, D ′, n ′) t (M ′′, S ′′, f ′′, D ′′, n ′′)

= (M ′ tM ′′, S ′ t S ′′, f ′ t f ′′, D ′ tD ′′, n ′ + n ′′).

There is also a notion of the negative of a cycle, but it involves a small subtlety.
We should like the relative eta invariant of a cycle to be minus the relative
eta invariant of the negative cycle. Since the relative eta invariant involves a
correction term coming from the kernels of the twisted operators D1 and D2 we
must therefore define

−(M,S, f, D, n) = (M,−S, f, −D,d1 − d2 − n),

where d1 = dimker(D1) and d2 = dimker(D2).

8.12. Definition. Two geometric (σ1, σ2)-cycles are bordant if the disjoint union
of one with the negative of the other is a boundary.

We are now ready to define the geometric structure group:

8.13. Definition. We shall denote by S
geom
1 (σ1, σ2) the set of equivalence classes

of geometric (σ1, σ2)-cycles under the equivalence relation generated by:

(a) Direct sum/disjoint union. The cycle (M,S ′⊕S ′′, f, D ′⊕D ′′, n) is equivalent
to (M tM,S ′ t S ′′, f t f,D ′ ⊕D ′′, n).

(b) Bordism. If (M ′, S ′, f ′, D ′, n ′) and (M ′′, S ′′, f ′′, D ′′, n ′′) are bordant, then
they are equivalent.

(c) Bundle Modification. If (M̂, Ŝ, f̂) is a bundle modification of (M,S, f) in the
sense of Definitions 3.9 and 3.10, and if

D̂ = D⊗ ε + I⊗Dθ

is the specific Dirac operator that appears in the proof of Proposition 6.6,
then (M,S, f,D, n) and (M̂, Ŝ, f̂, D̂, n) are equivalent.

As with geometric K-homology, the set S
geom
1 (σ1, σ2) is an abelian group with

addition given by disjoint union.
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The definition is designed with the following observation in mind:

8.14. Proposition. The relative eta invariant of a geometric (σ1, σ2)-cycle de-
pends only on the class that the cycle determines in S1(σ1, σ2).

Proof. It is clear that the direct sum/disjoint union relation preserves the relative
eta invariant, and from the proof of Proposition 6.6 that the bundle modification
relation does the same. Bordism is handled by Lemma 8.10. ¤

8.15. Definition. We define the group homomorphism

ρ : S
geom
1 (σ1, σ2) −→ R

by the formula

ρ : (M,S, f, D, n) 7→ ρ(D, f, σ1, σ2) + n.

Our final task is to define an isomorphism from the geometric structure group
S

geom
1 (σ1, σ2) to the analytic group S1(σ1, σ2).

8.16. Definition. If D is any Dirac operator on a closed manifold, then we shall
denote by p(D) the projection operator onto the direct sum of the eigenspaces of
D associated with strictly positive eigenvalues.

Now let (M,S, f,D, n) be a geometric (σ1, σ2)-cycle and let X be any finite
subcomplex of Bπ that contains f[M]. View the Hilbert spaces H1 and H2 as
equipped with representations of C(X) via f, so that

(p(D1), p(D2)) ∈ D∗
H1,H2

(X).

8.17. Definition. Let (M,S, f,D, n) be a geometric (σ1, σ2)-cycle. Its analytic
structure class in the group S1(σ1, σ2) is given by the formula

[(p(D1), p(D2)] + [n] ∈ S1(σ1, σ2),

where [n] is the class given in Definition 8.6.

We are going to prove the following result:

8.18. Theorem. The analytic structure class of a geometric cycle (M,S, f,D, n)

depends only on the class of (M,S, f,D, n) in the geometric group S
geom
1 (σ1, σ2).
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The key problem is to show that bordant cycles have the same analytic struc-
ture class. To solve it we shall use the work of Baum, Douglas and Taylor [9],
who proved using boundary value theory that the analytic K-homology class de-
termined by a geometric K-cycle is unchanged under bordism.

8.19. Proposition. If the geometric (σ1, σ2) cycle (M,S, f,D, n) is a boundary,
then its analytic structure class is equal to zero.

