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Chapter One

The Riemann-Roch Theorem

A smooth manifold is a Hausdorff topological space which is “smoothly locally
modeled” on Euclidean space. We assume that the reader is already familiar with
the precise definition of this concept (although we shall give a brief review below
to help establish notation and terminology).

The definition of a manifold puts into prominence a central idea of modern math-
ematics, which is that objects having simple local structure may exhibit compli-
cated global behavior. As is often the case, the origins of this idea can be found
in the 19th-century study of holomorphic functions. The local definition of a holo-
morphic function—complex differentiability—could hardly be simpler; but when
one studies a holomorphic function from a global point of view questions of quite a
different character arise: counting zeroes and poles, the calculus of residues, branch
points and Riemann surfaces, and so on. Complex differentiability can be expressed
in terms of a partial differential equation (the Cauchy-Riemann equation), and func-
tion theory indicates how global topological questions naturally arise from studying
such equations.

The Atiyah-Singer Index Theorem, which is the subject of this book, makes this
sort of connection for a much more general class of partial differential equations.
To understand the general theorem one needs to develop several different kinds of
mathematical tools. First, one needs an understanding of the local structure of the
solutions of the partial differential equations involved. This so-called “elliptic the-
ory” is the analog, in a more general context, of facts like the C∞-differentiability
of holomorphic functions; it is the subject of Chapter 5 in this book. Second, one
needs some topological machinery to keep track of the global aspects of these so-
lutions: this is K-theory, which we will describe in Chapter 2.

Before getting involved in these generalities, though, we will take some time in
this introductory chapter to motivate the index theorem by exploring the special
case of holomorphic functions in more detail. In this case the index theorem
reduces to the Riemann-Roch theorem, a classic result of 19th-century mathematics
and the starting point for innumerable later developments. We are going to review
the statement of this famous theorem in a way which brings out some key features
of the index problem and suggests the line of development to be followed in the
more general case.
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1.1 MANIFOLDS

1.1 Definition. A topological n-manifold X is a Hausdorff topological space
that is locally homeomorphic to Rn; that is, for each x ∈ X there are an open
neighborhood U of x, an open subset V of Rn, and a homeomorphism φ : U → V .
The triple (φ,U, V) is called a chart near X.

For technical reasons it is usual also to require that a manifold be paracompact;
all manifolds appearing in this book are easily seen to satisfy this condition.

1.2 Definition. Let X be a topological manifold. A collection {(φα, Uα, , Vα)}α∈A

of charts whose domains Uα cover X is called an atlas for the manifold.

Associated to any atlas there is a collection of local homeomorphisms of Rn
(homeomorphisms from one open subset of Rn to another), the so-called transition
functions of the atlas. If φα : Uα → Vα and φβ : Uβ → Vβ are two charts
whose domains have nonempty intersection, then the associated transition function
is defined to be the homeomorphism

φβα = φβφ
−1
α : Vα ∩ φα(Uβ) → φβ(Uα) ∩ Vβ

between open subsets of Rn.
Since the transition functions are maps defined on open subsets of Rn, it makes

sense to discuss their differentiability. One says that an atlas is smooth if its
transition functions are all smooth (that is, infinitely differentiable). Similarly one
says that an atlas is holomorphic if n = 2k is even and the transition functions are
complex-differentiable when we identify R2k = Ck in the usual way1. Complex-
differentiable functions are smooth, so a holomorphic atlas is automatically also a
smooth one.

We’ll say that two smooth (or holomorphic) atlases are equivalent if their union
is also a smooth (or holomorphic) atlas; it is easily checked that this is indeed an
equivalence relation. A smooth (or holomorphic) structure on X is an equivalence
class of atlases of the appropriate type, and X is said to be a smooth manifold (or
holomorphic manifold) if it is provided with a smooth or holomorphic structure.
These structures allow one to define various other kinds of smooth (or holomorphic)
objects such as functions on the manifold, vector fields, differential forms, and so
on; we will regularly make use of these objects and we will assume that the reader
has some familiarity with them.

1.3 Definition. A Riemann surface is a holomorphic manifold of complex dimen-
sion 1.

A Riemann surface is in particular an oriented, real 2-manifold (hence the
terminology “surface”), but this information does not completely determine the
holomorphic structure. More refined invariants arise from complex analysis (for
instance by considering the zeroes and poles of meromorphic functions) and the
Riemann-Roch theorem is significant because it relates these refined invariants to
ones coming from the ordinary topology of the surface.

1Which way is the usual way? For future reference, let us decide that we identify R2k with Ck by
sending (x1, x2, . . . , x2k) ∈ R2k to (x1 + ix2, x3 + ix4, . . .) ∈ Ck.
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1.2 MEROMORPHIC FUNCTIONS AND DIVISORS

The idea of a Riemann surface grew out of a long history of 19th-century work
on function theory, one of whose major strands was the theory of so-called elliptic
functions. Beginning from the classical problem of the rectification of the ellipse
(determining the arc length as a function of an algebraic parameter), mathemati-
cians were led to study a certain class of indefinite integrals (those involving the
square root of a cubic polynomial in the integrand). These integrals can be re-
solved by introducing new special functions, in the same way that trigonometric
functions can be used to resolve indefinite integrals involving the square root of a
quadratic function. Eventually it became clear that the most important feature of
these new special functions was their behavior in the complex domain. This gives
rise to the following definition.

1.4 Definition. An elliptic function is a meromorphic function on C which is
doubly periodic: that is, for which there exist two R-linearly independent complex
numbers τ1 and τ2 for which

f(z) = f(z+ τ1) = f(z+ τ2)

for all z ∈ C.

It is natural to introduce the period lattice—the free abelian subgroup Γ of C
generated by τ1 and τ2. Then an elliptic function f with the given periods is
invariant under Γ , and so it can be thought of as defined on the quotient space

X = C/Γ,
which is a compact Riemann surface (topologically equivalent to the 2-torus).
Many of the fundamental questions in Riemann surface theory were first asked
and answered for surfaces of this type, known as “elliptic curves”. For example,

• Question 1 Do there exist any non-constant holomorphic functions on X?
(equivalently, do there exist doubly-periodic holomorphic functions on C?)

• Question 2 The same question for meromorphic functions: can we construct
non-trivial examples of elliptic functions for any given periods?

• Question 3 Assuming a positive answer to the second question, can we
“count” how many elliptic functions there are satisfying appropriate condi-
tions? How sensitively does this count depend on the conditions prescribed?

1.5 Remark. As topological spaces (or even as smooth manifolds), all elliptic
curves are the same—the particular period lattice Γ makes only an inessential
difference. However, this is not the case in the holomorphic category. In fact, it
can be shown that there is a whole 1-parameter family of elliptic curves, classified
by the complex parameter τ = τ2/τ1 modulo the action of a certain countable
group. This example illustrates a general phenomenon: holomorphic structures are
much more “refined” or “sensitive” objects than smooth or topological ones. The
power of the Riemann-Roch theorem comes from the bridge that it builds between
these categories.
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Let’s begin by answering Question 1. Let Γ be a period lattice, and let us look
for Γ -periodic holomorphic functions f on C. Any such f comes from a function
on the compact quotient space X = C/Γ , and is therefore bounded. Thus f is a
bounded entire function on C, hence it is constant by Liouville’s theorem. (In fact,
Liouville’s theorem was devised for this exact purpose.) There are therefore no
nonconstant, holomorphic, elliptic functions.

Once the appropriate definitions have been made, the same result holds on any
compact, connected Riemann surface X. One defines a holomorphic function
f : X → C on a Riemann surface X to be a function such that f◦φ−1 is holomorphic
on V for each chartφ : U → V in a holomorphic atlas. If X is compact, |f| attains its
maximum at some point p ∈ X; by the usual maximum principle, f is constant on
the domain of a chart containing p. An easy connectedness argument now shows
that f is constant everywhere.

When we move on to Question 2 (the existence of meromorphic functions),
things become more interesting. Explicit constructions of elliptic functions are
associated with the names of Weierstrass and Jacobi. For example, let us sketch
Weierstrass’ construction. Let Γ be the period lattice and let p ≥ 2. Consider the
series

f(z) =
∑
w∈Γ

1

(z−w)p
.

For p ≥ 3 this series converges uniformly and absolutely on compact subsets of
C \ Γ to a meromorphic function. For p = 2 the convergence is not absolute, but
it is still possible to interpret the sum as a conditionally convergent series which
yields a meromorphic function on C. In either case the function obtained is doubly
periodic and has poles (of order p) at each point of Γ . In terms of the Riemann
surface X = C/Γ , we have constructed a meromorphic function with a single pole
on X of order p.

nosimpole 1.6 Remark. It is interesting to note that one cannot generalize this construction
to p = 1; there is no elliptic function with just one, simple pole. To see this, we use
the residue theorem. According to this result, the integral

1

2πi

∫
γ

f(z)dz

is equal to the sum of the residues of the poles of f enclosed within the simple
closed contour γ. Let us apply this result when γ traverses the boundary of a
period parallelogram for the lattice Γ . If f is doubly-periodic, the integrals along
opposite pairs of sides of the period parallelogram will cancel, and so the sum of
the residues will be zero. In particular, the parallelogram cannot enclose just one,
simple pole, as this would give rise to a nonzero residue.

On a general Riemann surface X one can define a meromorphic function as a
function f : X → C ∪ {∞}, not identically equal to ∞, and such that f ◦ φ−1 is
a meromorphic function in the usual sense for each chart φ : U → V . (Notice
that the meromorphic functions form a complex vector space, and indeed a field
extension of C.) As the example of elliptic curves may suggest, every Riemann
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surface admits non-constant meromorphic functions. But it is no longer so easy
to produce them by explicit constructions. Instead, there existence is assured by
a general result which “counts” the number of meromorphic functions that satisfy
certain conditions about the location of their zeroes and poles. We therefore pass
on to Question 3.

The Weierstrass construction of elliptic functions (and the theory that grows
from it, which we have not described) make it clear that the location of the poles
and zeroes of a meromorphic function is a key piece of information about it. To
formalize this one introduces the notion of a divisor.

1.7 Definition. A divisor on a compact Riemann surface X is an element of the
free abelian group Div(X) generated by the points of X. That is, it is a finite formal
linear combination of points of X, with integer coefficients.

We will denote a divisor by D =
∑
j njaj, nj ∈ Z, aj ∈ X. The degree degD

is
∑
nj. The divisor D is positive (written D ≥ 0) if each nj ≥ 0; this definition

allows us to put a partial order on the group of divisors. Obviously, a positive
divisor has positive degree.

Recall that if f is a meromorphic function defined near a point a ∈ C, there
is a unique integer k such that f(z) = (z − a)kg(z) where g is holomorphic
and nonvanishing near a. This integer is called the order of f at a and is written
ord(f, a). The set of points a having nonzero order is discrete; if k > 0 the point
a is a zero of order k for f; if k < 0, then a is a pole of order −k. Using a chart,
the notion of order can be defined also for meromorphic functions on Riemann
surfaces.

div-mero-def 1.8 Definition. Let f be a meromorphic function, not identically zero, on the
compact Riemann surface X. The divisor of f, written D(f), is the formal sum

D(f) =
∑
a

ord(f, a)a

extended over all the zeroes and poles of f.

divzero-lemma 1.9 Lemma. Let f be a meromorphic function, not identically zero, on the compact
Riemann surface X. Then deg(D(f)) = 0; in other words, f has the same number
of zeroes as poles, counted with multiplicity.

We will prove this lemma after we have looked at a few more examples.

linequiv-def 1.10 Remark. It is easy to check that the process that assigns to each meromorphic
function its divisor is a homomorphism: we have D(fg) = D(f) + D(g) and
D(1/f) = −D(f). It follows that the collection of divisors of meromorphic
functions is a subgroup of the group of all divisors. Two divisors in the same
coset of this subgroup are said to be linearly equivalent.

If D is a divisor, we will say that a meromorphic function f is subordinate to D
if D(f) +D ≥ 0. Let O(D) denote the set of meromorphic functions subordinate
to a given divisorD, together with the zero function. Informally, O(D) is the space
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of meromorphic functions whose singularities are “no worse” than those prescribed
by the divisor D. For example, if D = +2a, then f ∈ O(D) can have at worst a
double pole at a; if D = −3b, then f must have at least a triple zero at b. The
Weierstrass construction with exponent p produces functions on the corresponding
Riemann surface that are subordinate to p ·o, where o is the point on X = C/Γ that
is the image of 0 ∈ C.

1.11 Lemma. If D is a divisor on a compact connected Riemann surface, then
O(D) is a finite-dimensional vector space.

Proof. It is a standard (and easy) fact that ord(f+g, a) ≥ min{ord(f, a), ord(g, a)}
and that ord(λf, a) = ord(f, a) if λ 6= 0. This shows that O(D) is a vector space.
Now we estimate its dimension.

Let D =
∑
njaj. If nj > 0 consider the linear map αj from O(D) to an

nj-dimensional vector space defined by sending f ∈ O(D) to the coefficients
of singular part of its Laurent series at aj (in some fixed chart near aj). The
intersection of the kernels of all the αj consists of holomorphic (hence constant)
functions, so has dimension at most 1.

The problem addressed by the Riemann-Roch theorem is to compute the dimen-
sion of O(D). In particular, by showing that dim O(D) > 1 for suitable D, it will
assure us of the existence of nonconstant meromorphic functions (the fundamental
existence theorem for Riemann surfaces). Before looking at what the theorem says
in general let us study some simple examples.

1.12 Example. Suppose that X is the “Riemann sphere” — the compact Riemann
surface obtained by adjoining a single point at infinity to the complex plane. It is
well-known that meromorphic functions on X are simply the rational functions of
z ∈ C. In particular, if we fix a point a ∈ C and consider the divisor D = k.a, the
dimension of O(D) can easily be computed in terms of k as follows:

k 0 1 2 3 · · ·
dim O(D) 1 2 3 4 · · ·

1.13 Example. Now suppose that X is an elliptic curve, and once again let us
study the dimension of O(D) when D = k.a for some fixed point a. We have
seen that when k = 1, there are no nonconstant function in O(D) (Remark 1.6).
When k = 2, the Weierstrass construction produces an example of a nonconstant
meromorphic function, and it can be shown that the Weierstrass function, together
with a constant function, actually spans O(D). These remarks fill in the first few
entries in the corresponding table for an elliptic curve:

k 0 1 2 3 · · ·
dim O(D) 1 1 2 3 · · ·

sens-ex 1.14 Example. It is tempting to guess a general pattern from the above examples,
but things are not quite so simple as one might expect. In particular, the holomor-
phic invariant dim O(D) depends very sensitively on the specific form of D—it
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is not just a function of the total degree degD. One can find an example of this
sensitivity even on an elliptic curve.

To understand the example, notice that an elliptic curve X is itself an abelian
group (a quotient of the additive group C). Since Div(X) is the abelian group
freely generated by X, there is a canonical group homomorphism

σ : Div(X) → X.

1.15 Lemma. If f is any nonconstant meromorphic function on the elliptic curve
X, then σ(D(f)) = 0.

The interested reader will find it easy to give a proof of this lemma by applying
the residue theorem (as in Remark 1.6 above) to the function zf ′(z)/f(z). But
consider its implications for the study of dim(O(D)). Suppose for example that
D is the divisor of a nonconstant meromorphic function f, so that σ(D) = 0,
deg(D) = 0, and dim O(D) ≥ 1. Now perturb D by moving just one of its
points by an arbitrarily small amount, obtaining a new divisor D ′. The new
divisor has σ(D ′) 6= 0, so D ′ is not the divisor of any meromorphic function,
and deg(D ′) = 0, so by lemma 1.9 there are no meromorphic functions f with
D(f)+D ′ 	 0. Consequently, O(D ′) = 0. In other words, the dimension of O(D)
“jumps” downwards under an arbitrarily small perturbation of D.

Recall now that the fundamental topological invariant of a compact, oriented
surface X is its genus g. Riemann defined the genus to be half the number of
“cross-cuts” required to make the surface simply connected. For example, a 2-torus
has genus 1 (cutting along one circle produces a cylinder, and a further cross-cut
produces a disc). There are many equivalent definitions:

• Triangulate the surface and compute the Euler characteristic χ(X) = (Num-
ber of vertices) − (Number of edges) + (Number of faces). The genus and
Euler characteristic are related by

χ(X) = 2− 2g.

• Let Γ = π1(X) be the fundamental group of X, and consider the abelianiza-
tion Γ/[Γ, Γ ]. This is a free abelian group of rank 2g.

• Consider the cohomology group H1(X; R). It is a vector space of dimension
2g.

Note that the Riemann sphere has genus 0, and an elliptic curve has genus 1.
In the 1850s, Riemann sketched a proof of the result

dim O(D) ≥ deg(D) − g+ 1

now called Riemann’s inequality. (Notice how the lower bound provided by this
inequality comports with the explicit computations for g = 0, 1 appearing in the
first two examples above.) In particular, if deg(D) > g then there exist nonconstant
meromorphic functions subordinate to D, and this fundamental existence theorem
makes it possible to begin to study Riemann surfaces by a variety of geometrical
and algebraic means.
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1.16 Example. Suppose that X is a Riemann surface of genus 0, and let a ∈ X.
Then Riemann’s inequality shows that there exists a non-constant meromorphic
function subordinate to the divisor 1·a. Such a function takes each value in C∪{∞}

exactly once, by Lemma 1.9, so it gives a holomorphic bijection X → C ∪ {∞}.
In other words, the Riemann sphere is the only Riemann surface of genus 0, even
when classified by the more restrictive notion of holomorphic equivalence.

In the same way we will be able to see that the only Riemann surfaces of genus
1 are the elliptic curves that we have already discussed. This requires a discussion
of holomorphic and meromorphic differentials on a Riemann surface, to which we
now turn.

1.3 MEROMORPHIC DIFFERENTIALS AND RIEMANN-ROCH

Any student of complex analysis is familiar with the importance of integrals of
the form

∫
γ
f(z)dz, where γ is a path in the complex plane. However, on a

Riemann surface X there is no canonically-defined way to integrate a holomorphic
or meromorphic function f along a path γ in the surface. This is because there is
usually no canonically defined “dz” on a Riemann surface. Instead, one introduces
a new class of objects—differentials (or differential forms)—which package the
whole integrand “f(z)dz” in such a way that the integral along a path is well
defined.

When we introduce the language of line bundles later in this chapter, we will
be able to describe differentials as sections of a certain line bundle (the canonical
bundle). We will also be able to relate the present discussion of differentials to
the de Rham complex of X, an object that belongs to the realm of smooth (not
holomorphic) geometry; we’ll make this connection in Section 1.5. For now,
however, let us take a more pedestrian and coordinate dependent approach. We
are going to define a differential in terms of its representation in the charts of a
holomorphic atlas.

diff-def 1.17 Definition. Let X be a compact Riemann surface and suppose (φα, Uα, Vα)
is a holomorphic atlas for X. A holomorphic differential on X is defined by
holomorphic functions uα : Vα → C which are related by the transition relation

uβ(φβα(z))φ ′
βα(z)) = uα(z)

for all z ∈ vα ∩ φα(Uβ). If we allow the uα to be meromorphic functions we
obtain the notion of a meromorphic differential.

The transition relation can be compactly expressed as

uβ(w)dw = uα(z)dz,

where z is the “coordinate” on Vα and w = φβα(z) is the corresponding “coordi-
nate” on Vβ. For a full development we should also explain when two representa-
tions of this sort should be thought of as defining the same differential, but we will
elide these details.
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dfex 1.18 Example. Let f be a meromorphic function on X and, for each α as above, let
fα = f ◦ φ−1

α be the function on Vα corresponding to f. Define uα(z) = f ′α(z).
One checks immediately (via the chain rule) that the uα above satisfy the transition
relation for a meromorphic differential, which is naturally denoted df.

1.19 Example. Let η be a meromorphic differential defined by local meromorphic
functions {uα}, as above, and let g be a meromorphic function on X. Then the
functions

(g ◦ φ−1
α )uα

also satisfy the transition relations for a meromorphic differential, which is natu-
rally denoted gη. Thus the meromorphic differentials form a vector space over the
field of meromorphic functions.

1.20 Example. Let X be an elliptic curve. Because of the representation X = C/Γ ,
any sufficiently small open subset of X can be identified in a canonical way
(up to a translation) with an open subset of C; this gives rise to an atlas for X
whose transition maps are all translations of C, so have derivative 1. Setting all
uα = 1 in the definition above then gives a canonically defined, nowhere vanishing
holomorphic differential on X, which it is appropriate to denote by dz. As we will
shortly see, elliptic curves are characterized among compact Riemann surfaces by
the existence of such a differential.

Let α be a holomorphic or meromorphic differential on a Riemann surface X,
and let γ : [0, 1] → X be a piecewise smooth curve in X. If α is meromorphic, we
assume that γ does not pass through any of its singularities. Then the integral∫

γ

α

can be defined. (Here is one way to do this. By subdividing γ if necessary, we
may reduce to the case where the range of γ is contained in the domain of a chart
(φ,U, V). Represent α in this chart as u(z)dz, where u is a holomorphic function
on V . Then we define the integral to equal∫

φ◦γ
u(z)dz;

the transition relation for meromorphic differentials ensures that this definition is
independent of the particular chart chosen.) Cauchy’s theorem holds for this notion
of integration: if α is a holomorphic differential on X, the value of the integral

∫
γ
α

depends only on the (endpoints-fixed) homotopy class of γ as a map [0, 1] → X.
In the meromorphic case we have the same statement, but now the homotopy must
take place within X \ P, where P is the set of poles of α.

It follows from Cauchy’s theorem that if α is a meromorphic differential with
a pole at p, the value of the integral (2πi)−1

∮
α taken around a small circle

surrounding p does not depend on the particular choice of circular contour; this
common value is called the residue Res(α, p) of α at p. There are various versions
of the Residue Theorem in the context of Riemann surfaces. We will only need the
simplest.
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res-thm 1.21 Proposition. Let α be a meromorphic differential on a compact Riemann
surface, with poles p1, . . . , pn. Then

n∑
i=1

Res(α, pi) = 0;

the sum of all the residues of α is zero.

Our first application of the Residue Theorem will be to complete the proof of
Lemma 1.9, which states that the divisor D(f) of any meromorphic function f has
degree zero. Let α = f−1df, which is a meromorphic differential. The singularities
of α are exactly the zeroes and poles of f, and the classical argument principle tells
us that the residue of α at a is exactly ord(f, a). By the residue theorem, then,

deg(D(f)) =
∑
a

ord(f, a) =
∑
a

Res(α, a) = 0

as required.

We have already made use of the fact that the poles of a meromorphic differential
are invariantly defined. In fact, the notions of the order ord(α, a) of a meromorphic
differential at a point, and of the divisor D(α) of a meromorphic differential
(compare Definition 1.8) make sense for meromorphic differentials just as they
do for meromorphic functions.

1.22 Lemma. If α and β are any two nonzero meromorphic differentials thenD(α)
and D(β) are linearly equivalent (Remark 1.10).

Proof. By considering local representatives one sees that “the ratio of two mero-
morphic differentials is a meromorphic function”; in other words, there is a mero-
morphic function f such that β = fα. But then

D(β) = D(f) +D(α)

and so D(β) and D(α) are linearly equivalent.

The canonical divisor class is the linear equivalence class of any non-zero
meromorphic differential, and any divisor in this class is called a canonical divisor
and denoted by K. For example, the canonical divisor class on an elliptic curve is
0 (the differential dz has neither zeroes nor poles). The canonical divisor class on
the Riemann sphere (a curve of genus 0) is −2 · p for any point p on the sphere
(all points are linearly equivalent and, if we regard the sphere as C ∪ {∞}, the
differential dz has a pole of order 2 at ∞).

We will later see that dim O(K) = g, the genus of the compact Riemann surface
X, and that degK = 2g − 2. These observations relate the genus directly to the
holomorphic structure. In fact, we can see straight away that dim O(K) and degK
do not depend on the choice of K within the canonical class. This follows from:

1.23 Lemma. Let D,D ′ be linearly equivalent divisors. Then deg(D) = deg(D ′)
and dim O(D) = dim O(D ′).
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Proof. SupposeD ′ = D+D(f). By Lemma 1.9, degD(f) = 0; this proves the first
statement. As for the second, multiplication by f gives an isomorphism between the
vector spaces O(D) and O(D ′).

Let us now recall Riemann’s inequality

dim O(D) ≥ deg(D) − g+ 1.

By the previous lemma, both sides depend only on the linear equivalence class of
D. But we have also seen (Example 1.14) that as soon as we move outside this
class, the left side depends much more sensitively on D than the right side does.

Riemann’s student Roch investigated the difference between the two sides of the
Riemann inequality, publishing in 1865 a note entitled “On the number of arbitrary
constants in algebraic functions”. (Both Riemann and Roch died of tuberculosis the
next year; Riemann was 39, Roch was 26.) Roch’s result was that the difference
between the two sides of the Riemann inequality is itself the dimension of a space
of meromorphic functions: in fact it equals dim O(K−D), where K is the canonical
divisor. The final result, then, is the Riemann-Roch Theorem

riem-roch 1.24 Theorem. Let X be a compact Riemann surface of genus g,D a divisor on X.
Then

dim O(D) − dim O(K−D) = deg(D) − g+ 1,

where K denotes the canonical divisor.

Notice that the left side is now the difference of two term that depend “sensi-
tively” on D, and it turns out that this difference is a much more stable invariant
than either of the two terms considered individually. A similar phenomenon occurs
for the general Atiyah-Singer Index Theorem, where the index is the difference of
two quantities described by partial differential equations; each quantity taken by
itself depends very sensitively on the data of the problem, but their difference is a
topological invariant and is unchanged by small perturbations.

1.25 Example. Let X be a compact Riemann surface of genus 1. Applying the
Riemann-Roch theorem to the divisor D = 0 we find that dim O(K) = 1. Suppose
that K is defined by a meromorphic 1-form α, and let f ∈ O(K); then β = fα is a
holomorphic 1-form.

As remarked above, degK = 2g − 2 = 0. Since degD(f) = 0 also, the
conditionD(f) +K ≥ 0 for f ∈ O(K) can be satisfied only ifD(f) = −K; thus the
holomorphic 1-form β is nowhere vanishing.

Let X̃ be the universal covering surface of X, which is topologically a copy of
R2. A point p of X̃ corresponds to a homotopy class [γp] of curves in X. Define a
mapΦ from X̃ to C by integrating β along γ: that is,

Φ : p 7→ ∫
γp

β.

Cauchy’s theorem shows that this map is well-defined, and it is clearly holomorphic
and has nonzero derivative (because β 6= 0). It can be shown that Φ maps X̃ onto
C, so that X̃ is identified with C as a Riemann surface, and X is the quotient of
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C by a free abelian group of rank 2 acting freely by holomorphic automorphisms.
The only such actions are by translations, so X is the quotient of C by a group of
translations, and is thus an elliptic curve.

The examples in this and the preceding section begin to show how the Riemann-
Roch theorem can be used to analyze the structure of Riemann surfaces. Our
object in this chapter, however, is not to develop the many applications of the
Riemann-Roch theorem in more detail (a subject which is already addressed by
many excellent texts), but to use the theorem as an example of the more general
Index Theorem. To this end, the next couple of sections will be devoted to
reformulating Riemann-Roch in the more modern language of line bundles and
differential operators.

1.4 HOLOMORPHIC LINE BUNDLES

Let X be a compact Riemann surface. A holomorphic line bundle over X is a
family Lx of one-dimensional complex vector spaces (“complex lines”) that depend
holomorphically on a point x ∈ X.

To give some substance to this idea, we take our cue from the theory of manifolds
and express matters in “local coordinates”. This leads to the following definition.

1.26 Definition. A holomorphic line bundle over a Riemann surface X is a 2-
dimensional holomorphic manifold L provided with a holomorphic surjection
π : L → X, such that the following conditions hold.

(a) Each fiber Lx := π−1({x}) is provided with the structure of a 1-dimensional
complex vector space.

(b) Each x ∈ X has a neighborhood U for which there is a bijection

ψ : π−1(U) → U× C
such that

(i) ψ is a holomorphic map, with holomorphic inverse,
(ii) pr1 ◦ ψ = π, where pr1 : U × C → U is the first coordinate projection,

and
(iii) For each y ∈ U the restriction of ψ to a map Ly → {y}×C (which exists

by (ii)) is an isomorphism of complex vector spaces.

The Riemann surface X is called the base of the line bundle. An isomorphism of
holomorphic line bundles L, L ′ (with the same base) is a holomorphic bijection
L → L ′, with holomorphic inverse, which makes the diagram

L //

��
??

??
??

?? L ′

��

X

commute and which restricts to a linear isomorphism on each fiber.
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1.27 Definition. Let π : L → X be a holomorphic line bundle over X. A holomor-
phic section of L is a holomorphic map s : X → L such that π◦s is the identity map
(equivalently, s(x) ∈ Lx for all x). We use the notation O(L) for the vector space
of holomorphic sections of L.

It amounts to the same thing to say that a holomorphic section is a map sending
each x ∈ X to a point of Lx, which, in a local frameψ : π−1(U) → U×C, takes the
form ψ ◦ s(x) = (x, f(x)) with f a holomorphic function on U. This immediately
suggests a generalization: we can define a meromorphic section of L to be a map
sending each x ∈ X to a point of Lx∪ {∞}, which has a similar local representation
with f a meromorphic function.

1.28 Example. The product X × C is a line bundle in an obvious way, called the
trivial bundle. A holomorphic (or meromorphic) section of this bundle is simply a
holomorphic (or meromorphic) function on X.

1.29 Exercise. A line bundle is isomorphic to a trivial bundle if and only if it has a
nowhere-vanishing holomorphic section.

Given two line bundles L ′ and L ′′ one can form a new space L equipped
with a map to X, by taking the “fiberwise tensor product” of L ′ and L ′′, that is,
Lx = (L ′)x ⊗ (L ′′)x. Using local frames one easily sees that L is a line bundle,
denoted L1 ⊗ L2. Similarly one can take the fiberwise dual of a line bundle L,
whose fiber at x is

(L∗)x = Hom(Lx,C).

Notice that L⊗ L∗ is a trivial bundle because the identity map from L to L may be
considered as a nowhere-vanishing section (for any finite-dimensional vector space
V there is a canonical identification V ⊗ V∗ = Hom(V,V)). This easily allows us
to see that the isomorphism classes of holomorphic line bundles over X constitute
an abelian group, with ⊗ as the group operation.

bun-cocyc-def 1.30 Remark. Again following the lead given by manifold theory, let us consider
the transition between two local frames. Suppose that ψα : π−1(Uα) → Uα × C
and ψβ : π−1(Uβ) → Uβ × C are two such frames whose domains Uα and Uβ
overlap. Then the composite

ψβ ◦ψ−1
α = (id,ψβα) : (Uα ∩Uβ)× C → (Uα ∩Uβ)× C.

Here, for each x ∈ Uα ∩Uβ, ψβα(x) is an isomorphism of vector spaces C → C,
that is, an element of the group C∗ of nonzero complex numbers. In this way, given
an atlas for the vector bundle (a covering of X by the domains of local frames) we
obtain holomorphic transition functions

ψβα : Uβ ∩Uα → C∗

which satisfy the cocycle relation

ψαγψγβψβα = 1.

Conversely, given an open cover {Uα} of X, and holomorphic transition functions
ψβα defined on the intersections and satisfying the cocycle condition, one can
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construct a line bundle over X having these transition functions. The (holomorphic
or meromorphic) sections of this line bundle are just families uα of (holomorphic
or meromorphic) functions on Uα that satisfy uβ = ψβαuα.

coho-ex 1.31 Exercise. Suppose that a non-vanishing holomorphic function uα is defined
on each Uα. Show that the transition functions ψβα = uβ/uα satisfy the cocycle
condition, but that the resulting line bundle is (isomorphic to) a trivial bundle.
(The underlying idea here can be developed to show that the group of isomorphism
classes of holomorphic line bundles on X is just H1(X; O∗), the first cohomology
group of X with coefficients in the sheaf of non-vanishing holomorphic functions.
Sheaf theory is vital to a deeper understanding of complex geometry, but we shall
not require it in this book.)

We can extend the construction of Exercise 1.31 in an important way. Suppose
that D =

∑
j njaj is a divisor on X. Choose a finite open cover Uα of X having

the following properties:

(i) Each Uα is the domain of a coordinate chart for the holomorphic manifold X
(so that it is identified with an open subset of C).

(ii) Each of the (finitely many) points aj belongs to exactly one Uα.

Using the local structure (i), build on each Uα a meromorphic function uα having
exactly the singularity prescribed by D; that is, if aj ∈ Uα then uα has a zero of
order nj (or pole of order −nj) at aj, and elsewhere uα is holomorphic and non-
vanishing. Because of (ii), the functions uα are holomorphic and non-vanishing on
all intersections Uα ∩Uβ and therefore the formula

ψβα = uβ/uα

defines a cocycle and hence a line bundle. Because the uα are no longer holomor-
phic and non-vanishing throughout their domain, the conclusion of Exercise 1.31
need not hold: these bundles can be non-trivial.

1.32 Definition. The line bundle LD so constructed is called the line bundle of the
divisor D.

hombund 1.33 Exercise. Show that the mappingD 7→ LD is homomorphic, in the sense that
LD+D ′ ∼= LD ⊗ LD ′ and L(−D)

∼= L∗D.

The functions uα that appear in the definition constitute a meromorphic section
s of the line bundle LD. Now let g be a meromorphic function on X. Then gs
is also a meromorphic section of LD, and the map g 7→ gs gives an isomorphism
between the space of meromorphic functions on X and the space of meromorphic
sections of LD.

secto 1.34 Proposition. Under the isomorphism g 7→ gs, the space O(D) of meromor-
phic functions subordinate to D corresponds exactly to the space O(LD) of holo-
morphic sections of the line bundle LD.
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Proof. Introduce the natural notion of the divisor of a meromorphic section of
a holomorphic line bundle. By construction, D(s) = D. But then D(gs) =
D(g) + D(s), and gs is holomorphic precisely when its divisor is ≥ 0, that is,
when g ∈ O(D).

1.35 Remark. It is natural to ask whether this construction produces all the
holomorphic line bundles that there are. In fact, it is not hard to prove the following
facts: the isomorphism class of LD only depends on the linear equivalence class
of D, and, if L is a line bundle that has a nonzero meromorphic section at all,
then the divisors D of all its meromorphic sections are linearly equivalent, and the
bundle LD for any one of these divisors is isomorphic to L. The only question left
open, then, is whether every line bundle has a nonzero meromorphic section. The
answer (which is “yes”) is usually proved along with the Riemann-Roch theorem
in a systematic development; for the purposes of this exposition, though, we shall
just assume it when we need to.

As Proposition 1.34 makes clear, the key concept in the Riemann-Roch theorem,
the dimension on O(D), can be reformulated in terms of holomorphic sections of
a suitable line bundle. We will now see how Roch’s correction term can also be
reformulated in this language. This involves interpreting differential forms in the
language of line bundles.

Let X be a compact Riemann surface and let (φα, Uα, Vα) be a holomorphic
atlas for X, with transition functions φβα = φβ ◦ φ−1

α . The derivative φ ′
βα

belongs to C∗, and if we define

ψβα =
(
φ ′
βα ◦ φα

)−1
,

then the Chain Rule easily shows that ψαγψγβψβα = 1, in other words that ψ
is a cocycle. (Taking the inverse here is a sign convention; the reason for this
convention will become apparent in a moment.)

1.36 Definition. The line bundle associated to this cocycle is the canonical bundle
K on the Riemann surface X.canbund-def

1.37 Lemma. Sections (holomorphic or meromorphic) of the canonical bundle are
the same as (holomorphic or meromorphic) differentials on X.

Proof. Compare the definition of a differential (Definition 1.17) with the definition
of a section of a bundle defined by a cocycle (Remark 1.30). The “sign convention”
is chosen to make these objects correspond exactly.

Notice that we have used the symbol K in a double sense: for the canonical
bundle and for the canonical divisor class. The lemma shows that these two uses are
consistent under the standard correspondence between divisors and line bundles.
Summarizing the discussion we have

1.38 Proposition. Let X be a compact Riemann surface,D a divisor on X. The left
hand side

dim O(D) − dim O(K−D)
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of the Riemann-Roch theorem 1.24 for D can be expressed as

dim O(L) − dim O(K⊗ L∗)

where L = LD is the line bundle corresponding to the divisor D, and K is the
canonical line bundle.

Proof. By Proposition 1.34, dim O(L) = dim O(D). By the preceding lemma, the
canonical bundle K is the line bundle associated to the canonical divisor K. By
Exercise 1.33, K ⊗ L∗ is therefore the bundle associated to the divisor K − D.
Another application of Proposition 1.34 completes the proof.

In the next section we shall relate this difference to an appropriate partial differ-
ential equation.

1.5 THE DOLBEAULT OPERATOR
dolbeault-sec

We have been emphasizing that the left hand side of the Riemann-Roch theorem is
the difference of two quantities which depend “sensitively” on the data (the divisor
D or line bundle L), but that nevertheless the difference is much more “stable” than
the individual quantities that make it up.

Linear algebra provides a familiar example of this phenomenon.

1.39 Definition. Let T : V → W be a linear mapping between two (perhaps
infinite-dimensional) vector spaces. T is said to be Fredholm if the kernel and
the cokernel of T are both finite-dimensional. (Recall that the cokernel of T is, by
definition, equal to the quotientW/ image(T).) If T is Fredholm its index is defined
to be

Ind(T) = dim(ker(T)) − dim(coker(T)).

If V and W are finite dimensional, then the index of any linear T : V → W is
equal to dim(V)−dim(W). In general, it is helpful to think of a Fredholm index as
a ‘regularization’, using the operator T , of the difference ∞−∞ of the dimensions
of the domain and the codomain of T .

A key property of the index is that it is insensitive to “small” perturbations. In
the present algebraic context this can be expressed as follows.

1.40 Lemma. Let T : V → W be a Fredholm operator and let F : V → W be an
operator with finite-dimensional range. Then T + F is also a Fredholm operator,
and Ind(T + F) = Ind(T).

We won’t prove this here, as we will give a more general result in Chapter 3. The
point to notice, though, is that the index is insensitive to the finite-rank perturbation
F, even though the kernel and cokernel dimensions can individually be changed by
such a perturbation.

We are going to express the left-hand side of the Riemann-Roch theorem as the
index of a suitable linear operator—actually a partial differential operator acting
on sections of appropriate line bundles over X. Our starting point is the well-known
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fact that a smooth function f = u + iv : C → C is holomorphic if and only if it
satisfies the Cauchy-Riemann equations

∂u

∂x
−
∂v

∂y
= 0,

∂v

∂x
+
∂u

∂y
= 0

which express the complex-linearity of the derivativeDf when considered as a map
R2 → R2. It amounts to the same thing to say that ∂f/∂z̄ = 0, where we define

∂

∂z
=
1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z̄
=
1

2

(
∂

∂x
+ i

∂

∂y

)
to be the complex-linear and complex-antilinear parts of the derivative operator.
We will usually abbreviate these operators by ∂ and ∂̄ respectively.

1.41 Remark. It is a matter of linear algebra to express the chain rule in terms of
these operators. Suppose that f is a function of w, which in turn is a function of z;
then one has

∂f

∂z
=
∂f

∂w

∂w

∂z
+
∂f

∂w̄

(
∂w

∂z̄

)
,

∂f

∂z̄
=
∂f

∂w

∂w

∂z̄
+
∂f

∂w̄

(
∂w

∂z

)
.

In particular if w is a holomorphic function of z,

∂f

∂z
=
∂f

∂w

∂w

∂z
,

∂f

∂z̄
=
∂f

∂w̄

(
∂w

∂z

)
.

Similar (but easier) calculations yield the product rule which we shall need in the
form

∂fg

∂z
=
∂f

∂z
g+ f

∂g

∂z
,

∂fg

∂z̄
=
∂f

∂z̄
g+ f

∂g

∂z̄
.

In particular, the ∂̄ operator commutes with multiplication by a holomorphic func-
tion g.

We are going to apply these operators to smooth functions on a Riemann surface
X, and more generally to smooth sections of certain line bundles over X. The
notions of smooth line bundle, smooth section (of a line bundle), and so on, may
be modeled on the holomorphic definitions of the previous section; just replace
the word “holomorphic” by “smooth” wherever it occurs. We’ll use the notation
C∞(L) for the space of smooth sections of the bundle L.

If one applies the operator ∂ to a function on a Riemann surface, the resulting
expression is not well-defined as a function, but it is well-defined as a differential—
a section of the canonical bundle K. (Compare Example 1.18.) Similarly, the result
of applying ∂̄ to a function is well-defined as a section of the anticanonical bundle
K (the line bundle whose transition functions are the complex conjugates of the
transition functions for K). More generally we have

dbar-holo-prop 1.42 Proposition. Let L be any holomorphic line bundle on the Riemann surface
X. There is a well-defined differential operator

∂̄L : C∞(L) → C∞(L⊗ K)

between spaces of smooth sections, which in local coordinates reduces to the
operator ∂/∂z̄ defined above. The kernel of this operator consists exactly of the
holomorphic sections of L.



higson-roe November 19, 2009

18 CHAPTER 1

The operator so defined is called the Dolbeault operator for L.

Proof. Choose an atlas {φα, Uα, Vα} (for both X and L simultaneously); let φβα
be the transition functions for X, ψβα the transition functions for L. A section of L
is defined by smooth functions uα : Vα → C with

uβ(z) = ψβα(φ−1
β (z))uα(φαβ(z)).

Differentiating this and using the chain rule (remembering that ψβα is holomor-
phic),

∂̄uβ(z) = ψβα(φ−1
β (z))∂̄uα(φαβ(z)) · φ ′

αβ(z).

Remembering that φ ′
αβ =

(
φ ′
βα

)−1
, we recognize that the ∂̄uβ satisfy the

transition relations for a section of L⊗ K.
The final statement follows from the Cauchy-Riemann equations.

1.43 Remark. As a special case we have the operator ∂̄ : C∞(X) → C∞(K).
Similarly we can construct the conjugate operator ∂ : C∞(X) → C∞(K). The
direct sum of these

d = ∂+ ∂̄ : C∞(X) → C∞(K)⊕ C∞(K)

is called the exterior derivative. (The reader who is familiar with these matters
should be able to prove that K ⊕ K is isomorphic to the complexification of the
cotangent bundle T∗X, and that our definition of the exterior derivative matches
the standard one. We will say more about this below.) In the previous section, we
introduced the notation df for a holomorphic function f; for such a function ∂̄f = 0

and thus df = ∂f is defined as a section of K. This reconciles our current notation
with that of the earlier section.

The main analytic result underlying the Riemann-Roch theorem is then

dbar-fredholm-prop 1.44 Proposition. Let L be a holomorphic line bundle on a compact Riemann
surface X. The Dolbeault operator

∂̄L : C∞(L) → C∞(L⊗ K)

is a Fredholm linear map. Moreover, its index Ind(∂̄) is exactly equal to the left-
hand side of the Riemann-Roch theorem for L.

We will see that ∂̄ is one of a general class of linear partial differential operators,
called elliptic operators, which are automatically Fredholm. The Atiyah-Singer
theorem computes the index of an operator of this type. The Riemann-Roch
theorem becomes the special case of Atiyah-Singer applied to the ∂̄ operator.

In the remainder of this section we are going to sketch some of the analysis which
goes into the proof of proposition 1.44. This will help us know what properties to
look for when we develop the general analysis of elliptic operators in Chapter 5.
The techniques used are rather different from those described earlier in this chapter.

Begin by observing that according to Proposition 1.42, the kernel of ∂̄L is exactly
the space of holomorphic sections O(L). Thus, the first terms match up in the two
expressions

dim O(L) − dim O(K⊗ L∗)
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(left side of Riemann-Roch), and

dim ker(∂̄L) − dim coker(∂̄L)

(index of ∂̄L). What about the second terms?
The key here is to use a duality principle. Under appropriate circumstances, the

dual of the cokernel of a linear operator T : V → W is exactly the kernel of the dual
operator T ′ : W ′ → V ′ between the dual spaces. In particular these spaces have
the same dimension. We will apply this line of thinking to the case where T is the
∂̄ operator itself.

In order to do so, we will need to identify the relevant dual spaces and dual
operators in concrete terms, as function spaces associated to X. We will also
(and this is where the analysis will come in) need to give suitable topological
vector space structures to V and W and produce sufficiently strong estimates on
the operator T so that the “principle” above actually becomes a known theorem of
functional analysis.

Let us introduce some more notation. Let L be a line bundle. We’ll use the
following notation for spaces of sections of various bundles associated to L:

Notation Ω0,0(L) Ω1,0(L) Ω0,1(L) Ω1,1(L)

Smooth sections of L K⊗ L K⊗ L K⊗ K⊗ L

We’ll call the members of Ωi,j(L) (i, j)-forms with values in L. If L is a holo-
morphic line bundle we have ∂̄ operators ∂̄ : Ωi,0(L) → Ωi,1(L), i = 0, 1. If L is
trivial we will leave it out of the notation, and write simplyΩi,j.

1.45 Lemma. There is a canonically defined operation of integration∫
: Ω1,1 → C

such that

(α,β) 7→ i

2

∫
αβ

is a positive definite inner product onΩ1,0.

The notion of integration is a standard part of the general theory of differential
forms on manifolds; the definition can be given, for example, by using a partition
of unity to reduce to the case when α ∈ Ω1,1(X) is supported within the domain
of a coordinate chart, then writing α in local coordinates as fdzdz̄; we define the
integral to be ∫

α = −2i

∫∫
f(x, y)dxdy.

The key point to the definition is that the coordinate transition equations for K⊗ K
introduce the Jacobian |∂w/∂z|2 into the integrand; so the integral turns out to be
invariantly defined under changes of coordinates.

Using this notion of integration we have dual pairings (denoted 〈, 〉)

Ω0,1(L)⊗Ω1,0(L∗) → C, Ω0,0(L)⊗Ω1,1(L∗) → C
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both of which are given by the formula (α,β) 7→ ∫
αβ. Moreover with respect to

these pairings we have by integration by parts2

〈∂̄f, α〉 = −〈f, ∂̄α〉

for f ∈ Ω0,0(L), α ∈ Ω1,0(L). This makes it apparent that the dual operator
of ∂̄, with respect to this pairing, is simply −∂̄ : Ω1,0(L∗) → Ω1,1(L∗), and our
general principle therefore indicates that the rightmost term in the definition of the
index, that is the dimension of the cokernel of ∂̄L, should equal the dimension of
the kernel of −∂̄K⊗L∗ , that is, the dimension of the space O(K⊗L∗). This is in fact
true, and the equality

dim coker(∂̄L) = dim O(K⊗ L∗),

which completes the proof of Proposition 1.44, is (a special case of) the Serre
duality theorem.

To make this argument a rigorous one it is necessary to complete the spaces
involved to topological vector spaces in such a way that our pairings 〈, 〉 actually
become the canonical pairing between a topological vector space and its dual, and
in such a way that the analytical conditions necessary for a rigorous formulation of
our duality principle are satisfied. There are a number of different routes that can
be followed here, each with its own advantages. Serre’s original formulation made
use of the theory of distributions. In this book, however, we shall approach index
theory via Hilbert space; we shall complete the spaces described above via natural
inner products to Hilbert spaces (essentially spaces of “square-summable sections”
of appropriate vector bundles). The operators ∂̄ now become unbounded Hilbert
space operators. A classic approach to the study of such operators T , going back
to von Neumann, proceeds via the (bounded) resolvent operator (1 + T∗T)−1. In
terms of this operator the key analytic fact about ∂̄ (or about any elliptic operator
on a compact manifold) is easily stated: the resolvent of ∂̄ is a compact Hilbert
space operator.

In Chapter 3 we shall draw out the general functional-analytic implications of
the compact-resolvent property; in Chapter 5 we shall show that ∂̄ and other elliptic
operators on compact manifolds have the property in question.

1.6 NOTES

2Formally, we apply Stokes’ theorem to see that
∫

∂̄(fα) = 0.
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Chapter Two

K-Theory

KChapter
The Atiyah-Singer index theorem links analysis and topology, and our approach to
its proof will use techniques from both areas. The focus of this chapter is topology,
specifically vector bundles and K-theory.

Vector bundles and K-theory arise in index theory in two different ways. . . .
The most important result in Atiyah-Hirzebruch K-theory is the Bott periodicity

theorem. Our proof of the index theorem for the Dolbeault and Dirac operators will
not require periodicity. However proof for general operators in Chapter 9 relies
very heavily on periodicity, or at least on a beautiful mechanism discovered by
Atiyah to prove periodicity. We shall give a proof of Bott’s theorem there.

2.1 VECTOR BUNDLES

2.1 Definition. Let M be a topological space. A complex vector bundle over M is
a space V that is equipped with:

(a) a continuous map π : V → M, and

(b) a complex vector space structure on each fiber Vm = π−1{m}

It is required that each point of M is included in some neighborhood U for which
there is a homeomorphism π−1[U] ∼= U × Cn that restricts to a vector space
isomorphism on each fiber (the right-hand map π is the coordinate projection) and
makes the diagram

π−1[U]
∼= //

π

��

U× Rn

π

��

U U

commute.

2.2 Definition. Isomorphism of bundles . . . more generally a homomorphism from
one bundle to another

2.3 Example. The constant bundles X× Cn . . .
A vector bundle E over a topological space X is said to be trivial if it isomorphic

to a product X× Cn

. . . restriction to a subset
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2.4 Definition. . . . subbundle

2.5 Example. Classifying bundle over a Grassmannian space.

2.6 Proposition. quotient bundle

Real vector bundles are defined in the same way. In addition smooth vector
bundles over a smooth manifold M are defined by requiring V to be a smooth
manifold and all maps appearing in the above definition to be smooth maps.

2.7 Example. Tangent bundle.

2.2 CLASSIFICATION OF VECTOR BUNDLES

2.8 Definition. If f : M ′ → M is a continuous map, and if V is a vector bundle
overM, then the pull-back of V along f is the vector bundle

V ′ =
{

(m ′, v) ∈M ′ × V : f(m ′) = π(v)
}
.

It is a vector bundle over M ′ (and it is a smooth vector bundle, if f is a map of
smooth manifolds).

2.9 Proposition. Let f0, f1 : X → Y be a pair of homotopic maps between compact
Hausdorff spaces. If E is any vector bundle on Y, then the vector bundles f∗0E and
f∗1E are isomorphic.

2.10 Proposition. Let E be a vector bundle over a compact Hausdorff space X. For
sufficiently largen, E is isomorphic to a subbundle of the trivial bundleX×Cn.

2.11 Definition. . . . of G(n, k)

. . . , its topology via open subsets of Cn. It is

G(n, k) ∼= U(n)
/(
U(k)×U(n− k)

)
.

2.12 Definition. . . . Classifying bundle

2.13 Theorem. Let X be a compact Hausdorff space. The operation of pulling back
the classifying bundle on the Grassmannian spaceG(n, k) induces an isomorphism

lim
−→
n

[X,G(n, k)] ∼= Vectk(X)

for every nonnegative integer k.

2.3 OPERATIONS ON BUNDLES

Various operations produce new vector bundles from old. The most important is
the operation of direct sum: if V and W are vector bundles over the same base X,
then their direct sum is defined to be

V ⊕W = { (v,w) ∈ V ×W : π(v) = π(w) },
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which is also a vector bundle over X.
For instance if V is a vector bundle on M, then there is a natural way to form

the vector bundle V∗, whose fibers are the vector space duals of the fibers of V
. . . (explain).

Similarly there is a natural way to form the vector bundles ∧pV whose fibers are
the exterior powers of the fibers of V , and so on.

Among the many other possibilities, let us mention the tensor product V ⊗W,
whose fibers are the direct sums and tensor products of the fibers of V andW.

2.4 K-THEORY

2.14 Definition. Let X be a compact Hausdorff space. The K-theory group K(X)
is the abelian group generated by the set of isomorphism classes of complex vector
bundles on X, subject to the relations that

[E] + [F] = [E⊕ F]

for all complex vector bundles E and F on X.

The operation of pullback of vector bundles makes K(X) into a contravariant
functor on the category of compact Hausdorff spaces. We shall denote by

f∗ : K(Y) −→ K(X)

the map on K-theory groups induced by a continuous map f : X → Y.
The first significant fact about the K-theory functor is that it is homotopy invari-

ant:

2.15 Proposition. If f, g : X → Y are homotopic maps, then the maps from K(Y)
to K(X) induced from f and g are equal to one another.

This is an immediate consequence of . . .

2.16 Definition. Relative groups and K-theory for locally compact spaces

2.17 Proposition. Let Y be a closed subspace of a compact Hausdorff space X.
The sequence

K(X \ Y)
π∗ // K(X)

ι∗ // K(Y)

is exact at K(X).

2.18 Proposition. Suppose that Y is a closed and contractible subspace of a locally
compact Hausdorff space X. The projection π : X → X/Y induces an isomorphism
from K(X/Y) to K(X).

contractible-quotient-prop 2.19 Proposition. Suppose that Y is a closed subspace of a locally compact Haus-
dorff space X and that X\Y is homeomorphic to (0, 1]×Z for some locally compact
Hausdorff space Z. The inclusion ι : Y → X induces an isomorphism from K(X) to
K(Y).
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nbd-vb-extension-lemma 2.20 Lemma. Suppose that Y is a closed subspace of a compact Hausdorff space
X, and that E is a vector bundle on Y. There is a neighborhood U of Y in X and a
vector bundle on U whose restriction to Y is isomorphic to E.

Granted the classification theorem of . . . , this is very easy. The vector bundle E
is determined by a map from Y into a Grassmannian space, and this map extends to
a neighborhood of Y in X. The lemma may be proved directly by using a subset of
the techniques used to prove the classification theorem.

Proof of Proposition 2.19. After replacing X and Y by their one-point compactifi-
cations, if necessary, we may assume that both spaces are compact.

Because K-theory is a homotopy functor, it follows from Proposition ?? that the
map ι∗ : K(X) → K(Y) is one-to-one. To prove that the map is also onto it suffices
to show that if E is a vector bundle on Y, then E is isomorphic to the restriction to
Y of a vector bundle on X.

According to Lemma 2.20, there is a neighborhood U of Y in X and a vector
bundle F onUwhose restriction to Y is isomorphic to E. According to Exercise 2.21
there is a continuous map g from (0, 1] × Z to itself that is the identity in a
neighborhood of infinity and that has range contained in U. We may regard g
as a map from X to itself that is the identity in a neighborhood of Y and has range
contained in U. If we pull back the vector bundle F to X using g, then we obtain a
vector bundle on X whose restriction to Y is isomorphic to E, as required.

. . . discussion about computations made partially possible by the above tools.
Another possibility is to compare to ordinary cohomology, which we shall do in
the next chapter.

2.5 EXERCISES

point-set-ex 2.21 Exercise. Let Z be a locally compact Hausdorff space and form the product
space (0, 1] × Z. Let U be a neighborhood of infinity in the one-point compactifi-
cation of (0, 1]× Z.

(a) Show that U contains (0, ε]×Z for some ε > 0, as well as (0, 1]× (Z \K), for
some compact subset K ⊆ Z.

(b) Using the same notation, show that for every open neighborhood W of K in Z
there is a continuous function

f : (0, 1]× Z −→ [0, 1]

such that f(t, z) = min{t, ε} if z ∈ K and f(t, z) = t if z /∈W.

(c) Show that ifW is chosen to have compact closure in the locally compact space
Z, then the formula g(t, z) = (f(t, z), z) defines a continuous function

g : (0, 1]× Z −→ (0, 1]× Z
that is equal to the identity in a neighborhood of infinity, such that the range of
g is contained in U.
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2.22 Exercise. 1-cocycle form for vector bundles.

2.23 Exercise. . . . map from Vectk(S
n) to [Sn−1, GL(k,C)]. In fact this map is

an isomorphism.

2.24 Exercise.

[E0] − [E1] = [X× Cn] − [F]

2.25 Exercise. Mayer-Vietoris and Bott generator (what it is for the Cn, and that
it generates an infinite-cyclic subgroup).

2.26 Exercise. On the basis of the previous exercises, show that

K(Sn) ∼= Z⊕ lim
−→
k

[Sn−1, GL(k,C)]

where the direct limit is formed . . .

2.27 Exercise. (on sections . . . )
A (smooth) section of a smooth vector bundle V over M is a smooth function

from M to V that maps each point of M to an element of the fiber of V above that
point. Smooth sections may be added together and muliplied by scalar functions
onM using the vector space structures on the fibers of V .

Using sections, we can equip vector bundles with various sorts of additional
structures. For example a euclidean structure on a vector bundle V is a family of
inner products on the fibers of V that vary smoothly in the sense that the pointwise
inner product of any two sections of V is a smooth function on V . A hermitian
structure on a complex vector bundle is a family of hermitian inner products on
the fibers for which the pointwise inner product of any two sections is a smooth
function.

2.28 Exercise. Existence and essential uniqueness of euclidean or hermitian struc-
tures.

2.29 Exercise. Puppe sequence

2.30 Exercise. On the definition of K1(X).

2.6 NOTES

For an introduction to elementaryK-theory the reader can refer to Atiyah’s notes [?]
(for spaces) or to the books of Blackadar [?] or Rørdam et al. [?] (for C∗-algebras).
The main item missing from our brief account is a proof of Theorem ?? on excision.
This is a purely algebraic issue, and the reader is referred to Milnor’s notes on
algebraic K-theory [?] for a proof—the excision theorem is equivalent to Milnor’s
Theorem XXX. We shall treat the Bott periodicity theorem in Chapter ??.
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Chapter Three

Fredholm Operators

CStarChapter
In this chapter we shall review some of the very basic analysis of Fredholm
operators on Hilbert space, and then continue to families of Fredholm operators.
Our main objective is the definition of the index of a family of Fredholm operators
parametrized by a compact space X. This is a class in the Atiyah-Hirzebruch K-
theory group K(X).

3.1 THE OPERATOR NORM AND COMPACT OPERATORS

3.1 Definition. Let T : H0 → H1 be a norm-continuous linear operator between
two Hilbert spaces. Its norm is the quantity

‖T‖ = sup{ ‖Tv‖ : ‖v‖ ≤ 1 }.

The norm is always finite, and indeed finiteness of the norm is equivalent to the
continuity of T , which is why the term “continuous” is usually dropped in favor of
“bounded.”

The norm gives the set of all bounded linear operators on a single Hilbert space
the structure of a Banach algebra. The most important consequence of this is that
the set of invertible operators is an open subset of the set of all bounded linear
operators. This stability property, that a sufficiently small (in norm) perturbation of
an invertible operator is still invertible, is basic to everything that follows.

3.2 Definition. A linear operator between vector spaces is a finite-rank operator if
its range is finite-dimensional.

A bounded finite-rank operator F : H0 → H1 between Hilbert spaces can be
written in the form

Tv =

n∑
j=1

〈vj, v〉wj

for some n and some vectors v1, . . . , vn ∈ H0 and w1, . . . , wn ∈ H1 (where all
the choices are independent of v, of course).

3.3 Definition. A bounded operator between Hilbert spaces is compact if it is a
norm-limit of finite-rank operators.

Compact operators will play an important role throughout. They ought to be
thought of as small perturbations of the zero operator—not small in norm, but small
in the sense that their ranges are “approximately finite-dimensional.”
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If K is a compact operator and if T is a bounded operator, then both TK and KT
are compact. The compact operators on a single Hilbert space therefore form a
closed, two-sided ideal in the Banach algebra of all bounded operators.

3.2 BOUNDED FREDHOLM OPERATORS ON HILBERT SPACE

A linear operator T : V0 → V1 between two vector spaces is a Fredholm operator
if its kernel and cokernel are finite-dimensional vector spaces, in which case the
index of T is defined to be

Ind(T) = dim(ker(T)) − dim(coker(T)).

If the vector spaces V0 and V1 are themselves finite-dimensional, then obviously
every linear operator between them is a Fredholm operator. Moreover the rank-
nullity theorem of linear algebra says that in this case

Ind(T) = dim(V0) − dim(V1).

This is an extreme stability property for the index: it is completely independent of
the operator T . Here is a counterpart the infinite-dimensional context:

finite-perturb-lemma 3.4 Lemma. If T : V0 → V1 is a Fredholm operator, and if F : V0 → V1 is a
finite-rank operator, then T + F is a Fredholm operator and has the same index as
T .

Proof. Suppose first thatU0 is a subspace of V0 of finite codimension, and that the
operator S : U0 → V1 is the restriction of T to U0. The exact sequences

0 // ker(S) // ker(T) // V0/U0
T // range(T)/ range(S) // 0

and

0 // range(T)/ range(S) // coker(S) // coker(T) // 0

of finite-dimensional vector spaces show that

Ind(S) = Ind(T) + dim(V0/U0)

(compare Exercise 3.73). Now take U0 to be the kernel of F. Since the restrictions
of the two operators T and T + F to U0 are equal to one another, the two operators
obviously give rise to the same operator S, as above. So our formula for the index
of S shows that the index of T is equal to the index of T + F.

Our aim is to investigate other stabilities properties that arise in the infinite-
dimensional context, once linear algebra is supplemented with functional analysis.

3.5 Definition. A bounded Hilbert space operator T : H0 → H1 is a Fredholm
operator if it is Fredholm in the purely algebraic sense described above. Its index
likewise defined as above.

While the definition makes no reference to Hilbert space theory, there is a simple
but powerful interaction between the Fredholm property and the operator norm:
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norm-perturb-lemma 3.6 Lemma. The set of all Fredholm operators T : H0 → H1 is an open subset of
the set of all bounded operators from H0 to H1. Moreover the Fredholm index is a
locally constant function on this set.

Proof. The range of a Fredholm operator T : H0 → H1 is always a closed subspace
of H1 (see Exercise 3.72). If P1 is the orthogonal projection operator on H1 whose
range is the range of T , and if P0 is the orthogonal projection operator on H0
whose range is the orthogonal complement of the kernel of T , then T is an invertible
operator from range(P0) to range(P1). Let S : H0 → H1 be another bounded linear
operator. Since

‖P1SP0 − P1TP0‖ ≤ ‖S− T‖,
we see that if S is sufficiently close in norm to T , then P1SP0 : range(P0) →
range(P1) is invertible. It follows that P1SP0, considered as an operator from H0
to H1 has the same kernel and the same range as T , and hence the same index. But
S is a finite-rank perturbation of P1SP0, so by Lemma 3.4 it has the same index as
T too.

3.7 Remark. The space of all Fredholm operators from H0 to H1 is locally path-
connected (since it is an open subset of the Banach space of all bounded linear
operators). It is not difficult to show that two Fredholm operators lie in the same
path component if and only if they have the same index.

Lemma 3.6 represents one way to strengthen the stability of the Fredholm index
in the functional-analytic context. Here is another, which is very useful when it
comes to verifying the Fredholm property:

compact-perturb-lemma 3.8 Lemma. If T is a Fredholm operator and if K is a compact operator, then T+K
is a Fredholm operator too. Moreover Ind(T + K) = Ind(T).

Proof. We can write K = K1 + K2, where K1 has sufficiently small norm that
T + K1 is Fredholm and has the same index as T , while K2 has finite rank. The
lemma now follows from Lemmas 3.4 and 3.6.

Lemma 3.8 can be repackaged, as follows:

3.9 Proposition. A bounded linear operator T : H0 → H1 is Fredholm if and only
if there is a bounded operator R : H1 → H0 such that the operators

I− RT : H0 → H0 and I− TR : H1 → H1

are compact.

Otherwise put, a bounded operator is Fredholm if and only if it is invertible
modulo compact operators.

Proof. If T is Fredholm then an inverse modulo compact operators may be con-
structed by inverting the operator P1TP0 used in the proof of the previous lemma.
Conversely, if R is an inverse modulo compact operators, then RT and TR are Fred-
holm operators, since they are compact perturbations of the identity. As a result,
the kernel of T and the cokernel of T are finite-dimensional, as required.

3.10 Remark. Exercises 3.75 to 3.79 put the above results to use in the proof of a
simple index theorem.
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3.3 UNBOUNDED FREDHOLM OPERATORS

We aim to study the Fredholm theory of partial differential operators. Since
differential operators are not bounded, or even everywhere defined, on the L2-
spaces that arise most naturally in Hilbert space theory, we must either work with
different sorts of Hilbert spaces or work with Hilbert space operators that fail to be
bounded. By and large we shall do the latter.

3.11 Definition. A unbounded operator from a Hilbert spaceH0 to a Hilbert space
H1 is a pair consisting of a dense linear subspace of H0, called the domain of the
operator and a linear operator T from that subspace to H1.

We shall write the domain as dom(T). Authors don’t always require it to be a
dense subspace, but we shall. Note that dom(T) might be all of H0, and that T
might in fact be bounded. So unbounded really means not necessarily bounded.

We shall write an unbounded operator as T : H0 → H1 despite the fact that it
may not be defined on all of H0. It is important to bear in mind, however, that a
specific choice of domain is part of the definition of unbounded operator.

3.12 Example. The simplest example relevant to us is the operator T = d/dx

mapping L2(R) to itself, with domain the smooth, compactly supported functions.

We could vary the example in a number of ways. For instance we could define
dom(T) to be the Schwartz space, or the continuously differentiable compactly
supported functions, or something more complicated (see Exercise ??). But the
possibilities are narrowed considerably, often to a single reasonable choice, if
following requirement is imposed.

3.13 Definition. Let T : H0 → H1 be an unbounded operator. The graph of T is
the linear subspace

graph(T) = { (u, v) ∈ H0 ⊕H1 |u ∈ dom(T) and Tu = v }

of H0 ⊕ H1. The operator is said to be closed if graph(T) is a closed subspace of
H⊕H.

Every bounded operator is obviously closed, and indeed the condition that T be
closed should be taken as a weak substitute for boundedness. It is very important
in this respect, since as we shall see it implies stability properties for the Fredholm
index similar to those we witnessed in the previous section.

Proving that an unbounded operator is closed is often tricky (for an example see
Exercise 3.80). Fortunately there is a simple technique for manufacturing closed
operators that can be broadly applied.

3.14 Definition. An unbounded operator T : H0 → H1 is closeable if the closure
of its graph inH0⊕H1 is the graph of an unbounded operator T , in which case this
operator is called the closure of T .

In the examples to be studied later in the book, we shall in effect define T on
some domain, then verify that T is closeable using the next lemma, then replace T
by its closure.
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closeable-lemma 3.15 Lemma. Let T : H0 → H1 be an unbounded operator. If there is an un-
bounded operator S : H1 → H0 such that

〈Tv,w〉 = 〈v, Sw〉

for all v ∈ dom(T) and all w ∈ dom(S), then T is closeable.

Proof.

The analysis of closed operators can be reduced in some respects to the analysis
of bounded operators, as follows:

3.16 Definition. . . . graph norm

‖v‖2T = ‖v‖2 + ‖Tv‖2.

3.17 Lemma. An unbounded operator T is closed if and only if dom(T) is a Hilbert
space (that is, it is complete) in the graph norm.

3.18 Definition. An closed unbounded operator T : H0 → H1 is a Fredholm
operator if it is Fredholm as a bounded linear operator from dom(T) to H1, which
is to say, if and only if it is Fredholm as a linear operator from the vector space
dom(T) to the vector space H1.

3.19 Definition. Let T : H0 → H1 be closed, unbounded operator. Its graph
projection is the orthogonal projection operator PT on H0 ⊕ H1 whose range is
graph(T).

3.20 Lemma. A closed operator is Fredholm if and only if the bounded operator

PT : graph(T) −→ H1

is a Fredholm operator. In this case the Fredholm indexes of T and PT above are
equal.

3.21 Lemma. If we equip the set of of closed operators T : H0 → H1 with the
metric

dist(T1, T2) = ‖PT1
− PT2

‖,

then the set of unbounded Fredholm operators is an open subset and the Fredholm
index is a locally constant function on this set.

3.4 CONTINUOUS FIELDS OF HILBERT SPACES

We shall need to study continuous families of Fredholm operators parametrized
some topological space Y. As a prelude to doing so we shall present here the
concept of a continuous field of Hilbert spaces.

Let Y be a set and suppose we are given a family of Hilbert spaces Hy indexed
by the elements of Y. By a section of the family we shall mean any function that
assigns to each point y ∈ Y a vector in Hy. In other words, a section is an element
of the direct product

∏
y∈Y Hy.
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3.22 Definition. Let Y be a topological space. A continuous field of Hilbert spaces
over Y consists of a familyH = {Hy}y∈Y of Hilbert spaces indexed by the elements
of Y and a set Γ(H) of sections such that:

(a) The set Γ(H) is a vector space under the operations of pointwise addition and
scalar multiplication.

(b) For every y ∈ Y, the set { s(y) : s ∈ Γ(H) } is a dense linear subspace of Hy.

(c) If s ∈ Γ(H), then the function y 7→ ‖s(y)‖ is a continuous real-valued
function.

(d) If r is any section, and if for every y ∈ Y and every ε > 0 there is a section
s ∈ Γ(H) and a neighborhood U of y such that

sup{ ‖s(u) − r(u)‖ : u ∈ U } ≤ ε,

then r ∈ Γ(H).

The members of Γ(H) are called the continuous sections of H. The Hilbert spaces
Hy are the fibers of H.

3.23 Remarks. Condition (c) implies that the pointwise inner product of any
two continuous sections is a continuous function on Y. Condition (d) might
be summarized by saying that any section that is locally uniformly the limit of
continuous sections is itself continuous (note that this is a simple property of
continuous functions). It implies that the product of a continuous section and a
continuous function is again a continuous section. So Γ(H) is a module over the
ring of continuous functions on Y.

3.24 Definition. Isomorphism of fields and restriction of fields

3.25 Example. . . . trivial field

s =

∞∑
n=1

〈s, sn〉sn

Each coefficient 〈s, sn〉 is a continuous function on X, and the sum converges
uniformly on compact subsets of X to the section s.

3.26 Lemma. . . . orthonormal basis implies isomorphic to a trivial field.

3.27 Remark. the essence is not to topologize the “total space” of the field.
. . . However there is a topology available, which is occasionally useful.

3.28 Example. . . . Hermitian vector bundle

3.29 Lemma. Let H be a continuous field of Hilbert spaces over a topological
space X. For every y ∈ Y, Hy = { s(y) : s ∈ Γ(H) }.
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Proof. Fix y ∈ Y. Notice that if s is any continuous section, then the section

s ′(x) =
‖s(y)‖+ 1

‖s(x)‖+ 1
s(x)

is continuous, is equal to s at the point y, and is bounded by ‖s(y)‖+ 1.

We discussed the pull-back operation on vector bundles in the last chapter. There
is a similar operation for continuous fields of Hilbert spaces but it won’t play any
role for us (except for vector bundles). A much more useful operation will be the
push-forward, which is defined as follows.

3.30 Definition. C0-sections

3.31 Definition. . . . extension by zero

3.32 Remark. Given a family of Hilbert spaces H = {Hy}y∈Y and a family Γ0(H)
of sections satisfying (a), (b) and (c), there is a unique enlargement Γ(H) of Γ0(H)
that additionally satisfies (d). It consists of all sections r with the property that for
every y ∈ Y and every ε > 0 there is a section s ∈ Γ0(H) and a neighborhood U of
y such that

sup{ ‖s(u) − r(u)‖ : u ∈ U } ≤ ε.

The continuous field determined by Γ(H) is called the continuous field generated
by Γ0(H).

3.33 Definition. . . . a generating family of sections

3.34 Lemma. If a family of sections generates, then every continuous section is a
norm limit of sections of the form . . .

3.35 Definition. . . . Continuous field generated by a family of sections

3.36 Example. . . . submersion example

3.37 Definition. A bounded operator on H is a uniformly bounded family T =
{Ty : Hy → Hy}y∈Y of operators on the fibers of H that, along with its adjoint
family, maps continuous sections to continuous sections.

3.38 Remark. . . . on adjoints and adjointable operators

3.39 Example. In the case of a constant field, bounded operators are bounded ∗-
strongly continuous families of operators.

. . . countably generated (by a countable generating family of continuous sec-
tions)

3.40 Theorem. Every countably generated continuous field of Hilbert spaces may
be embedded as an orthogonal direct summand of a constant field with separable,
infinite-dimensional fibers.
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Proof. Let H be a constant field of Hilbert spaces with separable, infinite-dimen-
sional fibers, and let H ′ be any countably generated continuous field of Hilbert
spaces. We shall prove that H ⊕ H ′ is isomorphic to H ′, which will obviously
suffice.