We shall divide the proof into several parts. First, let W and Q be a bounding
manifold and operator, as in Definition 8.9. Let Q+ be the component of Q that
maps even-graded sections to odd-graded sections. We want to consider it as a
Hilbert space operator with its maximal domain

dom Q+ = { s ∈ L2(W,S+) : Q+s ∈ L2(W,S−) }.

We have written the Z/2Z-graded bundle on which Q acts as S+ ⊕ S−. The
operator Q+ is closed, and we shall denote by V the partial isometry part of its
polar decomposition.

Define V1 and V2 similarly, from the operators Q+
1 and Q+

2 obtained by twisting
with the flat bundles associated to σ1 and σ2. We shall think of these as partial
isometries on the Hilbert spaces H1 and H2 associated to the Hilbert space H =

L2(W,S+ ⊕ S−).

8.20. Lemma. The pair (V1, V2) is an element of D∗
H1,H2

(W).

Proof. Consider the operator

Q =

(
0 Q−

Q+ 0

)
: L2(W,S+ ⊕ S−) −→ L2(W,S+ ⊕ S−),

where Q− is the adjoint of Q+. The partial isometry part of this operator in its
polar decomposition is simply sign(Q) and is the 2 × 2 matrix assembled from
the partial isometry parts of Q+ and Q− separately. It will therefore suffice to
prove that sign(Q1) and sign(Q2) lift sign(Q).

It is shown on [9, Lemma 1.2] that on the orthogonal complement of its kernel,
the operator Q has compact resolvent. It follows that sign(Q) is a compact
perturbation of the operator

F = Q(I + Q2)− 1
2 ,
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and of course the same for Q1 and Q2. Now it is shown in [9, Proposition 1.1]
that the operator F commutes with the action of C(W) on H, modulo compact
operators, and the same argument shows that the operator

F1 = Q1(I + Q2
1)

− 1
2

is a lift of F. Since they are compact perturbations, it follows that sign(Q1) is a
lift of sign(Q), and of course the same for Q2, as required. ¤

Now let P, P1 and P2 be the orthogonal projections onto the kernels of the
operators Q+, Q+

1 and Q+
2 . These are the initial projections of the partial isome-

tries V , V1 and V2. It follows from Lemma 8.20 that P1 and P2 are lifts of P, so
that (P1, P2) ∈ D∗

H1,H2
(W).

8.21. Lemma. The projection (P1, P2) ∈ D∗
H1,H2

(W) defines the same class in
the group S1(σ1, σ2) as the analytic structure class of the cycle (M,S, f,D, n).

Proof. For the most part we shall follow the related argument presented by Baum,
Douglas and Taylor in [9, Proof of Proposition 4.3]. But we shall in addition need
to keep track of Fredholm indices in a way that they did not, and to do this we
shall use some computations from the monograph [11] of Booss-Bavnbek and
Wojciechowski on elliptic boundary value theory.

Recall that, by definition, the range of P is the kernel of Q+. There is a
continuous restriction-to-the-boundary, or trace map

τ : Range(P) −→ H− 1
2 (M,S)

into the order −1
2 Sobolev space on M = ∂W (see for example [11, Chapter 13]).

We want to consider its composition with the pseudodifferential operator

p(D) : H− 1
2 (M,S) −→ H− 1

2 (M,S).

In fact, setting R = (D2 + I)− 1
4 , we want to consider the commuting diagram

L2(W,S+)
P // Range(P)

τ // H− 1
2 (M,S)

p(D)
//

R ∼=
²²

H− 1
2 (M,S)

R∼=
²²

L2(M,S)
p(D)

// L2(M,S).

It is verified in the proof of [9, Proposition 4.3] that the composition determines a
Fredholm operator from Range(P) to the range of p(D) in L2(M,S). Moreover it
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is also verified there that the composition commutes, modulo compact operators,
with the actions of C(W) on L2(W,S+) and L2(M,S), and the same argument
shows that the compositions associated to (Q1, D1) and (Q2, D2) are lifts of the
composition for (Q,D).

We shall need to compute the Fredholm index of the operator

Range(P) −→ Range(p(D))

determined by the composition. It follows from [11, Theorem 19.1] that the kernel
of this map consists of smooth sections on W, and it is therefore the finite-dimen-
sional space of those smooth sections in Range(P) that satisfy the APS boundary
conditions described in Section 2. The cokernel may be identified with the APS
cokernel by [11, Lemma 19.3 and Theorem 20.8]. It therefore follows that the
index is equal to the APS index Ind(Q,D).