Let u1, u2, . . . be the sequence of constant sections of the constant field H
associated to an orthonormal basis of the constant fiber. Let u ′1, u

′
2, . . . be a

sequence of sections of H ′ for which the values at any point y ∈ Y are dense
in the fiber H ′

y. Next, let v ′1, v
′
2, . . . be any sequence of sections of H ′ in which

each u ′n is repeated infinitely often. Consider now the sequence of sections

vn = v ′n ⊕ 2−nun

of H ′ ⊕H. Each u ′n ⊕ 0 is a norm limit of sections in this sequence (because each
u ′n appears infinitely often as some v ′n). It follows that the sequence {vn} generates
the field H ′ ⊕H.

We shall now apply the Gramm-Schmidt procedure to the sequence {vn}. First
we construct

w1 = Normalization(v1),

where the normalization operation multiplies a section v by the function 〈v, v〉− 1
2

so as to obtain a section of pointwise norm one. The operation is well defined as
long as the section to which it is applied is nowhere vanishing, as it is in the case
of v1. Then we successively construct the sections

wn = Normalization
(
vn − 〈vn, w1〉w1 − · · ·− 〈vn, wn−1〉wn−1

)
.

The normalization is well defined since the projection of the section being nor-
malized onto the nth basis direction in the constant field H is 2−nun, and so in
particular the section is nonzero at every point of Y.

We have constructed an orthonormal basis {wn} forH ′⊕H, and this determines
an isomorphism with a constant field.

3.41 Remark. Assume for a moment that H ′ may indeed be embedded into H as
an orthogonal direct summand, so that

H ′ ⊕H ′′ ∼= H

for some H ′′. From the isomorphisms

H ′ ⊕H⊕H⊕ · · · ∼= H ′ ⊕ (H ′′ ⊕H ′)⊕ (H ′′ ⊕H ′)⊕ · · ·
∼= (H ′ ⊕H ′′)⊕ (H ′ ⊕H ′′)⊕ · · ·
∼= H⊕H⊕ · · ·

and from the fact that

H ∼= H⊕H⊕ · · ·

we find that H ′ ⊕ H ∼= H. With this in mind, we may as well try to establish the
latter isomorphism.
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3.5 FAMILIES OF FREDHOLM OPERATORS

Throughout this section we shall fix two continuous fields of Hilbert spaces, H0
and H1, over a locally compact Hausdorff space Y.

Our main criterion is that a Fredholm operator from H0 to H1 should have a
Fredholm index, formed from the kernels and cokernels of the individual fiber
operators, which is close enough to a vector bundle to define an element of the
K-theory group of Y. This requires us to proceed with a little bit of care, as the
following example shows.

3.42 Example. Let H0 be the constant field over the unit interval [0, 1] with one-
dimension fiber C. Let H1 be the push-forward to [0, 1] of the constant field on
(0, 1] with the same fiber. Define T : H0 → H1 by setting the fiber operator Tt
to be multiplication by t ∈ [0, 1]. Then T is a bounded and adjointable operator,
and moreover each Tt is a Fredholm operator since it is an operator between finite-
dimensional vector spaces. But Ind(T0) = 1 whereas Ind(Tt) = 0 if t > 0. So the
fiberwise index is not a locally constant function.

3.43 Definition. A bounded operator on H is a compact operator if it is a norm-
limit of operators of the form

F : v 7→ n∑
j=1

〈uj, v〉wj,

where uj and wj are C0-sections of H0 and H1, respectively.

3.44 Example. . . . constant fields

3.45 Definition. A bounded operator T : H0 → H1 from one continuous field to
another is a Fredholm operator if there is a bounded operator R : H1 → H0 such
that

I− RT : H0 → H0 and I− TR : H1 → H1

are compact operators.

3.46 Lemma. The pointwise index of a bounded Fredholm operator between
continuous fields is a locally constant function on Y.

3.47 Lemma. . . . invertible at infinity

3.48 Definition. An closed unbounded operator from the continuous field H0 to
the continuous field H1 is a family of closed unbounded operators

Ty : H0y −→ H1y (y ∈ Y)

for which the family of graph projections

PTy : H0y ⊕H1y → H0y ⊕H1y (y ∈ Y)

is an operator on the continuous field H0 ⊕H1.

3.49 Remark. . . . This is more than saying the graph is closed.
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3.50 Definition. A unbounded operator T : H0 → H1 between continuous fields is
an unbounded Fredholm operator if the projection operator

P1 : graph(T) −→ H1

is a bounded Fredholm operator.

3.51 Lemma. The pointwise index of a closed, unbounded Fredholm operator
between continuous fields is a locally constant function on Y.

3.52 Lemma. Extension by zero and restriction to a closed subset both send
Fredholms to Fredholms

3.6 THE INDEX OF A FAMILY OF FREDHOLM OPERATORS

main-fred-index-thm 3.53 Theorem. Let T : H0 → H1 be a bounded Fredholm operator between
trivial and countably generated continuous fields of Hilbert spaces over a compact
Hausdorff space X. There is a compact operatorC : H0 → H1 such that ker(T+C)
and range(T + C)⊥ are vector subbundles of H0 and H1, respectively. The
difference

[ker(T + C)] − [range(T + C)⊥] ∈ K(X)

is independent of the choice of compact operator C : H0 → H1.

Proof of the existence statement in Theorem 3.53. Let s1, s2, . . . be an orthonor-
mal basis for H1. Denote by Pn the orthogonal projection onto the subfield gener-
ated by s1, . . . , sn. This is a compact operator, and if C is any compact operator
on H1, then

lim
n→∞ ‖C− PnC‖ = 0,

as checked in Lemma ??. LetQn = I−Pn, which is of course equal to the identity
modulo compact operators.

The operator QnT is a compact perturbation of T . We shall prove that for all
large n both range(QnT)⊥ and ker(QnT) are vector bundles.

First, for all large n the range of the operator QnT is equal (fiberwise) to the
range of Qn. To prove this, let S : H1 → H0 be inverse to T , modulo compact
operators. From the fact that TS = I+ C, where C is compact, we find that

lim
n→∞ ‖Qn −QnTS‖ = lim

n→∞ ‖QnC‖ = lim
n→∞ ‖C− PnC‖ = 0.

It follows of course that
lim
n→∞ ‖Qn −QnTSQn‖ = 0,

and so for all large n the operator QnTSQn, viewed as an operator on QnH, is
invertible, and in particular surjective.

Next, we claim that the kernel of QnT is a vector bundle for all large n. For
large n the operator QnTSQn is invertible (considered as an operator on QnH),
since its inverse can be represented as a Neumann series:

(QnTSQn)−1 =

∞∑
k=0

(Qn −QnTSQn)k.
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Notice, incidentally, that since TS is the identity modulo compact operators, the
operatorQnTSQn and its inverse are both equal toQn modulo compact operators.
Consider then the operator

E = SQn(QnTSQn)−1QnT.

It is an idempotent and it is equal to the identity modulo compact operators.
Moreover its kernel is fiberwise equal to the kernel of QnT . So by Lemma ??,
the fiberwise kernel of QnT is a vector bundle, as required.

3.54 Definition. Let T : H0 → H1 be a bounded Fredholm operator between
countably generated continuous fields of Hilbert spaces over a compact Hausdorff
space X. The index of T , denoted Ind(T) ∈ K(X), is the index of the direct sum

T ⊕ I : H0 ⊕H −→ H1 ⊕H,

where I denotes the identity operator on any trivial field with infinite-dimensional
fibers.

3.55 Proposition. The index of a bounded Fredholm operator T : H0 → H1
between countably generated continuous fields over a compact Hausdorff space
has the following properties:

(a) If H0 and H1 are vector bundles, then

Ind(T) = [H0] − [H1] ∈ K(X).

(b) If T decomposes as a direct sum T ′ ⊕ T ′′, then

Ind(T) = Ind(T ′) + Ind(T ′′).

(c) If T is invertible, Ind(T) = 0.

3.56 Proposition. The above properties characterizes the index of a compact
family.

3.57 Proposition. Let Y be an open subset of a compact Hausdorff space X.
and if D is extended by zero to Y, then . . .

. . . This further property characterizes the index in general

3.7 SELF-ADJOINT AND COMPACT RESOLVENT OPERATORS

For the moment we shall considering individual Hilbert spaces rather than contin-
uous fields of Hilbert spaces.

3.58 Definition. An unbounded operator Hilbert space operator D : H → H is
symmetric if

〈Du, v〉 = 〈u,Dv〉

for all u, v ∈ dom(D).
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simple-symmetric-ex 3.59 Example. A simple example of a symmetric operator is D = id/dx acting
on the Hilbert space L2(R), with domain equal to the space of smooth, compactly
supported functions. Integration by parts verifies the symmetry condition.

3.60 Example.

D =

(
0 S

T 0

)
acting on the Hilbert space H0 ⊕H1 with domain equal to dom(T)⊕ dom(S).

Section ??, the Fredholm operators relevant to index theory will frequently arise
in a graded situation.

grading-remark 3.61 Definition. A grading operator on a Hilbert spaceH is a bounded self-adjoint
operator

ε : H → H

whose square is equal to the identity. It decomposes H as a direct sum H0 ⊕H1 of
eigenspaces for eigenvalues ±1. A bounded operator on H is even if it commutes
with ε, odd if it anticommutes. An unbounded operator is . . .

. . . discussion of gradings, odd operators

3.62 Definition. . . . self-adjoint . . . essentially self-adjoint

3.63 Lemma. Every bounded (everywhere-defined) symmetric operator is self-
adjoint.

Every symmetric operator that is bounded is automatically self-adjoint in the
above sense. To verify this, the first step is to note the identity

‖(T ± iI)u‖2 = 〈(T ± iI)u, (T ± iI)u〉
= 〈(T ∓ iI)(T ± iI)u, u〉
= 〈(T2 + I)u, u〉
= ‖Tu‖2 + ‖u‖2.

which shows that the operators T ± iI are injective maps from H to H and are
bounded below. The orthogonal complement of the range of T ± iI is the kernel of
T ∓ iI, which is zero by the identity above.

3.64 Lemma. Every self-adjoint operator is closed.

The same argument shows that if D is odd-graded, as in Example ??, then each
of the operators S and T is closed.

3.65 Definition. Essentially self-adjoint.

3.66 Lemma. If D is a self-adjoint operator, then the operators (D + iI)−1 and
(D− iI)−1 commute with one another.
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. . . For example

(D2 + I)−1 := (D+ iI)−1(D− iI)−1 = (D− iI)−1(D+ iI)−1

3.67 Theorem. Let D be a self-adjoint operator on a Hilbert space H. There is a
unique homomorphism from the algebra of continuous, bounded, complex-valued
functions on R into the algebra of bounded operators on H that maps the functions
(x± i)−1 to the operators (D± iI)−1.

. . . uniqueness is easy . . . the proof of existence uses some rudimentary C∗-
algebra theory, or the equivalent, and is outlined in Exercise ??.

3.68 Lemma. Let H = H0 ⊕ H1 be a Z2-graded Hilbert space with grading
operator ε, and denote by P1 the orthogonal projection from H onto H1. If

D =

(
0 S

T 0

)
: H0 ⊕H1 → H0 ⊕H1

is an odd-graded, essentially self-adjoint operator on H, then the graph projection
for T is given by the formula

PT − P1 = D(I+D2)−1 + ε(I+D2)−1.

3.69 Lemma. Let D be an unbounded self-adjoint operator on a Hilbert space H.
If one of the resolvent operators (D± iI)−1 is compact, then so is the other.

3.70 Proposition. Let H = H0 ⊕ H1 be a Z2-graded Hilbert space with grading
operator ε, and denote by P1 the orthogonal projection from H onto H1. If

D =

(
0 S

T 0

)
is an odd-graded, essentially self-adjoint operator on H, and if D has compact
resolvent, then the closure of T is a Fredholm operator from H0 to H1.

3.71 Proposition. Suppose that the continuous field H is Z2-graded, and that on
eachHy there is given an unbounded, odd-graded, essentially self-adjoint operator

Dy =

(
0 Sy
Ty 0

)
: H0y ⊕H1y → H0y ⊕H1y

such that:

(a) each operator Dy has compact resolvent, and

(b) the resolvent

(D+ iI)−1 := {(Dy + iI)−1 : Hy → Hy}y∈Y

is a compact operator on the continuous field H.

Then the fiberwise closure of T is an unbounded Fredholm operator from the
continuous field H0 to the continuous field H1.
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3.8 EXERCISES

closed-range-ex 3.72 Exercise.

euler-characteristic-ex 3.73 Exercise. Show that if

0 // V0 // V1 // · · · // Vn // 0

is a short exact sequence of vector spaces, then
∑n
j=0(−1)

j dim(Vj) = 0.

ind-mult-ex 3.74 Exercise. Suppose that S and T are Fredholm operators on a Hilbert spaceH.
Show that ST is also a Fredholm operator and that

Ind(ST) = Ind(S) + Ind(T).

first-toeplitz-index-ex 3.75 Exercise. The stability properties of the index that are summarized by Atkin-
son’s theorem are powerful tools for computing Fredholm indices. We are going to
illustrate this straight away by proving the index theorem for Toeplitz operators on
S1. Denote by T the unit circle in C and denote byH the closed subspace of L2(T)
generated by the functions zn, for n ≥ 0. This is the Hardy subspace of L2(T).

3.76 Definition. Let f ∈ C(T). The Toeplitz operator with symbol f is the bounded
linear operator Tf : H → H on the Hardy space given by pointwise multiplication
by f, followed by orthogonal projection from L2(T) into H.

If f, g ∈ C(T), then TfTg is equal to Tfg, modulo compact operators.
This follows from the fact, which is easily checked on the dense subalgebra

of trigonometric polynomials in C(T), that the operator on L2(T) of pointwise
multiplication by any f commutes with the orthogonal projection from L2(T) onto
H, modulo compact operators.

3.77 Exercise. It follows from Atkinson’s theorem that the Toeplitz operator Tf
is Fredholm if and only if its symbol f ∈ C(T) is nowhere vanishing, and hence
invertible in C(T).

toeplitz-ex 3.78 Exercise. Show that the index of the Fredholm operator Tzn is equal to −n.

Here is the Toeplitz index theorem:

last-toeplitz-index-ex 3.79 Exercise. Let T ∈ T be a Toeplitz operator whose symbol f = σ(T) ∈ C(T)
is nowhere vanishing. Then T is a Fredholm operator, and its index is equal to
minus the winding number of f about the origin.

Proof. By Atkinson’s theorem, the index of T depends only on its symbol f =
σ(T), and in fact only on the homotopy class of f as a map from T to C \ {0}. The
group of such homotopy classes is

π1(C \ {0}) ∼= Z
with the isomorphism being given by the winding number. Since the group opera-
tion in π1(C \ {0}) may be represented by pointwise multiplication, Exercise 3.74
shows that the operation

f 7→ Ind(Tf), π1(C \ {0}) → Z
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is a group homomorphism. Now to prove the theorem it suffices to verify it on
the generator f(z) = z of π1(C \ {0}), and this is the content of Exercise 3.78
above.

abs-cont-ex 3.80 Exercise. Let T be the unbounded operator d/dx on L2(R) whose domain
is the space of square-integrable, absolutely continuous functions with square-
integrable derivatives. Prove that T is closed. (This exercise is for those who
know some function theory on the line, and in particular those who know what
an absolutely continuous function is!)

3.81 Exercise.

3.82 Exercise. If T : H0 → H1 is a closed unbounded Hilbert space operator, then

graph(T∗) = { (Tv, v) ∈ H1 ⊕H0 : v ∈ dom(T) }⊥.

compact-resolv-exercise2 3.83 Exercise. Let T be an unbounded self-adjoint operator onH. Show that T has
compact resolvent if and only if the inclusion of dom(T) (with the graph norm) into
H is a compact operator.

3.84 Exercise. If T has compact resolvent, then the set { f(T) : f = f∗ ∈
C0(R) } is a commuting set of self-adjoint, compact operators. It follows from
the spectral theorem for compact operators that there is an orthonormal basis {uj}

for H consisting of simultaneous eigenvectors for all the operators f(T). These
eigenvectors are also eigenvectors for T :

cpt-resolv-prop 3.85 Proposition. With T and {uj} as above, there are real scalars λj such that
limj→∞ |λj| = ∞ and f(T)uj = f(λj)uj, for all j. The vectors uj belong to
dom(T) (or dom(T̄), if T is essentially self-adjoint), and Tuj = λjuj, for all j.

3.86 Exercise. Suppose that T is an operator with compact resolvent and that B is
any bounded operator. The computation

(T + B+ iI)−1 = (T + iI)−1 − (T + B+ iI)−1B(T + iI)−1

shows that T + B has compact resolvent also. Since the path t 7→ T + tB is
continuous in the topology of norm resolvent convergence, the unbounded version
of Atkinson’s theorem given above shows that Ind(T + B) = Ind(T).

3.87 Exercise. If Dop denotes the operator on the field Hop obtained by reversing
the grading on H, then Ind(Dop) = − Ind(D).

3.88 Exercise. if Z is a closed subset of Y, then Ind(D) maps to Ind(D
∣∣
Z
) under

the restriction map from K(Y) to K(Z).

3.89 Exercise. . . . on Hilbert module regular operators

safex 3.90 Exercise. Show that the index of a self-adjoint Fredholm operator must be
zero. (See Remark 3.61 for the role of a grading in this situation.)

3.91 Exercise. Show that, for the formally self-adjoint operatorD of Example ??,
the range ofD± iI fails to be dense in L2[0, 1]. Trace through the discussion above
for this operator. Show that the operator D ′ = id/dx, with domain the smooth
functions f for which f(0) = f(1), is essentially self-adjoint.
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esa-def 3.92 Definition. An unbounded, formally self-adjoint operator T is essentially self-
adjoint if the operators T ± iI map dom(T) onto dense subspaces of H. An
unbounded, formally self-adjoint operator T is self-adjoint if the operators T ± iI
map dom(T) onto the whole of H.

3.93 Exercise. FIberwise invertibility versus invertibility as a family.

mult-op-ex2 3.94 Exercise. Let f be a real-valued polynomial on Rn. Show that the operator of
multiplication by f, considered as an unbounded operator on L2(Rn) with domain
equal to the smooth compactly supported functions, or the Schwartz space, is
essentially self-adjoint.

3.95 Exercise. Y = C. trivial family. Tz = z : Hz → Hz. Fredholm operator.

3.96 Exercise. What if H0 = 0. Closed? Fredholm?

3.97 Exercise. Bott element on C and Hopf line bundle

hilbert-hodge-ex 3.98 Exercise. Prove a Hilbert space version of the Hodge theorem: If T is a self-
adjoint Fredholm operator on a Hilbert space H, then the kernel of T is finite-
dimensional, the range of T is closed, and ker(T)⊕ image(T) = H.

3.99 Exercise. example of a non-selfadjoint operator

3.9 NOTES

One which is quite closely aligned with the perspective of these notes is the book of
Douglas [?], which also develops a wealth of detailed and interesting material about
Toeplitz operators. Other possibilities are the texts of Davidson [?] or Murphy [?].

Dixmier . . .
The book of Dunford and Schwarz [?] is the standard, comprehensive introduc-

tion to spectral theory, unbounded operators, and applications to classical partial
differential equations. A less massive account can be found in Rudin [?]. Our dis-
cussion of unbounded Fredholm operators is based on Kato [?]. Another useful
reference is the slender functional analysis text of Zimmer [?].
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Characteristic Classes

CharacteristicChapter
In this chapter we are going to study in more detail the characteristic classes of
vector bundles that were mentioned briefly in the last chapter. At the end of the
chapter we shall be able to formulate more precisely the signature theorem we
stated in Chapter 1 (as Theorem ??), and sketch an application to the construction
of an exotic sphere.

We shall not attempt a comprehensive treatment of the theory of characteristic
classes. Our plan is to rapidly summarize the information that we shall need; the
reader is referred to one of the standard texts on the subject for complete details
(see the notes at the end of the chapter).

4.1 CHARACTERISTIC CLASSES FOR LINE BUNDLES

4.1 Definition. A characteristic class for vector bundles (of a certain kind, for
instance rank-k complex vector bundles) is a map c which assigns to each iso-
morphism class of vector bundles V (of the given kind) over a base M a coho-
mology class c(V) ∈ H∗(M), in such a way that if f : M ′ → M is a map, then
f∗(c(V)) = c(f∗(V)).

For the purposes of these notes there will be no loss of generality if we think
of M as a compact manifold and the cohomology as de Rham cohomology. But
sometimes it is important to understand that certain characteristic classes are inte-
gral, that is, they are elements of the cohomology groups H∗(M; Z) with integer
coefficients. We shall touch on this at the end of the chapter.

Recall from Chapter 1 that the Grassmannian Gk(Cn) is the space of rank k
subspaces of Cn. It is a compact manifold. There is a canonical bundle of k-
dimensional vector spaces over Gk(Cn), and if M is any compact manifold, then
forn sufficiently large, the isomorphism classes of (continuous or smooth) complex
vector bundles onM of rank k correspond to the homotopy classes of maps fromM
toGk(Cn) via the operation which assigns to any map the pullback of the canonical
bundle.

In order to obviate the need to continually make n “sufficiently large” it is
convenient to speak of the space

Gk(C∞) = lim
n→∞Gk(Cn).

This is a legitimate topological space in its own right (when given the direct limit
topology). But for our purposes we can think of a map from a compact manifold
intoGk(C∞) as a compatible family of maps into theGk(Cn), for all large enough
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n, and we can think of a cohomology class on Gk(C∞) as a family of cohomology
classes, one on each Gk(Cn) which are compatible with one another under the
maps in cohomology induced from the inclusions Gk(Cn) ⊆ Gk(Cn+1) obtained
by regarding Cn as a subspace of Cn+1. Notice that the canonical bundles on the
Gk(Cn), for different n, are compatible with one another under these inclusion
maps. With these conventions, we shall speak of the cohomology ring of Gk(C∞),
the canonical bundle E over Gk(C∞), and so on.

If c is a characteristic class of rank k complex vector bundles then we can form
the class c(E) ∈ H∗(Gk(C∞)) associated to the canonical bundle. It determines
the characteristic class c completely since every bundle is a pullback of E along
some classifying map f : M → Gk(C∞), and c(f∗E) = f∗c(E). Moreover we
can use this same formula to define a characteristic class, starting with any class in
H∗(Gk(C∞)). These observations prove the following result:

basic-char-class-prop 4.2 Proposition. Let k be a positive integer. There is a bijection between charac-
teristic classes of rank k complex vector bundles on compact manifolds and classes
in the cohomology ring

H∗(Gk(C∞)) =
∏
p

Hp(Gk(C∞))

which associates to a characteristic class its value in H∗(Gk(C∞)) on the canoni-
cal bundle.

Let us consider the case where k = 1. The space G1(Cn) is none other than the
projective space CPn−1 of lines in Cn. So according to Proposition 4.2, in order to
determine the characteristic classes of rank-one complex vector bundles—complex
line bundles—we need to compute the cohomology ring of the complex projective
space CP∞. This we will do by computing the cohomology of the finite projective
spaces CPn−1.

Recall from Remark ?? that associated to any oriented, rank-d real vector bundle
V over a closed manifold M there is a Thom class uV in the compactly supported
de Rham cohomology groupHdc (V). Let us apply this to the real bundle underlying
the canonical line bundle on CPn−1. This real bundle has rank 2 and is oriented
as follows: if e is any non-zero local section then we deem the pair e, ie to be an
oriented local frame (the orientation so defined does not depend on e).

4.3 Definition. If V is an oriented, rank d, real vector bundle over a compact
manifold M, the Euler class of V is the image eV ∈ Hd(M) of the Thom class
uV ∈ Hdc (V) under the map Hdc (V) → Hd(M) induced from the inclusion of M
into V as the zero section.

4.4 Remark. The Euler class is a characteristic class of real, oriented vector
bundles. The name is derived from the following beautiful theorem (which we
shall not need, except to compute examples): if eTM is the Euler class of the
tangent bundle of an oriented, closed manifold, then

∫
M
eTM is equal to the Euler

characteristic ofM. This result is due to Hopf.hopf-remark
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CPn-prop 4.5 Proposition. The cohomology ring H∗(CPn−1) is the unital ring generated
by the Euler class e ∈ H2(CPn−1) of the canonical bundle, subject to the relation
en = 0.

To prove this we shall use the following important result, which will also figure
in later computations.

4.6 Theorem (Thom Isomorphism Theorem). If V is an oriented, real vector
bundle over a compact manifold M, then H∗c(V) is a free module over the ring
H∗(M) generated by the Thom class.

Proof (sketch). IfM is a point, then the result is just a restatement of the character-
istic property of the Thom class, that its restriction to each fiber of V generates the
cohomology of the fiber. Next, ifM is a contractible open manifold, then the result
follows from the case of a point, using the homotopy invariance of cohomology.1

The general result follows by choosing a suitable open cover by contractible sets,
and applying a Mayer-Vietoris argument. For more details, see [?] or [?].

4.7 Exercise. Use the Thom isomorphism theorem to prove the following unique-
ness theorem for the Thom class: if V is an oriented, rank d real bundle over M,
then there is a unique cohomology class uV ∈ Hdc (V) such that

∫
Vm
uV = 1 for

everym ∈M.

Proof of Proposition 4.5. Associated to any rank-d vector bundle over a compact
M there is a long exact cohomology sequence

. . . // H
p
c (V) // Hp(D(V)) // Hp(S(V)) // H

p+1
c (V) // · · ·

where D(V) is the bundle of closed d-disks obtained from V by adding a sphere
at infinity to each fiber of V , and S(V) is the bundle of added (d − 1)-spheres.
(These spaces are smooth manifolds in a natural way: if we put an inner product
on V then D(V) is diffeomorphic to the closed unit ball bundle and S(V) is
diffeomorphic to the unit sphere bundle.) If V is oriented, we may incorporate the
Thom isomorphism H

p
c (V) ∼= Hp−d(M) into this long exact sequence. Observing

that D(V) is homotopy equivalent toM, we obtain the Gysin long exact sequence

. . . // Hp−d(M)
eV // Hp(M)

// Hp(S(V)) // Hp−d+1(M) // · · ·

in which the map labeled eV is multiplication by the Euler class. When M is the
complex projective space CPn and V is the canonical line bundle, the space S(V)
may be identified with the unit sphere in Cn. Knowing the cohomology of the unit
sphere, it is now easy to deduce the result.

Passing to the limit as n → ∞ we obtain the following result:

1When dealing with non-compact manifolds we should use de Rham cohomology with compact
supports only in the fiber direction of V .
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4.8 Theorem. The ring H∗(G1(C∞)) is isomorphic to the ring of formal power
series in the Euler class of the canonical line bundle. As a result, the characteristic
classes of complex line bundles are in one-to-one correspondence with formal
power series.

To put it another way, the only characteristic classes of a complex line bundle are
the Euler class of the underlying real, oriented plane bundle, and the other classes
obtained from it by simple algebraic operations (squaring, cubing, etc, and linear
combinations of these).

While this may seem disappointingly (or reassuringly) simple, there are nonethe-
less some interesting questions to be answered. For instance, the set of isomor-
phism classes of complex line bundles overM has the structure of an abelian group.
The group operation is tensor product of line bundles, and the inverse of L is the
class of the complex conjugate line bundle2 L. How is this group structure reflected
in the theory of characteristic classes?

euler-tensor 4.9 Proposition. If L and L ′ are line bundles over M then eL⊗L ′ = eL + eL ′ .
Moreover if L is any line bundle onM then eL = −eL.

Proof. We shall prove the first relation; the second follows from the easily verified
fact that the Euler class of the trivial bundle is zero. Let us consider first the
“universal” situation in which M = G1(Cn) and L and L ′ are both the canonical
line bundle. Construct over M ×M the line bundle L ′′ whose fiber over a pair
(m,m ′) is Lm⊗L ′m ′ . What is its Euler class? The Kunneth formula in cohomology
says that wedge product of forms sets up an isomorphism

Hr(M×M) ∼= ⊕p+q=rH
p(M)⊗Hq(M).

In our case we are interested in the formula
H2(M×M) ∼= H2(M)⊗H0(M) ⊕ H0(M)⊗H2(M)

(there are no H1(M) terms since H1(M) is zero for projective space). By restrict-
ing L ′′ toM× {pt} and {pt}×M we see that

eL ′′ = eL ⊗ 1+ 1⊗ eL ′ .

If we now restrict to the diagonal M ⊆ M × M, over which L ′′ restricts to
L ⊗ L ′, then—using once again functoriality of the Euler class—we obtain the
formula eL⊗L ′ = eL + eL ′ . In the case of general M and general line bundles,
we pull back the formula we have just proved via the product of classifying maps
M×M → G1(Cn)×G1(Cn).

4.2 CHARACTERISTIC CLASSES OF HIGHER RANK BUNDLES

We are going to approach the characteristic classes of higher rank complex bundles
by looking first at those higher rank bundles which can be decomposed into direct
sums of line bundles.

2A rank-d complex line bundle can be thought of as a rank-2d real vector bundle equipped with
an endomorphism J (‘multiplication by i’) such that J2 = −1. The conjugate bundle has the same
underlying real bundle, but J is replaced by −J.
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There is a natural map

fk : G1(Cn)×G1(Cn)× · · · ×G1(Cn)︸ ︷︷ ︸
k times

→ Gk(Ckn)

which associates to a list of k points in G1(Cn) the direct sum of the k lines in
Cn that the points represent. The direct sum can be considered as a k-dimensional
subspace of Ckn = Cn ⊕ · · · ⊕ Cn and therefore as a point of Gk(Ckn).

The pullback of the canonical bundle over Gk(Ckn) along fk is the direct sum
of the canonical line bundles on the individual factor spaces G1(Cn). In particular,
the pullback is a direct sum of line bundles.

Let us consider the corresponding map on cohomology:

f∗k : H∗(Gk(Ckn)) → H∗(G1(Cn)× · · · ×G1(Cn)).

The symmetric group on k letters, Σk, acts on G1(Cn) × · · · × G1(Cn) by
permutations, and if we compose fk with any permutation, then we obtain a map
which is homotopy equivalent to fk. As a result, the map f∗k takes H∗(Gk(Ckn)
into the permutation-invariant part of H∗(G1(Cn)× · · · ×G1(Cn)).

Passing to the limit as n → ∞, we obtain a canonical homomorphism

f∗k : H∗(Gk(C∞)) → [H∗(G1(C∞)× · · · ×G1(C∞))]
Σk .

Now by the Kunneth formula,

H∗(G1(C∞)× · · · ×G1(C∞)) ∼= H∗(G1(C∞))⊗ · · · ⊗H∗(G1(C∞)),

and we saw in the last section that H∗(G1(C∞)) is a power series ring on one
degree-two generator. So f∗k maps the cohomology ring of Gk(C∞) into the
ring of symmetric power series in k degree-two variables. In fact this map is an
isomorphism:

split1 4.10 Theorem. The ring homomorphism f∗k identifiesH∗(Gk(C∞)) with the permutation-
invariant elements inH∗(G1(C∞)×· · ·×G1(C∞)). Thus the ringH∗(Gk(C∞)) is
isomorphic to the ring of formal power series in degree 2 indeterminates x1, . . . , xk
which are symmetric under permutation of the xj.

We shall not prove this result here (but see Remark ?? in Section ?? for some
comments on the how it can be done).

The theorem implies that characteristic classes of rank k complex vector bundles
correspond to symmetric power series in k variables. How does this correspon-
dence operate? If F(x1, . . . , xk) is a symmetric power series then according to the
theorem there is a unique characteristic class c of rank k bundles such that if E is
the k-fold direct sum of canonical line bundles on G1(C∞)× · · · ×G1(C∞), then
c(E) = F(eE1

, . . . , eEk
), where eEj

is the Euler class of the canonical line bundle
over the jth copy ofG1(C∞). More generally, the same formula holds for any bun-
dle which is a direct sum of line bundles. This prescription does not immediately
tell us how the characteristic class c behaves on bundles which are not the direct
sum of line bundles, but as we shall see in the next section and also later in the
notes, it is frequently possible to reduce computations to the situation in which a
vector bundle does split as a sum of line bundles. For this reason, Theorem 4.10 is
sometimes called the “splitting principle.”
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4.11 Remark. Even though we used de Rham theory to define the Euler class,
which was our starting point in characteristic class theory, it is not necessary to
restrict to spaces M which are smooth manifolds when defining characteristic
classes. Indeed, assuming that an extension of cohomology to general spaces has
been provided, we can extend the definition of any characteristic class to bundles
over general spaces X by the formula c(E) = f∗c, where f : X → Gk(C∞) is the
classifying map3 for E and c ∈ H∗(Gk(C∞)) is the cohomology class determined
by the characteristic class according to Proposition 4.2.

4.3 THE CHERN CHARACTER

chern-def 4.12 Definition. The Chern character is the characteristic class of rank k vector
bundles which corresponds to the symmetric formal power series

exp(x1) + exp(x2) + · · ·+ exp(xk)

This definition applies to any positive integer k, so we have really defined a
family of characteristic classes, one for each k. If E is any complex vector bundle
over M we shall denote by ch(E) ∈ H∗(M) its Chern character, obtained by
applying the formula in the definition for the appropriate k. According to the results
of the previous section, the Chern character is characterized by the fact that if E is
a direct sum of line bundles, E = L1 ⊕ · · · ⊕ Lk, then

ch(E) = exp(eL1
) + · · ·+ exp(eLk

),

where eLj
is the Euler class of Lj.

The Chern character is important because it is a sort of “ring-homomorphism”
from vector bundles to cohomology:

4.13 Proposition. Let E and F be complex vector bundles overM. Then

ch(E⊕ F) = ch(E) + ch(F)

and

ch(E⊗ F) = ch(E) ch(F).

Proof. It suffices to prove these identities in the case where E and F are the
pullbacks to the product Gk(C∞)×G`(C∞) of the universal rank k and ` bundles
on the two factors (compare the proof of Proposition 4.9). By the Kunneth formula
and the theorem in the last section, the classifying map

fk,` : G1(C∞)×G1(C∞)× · · · ×G1(C∞)︸ ︷︷ ︸
k+ ` times

→ Gk(C∞)×G`(C∞)

is injective on cohomology. It therefore suffices to verify the identities which
appear in the statement of the proposition inside the cohomology of the product
of the G1(C∞). In particular, it suffices to prove the formula when E and F are

3The space X does need to be regular enough that vector bundles are classified by maps into
Gk(C∞); if X is paracompact and Hausdorff this is the case.
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complex vector bundles which decompose as direct sums of line bundles. But for
a direct sum of line bundles, ch(L1 ⊕ · · · ⊕ Lp) = exp(eL1

) + · · · + exp(eLp).
This makes the relation ch(E ⊕ F) = ch(E) + ch(F) obvious, and reduces the
general relation ch(E⊗F) = ch(E) ch(F) to the special case of line bundles. In that
special case the relation ch(E⊗ F) = ch(E) ch(F) follows from Proposition 4.9 by
exponentiation.

4.4 MULTIPLICATIVE CHARACTERISTIC CLASSES

mult-class-def 4.14 Definition. A characteristic class C for complex vector bundles is multiplica-
tive if

C(E⊕ F) = C(E) · C(F),

for any vector bundles E and F.genus-def

Strictly speaking, a multiplicative characteristic class is, like the Chern character,
a whole family of characteristic classes, one for each dimension of complex vector
bundle. We could equally well have defined the notion of additive characteristic
class by replacing the equation in Definition 4.14 with the equation C(E ⊕ F) =
C(E)+C(F). If we did so then the Chern character would be an example. However,
the Chern character aside, we shall have more use for multiplicative than additive
classes.

The great virtue of multiplicative (or additive) classes is that they may be deter-
mined by computation of a very limited set of examples, as the following proposi-
tion demonstrates.

4.15 Proposition. Two multiplicative characteristic classes are equal if they are
equal on the canonical line bundles over G1(C∞).

Proof. To show that two classes are equal, it suffices to show that they are equal
on the universal bundles over Gk(C∞). But by the splitting principle, as illustrated
in the last section, it then suffices to show they are equal for direct sums of line
bundles. By multiplicativity, we can then reduce to single line bundles; and by
universality it finally suffices to identify the two classes on the canonical line bundle
over G1(C∞).

4.16 Proposition. Let f(x) be a formal power series in x. There is a unique
multiplicative class Cf such that, on line bundles,

Cf(L) = f(eL) ∈ H∗(M),

where eL is the Euler class.genus-classification

Proof. On rank k bundles, let Cf be the characteristic class associated to the
symmetric formal power series

F(x1, . . . , xk) = f(x1)f(x2) · · · f(xk) ∈ H∗(Gk(C∞)).

By the splitting principle, as illustrated in the previous section, this defines a
multiplicative characteristic class.
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4.17 Remark. Usually one confines attention to multiplicative classes correspond-
ing to power series for which F(1) = 1 (these are sometimes called genera). These
are the multiplicative classes which assign the value 1 ∈ H0(M) to any trivial bun-
dle. But later on we will encounter multiplicative classes which assign the value
(−1)rank(E) ∈ H0(M) to any trivial bundle.

4.5 THE TODD CLASS

The most important multiplicative class in index theory is the Todd class, which is
defined as follows.

4.18 Definition. The Todd class is the multiplicative characteristic class which is
associated to the power series

x

1− e−x
= 1+

1

2
x+

1

12
x2 +

1

720
x4 + · · · .

4.6 EXERCISES

4.19 Exercise. Let V be an oriented real vector bundle. Show that if −V denotes
the same bundle with the opposite orientation, then e−V = −eV . Deduce that the
Euler class of an odd-rank, oriented real vector bundle is zero. (Hint: Consider the
map v 7→ −v.)

4.20 Exercise. If C is a multiplicative characteristic class for complex vector
bundles, then so is the class C defined by C(E) = C(Ē). If C corresponds to
the formal power series f(x), show that C corresponds to the formal power series
f(−x).conj-ex

4.21 Exercise. Show that no odd powers of x higher than the first appear in this
expansion. (The coefficient of xn for even n is Bn/n!, where Bn is the n’th
Bernoulli number.)

As we shall see, it is a consequence of the Atiyah-Singer index theorem that ifM
is any compact complex manifold, then

∫
M

Todd(TM) is an integer. The following
exercises verify this in the case whereM = CPn.

4.22 Exercise. Show that if V and W are oriented, real vector bundles, then
eV⊕W = eVeW .

extan 4.23 Exercise. Show that there is an isomorphism of complex vector bundles
TCPn ∼= Hom(L, L⊥), where L⊥ denotes the orthogonal complement of L in the
trivial bundle with fiber Cn+1. Deduce that TCPn ⊕ C ∼= (n+ 1)L.

4.24 Exercise. Use the previous exercises and the Hopf Theorem (Remark 4.4) to
prove that

∫
CPn e

n
L = (−1)n.
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4.25 Exercise. Show that
∫

CPn Todd(TCPn) = 1. (Using Exercise 4.23, this
boils down to showing that the coefficient of xn in the Taylor series expansion of
(x/(1−e−x))n+1 is equal to 1— a property which actually characterizes the Todd
power series. To do the computation, use Cauchy’s theorem to write the coefficient
of xn as a contour integral, and evaluate the contour integral by an appropriate
substitution.)todd-proj

4.7 NOTES

The classic exposition of the theory of characteristic classes is [?]. Other texts that
the reader might consult are Bott and Tu [?] and Hatcher [?].

The idea of a genus (a multiplicative class) was invented by Hirzebruch: see [?]
and [?]. For exotic spheres see [?, ?].
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Chapter Five

Elliptic Partial Differential Operators

EllipticChapter
In this chapter we shall lay the foundations for index theory by developing the
analysis of elliptic linear partial differential operators on manifolds. In particular,
we shall complete the proof of the Hodge theorem (Theorem ??), which we
discussed in Chapter ??.

The basic structure of the theory of (elliptic) differential operators resembles
that of (Fredholm) Toeplitz operators (see Theorem ??). As in the case of Toeplitz
operators, we shall associate a “symbol” to each differential operator on a manifold.
The key properties that the “symbol” should possess are these:

(a) The algebra of the symbols should be simpler than the algebra of the operators
(ideally, the algebra of symbols should be commutative or at least closely
related to a commutative algebra).

(b) The symbol of an operator should determine that operator “modulo lower order
terms” (compact operators in the Toeplitz case).

The “elliptic” operators will then be those whose symbol is invertible. Property (b)
will then imply that such operators are invertible “modulo lower order terms”, and
a suitable version of Atkinson’s theorem translates “invertible modulo lower order”
into “Fredholm”.

There are several ways to present this theory and in keeping with our general
philosophy we have chose one that maximizes the role of Hilbert spaces and C∗-
algebras. At the end of the chapter we shall relate this to the classical approach
involving smooth functions.

5.1 LINEAR PARTIAL DIFFERENTIAL OPERATORS AS HILBERT SPACE
OPERATORS

We will use the theory of unbounded operators on Hilbert space to analyze partial
differential operators on manifolds, such as the de Rham differential d which has
already made its appearance in Chapter ??.

Let M be a smooth manifold and let S be a smooth complex vector bundle over
M. A complex-linear operatorD : C∞(M,S) → C∞(M,S) acting on the space of
smooth sections of S is a linear partial differential operator if:

(a) For every smooth section u of S and open set V ⊆M, if u vanishes on V then
Du vanishes on V also. (Informally, we can express this by saying that the
restriction of Du to V depends only on the restriction of u to V .)
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(b) In any coordinate neighborhood of M and local trivialization of S, where
sections of S can be written as vector-valued functions of n real variables,
the operator D has the form

Du =
∑

|α|≤k

aα∂
αu

for some k ≥ 0. Here α = (α1, . . . , αn) is a multi-index composed of non-
negative integers, ∂α is shorthand for ∂α1

1 · · ·∂αn
n , where ∂j is the partial

derivative in the jth coordinate direction, and |α| = α1 + · · · + αn. The
quantities aα are smooth, matrix-valued functions. (Note that the idea of a
“local form” for D makes sense because of (a).)

We shall be mainly interested in order one linear partial differential operators—
those for which we can take k = 1 in the local representation above. We shall
concentrate on these in part because the analysis of order one operators is somewhat
simpler than the analysis of higher order operators, and in part because most of the
fundamental examples to which the index theorem applies are order one operators.

It will be crucial to consider operators which act on sections of vector bundles
rather than on scalar functions, because except in low dimensions there are no
operators acting on scalar functions which are interesting from the point of view
of index theory. In contrast, we shall see several very interesting constructions of
non-trivial operators on bundles, even when we restrict attention to operators of
order one.

Suppose now thatD is a linear partial differential operator acting on the sections
of a (complex) vector bundle S over a smooth manifold M. Suppose also that S is
provided with a hermitian structure and thatM is provided with a smooth measure.
In this case we can form the Hilbert space L2(M,S) of square-integrable sections
of S by completing the space of smooth, compactly supported sections in the norm
induced from the inner product

〈u, v〉 =

∫
M

〈u(m), v(m)〉dm.

Let us regardD as an unbounded Hilbert space operator on L2(M,S) with domain
the smooth, compactly supported sections of S.

Every linear partial differential operator D has a formal adjoint D†, a linear
partial differential operator such that

〈u,D†v〉 = 〈Du, v〉,

for all smooth and compactly supported sections u and v. A linear partial differen-
tial operator is formally self-adjoint if and only if D = D†.

We shall say that D is compactly supported if there is an open set in M with
compact complement such thatD vanishes identically on sections supported in that
open set. Having set this terminology, we can state the main theorem in this section:

self-adj-thm 5.1 Theorem. A compactly supported, formally self-adjoint, order one, linear
partial differential operator on a manifold is essentially self-adjoint.
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Let us begin by introducing some terminology concerning “generalized solu-
tions” of linear partial differential equations. Let D be a linear partial differential
operator on a bundle S over a manifoldM. Let u, v ∈ L2(M,S). Then:

(i) We say that Du = v in the strong sense (or that u is a strong solution of this
equation) if there is a sequence {un} of smooth, compactly supported sections
such that un → u in L2(M,S) and Dun → v in L2(M,S).

(ii) We say that Du = v in the weak sense (or that u is a weak or distributional
solution)) if, for every smooth, compactly supported section w, we have
〈D†w,u〉 = 〈w, v〉. (The idea here is to think of 〈D†w,u〉 as a substitute
for 〈w,Du〉, which is not necessarily well-defined since u may not belong to
dom(D).)

Both of these notions allow us to give a meaning to the equation Du = v for at
least some non-smooth sections u and v.

5.2 Exercise. Show that every strong solution to Du = v is a weak solution.

The relevance of these notions to the theorem that we want to prove is the
following.

5.3 Lemma. Let D be a formally self-adjoint linear partial differential operator
on a manifold, as above. Consider D as an unbounded Hilbert space operator,
with domain the space of compactly supported sections. ThenD is essentially self-
adjoint if and only if every weak solution of Du = v is also a strong solution.

Proof. Suppose that every weak solution is a strong solution. To show that D is
essentially self-adjoint we must show that the operators D ± iI have dense range.
However, the orthogonal complement of the range of D ± iI is, by definition, the
space of weak solutions of the equation Dv = ±iv. Such a solution must also be
a strong solution, so there exists a sequence vn of smooth, compactly supported
sections with vn → v and Dvn → iv. Now

0 = lim
n→∞ ‖(D∓ iI)vn‖2 ≥ lim

n→∞ ‖‖vn‖2 = ‖v‖2.

Thus v = 0. It follows that the ranges of D ± iI are dense and so D is essentially
self-adjoint, as required.

Since we won’t need the converse direction of this lemma, we leave it as an
exercise for the reader.

The reader should review the discussion before Definition 3.92 in the light of this
proof. It is now clear that Theorem 5.1 will follow from

weak=strong-lemma 5.4 Lemma. Let D be an order one, linear partial differential operator and let u
and v be compactly supported elements of L2(M,S). IfDu = v in the weak sense,
then Du = v in the strong sense.

Proof. Let us suppose first that u and v are supported within a coordinate neigh-
borhood U of M over which the bundle S is trivialized. By shrinking U slightly,
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we may identifyU with an open set in Rn in such a way that the restriction ofD to
U identifies with the restriction to U of some compactly supported order one oper-
ator D0 on Rn, acting on vector-valued functions. We shall show that if Du = v

in the weak sense, then there are smooth, vector-valued functions un, compactly
supported in U, such that un → u and D0un → v.

To do this, we use the existence of a family {Kε}ε>0 of bounded operators on
L2(Rn) with the following properties:

(i) For every v ∈ L2(Rn) and every ε > 0, Kεv is a smooth function and
supp(Kεv) is contained within an ε-neighbourhood of supp(v).

(ii) Kεv → v as ε → 0, for every L2-function v;

(iii) The commutator [D0, Kε] extends to a bounded operator on L2(Rn), for every
ε > 0, and [D0, Kε]v → 0, for every L2-function v.

To construct such a family, let f be a smooth, compactly supported function on
Rn with total integral 1, and for ε > 0 take Kε to be the operator of convolution
with ε−nf(ε−1x). Since D0u = v in the weak sense, it follows that D0Kεu =
Kεv + [D0, Kε]u in the honest sense. We see that D0Kεu → v, while Kεu → u,
so we can set un = K1/nu.

In the general case, assume Du = v in the weak sense. Choose compactly
supported smooth functions σ1, . . . , σk on M such that

∑
σj = 1 on the support

of D and such that each σj is supported in a coordinate chart. Then Dσju =
σjv + [D,σj]u in the weak sense (note that the commutator [D,σj] is a bounded
operator), and hence also in the strong sense by the argument just given. Summing
over j, and using the fact that

∑
[D,σj] = 0, we see that Du = v in the strong

sense, as required.

5.2 CONSTANT COEFFICIENT OPERATORS AND THE SYMBOL
constant-coeff-sec

Let M be a smooth manifold and let S be a vector bundle over M. A (smooth)
section of S can be multiplied by a (smooth) function on M, yielding another
section of S; to put this another way, the space C∞(S) of sections is a module
over the algebra C∞(M) of smooth functions. (Later, we shall see that if M is
compact it is a finite, projective module.)

Now let D be an order one, linear partial differential operator on M acting on
the smooth sections of the bundle S. Then D : C∞(S) → C∞(S) is a linear map,
that is, a homomorphism of vector spaces. Is it also a homomorphism of modules
over C∞(M)? — in other words, if f is a smooth function onM acting on sections
of S by pointwise multiplication, do the operatorsDf and fD from C∞(S) to itself
agree? The product rule for differentiation shows that the answer is “no”. But we
do have

5.5 Proposition. Let D be a first order linear partial differential operator on
sections of a bundle S, as above. Let π : T∗M → M denote the projection of
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the cotangent bundle. There exists a unique section σD of π∗ End(S) having the
following properties

(a) σD is homogeneous of degree 1 in the cotangent vectors, that is, σD(x, tξ) =
tσD(x, ξ) for all (x, ξ) ∈ T∗M,

(b) For any real-valued f ∈ C∞(M), acting on sections of S by pointwise multi-
plication, any any section s of S, we have

D(fs) − fDs = (1/i)σD(df)s.

In particular, the commutator Df− fD is an endomorphism of S.

(c) For all (x, ξ) we have

σD†(x, ξ) = σD(x, ξ)∗

where D† denotes the formal adjoint of D.

5.6 Definition. The section σ defined by the above proposition is called the symbol
of D.

The appearance of i =
√

−1 in the definition of the symbol is purely conven-
tional. It makes the symbol of a (formally) self-adjoint operator a self-adjoint en-
domorphism of S.

Proof. We compute in local coordinates. Write

D =

n∑
j=1

aj∂j + b

where the aj and b are matrix-valued functions. A short calculation using the
product rule for derivatives yields

Df− fD =

n∑
j=1

aj∂f/∂xj = (1/i)σ(df)

where

σ(x, ξ) =

n∑
j=1

ajξj

which is of the form required. The formula D(fs) − fDs = (1/i)σD(df)s shows
that σ is globally well-defined (independent of the choice of coordinates). As for
the adjoint formula, note that

(Df− fD)† = fD† −D†f

using the properties of adjoints and the fact that f† = f.

5.7 Remark. More generally we may associate to a differential operator of order n
a principal symbol which reflects the highest order behavior of the operator and is a
section of π∗ End(S) which is homogeneous of degree n. The principal symbol of a
composite of differential operators is then the composite of their principal symbols.
In this book, however, we shall largely restrict attention to operators of order one.
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5.8 Definition. The first order operatorD is elliptic if for every nonzero cotangent
vector (x, ξ), the symbol σD(x, ξ) is an invertible endomorphism of S. If this
condition holds only for x belonging to some open subset U ⊆ M, we shall say
that D is elliptic on U.

5.9 Example. Let us consider the operator D = d + d∗ that we introduced in the
Chapter ??. To compute its symbol we shall begin by computing the symbol of the
de Rham differential d. According to the definition, if df = η then

σd(η)ω = i[d, f]ω = iη∧ω.

So the symbol of d is given in a very simple way by wedge product of forms. Since
the symbol of the adjoint d∗ is the adjoint of the symbol d, we find that the symbol
of the operator D = d+ d∗ is given by the formula

σD(η)ω = iη∧ω− iη ω,

where the operatorω 7→ η ω is the adjoint of the mapω 7→ η∧ω.

5.10 Lemma. Let V be a finite-dimensional inner product space and let S = ∧∗V .
If v ∈ V , then the operator c : S → S given by the formula c(v)(x) = v∧ x− v x

has the property that c(v)2 = −‖v‖2I.signature-symbol-lemma

Proof. We can assume that v is a unit vector and the first vector in an orthonormal
basis v1, . . . , vk for V . The products vi1 ∧ · · · ∧ vip , where i1 < · · · < ip, form
an orthonormal basis for S = ∧∗V , and in this orthonormal basis the operator
x 7→ v∧ x acts as

vi1 ∧ · · ·∧ vip 7→
{
v∧ vi1 ∧ · · ·∧ vip if i1 6= 1

0 if i1 = 1.

The operator is therefore a partial isometry, and its adjoint is therefore given by the
formula

vi1 ∧ · · ·∧ vip 7→
{
vi2 ∧ · · ·∧ vip if i1 = 1

0 if i1 6= 1.

The lemma follows immediately from these formulas.

As a result of this computation, the square of the symbol of D = d + d∗ is
‖η‖2I. Thus, the symbol is invertible for all η 6= 0—indeed up to a scalar multiple
the symbol is its own inverse—and as a result D is elliptic.

We begin by looking at the simplest sorts of partial differential operators, the
constant coefficient operators on Rn. Unless otherwise specified the domain
of such an operator will always be the space of smooth, compactly supported
functions. It is important to consider operators that operate on vector-valued
functions (so that our constant coefficients will be constant matrices). As usual
we shall restrict attention to such operators of order one. These have the form

D =

n∑
j=1

aj∂j + b

where the aj and b are constant matrices.
The definitions of the preceding section now take the following form:
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elliptic-constant 5.11 Definition. The symbol of a constant coefficient, order one partial differential
operator D =

∑n
j=1 aj∂j + b is the matrix-valued function

σ(ξ) = i
∑

ajξj.

The operator D is elliptic if, for all ξ 6= 0, the matrix σ(ξ) is invertible.

5.12 Example. Consider the operator ∂ = ∂1 + i∂2 on R2. The symbol of this
operator is the (one by one) matrix iξ1 − ξ2, which is a nonzero complex number
for all nonzero ξ. Therefore ∂ is elliptic.

5.13 Definition. We shall say that a bounded operator T on L2(Rn) is locally
compact if, for every function g ∈ C0(Rn) (thought of as acting on L2(Rn) as a
multiplication operator), the operators g · T and T · g are compact.

5.3 ELLIPTIC CONSTANT COEFFICIENT OPERATORS

The following theorem is the main result of this section:

main-const-coeff-thm 5.14 Theorem. Let D be a formally self-adjoint, constant coefficient, order one
partial differential operator on Rn. ThenD is essentially self-adjoint. Moreover, if
D is elliptic, then for every f ∈ C0(R) the operator f(D) is locally compact.

We shall prove the theorem using the Fourier transform. Recall that if u is a
smooth function on Rn, then the Fourier transform û of u is given by

û(ξ) =
1

(2π)n

∫
Rn

e−iξ·xu(x)dx.

The Plancherel theorem states that the Fourier transform extends to a unitary
isomorphism from the Hilbert space of L2(Rn) to itself. The Fourier transform also
maps the space of Schwartz-class functions on Rn isomorphically onto itself. The
Fourier transform converts differentiation (in a certain coordinate direction) into
multiplication (by the corresponding coordinate function). Thus we may rewrite a
constant coefficient operator D =

∑
j aj∂j + b in terms of the Fourier transform

and the symbol of D, as follows:

(D̂u)(ξ) = i
∑

ajξjû(ξ) = σ(ξ)û(ξ) + bû(ξ). (5.1) xdisp-eq

The Fourier transform also converts pointwise multiplication of functions into
convolution of their Fourier transforms: if v is smooth and compactly supported,
then

ûv(ξ) = û ∗ v̂(ξ) = (2π)n
∫

Rn

û(ξ− η)v̂(η)dη.

basic-compactness-lemma 5.15 Lemma. The composite of the operator of convolution by a Schwartz-class
function with the operator of pointwise multiplication by a C0-function is a com-
pact Hilbert space operator.
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Proof. By an approximation argument, it suffices to prove the lemma in the case
where both the Schwartz-class function φ and the C0-function ψ are smooth and
compactly supported. In this case the composition is given by the integral operator

Kθ(ξ) = (2π)n
∫

Rn

κ(ξ, η)θ(η)dη,

where κ(ξ, η) = ψ(ξ)φ(ξ − η). The kernel function κ(ξ, η) is smooth and
compactly supported; this is a well-known criterion for the compactness of K.

Proof of Theorem 5.14. An approximation argument shows that the domain of the
closure of D contains the Schwartz-class functions. To prove the first part of the
theorem it therefore suffices to show that the operatorDwith domain the Schwartz-
class functions is essentially self-adjoint. Using the Fourier transform, we see
that D is unitarily equivalent to the operator of multiplication by a polynomial,
with domain the Schwartz-class functions. It follows from Exercise 3.94 that D is
essentially self-adjoint.

Assume now that D is elliptic and that g ∈ C∞
c (Rn). Using the Fourier

transform, D is unitarily equivalent to the operator of multiplication by σ + b,
where σ is the symbol of D (see Equation 5.1). Hence if f ∈ C0(R), then f(D) is
unitarily equivalent to the operator of multiplication by f(σ + b). Under Fourier
transform, the operator of pointwise multiplication by g corresponds to the operator
of convolution by the Schwartz-class function ĝ. The hypothesis of ellipticity
implies that the continuous function f(σ + b) on Rn vanishes at infinity. The
required compactness property therefore follows from Lemma 5.15.

5.4 ELLIPTIC OPERATORS ON MANIFOLDS
ell-ops-mflds-sec

We are now going to consider formally self-adjoint partial differential operators
D =

∑
aj∂j+b on Rn with variable coefficients. For simplicity we shall assume

that the smooth, matrix-valued functions aj and b are compactly supported. By
Theorem 5.1, this implies that D is essentially self-adjoint. We are going to prove
the following result, which parallels Theorem 5.14:

var-coeff-thm 5.16 Theorem. Let D be a formally self-adjoint, compactly supported, order one,
linear partial differential operator on Rn. Then D is essentially self-adjoint.
Moreover, if D is elliptic on an open set U, then for every f ∈ C0(R) the operator
f(D) is locally compact on U.

The conclusion means, more precisely, that f(D) · g and g · f(D) are compact
for all f ∈ C0(U). We shall prove the theorem by the “method of freezing coeffi-
cients”. That is, at each point x ∈ Uwe shall compareDwith the (elliptic) constant
coefficient operator Dx on Rn whose coefficients agree with the coefficients of D
at x. The main technical result that we need is as follows:

local-elliptic-lemma 5.17 Lemma. Let D =
∑
aj∂j + b be a formally self-adjoint, compactly sup-

ported, order one, linear partial differential operator on Rn, and assume thatD is
elliptic over an open setU. Let x ∈ U and letDx be the constant coefficient elliptic
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operator
∑
aj(x)∂j + b(x). For every ε > 0 there is a function g ∈ C0(Rn) such

that g(x) = 1 and

‖(tD+ iI)−1 · g− g · (tDx + iI)−1‖ < ε,
for all sufficiently small t > 0.

We shall prove this in a moment. But first, we shall apply it to Theorem 5.16
using a C∗-algebraic localization principle which will also feature in a related
computation in Chapter ??. First we introduce some terminology. LetA be a unital
C∗-algebra, letX be a locally compact Hausdorff space, and letα : C0(X) → A be a
unital ∗-homomorphism. Let a ∈ A be an element that commutes with α(C0(X)).
We will say that a is null at x ∈ X if for every ε > 0, there is a function h ∈ C0(X)
such that h(x) = 1 and ‖α(h)a‖ < ε.

cstar-lemma 5.18 Lemma. With the above notation, suppose that a is null at every point of
some open subset U ⊆ X. Then α(g)a = 0, for every g ∈ C0(U).

Proof. By replacing a with aa∗ we can assume that a is positive. By replacing X
with U we may assume U = X. Fix some g ∈ C0(X). The C∗-algebra B generated
by α[C0(X)] and a is commutative. There is therefore some ∗-homomorphism
φ : B → C such that

‖α(g)a‖ = φ(α(g)a) = φ(α(g))φ(a).

The composition φ ◦ α : C0(X) → B is evaluation at some x ∈ X or zero. If it
is zero, we are done. Otherwise, fix ε > 0 and choose h such that h(x) = 1 and
‖α(h)a‖ < ε. We get

‖α(g)a‖ = φ(α(g))φ(a) = φ(α(h))φ(α(g))φ(a)

= φ(g)φ(α(h)a)

< φ(g)ε,

and hence α(g)a = 0.

Proof of Theorem 5.16, assuming Lemma 5.17. Let g ∈ C0(U). We are going to
prove that g · f(D) defines the zero element of the Calkin algebra B(H)/K(H).

LetA be the quotient of the C∗-algebra of bounded, continuous maps from (0, 1]
to the Calkin algebra B(H)/K(H) by the ideal of continuous maps from (0, 1] to
B(H)/K(H) which vanish at 0. Let α : C0(Rn) → A be the ∗-homomorphism
given by the natural action of functions on Rn as multiplication operators. Let
a ∈ A be the element defined by the function t 7→ (tD+ iI)−1. We shall begin by
verifying that α(g)a = 0 in A.

The identity

[(tD+ iI)−1, h] = −t(tD+ iI)−1[D,h](tD+ iI)−1

shows that a commutes with the range of α. Now let x ∈ U and let Dx be the
constant coefficient operator defined, as in Lemma 5.17, by freezing the coefficients
of D at x. Let ax ∈ A be defined by the function t 7→ (tDx + iI)−1. By
Theorem 5.14, the operators (tDx + iI)−1 are locally compact, and therefore
axα(g) = 0 ∈ A for all g ∈ C0(Rn).
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Now we apply the yet-to-be-proved Lemma 5.17 to see that for each x ∈ U and
each ε > 0 there is gx ∈ C0(Rn) with gx(x) = 1 and ‖α(gx)a − axα(gx)‖ < ε.
The second term inside the norm here is zero in A, as we just observed. Thus
‖α(gx)a‖ < ε. Now we can apply Lemma 5.18, which proves that α(g)a = 0 in
A, as we claimed.

To complete the proof we note that

g · f(D) = −i lim
t→0g · f(D)(tD+ iI)−1

= −i lim
t→0g · (tD+ iI)−1f(D).

According to the result just proved, the last limit is zero in the Calkin algebra.
Therefore g · f(D) is zero in the Calkin algebra too, and hence is a compact
operator.

It therefore remains to prove Lemma 5.17.

5.19 Definition. Let u be a smooth, compactly supported function on Rn. The
Sobolev 1-norm of u is the quantity ‖u‖1 defined by

‖u‖21 =
1

(2π)n

∫
Rn

(1+ |ξ|2)|û(ξ)|2 dξ,

where û denotes the Fourier transform. The Sobolev spaceW1(Rn) is the comple-
tion of the smooth, compactly supported functions in the Sobolev norm.

By the Plancherel theorem, ‖u‖1 is greater than the L2-norm of u and the
identity map on smooth, compactly supported functions extends to an embedding
ofW1(Rn) into L2(Rn) as a dense subspace.

first-sobolev-lemma 5.20 Lemma. IfD is a formally self-adjoint, constant coefficient, order one, ellip-
tic operator on Rn, then the operator (D + iI)−1 maps L2(Rn) continuously into
W1(Rn).

Proof. It follows from the Plancherel theorem that ‖(D+iI)−1u‖1 ≤ C ·‖u‖.

second-sobolev-lemma 5.21 Lemma. Every compactly supported first order operatorD on Rn extends to
a bounded operator fromW1(Rn) to L2(Rn). Moreover the norm ofD considered
as an operatorW1(Rn) → L2(Rn) is bounded by a multiple of the supremum norm
of the coefficients of D.

Proof. The lemma follows from the fact (verified by the Plancherel theorem again)
that each partial derivative ∂j extends to a bounded operator from W1(Rn) to
L2(Rn).

Proof of Lemma 5.17. Let g be any smooth, compactly supported function on Rn.
Write1

(tD± iI)−1g− g(tDx ± iI)−1 = t(tD± iI)−1(gDx −Dg)(tDx ± iI)−1.

1Strictly speaking, the identity does not make sense, since D is not defined on the range of
(tDx ± iI)−1. This problem can be remedied by working with the operator closure of D.
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Split the right hand side into two terms by putting
gDx −Dg = gDx − gD− [D,g].

The right hand side now becomes

(tD±iI)−1 ·(gDx−gD) ·t(tDx±iI)−1−t(tD±iI)−1[D,g](tDx±iI)−1.

The second term is of order t in L2-operator norm and hence tends to zero in
operator norm as t → 0. Write the first term as

(tD± iI)−1 · (gDx − gD)(Dx + iI)−1 · t(D+ iI)(tDx ± iI)−1.

The operators t(D+iI)(tDx±iI)−1 are uniformly bounded in t in the L2-operator
norm. The operator gDx−gD is a first order differential operator and we can make
its coefficients small by choosing g supported near x, because the coefficients of
D and Dx agree at x. According to Lemma 5.21, by suitable choice of g, we can
make the norm of gDx − gD, as an operator from W1(Rn) to L2(Rn), as small
as we want. Since (Dx + iI)−1 maps L2(Rn) boundedly into W1(Rn), it follows
that the L2-operator norm of the middle term may be made as small as we want
by a suitable choice of g. Since the operators (tD± iI)−1 are bounded uniformly
in t we conclude, finally, that the first term in the previous display can be made as
small as we wish in operator norm, uniformly in t, by suitable choice of g. This
completes the proof.

We can now state the main result of this chapter.

cpt-ell-theorem 5.22 Theorem. A formally self-adjoint first-order elliptic operator on a closed
manifold is essentially self-adjoint and has compact resolvent.

Proof. For essential self-adjointness see Theorem 5.1. For compact resolvent,
it suffices to show that every point of M has a neighborhood U such that, if
g is a smooth function that is compactly supported within U, then the operator
g · (D+ iI)−1 is compact.

Take U to be a disk in a coordinate neighborhood onM. Since U is contractible,
the bundle S on whichD acts is isomorphic, over U, to the trivial bundle with fibre
Cn. Let Φ : U ′ → U be the diffeomorphism from an open subset of Rn to U
provided by the local coordinates, and let g ′ : U ′ → R be the smooth, compactly
supported function obtained by composing g with Φ. Denote by

A : L2(U;S) → L2(U ′)N

the invertible operator determined by the coordinates on U and the given trivializa-
tion of S. LetD ′ be a formally self-adjoint, compactly supported, order one, linear
partial differential operator on Rn, acting onN-vector valued functions, that agrees
with D in a neighbourhood of supp(g ′) under the given identifications. Note, in
particular, that D ′ is elliptic in a neighbourhood of supp(g ′). Since D ′A = AD

on smooth sections of S compactly supported within U, it follows that
(D ′ + iI)−1g ′A−Ag(D+ iI)−1 = (D ′ + iI)−1(g ′D ′ −D ′g ′)A(D+ iI)−1,

or that
Ag(D+ iI)−1 = (D ′ + iI)−1g ′A− (D ′ + iI)−1(g ′D ′ −D ′g ′)A(D+ iI)−1.

By Theorem 5.16, both terms on the right hand side are compact operators, so the
theorem is proved.



higson-roe November 19, 2009

64 CHAPTER 5

In particular, an operator of this kind is Fredholm. As we saw in Chapter 2,
to obtain a non-trivial index from a self-adjoint Fredholm operator requires an
additional datum—a grading. For differential operators the only gradings that we
shall consider are those coming from a grading of the underlying vector bundle S.

5.23 Definition. A grading of the vector bundle S is an endomorphism ε of S
satisfying ε2 = 1, ε = ε∗. A differential operator D is odd with respect to the
grading if Dε+ εD = 0 (as operators on smooth sections of S).

A grading of the vector bundle S automatically gives rise to a grading of the
Hilbert space L2(M,S), and (if M is compact) the closure of D is an odd, self-
adjoint operator with respect to this grading. It therefore has a well-defined
Fredholm index

Ind(D, ε) = dim(kerD ∩ {ε = 1}) − dim(kerD ∩ |{ε = −1}).

The project of the index theorem is to compute this quantity in terms of the symbol
of D.

The index of the operatorD in the sense of this chapter is computed by counting
(having due regard to the grading) the number of linearly independent (strong) L2

solutions of the equation Du = 0. In contrast, in Chapter ?? we dealt exclusively
with ordinary, smooth solutions of the equation Du = 0 (for the special operator
D = d + d∗). In this section we shall reconcile this difference by sketching the
proof of the following regularity principle: if D is a first order, elliptic differential
operator, ifDu = v in the strong sense, and if v is smooth, then u is smooth. Apart
from reconciling the two notions of Ind(D, ε), the results of this section will not
otherwise be used in the book.

We begin by defining higher Sobolev spaces.

5.24 Definition. Let u be a smooth, compactly supported function on Rn. Let
s ∈ R. The Sobolev s-norm of u is the quantity ‖u‖s defined by

‖u‖2s =

∫
Rn

(1+ |ξ|2)s|û(ξ)|2 dξ.

The Sobolev spaceWs(Rn) is the completion of C∞
c (Rn) in the Sobolev norm.

These are relevant to the problem of relating L2-solutions of partial differential
equations to smooth solutions by virtue of the following important fact:

sobolev-lemma 5.25 Lemma. If s > n
2 +k, thenWs(Rn) is included within Ck0(Rn), the Banach

space of k-times continuously differentiable functions on Rn whose derivatives up
to order k vanish at infinity.

Proof. We need to show that the Ck-norm of a smooth, compactly supported
function on Rn is bounded by a multiple of the Sobolev s-norm on Rn whenever
s > n

2 + k. This will imply that the identity map on C∞
c (Rn) extends to a

continuous map of Hs(Rn) into Ck(Rn), and this will imply the required result.
The Fourier inversion formula asserts that

u(x) =

∫
eix·ξû(ξ)dξ,
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for all smooth, compactly supported functions u, and hence that

∂αu(x) =

∫
eix·ξ(iξ)αû(ξ)dξ.

Therefore, by the Cauchy-Schwarz inequality,

|∂αu(x)|2 ≤
∫
(1+ |ξ|2)−s|ξ|2α dξ ·

∫
(1+ |ξ|2)s|û(ξ)|2 dξ.

If s > n
2 + k and k ≥ |α| then the first integral is finite. Taking square roots we get

the required estimate supx |∂αu(x)| ≤ constant‖u‖s.

We are going to prove the following result:

local-ell-reg-thm 5.26 Theorem. Let D be a compactly supported, order one, linear partial differ-
ential operator on Rn which is elliptic over an open set U ⊆ Rn. Let u and v be
L2-functions that are compactly supported within U. If Du = v in the weak sense,
and if v ∈Ws(Rn) for some s ≥ 0, then u ∈Ws+1(Rn).

regularity-theorem 5.27 Corollary. Let D be a formally self-adjoint, order one, linear elliptic partial
differential operator on the sections of a smooth bundle S over a smooth, closed
manifoldM. If Du = v in the weak sense, and if v is smooth, then u is smooth.

Proof. Assume that Du = v in the weak sense, and that v is smooth. To prove the
result it suffices to show that if φ is a smooth function which is compactly support
in a coordinate neighbourhood, then φu is smooth.

Let φ1 be a smooth function which is compactly supported within a coordinate
neighbourhood and which is equal to 1 on a neighbourhood supp(φ). Let u1 =
φ1u and let v1 = [D,φ1]u + φ1v. Then Du1 = v1 in the strong sense. Since
u1 and v1 are compactly supported in a coordinate neighbourhood, we can regard
them as functions on Rn. Replace D by a suitable compactly supported operator
on Rn which is equal to the original D near the supports of u1 and v1. It is then
easy to check that Du1 = v1 in the weak sense, and we are therefore in a position
to apply Theorem 5.26. Since v1 belongs to W0(Rn) = L2(Rn), it follows that
u1 ∈W1(Rn), and hence φu = u1 ∈W1(Rn).

Now let φ2 be a smooth function that is supported in the set where φ1 = 1, that
is equal to 1 in a neighbourhood of supp(φ). Let u2 = φ2u and let

v2 = [D,φ2]u+ φ2v = [D,φ2]u1 + v.

Then Du2 = v2 in the weak sense, and in addition v2 ∈ W1(Rn) (since we
just finished proving that u1 ∈ W1(Rn)). We conclude from Theorem 5.26 that
u2 ∈W2(Rn), and hence φu = φu2 ∈W2(Rn).

Continuing in this way, we see that φu ∈ Ws(Rn), for all s, and hence by
Lemma 5.25, φu is a smooth function.

The main step towards the proof of Theorem 5.26 is the following estimate,
known as the basic elliptic estimate:
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basic-est 5.28 Theorem. Let D be an order one linear partial differential operator on Rn
which is elliptic over some open subset U ⊆ Rn. Let K be a compact subset of U
and let s ∈ N. There exists δ > 0 such that

‖u‖0 + ‖Du‖s ≥ δ‖u‖s+1
for all smooth functions u that are supported within K.