Of course, the same conclusion can be reached for the pairs (Q1, D1) and
(Q2, D2). If we let e±1 be any projections with ranks equal to the dimensions
of the kernel and cokernel of the APS index problem for (Q1, D1), and if we
define e±2 similarly, then the operators just analyzed determine an equivalence of
projections

(P1, P2)⊕ (e−
1 , e−

2 ) ∼ (p(D1), p(D2))⊕ (e+
1 , e+

2 )

in the C∗-algebra D∗
H1,H2

(W). We find that

[(P1, P2)] = [(p(D1), p(D2)] + [Ind(Q1, D2)] − [Ind(Q2, D2)]

at the level of K-theory (recall Definition 8.6, which associates a K-theory class
to each integer). The lemma therefore follows from the definition of the analytic
structure class (8.17) and the definition of a boundary cycle (8.9). ¤

The proof of Proposition 8.19 is now completed by the following two observa-
tions:

8.22. Lemma. The partial isometry V : L2(W,S+) → L2(W,S−) is surjective, as
are the partial isometries V1 and V2.

Proof. We shall consider only V (the proofs for V1 and V2 are exactly the same).
The range of V is the closure of range of Q+, and so we need to show that
the orthogonal complement of the range of Q+ is zero. But this is the kernel
of the operator Q− (the odd-to-even component of Q) considered as a Hilbert
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space operator with its minimal domain. A section s lies in the kernel of Q− if
and only if there is a sequence of smooth sections sn supported in the interior
of W such that ‖sn − s‖ → 0 and ‖Q−sn‖ → 0. If we extend W to a closed
manifold Z as in Section 2, and if we extend sections by zero from W to Z, then
the extended sn are smooth sections on Z, and we still have ‖sn − s‖ → 0 and
‖Q−sn‖ → 0. By elliptic regularity, s is a smooth section on Z. Since s vanishes
on the complement of W in Z, the unique continuation property for solutions of
Dirac equations implies that s ≡ 0 (see [11, Chapter 8]). ¤

8.23. Lemma. The projection (P1, P2) ∈ D∗
H1,H2

(W) defines the zero class in the
structure group S1(σ1, σ2).

Proof. Observe that

P1 = I+
1 − V∗1V1 and P2 = I+

2 − V∗2V2,

where I+
1 and I+

2 denote the identity operators on the even-graded components
of the Hilbert spaces H1 and H2. Using the obvious extension of this notation,
Lemma 8.22 shows that

V1V
∗
1 = I−

1 and V2V
∗
2 = I−

2 .

So at the level of K-theory we find that

[(P1, P2)] = [(I+
1 , I+

2 )] − [(I−
1 , I−

2 )].

The classes on the right hand side are zero by Example 4.3. ¤

The remaining parts of the proof of Theorem 8.18 are much simpler:

Proof of Theorem 8.18. It is straightforward to show that cycles that are equiv-
alent via direct sum/disjoint union have the same analytic structure class, and
we have dealt with bordism in Proposition 8.19. It therefore remains to show
that if (M̂, Ŝ, f̂, D̂, n) and (M,S, f,D, n) are equivalent via bundle modification,
as in item (c) of Definition 8.13, then their analytic structure classes are equal.
Recall from the proof of Proposition 6.6 that we may decompose D̂1 and D̂2 as
orthogonal direct sums

D̂1 = PD̂1P + P⊥D̂1P
⊥ and D̂2 = PD̂2P + P⊥D̂2P

⊥.

The first summands identify with D1 and D2, and it suffices to show that the
second summands determine the zero element in K-theory.
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Let us use the abbreviated notation E1 and E2 for P⊥D̂1P
⊥ and P⊥D̂1P

⊥.
These are invertible self-adjoint operators, and so

p(E1) = 1
2(sign(E1) + I) and p(E1) = 1

2(sign(E2) + I).