The proof requires a few facts, which we shall present to the reader as exercises.

sob-fact1-ex 5.29 Exercise. Show that for every s ≥ 0 and every ε > 0 there exists C > 0 such
that

‖u‖s ≤ C‖u‖0 + ε‖u‖s+1.

sob-fact2-ex 5.30 Exercise. Let s ∈ N. Show that multiplication by a smooth, compactly sup-
ported function determines a bounded operator on each Ws(Rn). Hint: Thanks to
the Plancherel theorem, there is an equivalence of norms ‖u‖s ≈

∑
|α|≤s ‖∂αu‖0.

sob-fact3-ex 5.31 Exercise. Prove that D is a differential operator D of order q, and if the
leading coefficients of D vanish at x ∈ Rn, then for every ε > 0 there is a
neighbourhoodW of x and a constant C > 0 such that

‖Du‖0 < ε‖u‖0 + C‖u‖q−1

for every u supported inW.

Proof of Theorem 5.28. The first step in the proof is to observe that ifD is an order
one, elliptic constant coefficient operator, and if q ∈ N, then there exists δ > 0

such that

‖u‖0 + ‖Dqu‖0 ≥ δ‖u‖q
for all smooth, compactly supported u. This is an exercise in Fourier theory, and it
follows that for all q there is an equivalence of norms ‖u‖0 + ‖Dqu‖0 ≈ ‖u‖q.

Before going on, ifW is an open subset ofU and s is a non-negative integer, then
let us agree to say that s-estimate holds overW if the inequality of the lemma holds
for the given value of s and all compact sets K ⊆W (with constant δ depending on
K). Let us also note that for a general order one operator D, the assertion that for
q = s and q = s+1 and for every compact set K ⊆W, there exists an equivalence
of norms ‖u‖0 + ‖Dqu‖0 ≈ ‖u‖q for smooth functions u supported in K implies
the s-estimate for D overW.

Let D be a variable coefficient elliptic operator, and for x ∈ U let Dx be
the constant coefficient operator obtained by freezing the coefficients of D at x.
For every q, the leading coefficients of Dq and Dqx agree at x. Therefore by
Exercise 5.31, for every ε > 0 and every q there is a small neighbourhood W
of x and a constant C > 0 for which

‖Dqu−Dqxu‖0 ≤ ε‖u‖q + C‖u‖q−1,

for every u supported inW. This follows from the fact that the leading coefficients
of Dq − Dqx vanish at x. It follows from Exercise 5.29 that for every x ∈ U and
every q there is an equivalence of norms

‖u‖0 + ‖Dqu‖0 ≈ ‖u‖q
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on the smooth functions u supported in a sufficiently small neighbourhood of x.
This implies that for every x ∈ U and every s there is a neighbourhood of x such
that the s-estimate holds over that neighbourhood.

Now, given a compact set K ⊆ U and s ∈ N, cover K by finitely many open
subsets of U over each of which the s-estimate holds, and let {σj} be a smooth
partition of unity on K which is subordinate to this cover. Let u be compactly
supported in K and write

‖u‖s+1 = ‖
∑
j

σju‖s+1

≤
∑
j

‖σju‖s+1

.
∑
j

‖Dσju‖s +
∑
j

‖σju‖0

≤
∑
j

‖σjDu‖s +
∑
j

‖[D,σj]u‖s +
∑
j

‖σju‖0

. ‖Du‖s + ‖u‖0 + ‖u‖s
(the notation a . b means a ≤ constant ·b). The basic estimate now follows from
Exercise 5.29.

Proof of Theorem 5.26. The theorem can be proved using a further application of
the family {Kε}ε>0 introduced in the proof of Lemma 5.4. One can show that the
operators introduced there have the following additional properties;

(i) If v ∈Ws(Rn), then Kεv → v inWs(Rn) as ε → 0.

(ii) For every ε > 0 the operator [D,Kε] extends to a bounded operator on
Ws(Rn). If v ∈Ws(Rn), then [D,Kε]v converges to zero inWs(Rn).

Assume now thatDu = v in the weak sense, and that v ∈Ws(Rn). If un = K 1
n
u,

then it follows from the properties above that Dun → v in Ws(Rn) and un → u

in W0(Rn). It therefore follows from the basic elliptic estimate that {un} is a
Cauchy sequence in Ws+1(Rn). It follows that the L2-limit, u, actually lies in
Ws+1(Rn), as required.

Let π : X → Y be a submersion between smooth manifolds. The manifolds may
have boundaries, but if so, then we require that the boundary of X be the inverse
image of the boundary of Y. The fibers Xy = π−1{y} are then smooth manifolds
without boundary.

We shall assume that each fiber Xy is equipped with a smooth measure µy,
and that if f is a smooth, compactly supported function on X, then the quantity∫
Xy
f(x)dµy(x) is a smooth function of y.

Let S be a smooth Hermitian vector bundle over X and let Sy be its restriction to
Xy. The Hilbert spaces Hy = L2(Xy, Sy) form a continuous field of Hilbert spaces
H over Y whose continuous sections are generated (in the sense of [?, Proposition
10.2.3]) by the smooth compactly supported sections of S.
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Let Dy be a first-order linear partial differential operator acting on the sections
of Sy and suppose that the family D = {Dy} is smooth in the sense that if u is a
smooth section of S on X, then the section Du defined by

(Du)
∣∣
Xy

= Dy(u
∣∣
Xy

)

is also smooth.
We shall assume that each Dy is formally self-adjoint. To apply the index

construction of the last section we shall need to obtain from Dy an operator that is
self-adjoint in the sense of Hilbert space theory (see for example [?, Ch. 5]). For
this the following concept is useful.

5.32 Definition (See [?, Definition 10.2.8]). The manifold X is complete with
respect to D if there is a smooth, proper function g : X → [0,∞) such that the
commutator [D,g] is a uniformly bounded endomorphism of S.

5.33 Proposition (See [?, Proposition 10.2.10]). If X is complete with respect to
D, then each formally self-adjoint operator Dy is essentially self-adjoint on the
smooth, compactly supported sections of Sy.

Recall that an operator is essentially self-adjoint if its operator-theoretic closure
is self-adjoint (see for example [?, Ch. 5] again). From now on we shall assume that
X is complete for D, and in a slight abuse of notation we shall write Dy when in
operator-theoretic contexts we actually mean the closure ofDy. Form the resolvent
family

r(D) := (D+ iI)−1 = {(Dy + iI)−1}y∈Y .

It is certainly a bounded operator on the continuous field H. To say more, we
shall suppose from here on that each operator Dy is elliptic. We can then draw the
following conclusion.

rellich-prop2 5.34 Proposition. If f is a smooth, compactly supported function on X, acting on
the continuous field H as a family of multiplication operators, then f·r(D) is a
compact endomorphism of H.

This is standard fare, but let us sketch a proof based on a C∗-algebra calculation.

cstar-tech-lemma 5.35 Lemma. LetA be a C∗-algebra that includes C0(X) as a C∗-subalgebra and
let a be an element of A that commutes with C0(X). Suppose that for every x ∈ X
and every ε > 0 there is some f ∈ C0(X) such that f(x) = 1 and ‖f·a‖ < ε. Then
f·a = 0 for every f ∈ C0(X).

Let B be the C∗-algebra of bounded continuous functions from (0, 1] into the
bounded operators on H, and let J be the ideal of functions whose distance to the
compact operators converges to zero at 0. Let A = B/J. The operator-valued
function a : t 7→ (tD + iI)−1 determines an element of A, and so does every
constant operator-valued function f : t 7→ f, for every f ∈ C0(X). It suffices to
show that the product f · a ∈ A is zero since

lim
t→0 f·(tD+ iI)−1(D+ iI)−1 = −if·(D+ iI)−1.



higson-roe November 19, 2009

ELLIPTIC PARTIAL DIFFERENTIAL OPERATORS 69

The elements a and f commute in A, so it suffices to verify the estimates in
Lemma 5.35 for each given x and ε > 0. The product f·a ∈ A depends only on the
restriction of D to a neighborhood of the support of f, so we may as well assume
that D is compactly supported and elliptic near the support of f. Furthermore, by
choosing f to have sufficiently small support, we may assume that p : X → Y is
actually a trivial vector bundle (since any submersion is locally isomorphic to a
trivial vector bundle).

Using the basic elliptic estimate for constant coefficient operators we can choose
f with sufficiently small support that f·a is ε-close to f·a ′, where a ′ is defined in
the same way as a, but using an operator D ′ that restricts to the same constant
coefficient elliptic operator in each vector space fiber of p. A Fourier transform
calculation then shows that for every t ∈ (0, 1] the operator f·(tD ′ + iI)−1 is
compact, and the proof of Proposition 5.34 is complete.

If X is compact, then we may choose f ≡ 1 in Proposition 5.34, and conclude
from Section ?? that D has a well-defined index in the K-theory group K(Y). Thus
a smooth family of elliptic operators on the fibers of a submersion with compact
fibers and compact base has a well-defined families index in K(Y) (compare [?]).
But in the proof of the index theorem that we shall present here the manifold X will
not be compact.

As a substitute for compactness we shall work with operators of the formD+E,
where E is a suitable smooth self-adjoint endomorphism of S. The operators in the
familyD+E are still essentially self-adjoint because X is complete with respect to
D + E. The compactness of the resolvent r(D + E) is guaranteed (in the cases of
concern to us) by the following calculation.

compact-resolvent-prop 5.36 Proposition. Assume that S is Z2-graded and thatD is odd-graded. Let E be
a smooth, odd-graded self-adjoint endomorphism of the Hermitian bundle S over
X. Assume that

(a) The square of E is a proper scalar function from X to [0,∞).

(b) The anticommutator DE+ ED is a uniformly bounded smooth endomorphism
of S.

Then r(D+ E) is a compact operator on the continuous field H.

Proof. We shall show that for every ε > 0 the family r(D + E) lies within ε of a
compact operator.

Choose a smooth, compactly supported real function f such that if F = γf, where
γ is the grading operator on S, then

‖(D+ E+ F)s‖ ≥ ε−1‖s‖
for every compactly supported smooth section s. This is possible because first of
all

(D+ E+ F)2 = D2 + (DE+ ED) + [D, f]γ+ E2 + f2.

It therefore suffices to choose f such that

E2 + f2 ≥ ε−2 + ‖DE+ ED‖+ ‖[D, f]‖,
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and this may be done because X is complete with respect to D.
The estimate implies that ‖r(D+ E+ F)‖ < ε. But then

r(D+ E) − r(D+ E+ F) = r(D+ E+ F) · γf · r(D+ E),

and by Proposition 5.34 the right hand side is compact.

5.37 Remark. Obviously the hypotheses can be relaxed in various ways. But they
are adequate for our purposes as they stand.

5.5 THE HARMONIC OSCILLATOR

q-harmonic-lem 5.38 Lemma. The kernel of (the closure of ) Bm is spanned by the function

v 7→ exp(−12‖v‖
2)I ∈ Cliff(TmM).

On the orthogonal complement of the kernel, B2m is bounded below by 2.

Proof. We compute that

B2m = ∆+ ‖v‖2 + (N− 2k)

where ∆ is the Laplace operator and N is the number operator that acts as pI
on all monomials ei1 · · · eip . The lemma therefore follows from the well-known
eigenvalue theory of the quantum harmonic oscillator ∆ + ‖v‖2. See for example
[?, p. 12].

5.6 EXERCISES

5.7 NOTES

For more about elliptic theory, with a development similar to that given here,
see [?]. We have emphasized the role of Hilbert space theory in showing the
“approximate invertibility” of elliptic operators. An alternative approach, which
is more classical and provides much more detailed information, is to construct the
approximate inverse or “parametrix” directly by an iterative procedure. This idea
goes back at least as far as the work of Hadamard, and in a modern formulation
leads to the theory of pseudodifferential operators. For discussion see [?, ?].
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Deformation Spaces

Let M be a smooth, closed manifold. Our proof the index theorem for operators
on M will an auxilliary embedding of M into a finite-dimensional vector space
V . In this chapter we shall introduce two geometric constructions related to the
embedding that will play an important role in the proof. The first is the normal
bundle, which will be familiar to many readers. The second is what we shall the
deformation space of the embedding of M into V . This comes from algebraic
geometry, and its counterpart there is called the deformation to the normal cone.

The deformation space is a substitute for a tubular neighborhood embedding of
the normal bundle into V . While we could use tubular neighborhoods instead of
the the deformation space, that latter is more functorial and for that reason simpler
to handle.

The main result in this chapter is the formulation and proof a sort of proto-
index theorem that uses the normal bundle and the deformation space to reduce the
computation of the analytic index of an elliptic operator onM to the computation of
the index of a family of operators on the tangent vector spaces of M. The normal
bundle appears the parameter space for the family, and the deformation space is
used to carry out the reduction.

Passing from the computation of a single analytic index to the computation of the
index of an entire family may at first seem like no reduction at all, but progress will
in fact have been made. This is because the operators in the family will be of a very
simple type, consisting of the sum of a constant coefficient operator and a linear
function. The archetype is the operator d/dx + x. As we shall see in Chapters ??
and ??, computation of the families index in important cases reduces rather quickly
to a matter of linear algebra and the characteristic class theory of Chapter ??. The
general case will be handled in Chapter ??.

6.1 THE NORMAL BUNDLE

Let V be a smooth manifold of dimension n without boundary. The tangent bundle
to V was introduced in Chapter ??, but from now on we shall think of it in a more
current mathematical way. Thus a tangent vector at a point v ∈ V is a real-
linear functional X on the space of smooth, real-valued functions on V such that
the Leibniz rule

X(fg) = X(f)g(v) + f(v)X(g)

holds for every pair of smooth functions. The tangent space TvV of all tangent
vectors at v is an n-dimensional vector space. See the notes at the end of the chapter
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for further information about this and the other constructions in this section.
The tangent spaces assemble to form a smooth vector bundle TV over V , the

tangent bundle. A section of TV , called a vector field, is smooth if and only if for
every smooth function f, the quantity X(f), evaluated pointwise on V , is a smooth
function on V . This characterizes the smooth vector bundle structure on TV .

6.1 Example. If V = Rn, then the tangent space at any point is spanned by the
partial deriviatives f 7→ ∂f/∂xn, evaluated at that point. To put it another way, if
V is a vector space, then the tangent space at any point of V may be identified with
the the vector space V itself: each vector X ∈ V determines a tangent vector at
v ∈ V by the directional derivative formula

X(f) = lim
h→0h−1

(
f(v+ tX) − f(v)

)
.

The tangent bundle identifies in this way with the trivial bundleM×V .

6.2 Example. . . . vertical tangent vectors on a vector bundle . . .

IfΦ : M → V is a smooth map from one manifold to another, and ifΦ(m) = v,
then the differential

Φ∗ : TmM → TvV

is defined by Φ∗(X)(f) = X(f ◦Φ). It determines a map from TM to the pullback
of TV along Φ.

Suppose now that M is an embedded submanifold of V of dimension p and let
q = n−p. By definition, the topology thatM carries as a smooth manifold agrees
with the topology that it inherits as a subset of V . Moreover each point of M is
included in an open neighborhood U ⊆ V on which there exists a local coordinate
system

x1, . . . , xp, y1, . . . , yq

for V such that

(a) the setM ∩U is precisely the set of points for which y1 = · · · = yq = 0, and

(b) the functions x1, . . . , xp are coordinates on the open subsetM ∩U ofM.

We shall say that such a local coordinate system on V is adapted to the submanifold
M.

The smooth functions on M are precisely the restrictions to M of smooth
functions on V . The inclusion of M into V identifies TM with a subbundle of
the restriction of TV toM.

These details are provided mostly in order to fix our terminology, although we
shall also use the above coordinates in the next section. For the moment our aim is
only to introduce the following simple and probably familiar concept.

6.3 Definition. The normal bundle NVM for M, considered as a submanifold of
V , is the quotient of the restriction of TV toM by the tangent bundle ofM:

NVM = TV |M / TM.

The normal bundle is therefore a smooth vector bundle of rank dim(V) − dim(M).
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A normal vector (that is, a tangent vector on V , modulo the tangent vectors on
M) determines a directional derivative functional on the space of all smooth, real-
valued functions on V that vanish onM. This is because the tangent vectors onM,
viewed as tangent vectors on V , vanish on all such functions.

In fact normal vectors atm ∈Mmay be identified with linear functionals X that
are defined on the space of all smooth, real-valued functions on V that are locally
constant onM, and that obey the Leibniz rule

X(fg) = X(f)g(m) + f(m)X(g)

on this space.

6.2 THE DEFORMATION SPACE ASSOCIATED TO AN EMBEDDING

We are going to construct a deformation space NVM associated to an embedding
of a smooth manifold M into a smooth manifold V (both without boundary, for
simplicity). The essential features of this space are as follows:

(a) NVM is a smooth manifold with boundary. Its dimension is the dimension of
V , plus one.

(b) There is a submersion from NVM onto the closed unit interval [0, 1].

(c) The fiber of this submersion over t = 0 is the normal bundle NVM, whereas
the fiber over every t 6= 0 is a copy of V .

The deformation space is closely related to the concept of tubular neighborhood
that is summarized in the following theorem.

6.4 Theorem. Let M be a smooth embedded submanifold of a smooth manifold V
(both without boundary, for simplicity). There is an open neighborhood U of M in
V , and a diffeomorphism

Φ : U −→
∼=
NVM

such thatΦ restricts to the natural identification ofM ⊆ U with the zero vectors in
the normal bundle NVM, and such that if X is a tangent vector for V at a point of
M, thenΦ∗X is the vertical tangent vector onNVM determined by normal vector
associated to X,

We shall not need this result, except for motivation, and so we shall not prove it.
The theorem can be strengthened by the addition of a uniqueness statement, up to
isotopy. This however we shall not need at all.

6.5 Definition. We shall call the open set U above a tubular neighborhood of M
in V , and we shall call the inverse of Φ a tubular neigborhood embedding of the
normal bundle NVM into V .
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Fix a tubular neighborhood U of M in V , as in the theorem, and let C be the
set-theoretic complement of U in V . It is of course a closed subset of V . The
deformation space NVM is essentially the space

Z = V×[0, 1] \ C×{0}.

This is an open subset of V×[0, 1] and as such it is a smooth manifold with
boundary. The projection mapping from Z to [0, 1] is a submersion, and fiber over
t = 0 is (diffeomorphic to) the normal bundle NVM, whereas the fiber over any
t 6= 0 is a copy of V , as required.

The problem with Z is that it depends on a choice of tubular neighborhood,
which is not by any means canonical. This is not an insurmountable difficulty, but
the deformation space NVM has the advantage of being canonically associated to
the embedding of M into V . Once the somewhat abstract definition of NVM has
been internalized, subsequent calculations become much clearer and simpler.

We begin by defining NVM as a set, and we do so in the most obvious way that
fits our requirements.

6.6 Definition. Let M be a smooth, closed submanifold of a smooth manifold V
without boundary. The deformation space NVM associated to the inclusion of M
into V is the disjoint union

NVM = NVM t V×(0, 1],

where NVM is the normal bundle ofM in V .

There is an obvious (set-theoretic) projection onto [0, 1] for which the fiber over
t = 1 is NVM. In fact there is also a projection

r : NVM −→ V×[0, 1]

that on V×(0, 1] is the inclusion map, while on NVM is the projection to M,
followed by inclusion into V×{0}. Let us call this the contraction map (because it
contracts normal vectors to zero).

6.7 Definition. We equip NVM with the weakest topology (that is, the one with
the fewest open sets) such that:

(a) The contraction map r : NVM → V × [0, 1] is continuous.

(b) If f : V → R is a smooth function that vanishes onM, then the function

δf : NVM −→ R

defined by the formulas

δf(X) = X(f) and δf(v, t) =
f(v)

t

is continuous.

6.8 Lemma. The deformation space NVM is a Hausdorff topological space.

Proof.
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6.9 Lemma. Let U be an open subset of V . The natural set-theoretic inclusion of
NU(M ∩U) into NVM is a homeomorphism onto an open s ubset.

Proof. By item (a) in Definition ??, NU(M∩U) is an open subset of NVM.. . .

local-coord-lemma 6.10 Lemma. If x1, . . . , xp, y1, . . . , yq are smooth local coordinates on V such
that the functions xi restrict to local coordinates on M, whereas the functions yj
vanish onM, then the functions

x1, . . . , xp, δy1, . . . , δyq, t

constitute a topological local coordinate system on the deformation space: they
determine a homeomorphism from the open subset where they are defined to an
open subset of Rp+q × [0, 1].

6.11 Remark. Let U be the open subset of V on which the smooth local coor-
dinates x1, . . . , xp, y1, . . . , yq are defined. The symbols xj and t in the display
refer to the functions on NU(M ∩ U) that are obtained by first applying the map
r : NU(M ∩U) → U×[0, 1] of item (a) of Definition ??, then composing with the
functions xj and t defined on U×[0, 1]. The functions δyj on NU(M ∩ U) are of
course defined as in item (b) of the definition.

Proof. The would-be coordinate functions on NU(M∩U) that are displayed in the
statement of the lemma determine a map

NU(M∩U) → Rp×Rq×[0, 1]

that is continuous and one-to-one, and has open image. Viewing U as an open
subset of Rp×Rq via the given coordinates, and identifying the normal bundle
with (M∩U)×Rq, the inverse map is given by the formula

(u, v, t) 7→ {
(u, u+ tv, t) t 6= 0

(u, v, 0) t = 0.

This map is continuous because its compositions with the maps in (a) and (b) above
are continuous.

For form’s sake, we note the following general topological consequence.

6.12 Corollary. The topological space NVM is paracompact.

Next we want to equip NVM with a smooth manifold structure. In fact this is
straightforward, since the basic coordinate charts given by Lemma ?? constitute an
atlas for a smooth manifold structure on NVM:

6.13 Proposition. The transition function relating any two of the local coordinate
systems described in Lemma ?? is a smooth map.

Proof.

The reader is referred to the exercises for further general information about
the deformation space. In the next section we shall turn to specific features of
the deformation space associated to an embedding into a vector space, and the
construction of families of differential operators parametrized by such deformation
spaces.
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6.3 FAMILIES OF OPERATORS OVER THE DEFORMATION SPACE

Now let M be a smooth manifold without boundary that is embedded as submani-
fold of a finite-dimensional real vector space V . Define a map

p : M×V×[0, 1] −→ NVM

by the formulas

(m, v, t) 7→ {
pm(v) ∈ NVM when t = 0

(m+ tv, t) ∈ V×(0, 1] when t 6= 0,

where pm is the projection from V onto V/TmM (which is the fiber of the normal
bundle NVM over the pointm ∈M).

6.14 Lemma. The map p is a submersion.

Proof.

6.15 Remark. If we think of M×V as a trivial vector bundle over M, and the
diagonal embedding of M into M×V as a section, then the diffeomorphism from
M×V×[0, 1] to NM×VM given in Exercise ??, identifies the submersion p with
the map from NM×VM onto NVM that is induced from the projection of M×V
onto V , as in Exercises ?? and ??.

Suppose now that S is a smooth complex vector bundle on M and that D is a
first-order linear partial differential operator acting on the sections of S (in the next
section D will be elliptic, but for the moment this need not be so).

Pull back the bundle S to M×V×[0, 1]. Define a smooth family of operators on
the fibers of p, acting on the sections of this pullback bundle, as follows.

(a) If (v, t) ∈ V×(0, 1] ⊆ NVM, then the fiber of p over (v, t) is the manifold{
(m, t−1(v−m), t) : m ∈M

}
⊆M×V×[0, 1]

and so the coordinate projection onto M identifies the fiber with the manifold
M. We define D(v,t) = tD.

(b) If (m, v) ∈ NVM ⊆ NVM, then the fiber of the map p over X is the manifold

{m}× TmM× {0} ⊆M×V×[0, 1].

Let Dm be the model operator on TmM, obtained from D by freezing the
coefficients atm and dropping order zero terms. We define D(m,v) = −Dm.

6.16 Lemma. The operators above form a smooth family of elliptic operators.
Moreover the manifoldM×V×[0, 1] is complete with respect to this family.

Proof. If we embed the bundle S over M as a summand of a trivial bundle, then
we can reduce the lemma to the case where S is trivial, in which case the original
operator D is a system of operators on scalar functions. This allows us to further
reduce to the cases where D is either a vector field or multiplication by a function
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f on M. In the latter case the family is multiplication by the smooth function
(m, v, t) 7→ tf(m) on M×V×[0, 1]. In the former case, if X is a vector field on
M, then the associated family of operators is given by the smooth vector field

X(m,v,t) = (tXm,−Xm, 0)

on M×V×[0, 1], where we identify the tangent space of the product manifold at
(m, v, t) with TmM × V × R and we consider TmM as a subspace of V via the
given embedding ofM.

As for completeness, if g : V → [0,∞) is any smooth proper function, then its
composition with the second coordinate projection on M×V×[0, 1] is a smooth
proper function on the product manifold whose commutator with D is uniformly
bounded.

6.4 THE DEFORMATION SPACE AND THE INDEX THEOREM

Let M be a smooth, closed, manifold that is embedded into a smooth manifold V
without boundary. Form the deformation space NVM and regard the manifold V
and the normal bundleNVM as embedded into NVM as the two boundary parts, so
to speak at t = 1 and t = 0, respectively. In particular, V andNVM are embedded
as closed subsets of NVM, and so there are restriction maps in K-theory:

K(NVM) −→ K(V) and K(NVM) −→ K(NVM).

Our first aim is to assemble from these a map from K(NVM) into K(V).

tubular-lemma 6.17 Lemma. The restriction map

K(NVM) −→ K(NVM)

induced from the inclusion of NVM into NVM is an isomorphism.

Proof.

The lemma allows us to define the map we want, as follows.

6.18 Definition. We shall call the map ι∗ : K(NVM) −→ K(V) that fits into the
commuting diagram

K(NVM)

∼=

xxqqqqqqqqqq

$$JJJJJJJJJ

K(NVM) // K(V)

the . . .

6.19 Remark. See Exercise ?? for another interpretation of this map in terms of
tubular neighborhoods.
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After these K-theoretic preliminaries we return to the families of operators that
we began to analyze in the last section. Let us from here on assume that the
manifoldM is closed and that D is an elliptic operator onM.

Fix a spinor space S for V and let X : V → End(∧V) be self-adjoint Clifford
multiplication, as in Definition ??. Consider X as a function

X : M×V×[0, 1] −→ End(∧V)

via the coordinate projection onto V .
Form the tensor product SM⊗̂S with fibers SmM⊗̂S. Form the operator D⊗̂I

on sections of SM⊗̂S over M×V×[0, 1], and also the self-adjoint endomorphism
I⊗̂E.

6.20 Lemma. The anticommutator of D⊗̂I and I⊗̂X is a uniformly bounded
endomorphism of SM⊗̂S, while (I⊗̂X)2 is a proper function onM×V×[0, 1].

Proof. The square of I⊗̂X is the scalar function ‖v‖2, which is certainly a proper
function onM×V×[0, 1]. The anticommutator ofD⊗̂I and I⊗̂X is the same as the
commutator of D⊗I and I⊗X on the sections of SM⊗S.

According to Proposition 5.36 there is therefore an index class

Ind(D⊗̂I+ I⊗̂X) ∈ K(NVM),

as required.

6.21 Lemma. ι∗
(
Ind(D⊗̂I+ I⊗̂X)

∣∣
NVM

)
= Ind(D⊗̂I+ I⊗̂X)

∣∣
V
∈ K(V).

6.22 Lemma. Ind(D⊗̂I+ I⊗̂X)
∣∣
V

= Ind(D) · β(V) ∈ K(V)

Proof. The map

q : M×V×[0, 1] −→ V×[0, 1]

q : (m, v, t) 7→ (tm+ v, t)

is a submersion, and every fiber

q−1{(v, t)} =
{
(m, v− tm, t) : m ∈M

}
⊆ M×V×[0, 1]

is isomorphic toM via the projection toM. Construct the smooth family D that is
the Dirac operator on each fiber, and then form the family

D⊗̂I+ I⊗̂E,
acting on sections of SM⊗̂S by using the same self-adjoint Clifford multiplication
endomorphism as E as before. We are re-using notation, but this is not especially
reckless because the restriction to V ∼= V×{1} of the new family is identical to
the same restriction of the old one. However the restriction to V ∼= V×{0} of the
new family, which has the same index as the restriction to V×{1} by homotopy
invariance of K-theory, is the family of operators

D⊗̂I+ I⊗̂Ev : L2(M,SM)⊗̂S −→ L2(M,SM)⊗̂S
Decompose L2(M,SM) into the kernel of D, direct sum its orthogonal comple-
ment, and decompose L2(M,SM)⊗̂S accordingly. On the second summand the
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above operators are uniformly bounded below by the first positive eigenvalue in the
spectrum of D. On the first summand the operators are

I⊗̂Ev : ker(D)⊗̂S −→ ker(D)⊗̂S

Taking into account the grading on ker(D) we find that

Ind(D⊗̂I+ I⊗̂E)
∣∣
V

= Ind(D) · β(S),

as required.

6.23 Proposition. LetD be a first-order, linear elliptic partial differential operator
on a smooth, closed manifold M. If M is embedded into a finite-dimensional
complex vector space V , then we have

Ind(D) · β(V) = ι∗
(
Ind(D⊗̂I+ I⊗̂X)

∣∣
NVM

)
in the group K(V).

6.5 EXERCISES

6.24 Exercise. Deformation space up to diffeomorphism via tubular neighborhood
embeddings.

6.25 Exercise. Functoriality of the deformation space.

6.26 Exercise. Let U be an open subset of V . The natural set-theoretic inclusion
of NU(M ∩U) into NVM is a diffeomorphism onto an open subset.

6.27 Exercise. Suppose that V is a smooth vector bundle over M and that M is
embedded into V via a vector bundle section s : M → V . It need not be the zero
section.

Each vector v ∈ V determines a vertical tangent vector at each point in the fiber
containing v, including the point that lies on the section s, and in this way the
normal bundle NVM identifies with the vector bundle V itself. We shall use this
identification in the following calculation. We shall also use the notation (m, v) for
a point v ∈ that lies in the fiber overm ∈M.

The map from V×[0, 1] to the deformation space NVM that is given by the
formulas

(m, v, t) 7→ {
(m, v) ∈ NVM when t = 0

(m, s(m) + tv, t) ∈ V×(0, 1] when t 6= 0

is a diffeomorphism from V×[0, 1] onto NVM.

6.28 Exercise. The tubular neighborhood theorem says that every embedding can
be factored as a (zero) vector bundle section, followed by the inclusion of an open
set, so Lemmas ?? and ?? in some sense describe all deformation spaces. See
Exercise ?? for another way to characterize the deformation space.

6.29 Exercise. Characterization as a functor?
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6.30 Exercise. Suppose given a commuting diagram of smooth maps

M // W

p

��

M // V

in which the horizontal maps are submanifold embeddings and the vertical map p
is a submersion. The induced map from NMW to NVM is a submersion.

6.31 Exercise. products of embeddings

6.32 Exercise. The above map ι∗ is equal to the map

j∗ : K(NVM) −→ K(V)

associated to a tubular neighborhood embedding j : NVM → V . Indeed, since the
restriction map

K(NVM)
∼= // K(NVM)

is an isomorphism, it follows that the open inclusion of the tubular neighborhood
W = ι(NVM) into V induces an isomorphism

K(NWM)
∼= // K(NVM).

The assertion therefore reduces to the case where V = W, and now the calculation
in Example ??, plus the homotopy invariance of K-theory, completes the proof.

6.33 Exercise. Index of an operator on an odd-dimensional manifold is zero.

6.34 Exercise. Deformations in the algebraic category

6.6 NOTES
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Chapter Seven

The Index Theorem for the Dolbeault Operator

7.1 THE DOLBEAULT OPERATOR
dolbeault-example

Atiyah and Singer developed (or rediscovered) the Dirac operator to serve as a
counterpart, in the realm of real manifolds, of the Dolbeault operator in complex
manifold theory. Accordingly, we shall take a quick look at the Dobeault operator
first.

In this section we shall assume that the reader has some very basic familiarity
with complex manifold theory. Let M be a compact complex hermitian manifold
of complex dimension k, and hence real dimension n = 2k. The space of ordinary
1-forms onM (with complex coefficients) decomposes as a direct sum

Ω1(M) = Ω0,1(M)⊕Ω1,0(M),

with the first summand generated locally by the differentials of anti-holomorphic
functions and the second by the differentials of holomorphic functions. The de
Rham differential decomposes as a direct sum

d = ∂+ ∂ : Ω0(M) → Ω0,1(M)⊕Ω1,0(M).

There is a corresponding decomposition of differential forms and the de Rham
operator in higher degrees, so that for example

Ωr(M) = ⊕p+q=rΩ
p,q(M).

The spaceΩ0,q(M) is naturally isomorphic to the space of smooth sections of the
bundle ∧qTM, where here we regard TM as a complex vector bundle to define the
exterior power.

We can consider the Dolbeault complex

Ω0(M)
∂ // Ω0,1(M)

∂ // · · · ∂ // Ω0,k(M)

and associated Dolbeault operator D = ∂+ ∂
∗
. This is an elliptic operator, and its

symbol is a familiar object. Namely, after we use the hermitian metric to identify
T∗M and TM as smooth manifolds, the symbol of D can be identified with the
Thom element for the complex vector bundle TM overM:

σD = b : π∗ ∧∗ TM → π∗ ∧∗ TM.

Because of this we can use the results of Chapter ?? to compute the contribution of
the Chern character of the symbol to the index formula. We get

Ind(D) =

∫
T∗M

τ(TM)uT∗M Todd(TM⊗ C)
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where the class τ is defined as in Proposition ?? and the overall sign (−1)n in the
index formula has been dropped since M is even-dimensional as a real manifold.
NowM, being a complex manifold, is naturally oriented, and if we orient T∗M us-
ing local coordinates x1, . . . , xn, ξ1, . . . , ξn, where x1, . . . , xn are oriented local
coordinates on M, then we can compute the integral by first integrating along the
fibers of T∗M. We get∫

T∗M

τ(TM)uT∗M Todd(TM⊗ C) =

∫
M

τ(TM) Todd(TM⊗ C).

However this orientation on T∗M differs from the orientation introduced in the last
chapter and used in the index formula by the sign (−1)

n(n−1)
2 . Bearing this in

mind, and since (−1)
n(n−1)

2 = (−1)k, we obtain the index formula

Ind(D) = (−1)k
∫
M

τ(TM) Todd(TM⊗ C).

Now TM ⊗ C is isomorphic, as a complex vector bundle, to TM ⊕ TM (Exer-
cise ??). Hence

Todd(TM⊗ C) = Todd(TM) · Todd(TM).

¿From Exercise ??, we therefore obtain the Hirzebruch Riemann-Roch formula

Ind(D) =

∫
M

Todd(TM).

7.1 Exercise. (For those who know some complex manifold theory.) Check
Hirzebruch’s formula for CP1. For extra credit, do the same for CPn (in all cases
you should get 1 = 1). (See Exercise 4.25 for the computation of the right hand
side.)

7.2 Lemma. The Dolbeault operator is elliptic.

7.3 Theorem. The Hilbert space index of the Dolbeault operator with coefficients
in E is equal to χ(O(E)).

index-thm1 7.4 Theorem (Atiyah and Singer). LetM be a smooth, closed hermitian manifold.
IfD is the Dolbeault operator forM with coefficients in a hermitian vector bundle
E overM, then

Ind(D) =

∫
M

Todd(TM) ch(E).

7.2 K-THEORY FORM OF THE INDEX THEOREM

Let M be a smooth, closed, almost-complex manifold. We shall assume, as we
always may, that M is embedded as a smooth submanifold of a finite-dimensional
complex vector space A. No relation is assumed between the embedding, the
complex structure on A and the almost-complex structure onM.

We want to equip the normal bundle with a complex structure. This we may
do, after some adjustments, as follows. First, place a hermitian inner product on
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A and thereby, by taking the real part, place an inner product on the underlying
real vector space. The restriction of the tangent bundle on the manifold A to M is
the trivial bundle M×A. So using the inner product we may identify the normal
bundle, which is a certain quotient of M×A, with the orthogonal complement of
TM inM×A. In this way we obtain an isomorphism of vector bundles

TM⊕NAM ∼= M×A.

Now let us make use of the complex structure on TM. Any complex vector bundle
over M may be realized as a direct summand of a trivial complex vector bundle
overM, and so there exists a finite-dimensional complex vector space B, a smooth
complex vector bundle F overM and an isomorphism of complex vector bundles

F⊕ TM ∼= M×B.

We obtain vector bundle isomorphisms

F⊕ (M×A) ∼= F⊕ TM⊕NAM ∼= (M×B)⊕NAM.

The direct sum (M×B)⊕NAM is the normal bundle of the composite embedding

M −→ A −→ B×A,

So if we set V = B×A, then the above isomorphisms fix a complex structure on
the normal bundle NVM for the embedding of M into the complex vector space
V .

The complex structures on V and NVM just described are those that we shall
use in the statement of the following theorem.

index-thm2 7.5 Theorem (Atiyah and Singer). Denote byNVM the complex conjugate vector
bundle. IfD is the Dolbeault operator forM with coefficients in a hermitian vector
bundle E, then

Ind(D) · β(V) = (−1)kι∗
(
β(NVM) · [E]

)
∈ K(V),

where ι∗ : K(NVM) → K(V) is the map induced from the deformation of NVM
into V .

7.3 COHOMOLOGICAL FORM OF THE INDEX THEOREM
proof-sec

We shall now calculate Ind(D⊗̂I+ I⊗̂E)|NVM. Recall from Definition ?? that the
opposite spinor bundle SN for the normal bundle NVM is defined so that there is
an isomorphism of spinor bundles

M×S ∼= SM ⊗̂SN

for the trivial bundleM×V . As a result there is an isomorphism

SM⊗̂S ∼=
(
SM⊗̂SM

)
⊗̂SN.

The continuous field of Hilbert spaces on which (D⊗̂I + I⊗̂E)|NVM acts can
therefore be written as the field with fiber

L2(TmM,SmM)⊗̂S ∼= L2(TmM,SmM⊗̂SmM) ⊗̂SmN
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over (m, v) ∈ NVM. If we define an operator Bm on first tensor factor on the right
hand side by

Bm = −Dm⊗̂I+ I⊗̂Em,

where the function Em on TmM is self-adjoint Clifford multiplication, and if we
denote by Ev self-adjoint Clifford multiplication by a normal vector v on SmN,
then

(D⊗̂I+ I⊗̂E)(m,v)
∼= Bm⊗̂I+ I⊗̂Ev

(one should be aware that the descriptions on the left and right use different tensor
product decompositions).

We shall now compute that the index of the family on the right hand side. The
first step is the following lemma, in which we shall use the canonical isomorphisms

SmM⊗̂SmM ∼= End(SmM) ∼= Cliff(TmM),

so as to view Bm as an operator on L2(TmM,Cliff(TmM)). Note that according
to our conventions, the first isomorphism in the display is grading-preserving if k
is even and grading-reversing if k is odd.

Now form the one-dimensional continuous field of Hilbert spaces

Km = ker(Bm) ⊆ L2(TmM,SmM⊗̂SmM).

It is purely even-graded if k is even, and purely odd-graded if k is odd. The section
given in lemma trivializes K, and as a result

L2(TmM,SmM⊗̂SmM) ⊗̂SmN ∼= Km⊗̂SmN ⊕ K⊥
m⊗̂SmN

∼= SmN ⊕ K⊥
m⊗̂SmN,

where the isomorphism between the first summands is grading-preserving or grading-
reversing, according as k is even or odd. In the final direct sum decomposition the
operator Bm⊗̂I+ I⊗̂Ev acts as the self-adjoint Clifford multiplication operator Ev
on SmN and as an invertible operator on K⊥

m⊗̂SmN, since

(Bm⊗̂I+ I⊗̂Ev)2 = B2m⊗̂I+ I⊗̂E2v,

while B2m ≥ 2 on K⊥
m. Using the additivity of the index, together with the triviality

of the index of the second summand, we find that

Ind(D⊗̂I+ I⊗̂E)
∣∣
NVM

= Ind(B⊗̂I+ I⊗̂E)

= (−1)kβ(SN) ∈ K(NVM),

as required.

7.4 ALMOST-COMPLEX MANIFOLDS

7.6 Definition. A complex structure on a smooth, real vector bundle is a smooth
endomorphism J of the bundle such that J2 = −I. An almost-complex structure on
a smooth manifold is a complex structure on the tangent bundle of the manifold.
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Notice that the endomorphism J gives the bundle the structure of a complex
vector bundle for which J acts as multiplication by

√
−1, and that the underlying

real vector bundle of a complex vector bundle has a natural complex structure.

7.7 Definition. . . . of a Dolbeault operator, using

[D, f]u = c
(
df
)
u.

for every smooth function f on M (viewed on the left-hand side of the display as a
multiplication operator on sections of ∧0,∗M).

Of course, the Dolbeault operator on a hermitian manifold, with coefficients in
a hermitian holomorphic bundle E, is an example of a Dolbeault operator with
coefficients in E, in the sense of the above definition.

Every Dolbeault operator D is elliptic, and so if M is closed, then (the self-
adjoint extension of) D is Fredholm.

index-thm1 7.8 Theorem (Atiyah and Singer). Let M be a smooth, closed almost-complex
manifold. IfD is a Dolbeault operator forM with coefficients in a smooth complex
vector bundle E overM, then

Ind(D) =

∫
M

Todd(TM) ch(E).

7.5 EXERCISES

7.6 NOTES
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Chapter Eight

The Dirac Operator

DiracChapter
Let M be an oriented, Riemannian manifold. The signature operator D on M was
described in Chapter ??. If we square its symbol σ we find the key property that

σ(x, ξ)2 = ‖ξ‖2 · I,

which we used to infer that D is elliptic. Formulas of this type are common
throughout K-theory and index theory. In this chapter we shall define and study
the Dirac operator, which is in many respects the most important and most basic
example of an elliptic operator.

8.1 CLIFFORD ALGEBRAS AND DIRAC OPERATORS

dirac-type-symbol-def 8.1 Definition. Let V be a euclidean vector bundle over some base X. A (complex)
Dirac-type symbol associated to V consists of the following:

(i) A Z/2-graded hermitian vector bundle S over X;

(ii) A real-linear vector bundle map

c : V → End(S)

whose values are all odd-graded, self-adjoint endomorphisms of S satisfying
the relations

c(v)2 = ‖v‖2 · I,

for all v ∈ V .

8.2 Example. Suppose that V is the underlying real vector bundle of a complex
hermitian bundle E, and let S = ∧∗E. The formula

b(v)w = v∧w+ v w

(which we used to define the Thom class in K-theory) is an example of a Dirac-type
symbol b : V → End(S). To put it another way, Dirac-type symbols generalize the
Thom element construction that we introduced in the previous lecture.complex-example

8.3 Remark. We can also define a real Dirac-type symbol in the same way, by
replacing the complex vector bundle S with a real vector bundle. We will take a
quick look at these at the end of the chapter.
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We shall be most interested in the case where V is the cotangent bundle of a
Riemannian manifold M, in which case we can view a Dirac-type symbol as the
symbol of some elliptic operator onM. Notice that a Dirac-type symbol defines an
elliptic endomorphism of the pullback π∗S of S over V , and thus defines a K-theory
class [c] ∈ K(V) by the difference construction of ??.

The action of vectors v ∈ V on the bundle S via the map c : V → End(S) is often
called Clifford multiplication, thanks to its relation with the following algebraic
construction.

8.4 Definition. Let V be a finite-dimensional euclidean vector space. The complex
Clifford algebra C(V) is the complex, associative algebra with unit which is
characterized up to canonical isomorphism by the following properties:

(i) There is a real linear map c : V → C(V), such that c(v2) = ‖v‖2I, for all
v ∈ V .

(ii) If A is any associative algebra with unit equipped with a real linear map
cA : V → A such that c(v2) = ‖v‖2I, for all v ∈ V , then there is a unique
algebra homomorphism C(V) → A such that the diagram

V

c

}}zz
zz

zz
zz cA

��
>>

>>
>>

>>

C(V) // A

commutes.

It is easy to check that if v1, . . . , vk is a basis for V , then the set of products
c(vi1) · · · c(vip), where i1 < · · · < ip, is a linear basis for C(V). Thus C(V) is
finite-dimensional as a vector space, with

dim(C(V)) = 2dim(V).

The algebra C(V) is Z/2-graded by assigning the monomial c(vi1) · · · c(vip) even
or odd degree, according as p is even or odd. A little less obvious is the following
important fact:

cliff-iso-prop 8.5 Proposition. If V has even dimension 2k, then C(V) is isomorphic to the
algebra of 2k × 2k complex matrices.

Proof (sketch/exercise). We shall construct an explicit representation from C(V)
into the matrix algebra, and proving using a linear basis for C(V) that it is injective
(and hence surjective too, by dimension counting). To do this, observe that if
v1, . . . , v2k is an orthonormal basis for V , and if matrices E1, . . . , E2k are given
such that

E2i = I and EiEj + EjEi = 0 when i 6= j

then the formula

c(a1v1 + · · ·+ a2kv2k) = a1E1 + · · ·+ anEn
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defines a representation of the Clifford algebra. For example, if k = 1, then we can
define

E1 =

(
0 1

1 0

)
and E2 =

(
0 i

−i 0

)
.

We leave it to the reader to work out suitable formulas for general k. (For k = 2

you will find them in Dirac’s book on quantum mechanics.)

8.6 Exercise. We can make this argument a little slicker if we are prepared to use
the notion of graded tensor product, which we already discussed in Section 15.3
in connection with C∗-algebras. It is not hard to see from the universal property
of Clifford algebras that C(V ⊕ W) ∼= C(V) ⊗̂C(W). On the other hand, we
have explicitly computed above that if V is 2-dimensional, C(V) is isomorphic to
the graded algebra M2(C) of endomorphisms of the graded vector space C ⊕ C.
Therefore we obtain C(V ⊕ C2) ∼= C(V) ⊗̂M2(C), and so by induction

C(V) ∼= M2k(C),

where dim(V) = 2k. This argument gives us the grading and ∗-algebra structure
too (see the next remark).

8.7 Remark. It is easy to check that if V is any euclidean vector space, then there
is a unique ∗-algebra structure on C(V) for which c(v)∗ = c(v) for all v ∈ V . If
dim(V) = 2k then C(V) is ∗-isomorphic to the matrix algebra M2k(C), with its
usual ∗-algebra structure of conjugate transpose. In addition, we can find a grading
preserving ∗-isomorphism, where M2k(C) is graded as an algebra of block 2 × 2
matrices. We shall use these refinements of Proposition 8.5 at one or two points
below.

product-symbol 8.8 Exercise. Following up on the previous exercise, suppose that c1 and c2 are
Dirac-type symbols for bundles V1 and V2, acting on S1 and S2 respectively. Show
that their product

c1 × c2 = c1 ⊗̂ 1+ 1 ⊗̂ c2
is a Dirac-type symbol for V1 ⊕ V2 acting on S1 ⊗̂S2.

8.9 Remark. Proposition 8.5 is not true for odd-dimensional vector spaces, and
this is the reason that we shall restrict to even-dimensional spaces for the rest of
this lecture. There are odd-dimensional counterparts to the proposition and to most
of what follows, but they are slightly more complicated and will not be discussed
in these notes.

8.2 THE INDEX THEOREM FOR THE DIRAC OPERATOR

dirac-symbol-def 8.10 Definition. Let V be a euclidean vector bundle of even dimension n = 2k. A
Dirac symbol associated to V is a Dirac-type symbol c : V → End(S) such that the
vector spaces Sx have (complex) dimension 2k.



higson-roe November 19, 2009

90 CHAPTER 8

Dirac symbols are Dirac-type symbols of minimal dimension:

even-cliff-lemma 8.11 Lemma. If c : V → End(S) is a Dirac-type symbol associated to a euclidean
vector bundle, and if dim(V) = 2k, then the fiber dimension of S is a multiple of
2k.

Proof. Starting with a euclidean vector bundle V , we can form the bundle C(V)
of Clifford algebras, and it is clear that a Dirac-type symbol is the same thing as
a homomorphism of bundles from C(V) into End(S), which is fiberwise a homo-
morphism of Z/2-graded algebras. The fibers of S are therefore representation
spaces of the Clifford algebra of 2k-dimensional euclidean vector spaces. Since
the Clifford algebras are all isomorphic to the matrix algebra M2k(C), all such
representations are multiples of the standard representation, of dimension 2k.

Dirac symbols play the same role in K-theory that orientations of vector bundles
play in cohomology theory. It can be shown that if V is an even-dimensional
euclidean vector bundle over X, and if c : V → End(S) is a Dirac symbol, then the
K-theory class c ∈ K(V) freely generates K(V) as a module over K(M). Thus the
existence of a Dirac symbol is a sufficient (and as it happens necessary) condition
for the formulation of a Thom isomorphism theorem in K-theory.

orient-lemma 8.12 Lemma. Suppose that V is even-dimensional and that σ : V → End(S) is
a Dirac symbol. If v1, . . . , v2k is any local orthonormal frame for V , then then
locally-defined endomorphism

γ = ikc(v1) · · · c(v2k)
is equal to the grading operator of the bundle S, up to a locally constant, {±1}-
valued function.

Proof. The element γ defined by the above formula has the following properties:
γ2 = 1, and γ anticommutes with every c(v). Using the explicit basis for
C(V) given earlier, it is not hard to check that there are precisely two elements
in any Clifford algebra with these properties, namely the grading operator and its
negative.

pos-oriented-def 8.13 Definition. Let V be an oriented euclidean vector bundle and let c : V →
End(S) be a Dirac symbol. We shall say that the Dirac symbol is positively oriented
if the operator γ of Lemma 8.12 associated to any oriented local orthonormal frame
of V is equal to the grading operator of S. We shall say that the symbol is negatively
oriented if γ is always minus the grading operator.

8.14 Remark. If any Dirac symbol c : V → End(S) exists, then V must be
orientable. If V is an oriented bundle over a connected base space, then every
Dirac symbol for V must be either positively or negatively oriented.

We shall say a bit more later about conditions necessary to guarantee the exis-
tence of Dirac symbols. But it is easy to see that Dirac symbols are not necessarily
unique. Indeed, if c : V → End(S) is a Dirac symbol and if P is a complex line
bundle, then the object

c⊗ idP : V → End(S⊗ P)
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is also a Dirac symbol. Moreover we can also obtain a new Dirac symbol from
c : V → End(S) simply by reversing the grading of S.

8.15 Definition. Let c1 : V → End(S1) and c2 : V → End(S2) be two Dirac-type
symbols associated to an even-dimensional, euclidean vector bundle V . Denote by
HomV(S1, S2) the vector bundle whose sections are the bundle homomorphisms
S1 → S2 which commute with the actions of V on S1 and S2 by Clifford
multiplication.

8.16 Remark. Despite the fact that S1 and S2 are Z/2-graded, we do not require
that elements of HomV(S1, S2) be grading-preserving.

E-lemma 8.17 Lemma. Let c1 : V → End(S1) and c2 : V → End(S2) be two Dirac symbols
associated to an even-dimensional, oriented euclidean vector bundle V . The bundle
L = HomV(S1, S2) is a line bundle, and c2 : V → End(S2) is isomorphic to the
tensor product c1 ⊗ idL : V → End(S1 ⊗ L).

Proof. Since the actions of the fibers Vx on S1x and S2x correspond to equivalent
irreducible representations of the Clifford algebra C(Vx), it follows from Schur’s
lemma in representation theory that the fibers of L = HomV(S1, S2) are one-
dimensional vector spaces. Thus L is a line bundle, as claimed. The isomorphism
in the statement of the lemma comes from the canonical evaluation map

S1 ⊗ HomV(S1, S2) → S2,

so the proof of the lemma is complete.

Let c : V → End(S) be a Dirac-type symbol. Denote by S the complex conjugate
bundle of S. The complex conjugate of the hermitian inner product on S is a
hermitian inner product on S and of course the grading on S determines a grading
on S. The bundles End(S) and End(S) are identical to one another, since a complex-
linear endomorphism of S is also a complex-linear endomorphism of S. It follows
that the map c : V → End(S) determines a map c : V → End(S), which is a new
Dirac-type symbol.

8.18 Definition. If c : V → End(S) is a Dirac symbol (that is, a Dirac-type symbol
of minimal dimension), then denote by LS the line bundle

LS = HomV(S, S).

signs-remark 8.19 Remark. The canonical evaluation map given in the proof of Lemma 8.17
exhibits an isomorphism of Dirac symbols LS ⊗ S ∼= S. It is important to note
that if the rank of V is 2k this isomorphism is orientation preserving or orientation
reversing, according as k is even or odd. To see this, it suffices to note that if S is
positively oriented for a given orientation on V , then V is positively or negatively
oriented, according as k is even or odd.

8.20 Exercise. Show that ifM is an auxiliary line bundle, and if we form the tensor
product Dirac symbol c⊗ idP : V → End(S⊗ P), then LS⊗P ∼= LS ⊗ P ⊗ P.
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canonical-line-ex 8.21 Exercise. Show that if V is the real bundle underlying a rank-k complex
vector bundle E, if S = ∧∗E, and if b : V → End(S) is the Thom element, viewed
as a Dirac symbol, then LS = ∧kE. (Hint: if w ∈ ∧kE show that the map from S

to S defined by s 7→ w s commutes with Clifford action of V .)

8.22 Theorem. Let V be an oriented, euclidean vector bundle of rank 2k over a
compact manifold M. If c : V → End(S) is a positively oriented Dirac symbol,
then

ch(c) =

√
ch(LS)

Â(V)
uV ∈ H∗(V)

where uV ∈ H∗(V) is the cohomology Thom class of V .chern-dirac

8.23 Remark. Note that since LS is a line bundle, its Chern character is simply
ec1(LS), where c1(LS) is the first Chern class of LS. The square root of the Chern
character is therefore understood as e

1
2c1(LS). Recall that the Â class is a similar

square root (Exercise ??); in fact, Â(V) =
√

Todd(V ⊗ C).

Proof of the Theorem (sketch). Consider the euclidean vector bundle V⊕V . There
are two natural ways to construct a Dirac symbol on this bundle:

(i) We may form the product symbol1 c × c of two copies of the given Dirac
symbol c;

(ii) Ignoring the given symbol c entirely, we may considerV⊕V as the underlying
real vector bundle of the complex vector bundle V ⊗ C, and then form the
Thom element b : V ⊗ C → End(∧∗V ⊗ C).

We are going to compute the Chern character of each, and then determine the
relation between these Chern characters. Finally, we shall deduce the theorem from
this relation.

Let us denote by C(c) ∈ H∗(M) the cohomology class such that ch(c) =
C(c)uV . Thus C(c) is precisely the class which we need to determine to prove the
theorem. By following the same line of reasoning that we used in the last chapter,
one can prove a multiplicative property for ch(c× c), and conclude that

ch(c× c) = C(c) · C(c) · uV⊕V .
As for the Thom element associated to the complex bundle V ⊗C, we computed

in the last chapter that

ch(b) =
1

Todd(V ⊗ C)
uV⊗C.

We are now going to show that

ch(c× c) = (−1)k ch(b) · ch(LS). (8.1) chern-rel

In view of the fact that the Thom classes uV⊕V and uV⊗C differ by the sign (−1)k

(since the orientations on V ⊕ V and V ⊗ C differ by that sign), it will follow that

C(c)2 = ch(LS) Todd(V ⊗ C)−1.

1See Exercise 8.8.
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To verify the relation 8.1 between Chern characters, we shall prove that the tensor
product of the Dirac symbol in (ii) with the line bundle LS is the Dirac symbol in
(i) (up to a possible reversal of the grading, which accounts for the sign (−1)k).

Let us begin by considering C(V), the bundle of Clifford algebras over V . Like
any algebra, the Clifford algebra is a bimodule over itself, using the actions of
left and right multiplication. These actions commute, but we can make them
anticommute instead by introducing a small twist from the grading operator γ ∈
C(V):

`(u) · x = ux, r(v) · x = iγxγv.

The pair (`, r) defines a Dirac-type symbol for V⊕V , which by dimension counting
is a Dirac symbol.

In fact, this Dirac symbol is isomorphic to the Dirac symbol (ii): the canonical
isomorphism of vector spaces from C(V) to the complexified exterior algebra
∧∗V ⊗ C which maps v1 · · · · · vp to v1 ∧ · · · ∧ vp is a (grading-preserving)
isomorphism of Dirac symbols.

Clifford multiplication determines a grading-preserving isomorphism C(V) →
End(S), and the vector bundle End(S) is, in turn, isomorphic to S⊗ S via the map
which associates to s1 ⊗ s2 ∈ S ⊗ S the endomorphism s 7→ 〈s, s2〉s1. It follows
that there are vector bundle isomorphisms

∧∗V ⊗ C⊗ LS ∼= End(S)⊗ LS ∼= S⊗ S⊗ LS ∼= S⊗ S.
All of the isomorphisms are grading-preserving, except the last one, which is
grading-reversing if k is odd (see Remark 8.19). The Dirac symbol structure c× c
on S ⊗ S corresponds under these isomorphisms to the structure on End(S) ⊗ LS
given by the anticommuting actions

` ′(u) · x = ux, r ′(v) · x = γxv.

This is not the same as the original Dirac symbol structure on ∧∗V ⊗ C (tensored
with the identity on LS) but it is isomorphic to it via the map x 7→ x

√
γ, where

the operator
√
γ is defined to be 1 on the +1-eigenspace of γ and i =

√
−1 on the

−1-eigenspace. We conclude that

ch(c× c) = (−1)k ch(b) · ch(LS),

as required.
Having now shown that C(c)2 = ch(LS) Todd(V ⊗ C)−1, we can now take

square roots to obtain the formula

C(c) = ±
√

ch(LS)

Â(V)
.

To determine the sign, we just need to work out the degree zero part of C(c) in
H0(M), and to do this we can restrict the bundle V to a single point in M. Over
any single point, we can give V a complex structure, and the restriction of the
Dirac symbol to our point is isomorphic to the Bott element. The isomorphism is
grading-preserving or grading-reversing according as k is even or odd, because the
Bott element is positively or negatively oriented according as k is even or odd. The
computations in the previous chapter now tell us that the correct sign is +1
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8.24 Definition. We shall call a (symmetric, first-order) differential operator a
Dirac operator if its symbol is a Dirac symbol associated to T∗M.

A Dirac operator is necessarily elliptic. Our calculation of the Chern character
of Dirac symbols allows us to write out the index formula for Dirac operators in
fairly explicit terms.

index-dirac-thm 8.25 Theorem. Let D be a Dirac operator associated to a positively oriented
Dirac symbol σ on a compact oriented manifoldM of dimension 2k. Then

Ind(D) = (−1)k
∫
M

√
ch(LS) Â(TM).

(where we recall that the class Â(TM) is by definition the square root of the class
Todd(TM⊗ C)).

Proof. We will deduce this from the general form of the Index Theorem 9.1. The
idea is the same as in Section 7.1.

Substituting the formula of Theorem 8.22, which gives the Chern character of
the symbol, into the index theorem 9.1, we get

Ind(D) =

∫
T∗M

√
ch(LS)

Â(TM)
Todd(TM⊗ C)uTM.

Integrating over the fiber, we get

Ind(D) = (−1)k
∫
M

√
ch(LS) Â(TM),

as required.

8.26 Example. LetM be a complex manifold of complex dimension k, and hence
real dimension 2k. The symbol of the Dolbeault operator D = ∂̄ + ∂̄∗ acting on
S = ∧0,∗T∗CM

∼= ∧∗TM is a Dirac symbol. It is positively or negatively oriented,
according as k is even or odd. As the reader was asked to show in Exercise 8.21,
the line bundle LS is ∧kTM (the highest exterior power of the complex bundle
TM). The following exercise now reconciles the formula in Theorem 8.25 with the
previously derived index formula for the Dolbeault operator.

8.27 Exercise. Let E be a complex vector bundle of rank k. Show that

Todd(E) = ch(∧kE) Todd(E).

Deduce that √
ch(∧nE) Â(ER) = Todd(E).

8.3 THE SPINOR DIRAC OPERATOR

This short section requires some familiarity with principal bundle theory.
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8.28 Definition. A Spinc-structure on an oriented, even-dimensional Riemannian
manifold is an isomorphism class of positively oriented Dirac symbols associated
to T∗M.

Let us discuss in more detail the problem of determining whether or not an
oriented Riemannian manifold admits a Spinc-structure.

Consider the complex Clifford algebra of R2k. It is isomorphic to matrix algebra
M2k(C)—let us fix such an isomorphism. The group SO(2k) acts on R2k and
therefore on CC(R2k), and therefore onM2k(C) via the given, fixed, isomorphism.
Since every automorphism of M2k(C) is induced from a unique automorphism of
C2

k

, up to a scalar multiple of the identity, we obtain a group homomorphism

SO(2k) → U(2k)/Z,

where Z denotes the center of the unitary group U(2k) (Z is isomorphic to S1 and
consists of scalar multiples of the identity).

8.29 Definition. Denote by Spinc(2k) the group which fits into the pullback
diagram

S1

=

��

// Spinc(2k) //

��

SO(2k)

��

Z // U(2k) // U(2k)/Z

Observe that the group Spinc(2k) comes with canonical representations on the
spaces R2k and C2k

. The map R2k⊗C2k → C2k

which is induced from our fixed
isomorphism C(R2k) ∼= M2k(C) is Spinc(2k)-equivariant.

One can prove the following result.

8.30 Theorem. An oriented Riemannian 2k-manifold admits a Spinc-structure if
and only if the principal S0(2k)-bundle F of oriented frames admits a reduction F̃
to the group Spinc(2k). In this case, the cotangent bundle TM is given by

T∗M = F̃×Spinc(2k) R2k,

and the formula

S = F̃×Spinc(2k) C2
k

defines a hermitian bundle equipped with an action T∗M ⊗ S → S which is a
Dirac symbol. In this way, Spinc-structures correspond bijectively to reductions of
the oriented frame bundle to Spinc(2k).

In the real case, we shall confine our attention to manifolds of dimension 8k.
This is to accommodate the following result:

8.31 Proposition. The real Clifford algebra R(R8k) is isomorphic to the matrix
algebraM24k(R).
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We define real Dirac symbols in the 8k-dimensional case by putting a minimal
dimensionality requirement on the bundle S. We define a Spin-structure on an
oriented Riemannian manifold of dimension 8k to be an isomorphism class of
positively oriented real Dirac symbols.

By following a similar reasoning to that used in the previous section one can
prove:

8.32 Theorem. An oriented Riemannian 8k-manifold admits a Spin-structure if
and only if the principal S0(8k)-bundle F of oriented frames admits a reduction F̃
to the group Spin(8k). Here Spin(8k) is the double cover of SO(8k) which fits
into the diagram

Z/2

=

��

// Spin(8k) //

��

SO(8k)

��

Z // SO(24k) // SO(24k)/Z

(one can show that Spin(8k) is the simply connected double cover of SO(8k)). In
this case, the bundle S is given by

S = F̃×Spin(8k) R2
4k

,

and the action of T∗M on it is induced from the action of R8k on R24k

.

If the Dirac symbol c : T∗M → End(S) is the complexification of a real Dirac
symbol, then the line bundle Lc is trivial. In this case the index formula reads quite
simply

Ind(D) =

∫
M

Â(M).

One of the interesting features of this formula is that in the real case, thanks to
the fact that the reduction F̃ is a covering space of the frame bundle F, there is a
canonical connection on F̃ which gives rise to a canonical affine connection on S,
and ultimately a canonical operator (defined in terms of the Riemannian geometry
ofM) whose symbol is the Dirac symbol, namely

D =
∑

σ(ωi)∇Xi
,

where the sum is over a local frame {Xi} and dual frame {ωi}. This operator has
the following important property, known as the Lichnerowicz formula:

D2 = ∇∗∇+
κ

4
,

where κ is the scalar curvature function onM.

weitzenbock-remark 8.33 Remark. Formulas of the above type, known as Bochner-Weitzenbock formu-
las, can be proved for the squares of many natural geometric operators. A special
feature of the Dirac operator associated to a Spin-structure is that for it the order
zero term that appears in all such formulas is particularly simple and significant.
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The Lichnerowicz formula has the following immediate consequence:

lichnerowicz-theorem 8.34 Theorem. Let M be a Riemannian manifold which admits a Spin structure.
If the scalar curvature ofM is everywhere positive then

∫
M
Â(M) = 0.

Proof. If κ > 0, then by the Lichnerowicz formula the Dirac operator is bounded
below, and is therefore invertible. Hence its index is zero.

8.4 EXERCISES

8.5 NOTES

A book-length exposition of Clifford algebras, their representation theory, and the
associated Dirac operators can be found in [?]. The Riemann-Roch theorem and
the signature theorem were first proved by Hirzebruch [?]. In his work, Thom’s
cobordism theory acts as an organizing principle in roughly the same way that K-
theory does in the proof of the index theorem.

For exotic spheres see [?, ?].
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Chapter Nine

The Atiyah-Singer Index Theorem

GeneralTheoremChapter
In Chapter 5 we saw that a linear elliptic partial differential operatorD on a smooth
closed manifold has a Fredholm index,

Ind(D) ∈ Z.

In Chapter ?? we saw that associated to D there is a symbol class

σD ∈ K(T∗M).

In Chapter 4 we discussed the Chern character and characteristic classes of vector
bundles. The index problem is to compute Ind(D) in terms of ch(σD). The solution
is the famous Atiyah-Singer Index Theorem, which we shall state precisely in this
short chapter.

9.1 STATEMENT OF THE INDEX THEOREM

Recall that the Todd class Todd(E) of a complex vector bundle E is the multiplica-
tive characteristic class associated to the formal power series x/(1−e−x). The Todd
class belongs to H∗(M), and the Chern character of the symbol to H∗(T∗M); the
product appearing under the integration sign stems from the fact that H∗(T∗M) is
a module over H∗(M). The “integration” functional on the top-dimensional coho-
mology of T∗M is defined because T∗M is always an oriented manifold. We shall
explain our choice of orientation more precisely below.

the-index-theorem 9.1 Theorem (Atiyah and Singer). Let D be a linear elliptic partial differential
operator on a smooth, closed manifold M, and denote by [σD] ∈ K(T∗M) its
symbol class. Then

Ind(D) = (−1)dim(M)

∫
T∗M

ch(σD) Todd(TM⊗ C).

9.2 Remark. Let D be an elliptic differential operator on an odd-dimensional
manifold M. Denote by ι : T∗M → T∗M the vector bundle map which is
multiplication by −1 in each fiber of the cotangent bundle. Then ι is orientation-
reversing, but ι∗ ch(σD) = ch(σD). It therefore follows from the index formula
that Ind(D) = 0, and so it would be safe to drop the sign (−1)dim(M) from
Theorem 9.1. However, in every dimension there are nontrivial instances of the
index formula involving pseudodifferential operators. The statement of the index
formula in 9.1 does not need to be altered in any way to handle these more general
cases.
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The first and major step toward solving the index problem is to recast the problem
in K-theoretic terms. The following result will be obtained in Chapter 10:

9.3 Theorem. For each smooth manifoldM (compact or not), there is a homomor-
phism

αM : K(T∗M) → K(pt)

that has the following property: if M is compact, and if σD ∈ K(T∗M) is the
symbol class of an elliptic operator D onM, then α(σD) = Ind(D) in K(pt) ∼= Z.

index-construction

9.2 THE ROTATION ARGUMENT

Atiyah’s paper on index theory and Bott periodicity: [?].

9.3 THE INDEX THEOREM FOR ORIENTED MANIFOLDS

In many of the applications of the index theorem the manifold M is itself oriented
and it is possible to evaluate the integral over T∗M in two stages: first integrate over
the fibers of T∗M and then integrate the result over the base spaceM. For example,
we shall see that this is how the expression

∫
M
L(TM) arises in the Hirzebruch

signature theorem.

9.4 THE SIGNATURE OPERATOR

We shall conclude this chapter by returning to the signature operator which was
discussed in Chapter ??, and computing the Atiyah-Singer formula in for it.

Let V be an oriented euclidean vector bundle of rank 2k. Borrowing from
Chapter ??, let us define a ?-operator on the real exterior algebra bundle ∧∗V by
the formula

(β,α) vol = β∧ ?α ∈ ∧nV ⊗ C.

If we denote by S the complexification of ∧∗V , then the operator

εα = ik+p(p−1) ? α (α ∈ ∧pV)

determines a grading operator on S. The by now standard formula

c(v) · x = v∧ x+ v x

determines a Dirac-type symbol c : V → End(S). If V is the cotangent bundle of
an oriented, Riemannian manifold, then this Dirac-type symbol is the symbol of
the signature operator.

Define a characteristic class C(V) by the formula ch(c) = C(V)uV . This is
a characteristic class of oriented, even-dimensional vector bundles, but in fact it
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extends to a characteristic class of all even-dimensional vector bundles (compare
Remark ??). One can show that it is multiplicative.

The index of the signature operator is given by the formula

Ind(D) =

∫
T∗M

C(T∗M)uT∗M Todd(T∗M⊗ C)

= (−1)k
∫
M

C(TM) Todd(TM⊗ C)

(we have used the Riemannian structure to identify TM and T∗M). Let us there-
fore attempt to compute the characteristic class (−1)kC(V) Todd(V ⊗ C). It too is
multiplicative, and it is therefore determined by its value on the real bundle ER un-
derlying the universal complex line bundle E on projective space (see the discussion
in Section ??).

9.4 Exercise. Let E be a complex line bundle (for instance, the universal one).
Prove that the even-graded part of ∧∗ER ⊗ C for the grading operator ε is isomor-
phic to the direct sum of E and a trivial line bundle, whereas the odd-graded part is
isomorphic to the direct sum of E and a trivial line bundle.

By repeating the argument we gave in Theorem ??, where we computed the class
τ which appears in connection with the Thom homomorphism, we deduce from the
exercise that

C(E) =
(1+ e−x) − (1− ex)

x
=
e−x − ex

x
,

where x is the Euler class of E. Since Todd(E⊗ C) = Todd(E) Todd(E) it follows
that

(−1)kC(E) Todd(E⊗ C) = −
e−x − ex

x

x

1− e−x

−x

1− ex

= x
ex − 1

ex − 1

=
x

tanh x/2

Let us write the answer as

x

tanh x/2
= 2

x/2

tanh x/2
.

Our conclusion is then that if L is the multiplicative characteristic class of real
vector bundles associated to the power series (x/2)

/
(tanh x/2), then

Ind(D) = 2k
∫
M

L(TM).

This result is usually reformulated in terms of the multiplicative class L associated
to the power series x/ tanh x. The formula so obtained is the Hirzebruch signature
theorem:
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9.5 Theorem. Let L be the multiplicative class of real vector bundles associated to
the power series x/ tanh x. If D is the signature operator on an even-dimensional,
closed, oriented Riemannian manifold, then

Ind(D) =

∫
M

L(TM).

Proof. In degree 2k the cohomology classes L(TM) and 2kL(TM) are equal.

We conclude by outlining an important application of the Hirzebruch signature
theorem to the construction of an exotic sphere. This is due to Milnor (1957) and
it highlighted the importance of playing off against one another two sources of
“integrality” in the signature theorem: the fact the the signature (or more generally
the index of an elliptic operator) is an integer, and the fact that the Pontrjagin classes
are integral cohomology classes. It is interesting that in noncommutative geometry
only the first source of integrality (index theory) is available to us.

The geometric input that is needed is a construction of manifolds with prescribed
intersection form (remember that the intersection form is the form defined by the
cup-product on the middle-dimensional cohomology). We will be considering
manifolds W with boundary, whose boundary is topologically a sphere; if you
don’t want to work out a general theory of intersection forms for manifolds with
boundary, just define the intersection form of such a manifold to be the intersection
form of the topological manifold obtained by capping off the boundary with a disk.