We must show that if we set H = P⊥L2(M̂, Ŝ), then the projection

(p(E1), p(E2)) ∈ D∗
H1,H2

(X)

determines the zero K-theory class. The self-adjoint involutions sign(E1) and
sign(E1) anticommute with the self-adjoint involutions J1 and J2 introduced in
the proof of Proposition 6.6, and we can therefore form the path of self-adjoint
involutions

(
s sign(E1) + tJ1, s sign(E1) + tJ2

)
(s, t ≥ 0, s2 + t2 = 1)

in D∗
H1,H2

(X). Looking at the corresponding path of positive spectral projections,
we find that (p(E1), p(E2)) is path-connected to

(Q1,Q2) =
(

1
2(J1 + I), 1

2(J2 + I)
)
.

But this projection is degenerate in the sense of Example 4.3 and so is zero in
K-theory. ¤

We therefore obtain a map S
geom
1 (σ1, σ2) → S1(σ1, σ2) by associating to any

geometric cycle its analytic structure class. It remains only to show that this
map is an isomorphism.

8.24. Lemma. There is an exact sequence

Z // Sgeom
1 (σ1, σ2) // K1(Bπ) // 0

in which n ∈ Z is mapped to the class of the unique geometric cycle (M,S, f,D, n)

with M = ∅, and the class of any cycle (M,S, f,D, n) maps to the class of
(M,S, f).

Proof. Because of the bordism relation, if (M,S, f) is any geometric K-cycle for
Bπ, if D and D ′ are Dirac operators for this cycle, and if n ∈ Z, then there is
some n ′ ∈ Z such that (M,S, f,D, n) and (M,S, f, D ′, n ′) are equivalent. As a
result, if (M,S, f) is equivalent to (M ′, S ′, f ′), then any geometric (σ1, σ2)-cycle
(M,S, f, D, n) is equivalent to some cycle of the form (M ′, S ′, f ′, D ′, n ′). The
lemma follows from this. ¤
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8.25. Proposition. The group homomorphism

S
geom
1 (σ1, σ2) → S1(σ1, σ2)

that associates to any geometric (σ1, σ2)-cycle its analytic structure class is an
isomorphism.

Proof. This follows from the commuting diagram

Z //

=

²²

S
geom
1 (σ1, σ2) //

²²

K
geom
1 (Bπ) //

∼=
²²

0

0 // Z // S1(σ1, σ2) // K1(Bπ) // 0

and the five lemma. ¤

9. Proofs of the Main Theorems

We have all the pieces in place to carry out the program sketched in Section 1.

Proof of Theorem 1.1. Let M be an odd-dimensional, closed Riemannian spin
manifold with positive scalar curvature. As outlined in the introduction, it suffices
to show that if D is the Dirac operator on M, then the relative trace of the
structure invariant [M, f] ∈ S1(π) of Definition 7.1 is equal to the relative eta
invariant ρ(D, f, σ1, σ2). Let us examine the diagram

S1(π) // S1(σ1, σ2)

S
geom
1 (σ1, σ2)

∼=

OO

ρ // R.

that is used to define the relative trace. The class [M, f] maps to the class
[(p(D1), p(D2)] in S1(σ1, σ2), and this is by definition the image of the geometric
structure class (M,S, f, D, 0). Applying ρ we obtain, by definition, the relative
eta invariant ρ(D, f, σ1, σ2). ¤

Proof of Theorem 1.2. The argument is essentially the same as the one just given,
although a little more involved. We shall analyze what becomes of the structure
invariant [h, f ′, f ′′] ∈ S1(π) as we apply the various steps that make up the defi-
nition of the relative trace map, and thereby compute that the relative trace of
[h, f ′, f ′′] is the difference of relative eta invariants.
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The invariant [h, f ′, f ′′] is given by the pair (P̃π, γπ), where P̃π is the operator
of Example 7.5 that is associated with the direct sum

D = D ′ ⊕−D ′′

of signature operators on M ′ and M ′′, and γπ is the path described in Section 7
that connects the Cayley transform of Dπ to the identity.

The image of [h, f ′, f ′′] in S1(σ1, σ2) may be described, using Lemma 7.4, by
the element (P̃1, P̃2) ∈ D∗

H1,H2
(X) together with the path (γ1, γ2) obtained from

γπ that connects the Cayley transforms of D1 and D2 to the identity operators
on H1 and H2.