A quadratic form over the integers is said to be even if it can be represented by
a matrix all of whose diagonal entries are even, and unimodular if its determinant
is ±1. Milnor gave an explicit construction, sometimes called “plumbing,” which
will produce a smooth W with prescribed even intersection form; unimodularity
implies that the boundary is topologically a sphere. In particular

9.6 Theorem (Milnor Plumbing). There is a smooth 8-dimensional manifold W
with boundary, such that

• Σ = ∂W is homeomorphic to S7;

• W is parallelizable (its tangent bundle is trivial);

• The intersection form ofW is the E8 matrix,

E8 =



2 1 0 0 0 0 0 0

1 2 0 1 0 0 0 0

0 0 2 1 0 0 0 0

0 1 1 2 1 0 0 0

0 0 0 1 2 1 0 0

0 0 0 0 1 2 1 0

0 0 0 0 0 1 2 1

0 0 0 0 0 0 1 2


.

The E8 form is even, unimodular, and positive definite: it is the “smallest”
integral quadratic form with these properties.
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We are going to show that Σ is not diffeomorphic to S7: it is an “exotic sphere.”
For, suppose that it were. Then we could form a smooth, closed 8-manifold M by
attaching an 8-disk to ∂W. Applying the Hirzebruch signature theorem we get

Sign(M) =

∫
M

L(TM).

By Exercise ??, this gives

8 =
1

45

(
7

∫
M

p2(TM) −

∫
M

p1(TM)2
)

where the p1 and p2 are the Pontrjagin classes. Recall, however, that the tangent
bundle of W is trivial. Thus TM is obtained by “clutching” two trivial bundles
over the 7-sphere, and in such circumstances it is easy to see that all but the highest
Pontrjagin classes must vanish. We conclude that

∫
M
p1(TM)2 = 0 so∫

M

p2(TM) =
56

45

which contradicts the integrality of the Pontrjagin classes.

9.5 EXERCISES

9.6 NOTES

Atiyah and Singer showed in [?] how the index theorem could be deduced from
suitable axioms for an “analytic index map” (our α). Our construction of α, which
will be given in Chapter 10, differs from theirs; but so far as the axiomatics of this
chapter go, we have followed them closely.

There is a symbiotic relationship between Bott periodicity and elliptic operator
theory. Following Atiyah [?] we proved the Bott periodicity theorem by computing
the index of a certain special operator, while Theorem 12.1 shows how the compu-
tation of the index of an elliptic operator can be reduced ultimately to an invocation
of Bott periodicity. From this point of view, the content of the index theorem is a
reduction of the index theory of all operators to that of a small class of examples,
one in each dimension.
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Chapter Ten

Groupoids

GroupoidChapter
The original papers of Atiyah and Singer constructed the index homomorphism by
making use of the theory of pseudodifferential operators. In this book we shall take
a slightly different approach, more in the spirit of the noncommutative geometry
program of Alain Connes [?]. Connes’ program involves the analysis of generalized
spaces, many of which can be modeled using the notion of groupoids. In the next
chapter we shall produce the index map as a by-product of the construction of a
certain groupoid, the so-called tangent groupoid of a manifold.

10.1 SMOOTH GROUPOIDS

The following definition is short but probably opaque to anyone who has not
encountered it before. We shall therefore take some time to explain its meaning
as fully as we can.

10.1 Definition. A smooth groupoid is a small category in which every morphism is
invertible, and for which the set of all morphisms and the set of all objects are given
the structure of smooth manifolds; the source and range maps are submersions; and
the composition law and inclusion of identities are smooth maps.

In a more detail, a smooth groupoid consists of the following things:

(a) A smooth manifold G, whose points constitute the morphisms in some cate-
gory;

(b) A smooth manifold B whose points are the objects in the category;

(c) Two maps r, s : G → B which associate to morphisms their range and source
objects and which are required to be submersions.1 Thanks to the assumption
that r and s are submersions, the set

G(2) = { (γ1, γ2) ∈ G×G : s(γ1) = r(γ2) }

of composable pairs of morphisms is a smooth submanifold of G×G.

(d) A smooth composition map G(2) → G.

(e) A smooth map B → G which maps an object x ∈ B to the identity morphism
at x.

1Recall that a smooth map between manifolds is a submersion if in suitable local coordinates it has
the form of a projection (x1, . . . , xp+q) 7→ (x1, . . . , xp).
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(f) A smooth map G → G which associates to each morphism an inverse mor-
phism.

We will usually specify a groupoid by describing the spaces G and B, and the
source, range and composition maps (the other maps are determined by these).
When we say, even more briefly “let G be a smooth groupoid” the “G” we are
referring to is the space of all morphisms, as in (a). This is similar to saying “let G
be a Lie group,” in that the other structure implicit in a Lie group is assumed to be
provided as well.

In noncommutative geometry, which we shall discuss later in this book, it is
customary to paint what might be called the quotient space picture of groupoid
theory. In this view, one thinks of the morphisms in G as defining an equivalence
relation on the manifold B: two objects are equivalent if there is a morphism
between them. Two objects might be equivalent for more than one reason, and the
groupoid keeps track of this. It is customary in mathematics to form the quotient
space from an equivalence relation, but even in rather simple examples the ordinary
quotient space of general topology can be highly singular, and for example not at
all a manifold. The groupoid serves as a smooth stand-in for the quotient space in
these situations, and using it one can study the cohomology of the quotient space,
and even its geometry. These ideas have developed extensively by Alain Connes.

A second view of groupoid theory, which is better suited to our immediate
purposes, is what we shall call the families picture. We shall think of the groupoid
as a family of smooth manifolds

Gx = {γ ∈ G : s(γ) = x }

parameterized by x ∈ B. If η is a morphism in G, from x to y, then there is an
associated diffeomorphism

Rη : Gy → Gx

defined by Rη(γ) = γ◦η. We shall therefore think of a groupoid as a smooth family
of smooth manifolds equipped with intertwining diffeomorphisms Rη. From this
point of view, having been given a groupoid G, it will be very natural to consider
families of say differential operators Dx, one on each Gx, which are equivariant
with respect to the Rη in the obvious sense.

man-ex 10.2 Example. A manifold M may be viewed as a smooth groupoid, by taking
both the object and morphism sets to be M, and the source and range maps to be
the identity map M → M. In the families picture, we are thinking of M as a
‘family of points’ — parameterized (tautologically) byM itself.

fam-ex1 10.3 Example. A Lie group G may be viewed as a smooth groupoid. The object
set is a single-element set, and the set of morphisms from this single element to
itself is G. In the families picture, we have one manifold—the underlying smooth
manifold ofG—and a family of self-maps of this manifold, given by the usual right-
translation operators on G. An equivariant differential operator in this example is
a right-translation-invariant differential operator on the Lie group G. Thus if, for
example,G = Rn, then an equivariant differential operator is a constant coefficient
operator on Rn.
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bundle-example 10.4 Example. IfV is the total space of a smooth vector bundle over a manifoldM,
then we can view V as a groupoid as follows: the source and range maps are both
equal to the projection from V to the base spaceM, and composition of morphisms
is addition in the fibers of V . We are therefore viewing V as a smooth family
of additive Lie groups over M. We shall be particularly concerned later with the
case V = TM, but we could in principle also consider more complicated smooth
families of Lie groups, in which the groups were neither abelian nor mutually
isomorphic to one another.

fam-ex2 10.5 Example. Let M be a smooth manifold. The pair groupoid of M has object
spaceM and morphism space G = M×M. Its structure maps are as follows:

• Source map: s(m2,m1) = m1.

• Range map: r(m2,m1) = m2.

• Composition: (m3,m2) ◦ (m2,m1) = (m3,m1).

The spaces Gm all identify with M, and the translation operators Gm2
→ Gm1

all become the identity map under these identifications. An equivariant family
of differential operators in this example is nothing more than a single differential
operator on the manifoldM.

fam-ex3 10.6 Example. Examples 10.3 and 10.5 can be combined, after a fashion, as
follows. Let A be a discrete group or a Lie group acting (on the left) on a smooth
manifold M. The transformation groupoid A n M has object space M and the
following morphism space:

{ (m2, a,m1) ∈M×A×M : m2 = am1 }.

Obviously the morphism space identifies with the product A ×M by projection
onto the last two factors, but the above description makes the structure maps more
transparent:

• Source map: s(m2, a,m1) = m1.

• Range map: r(m2, a,m1) = m2.

• Composition: (m3, a2,m2) ◦ (m2, a1,m1) = (m3, a2a1,m1).

However an equivariant family of differential operators is not, as one might guess,
the same thing as an A-equivariant differential operator on M. Instead it is a
family of differential operatorsDm on A, parameterized bym ∈M, for which the
operatorDm is equivariant for the right translation action of the isotropy subgroup
Am on A.

balanced-prod-example 10.7 Example. Let W be a smooth manifold. An action of a discrete group Γ by
diffeomorphisms is principal if every point w ∈ W has a neighborhood U such
that Uγ ∩U = ∅ for all γ ∈ Γ apart from γ = e. Let G be the quotient ofW ×W
by the diagonal action of Γ . This is a smooth groupoid with object space W/Γ and
the following structure maps:
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• Source map: s([w2, w1]) = [w1] (the square brackets denote orbits under
Γ -action).

• Range map: r([w2, w1]) = [w2].

• Composition: [w3, w2] ◦ [w2, w1] = [w3, w1].

10.8 Exercise. Determine the identity morphisms and inverses in all of the above
examples.

10.9 Exercise. Show that an equivariant family of differential operators on the
groupoid of Example 10.7 is the same thing as an ordinary differential operator on
the quotient manifoldW/Γ .

10.2 GROUPOID C*-ALGEBRAS

We are going to associate to any smooth groupoid a convolution C∗-algebra.

10.10 Definition. A right Haar system on a smooth groupoid G is a system of
smooth measures, one on each of the leaves

Gx = {γ ∈ G : s(γ) = x },

with the properties that:

(i) If f is a smooth, compactly supported function on G then
∫
Gx
f(γ)dµx(γ) is

a smooth function of x.

(ii) If η is a morphism from x to y then∫
Gx

f(γ)dµx(γ) =

∫
Gy

f(γ ◦ η)dµy(γ).

10.11 Proposition. Every smooth groupoid admits a right Haar system.

The proposition can be proved by adapting the standard construction of Haar
measures on Lie groups: pick a 1-density (basically a top degree differential form)
on Gx at the point idx and do so in a way which varies smoothly with x. Then
right-translate the densities around G to define a 1-density at every point with the
required properties.

10.12 Definition. Let G be a smooth groupoid with right Haar system. Define a
convolution multiplication and adjoint on the space C∞

c (G) of smooth, compactly
supported complex functions on the morphism space of G using the formulas

f1 ? f2(γ) =

∫
Gs(γ)

f1(γ ◦ η−1)f2(η)dµs(γ)(η).

and

f∗(γ) = f(γ−1).
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10.13 Proposition. Let G be a smooth groupoid with right Haar system. With the
above operations, C∞

c (G) is an associative ∗-algebra.

Proof. Exercise.

10.14 Definition. Let G be a smooth groupoid with right Haar system. Define
representations

λx : C∞
c (G) → B(L2(Gx))

by the formulas

λx(f)h(γ) = f ? h(γ) =

∫
Gs(γ)

f(γ ◦ η−1)h(η)dµs(γ)(η).

The reduced groupoid C∗-algebra of G, denoted C∗λ(G), is the completion of
C∞
c (G) in the norm

‖f‖ = sup
x
‖λx(f)‖B(L2(Gx)).

This construction is sufficiently general to encompass a number of standard
examples.

10.15 Example. Let M be a manifold, which we regard as a groupoid as in
Example 10.2. Then each leaf is a single point, and the Dirac measures form a Haar
system. The associated groupoid C∗- algebra is the commutative algebra C0(M)
of continuous functions onM vanishing at infinity.

10.16 Example. Let G be a Lie group, regarded as a groupoid as in Example 10.3.
There is only one leaf, which is G itself, and a Haar system on the groupoid is
just the same thing as a Haar measure on the group. Our construction tells us
to complete the algebra C∞

c (G) (under convolution) in the norm coming from its
regular representation on L2(G). This is the standard construction of the reduced
C∗-algebra of a group (see [?]).

groupalg-euclid 10.17 Example. One particular case is extremely important. Suppose that G =
Rn. Recall that a function on Rn is said to belong to the Schwarz class S(Rn) if
it and all its derivatives decrease at ∞ faster than any polynomial2. It is easy to
check that convolution is well-defined on S(Rn) (essentially because the volume
of a ball in Rn grows only as a polynomial in the radius). Plancherel’s theorem
from Fourier analysis, which we already encountered in Chapter 5, then has the
following sharpening.

schwarz-ft 10.18 Proposition. The Fourier transform extends to give a linear homeomor-
phism of S(Rn) onto S((Rn)∗), and to give a unitary isomorphism of L2(Rn)
onto L2((Rn)∗). Moreover, the Fourier transformation converts convolution into
pointwise multiplication, in the sense that

f̂ ∗ u = f̂ · û,
where f ∈ S(Rn) and u ∈ L2(Rn).

2The space S(Rn) has a natural Fréchet topology, whose seminorms are

‖f‖k,l = sup{|∂αf/∂xα(1 + |x|)l : x ∈ Rn, |α| ≤ k}

for natural numbers k, l.
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(A proof may be found in [?], for example.) It follows that the convolution
algebra C∞

c (Rn), acting on the regular representation by convolution, is unitarily
equivalent to a dense subalgebra of S((Rn)∗), acting on L2((Rn)∗) by pointwise
multiplication. We conclude that C∗(Rn) is canonically identified (via Fourier
transform) with C0((Rn)∗).

haar1-ex 10.19 Example. If G = M ×M (the pair groupoid of Example 10.5), then in
any Haar system all the measures µm on Gm = M × {m} ∼= M are equal to one
another and conversely any smooth measure µ on M determines a Haar system.
The convolution multiplication and adjoint are

f1 ? f2(m2,m1) =

∫
M

f1(m2,m)f2(m,m1)dµ(m).

and

f∗(m2,m1) = f(m1,m2).

ThusC∞
c (G) is the algebra of ‘smoothing operators’ onM— compactly supported

smooth functions on M, multiplied according to the first display above. (It is
helpful to think of these functions as ‘continuous matrices’, and of the equations
above as ‘continuous’ versions of the familiar rules for calculating the product and
adjoint of matrices.)

It turns out that the groupoid C∗-algebra C∗λ(G) for the pair groupoid is simply
the C∗-algebra K of compact operators on L2(M). To prove this we invoke
Lemma ?? which tells us that every compactly supported smoothing operator is
compact as an operator on L2(M). Moreover, if {em} is an orthonormal basis of
L2(M) made up of compactly supported smooth functions, then all the rank-one
operators

u 7→ 〈u, em〉en
are compactly supported smoothing operators. Since such operators span a dense
subalgebra of K, it follows that the norm closure of the compactly supported
smoothing operators is exactly the algebra of compact operators.

haar2-ex 10.20 Example. IfG = TM (the tangent bundle) then a Haar system is a smoothly
varying system of translation-invariant measures on the vector spaces TmM. As-
suming for simplicity that M is oriented, a translation-invariant measure on TmM
is the same thing as a point in ∧nT∗mM, and so we see that a smooth Haar system
on TM is determined by a smooth measure on M. The convolution multiplication
and adjoint in the groupoid algebra are

f1 ? f2(X,m) =

∫
TmM

f1(X− Y,m)f2(Y,m)dµ(Y).

and

f∗(X,m) = f(−X,m).

The groupoid C∗-algebra is therefore, so to speak, made up of sections of a bundle
of C∗-algebras over M, whose fiber at m ∈ M is the group C∗-algebra of the
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additive group TmM. However, each of these C∗-algebras is of the kind we
discussed in Example 10.17: the C∗-algebra of the additive group TmM is the
algebra C0(T∗mM). An element of the groupoid algebra is therefore identified with
a section which associates, to each m ∈ M, a function on the cotangent space
T∗mM. Such a section is of course just a function on the total space of the cotangent
bundle T∗M. We conclude that

C∗λ(TM) ∼= C0(T
∗M).

10.21 Exercise. Fill in the details of the argument above.

10.3 MORITA EQUIVALENCES

10.4 ELLIPTIC OPERATORS ON GROUPOIDS

index-tech-thm 10.22 Proposition. Let D be an essentially self-adjoint, linear elliptic partial dif-
ferential operator on a smooth, closed manifoldM. Let σD be the symbol ofD and
let f ∈ C0(R). The index asymptotic morphismαt : C0(T∗M) → K(L2(M)) maps
f(σ̌D) ∈ C∗λ(TM) to the family f(tD) ∈ K(L2(M)). up asymptotic equivalence.

For simplicity of notation we have omitted explicit mention of the coefficient
bundle S. The proposition easily implies Proposition 11.19, since αt comes from
an element ofC∗λ(TM) by definition andC0((0, 1];K) is a subalgebra ofC∗λ(TM).

We model our proof of Proposition 10.22 on the proof of Theorem 5.22 from
Chapter 5. This proof had two parts, first a local estimate, and second an invocation
of the local-global principle expressed by Lemma 5.18.

In the present case the required local estimate is the following.

ind-tech-lemma2 10.23 Lemma. Let D be an selfadjoint, first order elliptic differential operator on
a smooth, closed manifold M, and let f(x) = (x ± i)−1. For every m ∈ M and
every ε > 0 there is a function gm ∈ C(M) such that gm(m) = 1 and

lim sup
t→0 ‖αt(gmf(σ̌D)gm) − gm · f(tD) · gm‖ < ε.

Proof of Lemma 10.22, assuming Lemma 10.23. Let A be the asymptotic algebra
of K, that is Cb((0, 1];K)/C0((0, 1];K). The functions αt(σ̌D) and f(tD) both
define elements of A, and we need to show that they are equal. Let a be their dif-
ference. The algebra C(M) is represented in A by pointwise multiplication opera-
tors, and a commutes with the image of C(M) (to see this, note that a commutes
asymptotically with αt(σ̌D) by Remark 10.27, and it commutes asymptotically
with f(tD) as was shown in the proof of Theorem 5.22). Lemma 10.23 shows
that the hypotheses of Lemma 5.18 are satisfied. Hence a = 0 and the result is
proved.

Now we carry out the local analysis. The reader should compare this analysis
with that of lemma 5.17.
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Proof of Propostion 10.23. Fix m ∈ M and fix a set of local coordinates in a
neighborhood U of m ∈ M. Let D0 be the constant coefficient operator (in
these coordinates) which agrees with D at the point m. Fix a smooth, compactly
supported function g1 on U which is identically 1 in a neighborhood of m, and let
g be any smooth function such that g1g = g. Let us write

αt(gf(σD)g) − gf(tD)g = αt(gf(σD)g) − αt(gf(σD0
)g)

+ αt(gf(σD0
)g) − gf(tD0)g

+ gf(tD0)g− gf(tD)g

(To compute the operator gf(tD0)g, we identify U with an open set in Rn using
the given local coordinates, extend D0 to a constant coefficient operator on Rn,
form the resolvent f(tD0) = (tD0 + iI)−1, and then use the local coordinates
again to identify gf(tD0)g with an operator on U.)

The first term can be written as αt
(
gf(σD)g − gf(σD0

)g
)
. The function

f(σD) − f(σD0
) on T∗U vanishes on the fiber overm ∈ U. So if ε > 0 and if g is

chosen to be supported sufficiently close tom then ‖g(f(σD)g− gf(σD0
)g‖ < ε.

Since αt is uniformly bounded, it follows that the first term in the display is
uniformly bounded by ε, for suitable g.

The second term in the display is asymptotic to zero. We are working in a
coordinate neighborhood, so we may calculate in the tangent groupoid TRn. Using
the explicit choice of linear extension operator L : C∞

c (TRn) → C∞
c (TRn) defined

by equation 10.2, one sees thatαt(f(σ̌D0
)) is exactly equal to f(tD0) for a constant

coefficient operator D0 on Rn.
As for the third term in the display, we find that

gf(tD)g− gf(tD0)g

= g(tD+ iI)−1g1 · tg1(gD0 −Dg)g1 · g1(tD0 + iI)−1g.

The multiplication operator g1 is inserted to make it clear that each of the three
terms on the right hand side is an operator on U. Let us break the right hand side
into the sum of the terms

g(tD+ iI)−1g1 · tg1(gD−Dg)g1 · g1(tD0 + iI)−1.

and
g(tD+ iI)−1g1 · g1g(D0 −D)g1 · tg1(tD0 + iI)−1

In the first term, the left and right factors are uniformly bounded in t (in the L2-
operator norm), while the middle term has norm converging to zero as t converges
to zero. As for the second term, the rightmost operator is uniformly bounded it t
in the norm of operators from L2(U) to the Sobolev space H1(M). The norm of
the middle factor, considered as an operator from H1(M) into L2(M), is bounded
by the size of the coefficients of the differential operator g1g(D0 − D)g1. By
choosing g to be supported sufficiently close tom, where the coefficients ofD and
D0 agree, we can make this norm as small as we please. The leftmost operator is
uniformly bounded in the L2-operator norm. Overall, for any ε > 0 we can choose
g, with g(m) = 1, so that the bottom threefold product has norm less than ε, for all
t. We have therefore shown that for any ε > 0 and suitable g, with g(m) = 1, the
third term in the top display is uniformly bounded by ε. This completes the proof
of the proposition.
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10.5 SMOOTH FAMILIES OF GROUPOIDS

Consider elements of the smooth groupoid algebra C∞
c (TM) that vanish in a

neighborhood of 0 ∈ R. These are simply families of smoothing operators on
M, depending smoothly on a parameter t and vanishing near t = 0. Their closure
forms an ideal in C∗λ(TM), and this ideal is identified with C0((0, 1];K(L2(M)).
It is clear that this ideal is contained in the kernel of ε0.

10.24 Lemma. The ideal described above is equal to the kernel of ε0. In other
words, the sequence of C∗-algebras

0 // C0((0, 1];K(L2(M)) // C∗λ(TM) // C∗λ(TM) // 0

is exact.amen-lemma

Before we prove this slightly technical lemma, let us see how it will allow us to
construct the index homomorphism. From the lemma we obtain an isomorphism of
C∗-algebras

C0(T
∗M) = C∗λ(TM) → C∗λ(TM)

C0((0, 1];K(L2(M))
.

But the evaluation maps εt, t > 0, fit together to give a ∗-homomorphism of
C∗λ(TM) into the C∗-algebra Cb((0, 1];K(L2(M)) of bounded, continuous func-
tions from (0, 1] to the compact operators. Thus we get a ∗-homomorphism from
C0(T

∗M) to the quotient Cb((0, 1];K)/C0((0, 1];K) and this quotient is — up
to a trivial reparameterization — the asymptotic algebra Q(K) introduced in the
proof of Proposition 15.17. Finally, a morphism into the asymptotic algebra of K

is the same thing as an equivalence class of asymptotic morphisms to K itself. Our
conclusion is that the lemma allows us to construct an asymptotic morphism

αt : C0(T
∗M) //___ K .

index-map-def 10.25 Definition. The index homomorphism α : K(T∗M) → Z is the K-theory
map induced from the above asymptotic morphism αt .

10.26 Remark. Note that the definition of the asymptotic morphism α can be
made completely explicit, at least for the ‘smooth elements’ C∞

c (TM) of C∗λ(TM).
Namely, given such an element (which is a smooth function defined on a closed
submanifold of the tangent groupoid), extend it in any way to a smooth compactly
supported function on the whole tangent groupoid, and then evaluate the resulting
smoothing operator at a small (but non-zero) value of t. Asymptotically (as t → 0)
this process is independent of the choice of extension and defines the asymptotic
morphism α.expl-am-rmk

ascom-rmk 10.27 Remark. As t → 0 the operators αt(f) become more and more ‘localized’
in M. One way of expressing this is the following statement: the norm of the
commutator [αt(f), g] tends to zero, as t → 0, for any smooth function g on M
(acting by multiplications). Indeed, it is easy to see that if f ∈ C∞

c (TM) then
[εt(f), g] = εt(h), for some element h ∈ C∞

c (TM) vanishing at t = 0.
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We now turn to the proof of Lemma 10.24. What underlies the proof is
the amenability of the groupoid TM (see [?]), but we shall give a direct argu-
ment which does not require any general concepts from the theory of amenable
groupoids. It is convenient to handle the case M = Rn first. We shall need a
lemma.

10.28 Definition. Let A be a unital C∗-algebra. A unital subalgebra A ⊆ A is
inverse closed if, whenever a ∈ A is invertible inA, its inverse a−1 in fact belongs
to A. Inverse closure for non-unital algebras is defined by passing to unitalizations.

It is a standard result from elementary C∗-algebra theory that any C∗-subalgebra
of a C∗-algebra is inverse closed. However, we shall be concerned with dense
subalgebras that are not C∗-algebras. In particular we shall need to note that
the Schwarz algebra S((Rn)∗) (under pointwise multiplication) is a dense, inverse
closed subalgebra of C0((Rn)∗). Equivalently, by Fourier transform (10.18), the
Schwarz algebra S(Rn) (under convolution) is a dense, inverse closed subalgebra
of C∗λ(Rn).

holomorphic-lemma 10.29 Lemma. LetA be aC∗-algebra and A a dense, inverse-closed ∗-subalgebra.
Then any ∗-homomorphism φ of A into a C∗-algebra B extends uniquely to a ∗-
homomorphism of A into B.

Proof. If a ∈ A, then SpectrumA(a∗a) = SpectrumA(a∗a) (because of inverse
closure). But since φ is a homomorphism,

SpectrumB(φ(a∗a)) ⊆ SpectrumA(a∗a).

In a C∗-algebra, the norm of a selfadjoint element is equal to its spectral radius.
It therefore follows that ‖φ(a∗a)‖B ≤ ‖a∗a‖A, and therefore that ‖φ(a)‖B ≤
‖a‖A. Then φ is norm continuous, and extends by density.

Proof of lemma 10.24 forM = Rn. The evaluation map ε0 gives a ∗-homomorphism

ε0 :
C∗λ(TM)

C0((0, 1];K(L2(M))
→ C∗λ(TM).

We shall use Lemma 10.29 to construct an inverse to this ∗-homomorphism.
As a first step let us construct a ∗-homomorphism

φ : C∞
c (TM) → C∗λ(TM)

C0((0, 1];K(L2(M))
(10.1) phieq

which will be a right inverse to ε0. This is done by using the construction of
Remark 10.26: given a smooth kernel function on TM, extend it smoothly to a
function on the tangent groupoid, and observe that any two such extensions differ
by a smooth family of smoothing operators, vanishing at t = 0. By virtue of
the construction ε0 ◦ φ is equal to the identity on C∞

c (TM). Moreover, ε0 maps
C∞
c (TM) to C∞

c (TM), and when restricted to this dense subalgebra φ◦ε0 is equal

to the quotient map C∞
c (TM) → C∗λ(TM)

C0((0, 1];K(L2(M))
.

We cannot apply Lemma 10.29 directly in this situation because the subalgebra
C∞
c (TM) of C∗λ(TM) is usually not inverse closed. However, we can embed it
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in an inverse closed subalgebra as follows. Let Sc(TRn) denote the collection of
smooth functions on the space TRn that are of Schwarz class in the ‘fiber’ direction
and compactly supported in the ‘base’ direction. Sc(TRn) is an algebra under
the operation of fiberwise convolution (the convolution operation in the groupoid
TRn). A straightforward extension of the remarks above (using the ‘fiberwise
Fourier transform’) shows that it is an inverse-closed subalgebra of C∗λ(TRn). It is
naturally topologized as an inductive limit of the Fréchet algebras SK(TRn) made
up of functions supported over compact subsets K of the base Rn.

It is now clear from Lemma 10.29 that in order to complete the proof it will be
enough to extend φ to a ∗-homomorphism (which we shall also call φ)

Sc(TM) → C∗λ(TM)

C0((0, 1];K(L2(M))
.

Such an extension can be described by an explicit formula. We can identify TM
with Rn×Rn× [0, 1], as in Example 11.10. Using this identification we can make
an explicit choice of linear extension operator L : C∞

c (TM) → C∞
c (TM): namely,

extend the function h(v2, v1) defined on TRn to the function

h̃(v2, v1, t) = h(t−1(v2 − v1), v1) (10.2) expl-ex

on TRn. Because of Lemma ??, for each compact K ⊆ Rn the operator norms
of the compact operators εtL(h) are bounded, uniformly in t, in terms of finitely
many of the seminorms of h in the algebra SK(TRn) — the actual constants in
the bound depend on the particular smooth measure on Rn that we choose to
generate our Haar system, but over any compact set K ⊆ Rn any two such choices
are equivalent. By definition of the norm on C∗λ(TRn), then, L : C∞

c (TRn) →
C∗λ(TRn) is continuous with respect to the topology of Sc(TRn) and therefore
extends uniquely to a continuous ∗-homomorphism defined on the latter algebra.
The proof (for the case of Rn) is thus complete.

Proof of Lemma 10.24 for the general case. Once again, the key point is to show
that the homomorphism φ of equation 10.1 extends continuously to C∗λ(TM). If
h is compactly supported in the domain of a coordinate chart then we may use the
special case of the lemma already proved to show that

‖φ(h)‖ ≤ ‖h‖,

the norms being C∗-norms in each case. Now consider a compact subset K of M.
A partition of unity argument shows that on functions h supported on K,

‖φ(h)‖ ≤ C‖h‖

where C is a constant which might a priori depend on K.. However, the collection
of elements supported on K is a C∗-subalgebra of C∗λ(TM). We have shown that
φ is a continuous ∗-homomorphism defined on this C∗-subalgebra, and it must
therefore have norm ≤ 1. (This is a standard property of C∗-homomorphisms,
which is implicit in the proof of Lemma 10.29.) Thus C = 1 in the inequality
above, independent of K, and as a result, φ extends by continuity to all of C∗λ(TM),
as required.
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10.6 APPENDIX: ELLIPTIC REGULARITY AND SMOOTHING KERNELS

We close this chapter by briefly considering the problem of representing operators
f(D) by kernel functions k(x, y). Such a representation, if it exists, should take the
form

f(D)u(m2) =

∫
M

k(m2,m1)u(m1)dm1,

valid for all compactly supported u. Since the operators we are interested in act
on L2(M,S), we shall need to consider kernels which are not scalar-valued but S-
valued, in the sense that k(x, y) ∈ Hom(Sy, Sx) (thus k is a continuous section of
the obvious associated bundle overM×M). Our aim is to show that ifD is elliptic
and if f ∈ S is rapidly decreasing, then f(D) is represented by a smooth S-valued
kernel.

10.30 Proposition. LetD be a formally self-adjoint, elliptic order one operator on
a closed manifold M and let f be a continuous, rapidly decreasing function on R.
Then there is a smooth, S-valued kernel k representing f(D).elliptic-package

10.31 Remark. A function f is rapidly decreasing if, for every k, the function
f(x)(1+ x2)k is bounded.

Proof. For simplicity we shall argue as if D acted on functions, not sections of S;
we leave it to the reader to make the appropriate modifications which take S into
account. Fix ` ≥ 0 and write the rapidly decreasing function f as a product

f(x) = (x2 + 1)−`g(x)(x2 + 1)−`,

where g is also rapidly decreasing, and in particular bounded. It follows from the
spectral theorem that g(D) is a bounded operator on L2(M). Using the functional
calculus we see that

f(D) = (D2 + I)−`g(D)(D2 + I)−`.

We shall prove the proposition by analyzing the operator (I + D2)−`. Since
(D2 + I)−1 = (D + iI)−1(D − iI)−1, it follows from Theorem 5.27 that the
range of the operator (I+D2)−` is the Sobolev space H2`(M). So by the Sobolev
Lemma if k ≥ 0 and if ` > n

2 then (I + D2)−` maps L2(M) continuously into
C(M). Taking Banach space adjoints, and using the fact that

〈(I+D2)−`u, v〉 = 〈u, (I+D2)−`v〉,
for all u, v ∈ L2(M), it follows that (I + D2)−` extends to a continuous map
of the dual space C(M)∗ into L2(M). Returning to our product decomposition
of f(D), we see that f(D) extends to a continuous map of C(M)∗ into C(M).
Now, each element m ∈ M determines an element δm ∈ C(M)∗ by the formula
δm(φ) = φ(m). We can therefore define a kernel function on M ×M by the
formula

k(m2,m1) = (f(D)δm2
)(m1).

It may be verified that this is a continuous kernel which represents f(D) in the
required fashion, and an elaboration of the argument shows that k is in fact smooth.
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Now let G be a smooth groupoid with compact object space B. In the same way
that G can be equipped with a smooth Haar system by right-translating a smooth
density onM (thought of as the space of identity morphisms) over all of theGx, the
fibers Gx can be equipped with a smoothly varying family of Riemannian metrics
which is right-translation invariant. Since we are assuming that the object space of
G is a compact manifold, the Riemannian metrics that we construct on the Gx by
this process are all complete.

Let D = {Dx} be an equivariant family of first order, formally self-adjoint
elliptic operators on the fibers of G. By invariance, and by the compactness of
the object space ofG, the principal symbols of theDx have the property that, when
evaluated on cotangent vectors of length one, they return values whose norm is
uniformly bounded (over all theGx). Because of this we can appeal to a theorem of
Chernoff to deduce that each operator Dx is essentially self-adjoint, and moreover
the functional calculus associated to Dx has an important supplementary property:

chernoff-thm 10.32 Theorem (Chernoff). Let D be a symmetric, first order, elliptic operator on
a complete Riemannian manifoldW, and assume that the symbol ofD is uniformly
bounded by a constant C > 0 on cotangent vectors of length one. Then D is
essentially self-adjoint. If f : R → C is a rapidly decreasing function, then the
operator f(D) is represented by a smooth kernel kf(w2, w1), that is,

(f(D)φ)(w2) =

∫
W

kf(w2, w1)φ(w1)dw1.

If the Fourier transform of f is supported in an interval [−R, R], then

Support(kf) ⊆ { (w2, w1) : d(w2, w1) ≤ CR }.

10.33 Remark. For brevity, we shall say that the operatorD has finite propagation
speed C.

10.34 Example. Let W = R and D = −id/dx. By Fourier theory, f(D) is
represented by the kernel kD(y, x) = f̌(y − x), where f̌ is the inverse Fourier
transform (which is equal to the Fourier transforms, up to signs).

A second theorem in partial differential equations guarantees that the function
kf varies smoothly with the coefficients of D:

smooth-family-kernels 10.35 Theorem. Let s : W → X be a submersion of smooth manifolds and assume
that the fibers of s have been equipped with a smoothly varying family of complete
Riemannian metrics (but the space X may, for example, be a manifold with bound-
ary). Let {Dx} be a family of symmetric, first-order, elliptic operators on the fibers
of s, and assume that the family has uniformly bounded finite propagation speed.
Let f be a function with compactly supported Fourier transform. Then the kernel
functions kf associated to the different Dx vary smoothly with x.

10.36 Remark. “Smooth” means that the kernel functions kf taken together con-
stitute a smooth function on the manifold { (w2, w1) : s(w2) = s(w1) }.
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Now let G be a smooth groupoid (with compact object space) and let D = {Dx}

be an equivariant family of first order, selfadjoint elliptic operators along the leaves
of G. If f has compactly supported Fourier transform then we can form the kernel
functions kf(γ2, γ1) associated to f(Dx), which are defined on Gx × Gx. From
the equivariance of the family {Dx} it follows that

kf(γ2, γ1) = kf(γ2 ◦ η, γ1 ◦ η),

for every morphism η : y → x. So if we define a function h : G → C by the
formula h(γ) = kf(γ, idx), where x = s(γ), then

kf(γ2, γ1) = h(γ2 ◦ γ−1
1 ) ∀γ1, γ2 ∈ Gx.

The function h is smooth by Theorem 10.35 and compactly supported by Theo-
rem 10.32. Checking the definitions, we arrive at the following theorem:

groupoid-fun 10.37 Theorem. Let D = {Dx} be a smooth, right-translation invariant family of
elliptic operators on the leaves Gx of a smooth groupoid G with compact object
space. There is a ∗-homomorphism

φD : C0(R) → C∗λ(G)

with the property that if x is any object, and λx : C∗λ(G) → B(L2(Gx)) is the
regular representation, then

λx(φD(f)) = f(Dx) : L2(Gx) → L2(Gx)

for every f ∈ C0(R).

Proposition 11.19 is a special case of this result.

10.7 NOTES

Chernoff’s theorem is in [?]. The application to groupoid algebras was made in [?].
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Chapter Eleven

The Tangent Groupoid

TangentGroupoidChapter
The purpose of this chapter is to carry out Construction 9.3, of the homomorphism
αM : K(T∗M) → Z which maps the symbol class of an elliptic operator D to the
index of D.