We are going to identify this class in S1(σ1, σ2) with the analytic structure
class of the geometric (σ1, σ2)-cycle

(M ′, S ′, f ′, D ′, 0) t−(M ′′, S ′′, f ′′, D ′′, 0).

This will complete the proof since

τ : (M ′, S ′, f ′, D ′, 0) t−(M ′′, S ′′, f ′′, D ′′, 0) 7→
ρ(D ′, f ′, σ1, σ2) − ρ(D ′′, f ′′, σ1, σ2).

In the calculation that follows we shall streamline notation by referring to D,
rather than (D1, D2), and γ rather than (γ1, γ2).

In the definition of the path γπ we used the heat kernel to obtain from the
homotopy equivalence h a map

Aπ = exp(−∆ ′′
π)h∗ exp(−∆ ′

π) : L2
π(M ′, S ′) −→ L2

π(M ′′, S ′′).

Having passed from Hilbert modules to Hilbert spaces to go from S1(π) to
S1(σ1, σ2), we may replace these heat kernels with the projections R onto the
subspaces of harmonic forms. Thus we may redefine

A := R ′′h∗R ′ : L2(M ′, S ′) −→ L2(M ′′, S ′′).

The straight line path from exp(−∆) to R determines a fixed end-point homotopy
from the old path γ to the new one. Having made this change, the operator D and
the path γ decompose as direct sums with respect to the decomposition of the
underlying Hilbert space H into the harmonic forms, direct sum the orthogonal
complement of the harmonic forms.
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On the orthogonal complement of the harmonic forms, the path γ is given by
the formula (B− Jt)(B+ Jt)

−1 on [0, 1], where

Jt =

(
J ′π 0

0 (2t − 1)tJ ′′π

)
and Jt =

(
sin(πt)J ′π 0

0 0

)
,

on [0, 1
2 ] and [12 , 1], respectively (in addition, the path γ is constant on [1, 2]).

Thus γ is fixed-endpoint homotopic to the simpler path (B − sJ)(B + sJ)−1,
where s = (1 − 1

2t) and t ∈ [0, 2]. Since

(B− sJ)(B+ sJ)−1 = (s−1D − iI)(s−1D + iI)−1,

and since the function 2
π arctan(s−1x) converges uniformly to sign(x) on the com-

plement of any neighborhood of 0 ∈ R as s → 0, we find that on the orthogonal
complement of the harmonic forms, the structure determined P̃ and the path γ

is equal to the one determined by the projection p(D) and the constant path I.

On the finite-dimensional space of harmonic forms the operator P̃ is equal to
1
2I, so that exp(2πiP̃) = −I. Since B = 0 on harmonic forms, the path γ, which
is given by

(B− Jt)(B+ Jt)
−1 and (B− J1)(B+ Jt)

−1

on the intervals [0, 1] and [1, 2], respectively, is simply −JtJ−1
t and −J1J

−1
t on

these intervals. The first expression gives the constant path −I, while a quick
calculation shows that the second gives

(
e−πitI 0

0 eπitI

)
(t ∈ [1, 2]).

Now as s ranges through [0, 1], deform P̃ = 1
2I and γ as above through

(
1−s
2 I 0

0 1+s
2 I

)
and

(
e−πi(t−st+2s)I 0

0 eπi(t−st+2s)I

)

(we have given the formula for deformed paths in the range t ∈ [1, 2]; for t ∈ [0, 1]

the paths are constant, for each s). Setting s = 1, we find that the structure given
by the element P̃ and path γ is equal to the structure given by the projection(

0 0
0 I

)
and the constant path.

Putting the two orthogonal summands together, we find that the structure
class in S1(σ1, σ2) determined by P̃π and γπ is equal to the class determined by
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the projection

P =

(
p(D ′) 0

0 p(−D ′′) + p ′′

)
,

and the constant path, where p ′′ is the projection onto the kernel of D ′′. But
bearing in mind that

−(M ′′, S ′′, f ′′, D ′′, 0) = (M ′′,−S ′′, f ′′,−D ′′, d1 − d2),

we find that this is precisely the analytic structure class of the geometric cycle

(M ′, S ′, f ′, D ′, 0) t−(M ′′, S ′′, f ′′, D ′′, 0).

as required. ¤
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