11.1 THE TANGENT GROUPOID OF A SMOOTH MANIFOLD

Let M be a smooth manifold. The tangent groupoid TM is a smooth groupoid
whose object space is the product M × R. In the families picture the fibers of the
tangent groupoid of M consist of repeated copies of M, parameterized by pairs
(m, t) ∈M×R, with t 6= 0, together with the tangent spaces TmM parameterized
by pairs (m, 0) ∈M×R. These are made to form the fibers of a single submersion
s : TM → M× R for a suitable manifold structure on TM.

The next two definitions equip TM with a groupoid structure and a topology.
Following them, we shall put a smooth manifold structure on TM and verify that
TM is a smooth groupoid.

tangent-grpd-def 11.1 Definition. Let M be a smooth manifold without boundary. Denote by TM
the set

TM = TM×{0} ∪ M×M×R×

(a disjoint union) equipped with the following groupoid operations:

• Source map: s(X,m, 0) = (m, 0) and s(m2,m1, t) = (m1, t).

• Range map: r(X,m, 0) = (m, 0) and r(m2,m1, t) = (m2, t).

• Composition:

(X,m, 0) ◦ (Y,m, 0) = (X+ Y,m, 0)

(m3,m2, t) ◦ (m2,m1, t) = (m3,m1, t).

Thus TM is a disjoint union of copies of the pair groupoidM×M, parameterized
by t 6= 0, and a single copy of the groupoid TM at t = 0.

11.2 Remark. For later purposes, we are using the redundant notation (X,m),
where X ∈ TmM, to describe points of TM.

11.3 Definition. We equip TM with a topology, as follows:
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(i) The inverse images of open sets inM× R under the maps

r, s : TM → M× R

are deemed to be open.

(ii) Let X be a tangent vector on M, let f : M → C be a smooth function and let
ε > 0. The set Uf,ε ⊆ TM defined by

Uf,ε ∩ TM×{0} = { (Y,m, 0) : |X(f) − Y(f)| < ε }

and

Uf,ε ∩ M×M×R∗ =

{
(m2,m2, t) :

∣∣∣∣X(f) −
f(m2) − f(m1)

t

∣∣∣∣ < ε}
is deemed to be an open neighborhood of X in TM.

The topology of TM is generated by all those sets that are ‘deemed to be open’ in
(i) and (ii) above.

11.4 Remark. It is useful to think of a triple (m2,m1, t) as being an “approxi-
mate tangent vector” which acts on functions according to the difference quotient
formula

f 7→ f(m2) − f(m1)

t
.

Item (ii) of the definition says that the approximate vector (m2,m1, t) is close to
an actual tangent vector X if the difference quotient is close to X(f).

11.5 Exercise. Show that the composition law in the groupoid TM is continuous.

The topology on TM is easily seen to be Hausdorff. Moreover it is locally
Euclidean:

tangent-groupoid-top-prop 11.6 Lemma. Let M be a smooth manifold without boundary. If U is an open
subset ofM, then the set

TU = TU×{0} ∪ U×U×R×

is an open subset of TM. Moreover if φ : U → Rn is a diffeomorphism onto an
open subset then the map

Φ : TU → Rn×Rn ×R

defined by {
Φ(X,m, 0) = (Dφm(X), φ(m), 0)

Φ(m2,m1, t) = (t−1(φ(m2) − φ(m1)), φ(m1), t)

is a homeomorphism onto an open subset.

11.7 Remark. We denote by Dφm : TmU → Rn the derivative of φ at m ∈ U
(we have made the usual identification Tφ(m)Rn ∼= Rn).

11.8 Exercise. Prove the lemma.
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The maps Φ defined in the lemma determine an atlas of charts for a smooth
manifold structure on TM:

11.9 Lemma. LetΦ : TU → Rn×Rn×R and Ψ : TV → Rn×Rn×R be the maps
associated to diffeomorphisms φ : U → Rn and ψ : V → Rn, as in the previous
lemma. The composition Ψ ◦ Φ−1 is defined on an open subset of Rn×Rn ×R,
and is a smooth map.

Proof. The inverseΦ−1 is given by the formula

Φ−1(v2, v1, t) =

{
(φ−1(tv2 + v1), φ

−1(v1), t) if t 6= 0

(Dφ−1
v1

(v2), φ
−1(v1), 0) if t = 0.

Using the notation θ = ψ ◦ φ−1, the composition Θ = Ψ ◦ Φ−1 is given by the
formula

Θ(w2, w1, t) =

{
(t−1

(
θ(tw2 +w1) − θ(w1)

)
, θ(w1), t) if t 6= 0

(Dθw1
(w2), θ(w1), 0) if t = 0.

By a version of the Taylor expansion, there is a smooth, matrix-valued function
θ̃(h,w) such that

θ(h+w) = θ(w) + θ̃(h,w)h and θ̃(0,w) = Dθw.

So we see that

Θ(w2, w1, t) =

{(
θ̃(tw2, w1)w2, θ(w1), t

)
if t 6= 0(

Dθw1
(w2), θ(w1), 0

)
if t = 0.

This is clearly a smooth function.

We have therefore obtained a smooth manifold TM. It is clear that the maps
r, s : TM → M × R are submersions. The fibers of s are TmM at (m, 0) and M
at (m, t), when t 6= 0. To show that TM is in fact a smooth groupoid, we shall
consider first the special case whereM = Rn:

trn-ex 11.10 Example. The mapΦ : TRn → Rn× Rn×R defined by
Φ(v2, v1, 0) = (v2, v1, 0)

Φ(v2, v1, t) = (t−1(v2 − v1), v1, t) (t 6= 0)

is a diffeomorphism. Now consider the transformation groupoid
G = { (w2, a,w1) : w1, w2 ∈ Rn × R, a ∈ Rn, w2 = a4w1 },

where the operation 4, an action of the group A = Rn on the space Rn × R, is
defined by

a4(v, t) = (v+ ta, t).

The space G identifies with Rn × Rn × R by dropping w2 from (w2, a,w1).
Using this, we obtain from the diffeomorphism Φ a diffeomorphism Ψ : TM → G

defined by the formulas
Ψ(v2, v1, 0) = ((v1, 0), v2, (v1, 0))

Ψ(v2, v1, t) =
(
(v2, t), t

−1(v2 − v1), (v1, t)
)

(t 6= 0).

It is evident that Ψ is actually an isomorphism of groupoids, from which it follows
that the groupoid structure on TRn is smooth.
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To summarize:

11.11 Proposition. Denote by G = Rn n Rn,1 the transformation groupoid
associated to the action of Rn on the space Rn,1 = Rn×R given by the formula

a4(v, t) = (v+ ta, t) ( a ∈ Rn and (v, t) ∈ Rn,1).

The map Ψ : TRn → G which is given by the formulas

Ψ(v2, v1, 0) = ((v1, 0), v2, (v1, 0))

Ψ(v2, v1, t) =
(
(v2, t), t

−1(v2 − v1), (v1, t)
)

(t 6= 0).

is an isomorphism of smooth groupoids.

11.12 Remark. The groupoid TRn only depends on the smooth structure of Rn,
whereas, superficially at least, the groupoid G = Rn n Rn,1 depends very much
on the vector space structure of Rn. The proposition shows that this apparent
dependence is an illusion.

11.13 Proposition. The structure maps are all smooth, and the source and range
maps are submersions. Thus TM is a smooth groupoid.

Proof. Since smoothness is a local property, we can check this in a coordinate
neighborhood U. Since the construction of TU is coordinate-independent we can
assume that U = Rn, and thereby reduce to the example just considered.

11.14 Remark. The non-compactness of the tangent groupoid in the ‘t-direction’
is sometimes a nuisance, and it is therefore convenient sometimes to replace the
whole tangent groupoid by the subgroupoid t−1[0, 1], where t : TM → R is the
obvious map. This subgroupoid is not quite a smooth groupoid by our definition,
because it has a boundary; but the extra generality does not cause any trouble. In
what follows we shall make use of both versions of the tangent groupoid, often
without comment. Both versions contain the same geometric information (namely,
the gluing near t = 0); the rest of the groupoid is just ‘flab’.par-remark

11.2 THE C*-ALGEBRA OF THE TANGENT GROUPOID
cstartgsec

LetM be a smooth manifold without boundary. To define a smooth Haar system on
the tangent groupoid TM, first fix a smooth measure µ on M. As we noted above,
µ determines a family of translation invariant measures µm on the vector spaces
TmM. We define smooth measures on the fibers TM(m,t) of the source map by
the formulas

µm,0 = µm on TM(m,0)
∼= TmM

and

µ(m,t) = t−nµ on TM(m,t)
∼= M.

11.15 Lemma. The above formulas define a smooth right Haar system on TM.
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Proof. The measures certainly constitute a translation-invariant system (compare
Examples 10.19 and 10.20 above). To prove they are smooth we shall make use of
the diffeomorphisms Φ introduced in the previous section, or rather their inverses
Θ = Φ−1 : Rn×Rn×R → TU. Let us choose coordinates onU ⊆M so that the
diffeomorphism φ : U → Rn from whichΦ is defined is the identity in these local
coordinates. Then

Θ(X,m, 0) = (X,m, 0) and Θ(m2,m1, t) = (m1 + tm2,m1, t), if t 6= 0.

If we restrict to one of the fibers of the source map then we obtain the maps

Θm1,0(X) = X ∈ Tv1
U

and

Θm1,t(v2) = v1 + tv2 ∈ U.

The derivatives of these maps (expressed as matrices, using our chosen coordinates)
are I in the first case and tI in the second. Now, to transfer the measures from
the fibers of TU to the fibers (under projection onto the last two factors) of
Rn × Rn × R, we must multiply by the determinant of these derivative matrices.
That is, if Θ : A → B is a diffeomorphism between open sets in Rk, and if
µ(b) = m(b)db is a smooth measure on B, then∫

B

f(b)dµ(b) =

∫
B

f(b)m(b)db =

∫
A

f(Θ(a))m(Θ(a)) det(DΘa)da.

In our case we see that the factor t−n in the definition of µm,t cancels with
det(DΘ) = tn, and we obtain smoothly varying measures, as required.

The C∗-algebra of the tangent groupoid comes equipped with a family of restric-
tion ∗-homomorphisms

ε0 : C∗λ(TM) → C∗λ(TM) = C0(T
∗M)

and, for t 6= 0,

εt : C
∗
λ(TM) → K(L2(M)).

On the subalgebra C∞
c (TM) these are defined by restricting functions on TM to

the “slice” of TM over t, which is either the tangent bundle TM (when t = 0)
or the pair groupoid M ×M (when t 6= 0). Strictly speaking, when t 6= 0 the
restriction ∗-homomorphism lands in the compact operators on the Hilbert space
L2(M, t−nµ) associated to the measure µ scaled by t−n. But this Hilbert space
is obviously unitarily equivalent to the Hilbert space associated to µ itself: just
multiply by t

n
2 . The restriction homomorphisms will be used in the next section to

construct the index homomorphism in K-theory.

11.3 THE TANGENT GROUPOID, THE SYMBOL AND THE INDEX
stg-sec

In this section we shall explain how the geometry of the tangent groupoid encodes
the relationship between the symbol of a differential operatorD (Definition ??) and
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the index of D. For simplicity we shall first consider only differential operators
acting on scalar-valued functions; the small extra complications needed to handle
operators on sections of vector bundles will be addressed at the end of the sec-
tion. As in Chapter 5, we shall for simplicity also restrict attention to first order
differential operators (though this restriction is not, in fact, essential).

Recall that the symbol of the (first order) differential operator D on M is by
definition the function on the cotangent bundle T∗M defined by

σD : df 7→ i[D, f].

Because σD(ξ) is a homogeneous function of ξ (that is, σD(rξ) = rσD(ξ)), the
operator of multiplication by σD (acting on functions on T∗M) corresponds under
Fourier transformation to a family of first order, constant coefficient differential
operators1 acting on the fibers of TM. That is, the symbol corresponds to an
equivariant differential operator on the groupoid TM. We will call this equivariant
differential operator the cosymbol σ̌D of D.

11.16 Proposition. The cosymbol of D is obtained from D by ‘freezing coeffi-
cients’. More precisely, suppose that in local coordinates x1, . . . , xn, D has the
representation

D =

n∑
j=1

aj(x)∂/∂xj + b(x).

Then

σ̌D(0) =

n∑
j=1

aj(0)∂/∂yj,

where the yj are coordinates in T0M corresponding to the local coordinates xj.

Proof. The symbol σD maps the cotangent vector ξ at 0 to i
∑
aj(0)ξj. The result

follows. (See the discussion in Example ??.)

Now consider the tangent groupoid TM and its natural ‘scaling’ map t : TM →
[0, 1]. Over each t 6= 0, TM becomes a copy of the pair groupoid M ×M, and
we have seen in Example 10.5 that a differential operator on M gives rise to an
equivariant differential operator on the pair groupoid. Over t = 0, TM is just the
tangent bundle TM and a differential operator on M gives rise to a differential
operator on this groupoid by the cosymbol construction. We claim that these
constructions can be scaled so as to fit together smoothly.

11.17 Proposition. Any first order differential operator D on a manifold M gives
rise to an equivariant differential operator D on TM, which restricts to tD itself
over each t 6= 0 and to the cosymbol of D over t = 0.eq-prop

Proof. The proposition describes the construction of D completely and all we must
do is check that it is smooth. For this we may compute in local coordinates, so

1In Chapter 5 we referred to these as the model operators for D.
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let us assume that M = Rn. Then we use the coordinates for TRn described in
Example 11.10:

(y, x, t) 7→ {
(y, x, 0) (t = 0)

(t−1(y− x), x, t) (t 6= 0)

Suppose that D =
∑
aj(x)∂/∂xj + bj(x). In the chosen coordinates the operator

D takes the form

Du(y) =

{∑
aj(x)∂u/∂yj (t = 0)∑
aj(x+ ty)∂u/∂yj + tb(x+ ty) (t 6= 0)

when acting on the fiber G(x,t). It is clear that the coefficients vary smoothly, even
at t = 0.

groupoid-coeff-remark 11.18 Remark. In all interesting examplesD acts not on functions but on sections
of some vector bundle S overM. In this case, the bundle S can be pulled back over
the source map s : TM → M× R → M of the tangent groupoid to yield what we
should naturally call an equivariant bundle over the tangent groupoid G = TM:
each morphism η in G from x to y gives rise to a diffeomorphism Rη : Gy → Gx
which is covered by an isomorphism of vector bundles Reta∗S|Gy

→ S|Gx
. There

is a natural definition of aG-equivariant differential operator on such an equivariant
bundle, and with this definition all the results of this section still hold for operators
on bundles.

When in the next section we come to consider groupoid algebras we shall need to
make a similar adjustment to handle bundle coefficients. Namely, form the vector
bundle End(S) over G whose fiber over a morphism γ : x → y is the vector space
Hom(Sx, Sy). This is isomorphic to the pullback of S∗ along the source map s,
tensored with the pullback of S along the range map. We can now define the
groupoid algebra C∞

c (G,End(S)) (with respect to a given Haar system) to be the
algebra of smooth, compactly supported sections of End(S), equipped with the
convolution multiplication

f1 ? f2(γ) =

∫
Gs(γ)

f1(γ ◦ η−1)f2(η)dµs(γ)(η).

In the formula, the product f1(γ ◦ η−1)f2(η) is a composition of operators

Ss(η) → Sr(η) → Sr(γ).

This algebra has natural regular representations on L2(Gx, S), for each object x,
and using these we can define theC∗-algebra completion, just as we did forC∗λ(G).

Let M be a compact manifold and let D be a self-adjoint, first order elliptic
operator on M. Recall that we have associated two K-theory classes to D: its
symbol class, which is an element of K(T∗M), and its index which is an element of
K(K) = Z. In Construction 9.3 we asserted that there is a natural homomorphism
α : K(TM) → Z which maps the symbol class of an elliptic operator to its index.
In this section we are going to prove that the asymptotic morphism that we have
constructed from the tangent groupoid (Definition 10.25) does the job.

The key to the proof is the following
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dfam1 11.19 Proposition. Let D be a first order, selfadjoint, odd-graded elliptic opera-
tor on sections of a bundle S over a compact manifold M, and let D denote the
equivariant operator on the tangent groupoid G = TM associated to D (Proposi-
tion 11.17). There is a graded ∗-homomorphism S → C∗λ(G), denoted f 7→ f(D),
which has the property that

εt(f(D)) =

{
f(σ̌D) (t = 0)

f(tD) (t 6= 0)

where εt are the restriction homomorphisms of Section 11.2.

Granted this proposition, the proof of our main result is just a matter of reviewing
definitions.

alpha-gives-index 11.20 Theorem. The index homomorphism of Definition 10.25 carries the symbol
class of a (first order, self-adjoint) elliptic operator to its index.

Proof. The symbol class of D is the element of K(T∗M) defined by the ∗-
homomorphism f 7→ f(σD) from S to C0(T∗M; End(S)). Using the Fourier iso-
morphism C0(T

∗M) ∼= C∗λ(TM), we can equivalently view the symbol class of D
as the element of K(C∗λ(TM)) defined by the ∗-homomorphism f 7→ f(σ̌D). By
proposition 11.19, this is the composite

S
f7→f(D)

// C∗λ(TM; End(S))
ε0 // C∗λ(TM; End(S)).

The index class of D is the element of K(K) defined by the ∗-homomorphism
f 7→ f(tD), for any fixed (nonzero) value of t — equivalently we may if we wish
let t → 0 and consider this as an asymptotic morphism. That is, the index class is
defined by the composite

S
f7→f(D)

// C∗λ(TM; End(S))
εt // K

using proposition 11.19 again. But the diagram

C∗λ(TM)
ε0 //

εt

%%JJJJJJJJ
C∗λ(TM)

α

��
�
�
�
�

K

commutes (up to asymptotic equivalence) because of the definition of α. It follows
that α takes the symbol class to the index, as required.

11.4 NOTES

The idea of using smooth groupoids and their associated C∗-algebras in the proof
of the index theorem is due to Connes, see [?]. We have supplied some details in
this chapter which are difficult to find in the existing literature.
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Generalizations of the Index Theorem

GeneralizationsChapter
In the final chapters of these notes we shall sketch some of the ways in which the
index theorem can be extended. Our goal is to indicate some of the power and
flexibility of the techniques that we introduced in earlier chapters. We shall not
always give complete proofs, or indeed any proofs at all.

12.1 AXIOMS FOR THE ANALYTIC INDEX HOMOMORPHISM
index-axioms-sec

We explained in the introduction that in Chapter 10 we shall construct a homomor-
phism αM : K(T∗M) → Z which implements the analytic index, in the sense that
αM[σD] = Ind(D) for every elliptic operatorD on a closed manifoldM. Once we
have the homomorphism αM in hand, the proof of the index theorem is a matter
of computing αM in cohomological terms. This we shall do by showing that αM
satisfies the hypotheses of Theorem 12.1 below, whose conclusion is in effect the
Atiyah-Singer index theorem.

Before stating Theorem 12.1 we need to establish several conventions. First, we
shall regard T∗Rk, the cotangent bundle of Rk, as a k-dimensional complex vector
space using the formula i·(x, ξ) = (−ξ, x), where x ∈ Rk and ξ is in the cotangent
vector space at x, which we identify with Rk in the usual way. Having done this, we
have at our disposal the Bott element b ∈ K∗(T∗Rk), as described in Section ??.

Next, we shall consider T∗M as oriented in the following way. Choose local
coordinates {x1, . . . , xn} on M and corresponding coordinates ξ1, . . . , ξn in the
fibers of T∗M. Then we deem that the list x1, ξ1, . . . , xn, ξn is an oriented local
coordinate system on T∗M.

Finally, suppose that V is a smooth, orthogonal vector bundle over a smooth
manifold M and denote by q : T∗M → M the canonical projection map for the
cotangent bundle of M. We shall need to identify the total space of the cotangent
bundle T∗V with the total space of the Hermitian vector bundle q∗V ⊗ C over
the manifold T∗M. This is not altogether straightforward since there is not even a
canonical projection from T∗V to T∗M, but it can be accomplished in several ways.
We shall describe one in detail because we shall have to examine this identification
carefully in Chapter ??.

Denote by π : V → M the projection mapping. The tangent bundle TV , which
is a real vector bundle over the total space of V , fits into the following short exact
sequence of vector bundles over V :

0 // π∗V // TV // π∗TM // 0.

The inclusion of π∗V into TV is obtained by a standard construction: we regard a
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vector v ∈ Vm as a tangent vector at any pointw in the fiber of V overm using the
formula

v(φ) =
df

dv
= lim
h→0

f(w+ hv) − f(w)

h
,

where f is any smooth function on V . The projection mapping is the differential of
π : V → M: it sends a tangent vector X at v ∈ V to the tangent vector π∗(X) at
π(v) ∈M defined by π∗X(g) = X(f ◦ π), where g is any smooth function onM.

Choose a splitting s : π∗TM → TV of the above short exact sequence of vector
bundles over TM and use it to define a submersion p : T∗V → T∗M by the formula

p(αv)(Xπ(v)) = αv(s(Xπ(v))),

where αv ∈ T∗vV and Xπ(v) ∈ Tπ(v)M. Having defined p : T∗V → T∗M, it is easy
to define a diffeomorphism F : T∗V → q∗V ⊗ C, as required. Given an element
αv ∈ T∗vV , since we already noted that Vπ(v) is naturally included into TvV , we can
restrict αv to Vπ(v). Remembering that Vπ(v) is equipped with an inner product,
we can associate to αv a unique vector vα ∈ Vπ(v) such that

αv(w) = 〈w, vα〉, for all w ∈ Vπ(v).

We can therefore define a diffeomorphism from T∗V to q∗V ⊗ C by means of the
formula

F : T∗V −→ q∗V ⊗ C
F(αv) =

(
v+ ivα, p(v)

)
.

The diffeomorphism depends on the choice of splitting map s : π∗TM → TV , but
any two diffeomorphisms obtained from the construction are homotopic through
diffeomorphisms, and in particular through proper continuous maps. It follows that
the homotopy class of the Thom ∗-homomorphism

φ : S⊗ C0(T∗M) → C0(T
∗V,End(∧∗q∗V ⊗ C))

obtained from Definition ?? and the diffeomorphism F is independent of the choice
of s, and so we obtain a canonical Thom homomorphism

φV : K(T∗M) → K(T∗V)

at the level of K-theory.

12.1 Theorem. Assume that to every smooth manifold M there is associated a
homomorphism αM : K(T∗M) → Z with the following properties:

(i) IfM1 is embedded as an open subset ofM2 then the diagram

K(T∗M1)
αM1 //

��

Z

��

K(T∗M2) αM2

// Z

commutes.
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(ii) If V is a smooth, real vector bundle overM, and if φV : K(T∗M) → K(T∗V)
denotes the Thom homomorphism described above, then the following dia-
gram commutes:

K(T∗M)
αM //

φV

��

Z

=

��

K(T∗V)
αV

// Z.

(iii) If b ∈ K(T∗Rk) is the Bott element, then αRk(b) = 1.

Then

αM(x) = (−1)dim(M)

∫
T∗M

ch(x) · Todd(TM⊗ C), (12.1) index-conclusion

for everyM and every x ∈ K(T∗M).index-axioms

Proof. Consider first the case of Euclidean space Rk. The Todd class for Rk is
equal to 1 because the tangent bundle to Rk is trivial. Formula (12.1) for M = Rk
therefore amounts to the assertion that

αRk(x) = (−1)dim(M)

∫
T∗M

ch(x),

for all x ∈ K(Rk). It follows from hypothesis (iii) above and Remark ?? that if
b ∈ K(Rk) is the Bott class, then

αRk(b) = 1 = (−1)dim(M)

∫
T∗M

ch(b),

and so (12.1) holds for b. But according to the Bott Periodicity Theorem ??, the
element b generates all of K(T∗Rk). Thus formula (12.1) is correct for every
element of K(T∗Rk).

Next, it follows from axiom (i) that formula (12.1) is correct for any open subset
U of Rk. (Of course, for such aU the tangent bundle is still trivial, so that the Todd
class is again 1 and the formula reads αU(x) = (−1)k

∫
T∗U

ch(x).) The tubular
neighborhood theorem of differential topology tells us that if M is any manifold,
and if V is the normal bundle for some embedding ofM into some Euclidean space
Rk, then the total space of V is diffeomorphic to an open subset of Rk. It follows
that formula (12.1) holds for the total space of V . We shall finish the proof by
deducing formula (12.1) forM using hypothesis (ii).

It follows from that hypothesis that if x ∈ K(T∗M), then

αM(x) = αV(φT∗V(x)) = (−1)k
∫
T∗V

ch(φT∗V(x)).

If to the right-hand side of this equation we apply Proposition ??, then we obtain
the formula

αM(x) = (−1)k
∫
T∗M

ch(x)τ(V ⊗ C),
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where τ is the multiplicative characteristic class corresponding to the power series
(1− ex)/x. (We are using here the fact that T∗V , as a complex vector bundle over
T∗M, is isomorphic to π∗(V ⊗ C), as was indicated in the remarks preceding the
statement of the theorem.) At this point, let us insert the result of Exercise ??,
which relates the τ-class to the Todd class. The result is that

αM(x) = (−1)dim(M)

∫
T∗M

ch(x)
1

Todd(V ⊗ C)
.

To finish the proof, note that the direct sum V⊕TM is isomorphic to a trivial bundle
(of dimension k). Thus

Todd(V ⊗ C) · Todd(TM⊗ C) = 1,

since the Todd class is multiplicative and since the Todd class of a trivial bundle is
1. Substituting this into the previously displayed equation we obtain the result.

12.2 K-THEORY REFORMULATION OF THE INDEX THEOREM
reformulation-section

Underlying the cohomological form of the Atiyah-Singer index theorem proved
in the preceeding chapters is a K-theory form that is more basic and more readily
amenable to generalization. It is based on the following construction, which is
really nothing more than the Thom homomorphism studied in Chapter ??.

wrong-way-inj-def 12.2 Definition. Let i : M → N be an embedding of smooth manifolds. Define an
associated homomorphism

i! : K(T∗M) → K(T∗N)

as follows. Let E be the normal bundle of T∗M in T∗N. Observe that E ∼= π∗VC,
where V is the normal bundle of M in N and where π : T∗M → M is the standard
projection (see Section 12.1). In particular, E has the structure of a complex vector
bundle over T∗M. Let f : U → E be a diffeomorphism from a tubular neighborhood
U of T∗M ⊆ T∗N to E, as provided by the tubular neighborhood theorem. Define
i! to be the map which fits into the commutative diagram

K(T∗M)
i! //

φ

��

K(T∗N)

K(E)
f∗

// K(U),

j

OO

where φ is the Thom homomorphism and j : U → T∗N is the inclusion map.

wrong-way-htpy-lemma 12.3 Lemma. The map i! : K(T∗M) → K(T∗N) associated to an embedding
i : M → N depends only on the homotopy class of i through embeddings.

Proof. This follows easily from the homotopy invariance of K-theory.

A key feature of the construction in Definition 12.2 is its functoriality:
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embedding-funct-lemma 12.4 Lemma. If i : M → N and j : N → P are embeddings of smooth manifolds,
then

j! ◦ i! = (j ◦ i)! : K(T∗M) → K(T∗P).

Proof (sketch). If U is an open set in N containing the image of M, and if Z is an
open set in P containing the image of U ⊆ N, then the diagram

K(T∗M)
i! // K(T∗U)

j! //

��

K(T∗Z)

��

K(T∗N)
j!

// K(T∗P)

commutes, where the vertical maps are induced by inclusions of open sets. Thanks
to this observation and the tubular neighborhood theorem, the proof of the lemma
reduces to the case where N is the total space of a smooth real vector bundle V
overM and P is the total space of the pullback to V of a second smooth real vector
bundle W over M. Here the lemma amounts to the assertion that the composition
of Thom homomorphisms

K(T∗M) // K(E) // K(E⊕ F),
where E and F are the complexifications of V and W (pulled back to T∗M) is
the Thom homomorphism for E ⊕ F. This property of the Thom homomorphism,
Lemma ??, was a key step in our earlier proof of the Index Theorem.

k-top-index-def 12.5 Definition. Let M be a smooth manifold without boundary. The topological
index map Indt : K(T∗M) → Z is the homomorphism that fits into the commutative
diagram

K(T∗M)
i! //

Indt

��

K(T∗Rk)

Z =
// K(pt),

∼= j!

OO

where i : M → Rk is an embedding of M into a Euclidean space and j : pt → Rk
is the inclusion of a point into Rk.

It follows from Lemmas 12.3 and 12.4 that the topological index map is inde-
pendent of the embedding i : M → Rk used to define it. This is because any two
embeddings of M into Euclidean spaces become homotopic through embeddings
after a further embedding into a sufficiently larger Euclidean space.

The most important feature of the maps i! : K(T∗M) → K(T∗N) is their com-
patibility with the index homomorphisms that we defined in Chapter 10. We shall
denote by Inda : K(T∗M) → Z the analytic index homomorphism which takes the
symbol class [σD] of an elliptic operator to its index Ind(D). (This homomorphism
was introduced in Chapter ?? and defined in Chapter 10, and in both places it was
denoted by α.) In view of our definition of i!, the following result expressing the
compatibility between i! and the analytic index is just a reformulation of Theo-
rem ??.
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wrong-way-compatibility-thm 12.6 Theorem. If i : M → N is any embedding of smooth manifolds, then the
diagram

K(T∗M)
i! //

Inda

��

K(T∗N)

Inda

��

Z =
// Z

is commutative.

The following is Atiyah and Singer’s K-theoretic formulation of their index
theorem.

as-original 12.7 Corollary. IfM is any smooth manifold, then Inda = Indt : K(T∗M) → Z.

Proof. We need only apply Theorem 12.6 and use the fact that the analytic index
Inda : K(T∗Rk) → Z is inverse to j! : K(pt) → K(T∗Rk) (for which, see Chap-
ter ??).

The cohomological version of the index theorem that we gave in Chapter ??
follows from Theorem 12.6 by a computation of the topological index using the
approach followed in Section 12.1.

12.3 COEFFICIENTS AND THE INDEX MAPS
mi-fo-sec

We can generalize the constructions of the previous section by incorporating a
coefficient C∗-algebra. Throughout this section, let A be an arbitrary C∗-algebra.
(As we shall see in later sections of this chapter, specific geometric situations
will dictate appropriate choices for A.) We are going to incorporate A in a very
simple way into the construction of the analytic and topological index maps given
in Section 12.2.

Let E be a complex vector bundle over a locally compact space X. The Thom
homomorphism ψ : K(X) → K(E) was defined in Section ?? using a graded ∗-
homomorphism

φ : S⊗ C0(X) → C0(E,End(∧∗E)).

By tensoring this ∗-homomorphism with the identity map onA, we obtain a graded
∗-homomorphism

φ : S⊗ C0(X)⊗A → C0(E,End(∧∗E))⊗A

and hence a K-theory map from K(C0(X) ⊗ A) to K(C0(E) ⊗ A). Using this
generalization of the Thom homomorphism we can define maps

i! : K(C0(T
∗M)⊗A) → K(C0(T

∗N)⊗A)

associated to embeddings i : M → N by following the method outlined in Sec-
tion 12.2.
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mf-topological-index 12.8 Definition. Let M be a smooth manifold and let A be a C∗-algebra. The
topological A-index map

IndtA : K(C0(T
∗M)⊗A) → K(A)

is defined to be the map which fits into the commutative diagram

K(C0(T
∗M)⊗A)

i! //

Indt
A

��

K(C0(T
∗Rn)⊗A)

K(A) =
// K(A)

j!∼=

OO

where i : M → Rn is an embedding of M into a Euclidean space and j : pt → Rn
is the inclusion of a point into Rn.

The analytic index map Inda : K(T∗M) → Z was defined in this book using an
asymptotic morphism

α : C0(T
∗M) K(L2(M)).

Tensoring this with the identity map on A produces an asymptotic morphism

α : C0(T
∗M)⊗A K(L2(M))⊗A

(compare Section ??).

mf-analytic-index 12.9 Definition. LetM be a smooth manifold. The analytic A-index map

IndaA : K(C0(T
∗M)⊗A) → K(A)

is the K-theory map associated to the above asymptotic morphism.

The following generalization of the index theorem is due to Mischenko and
Fomenko.

mis-fom-theorem 12.10 Theorem. If M is any smooth manifold and A is any C∗-algebra, then
topological and analytic A-index maps

IndtA, IndaA : K(C0(T
∗M)⊗A) → K(A)

are equal to one another.

The original K-theory form of the index theorem (our Corollary 12.7) is the case
A = C. Because we have made use of C∗-algebraic techniques throughout this
book, no additional difficulties arise in incorporating the auxiliary algebra A into
all the arguments of Chapter ??, and thus proving the stronger Mischenko-Fomenko
theorem also.

12.4 TRACES AND GENERALIZED DIMENSIONS
tra-sec

In order to apply the Mischenko-Fomenko theorem to a specific geometric problem
we must do three things:
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(a) Choose a suitable coefficient algebra A.

(b) Describe a procedure for generating elements of K(C0(T
∗M)⊗A).

(c) Calculate the group K(A), or at least describe a nontrivial homomorphism from
K(A) to some more familiar group.

Later in this chapter we shall give two related examples illustrating (a) and (b).
In the current section we shall focus on a procedure which allows one to find a
homomorphism, as in (c), using a trace on the C∗-algebra A.

ft-def 12.11 Definition. A trace on an algebra A is a linear functional σ : A → C such
that σ(ab) = σ(ba), for all a, b ∈ A.

Traces give rise to “dimension homomorphisms” from K(A) to C, and thus
allow us to obtain numerical indices from the K(A)-valued indices provided by
the Mischenko-Fomenko construction.

t-prop 12.12 Proposition. Let σ be a trace on a unital algebra A and let p be an idem-
potent in Mn(A). The sum σ(p) =

∑n
i=1 σ(pii) depends only on the K-theory

class represented by p and the correspondence which maps p to σ(p) determines a
group homomorphism from K(A) to C.

Proof. The basic point is that if p ∈ Mn(A) and q ∈ Mk(A) are idempotents,
and if p = uv and q = vu for some matrices u ∈ Mn,k(A) and v ∈ Mk,n(A),
then

σ(p) = σ(uv) =
∑
i,j

σ(uijvji) =
∑
i,j

σ(vjiuij) = σ(vu) = σ(q).

The remaining details of the proof are left to the reader.

We shall call the homomorphism K(A) from C that is defined by this proposition
the dimension homomorphism associated to the trace σ. Usually we shall use the
same notation for the trace and for the associated dimension homomorphism.

c-star-gamma 12.13 Example. Let Γ be a discrete group and let { δg : g ∈ Γ } be the canonical
orthonormal basis of the sequence space `2(Γ). The reduced group C∗-algebra
C∗λ(Γ) is the C∗-algebra of operators on `2(Γ) generated by the unitaries

uγ : `2(Γ) → `2(Γ)

uγ : δη 7→ δγη.

(Alternatively, if we think of Γ as a zero-dimensional smooth groupoid, then C∗λ(Γ)
is its groupoid C∗-algebra.) The canonical trace on C∗λ(Γ) is the trace functional
σ : C∗λ(Γ) → C defined by σ(T) = 〈Tδe, δe〉. As we shall see, the canonical trace
on C∗λ(Γ) gives rise to a very important and interesting dimension function from
the perspective of index theory.

12.14 Remark. The canonical trace is positive in the sense that σ(T∗T) ≥ 0, for
every T . If σ is a positive trace on a C∗-algebra, then the dimension homomor-
phism actually maps K(A) into R ⊆ C. This is because every K-theory class is
representable by a projection p (that is, by a self-adjoint idempotent), and for such
p we have σ(p) = σ(p2) = σ(p∗p) ≥ 0.
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If A is an algebra without unit and if σ is a trace on A, then the formula

σ(a+ λ1) = σ(a)

extends the trace σ to the algebra Ã obtained by adjoining a unit to A. In view of
the fact that K-theory for nonunital algebras may defined by first adjoining a unit
(compare Exercise ??), it follows that the approach outlined in Proposition 12.12
determines a trace homomorphism

σ : K(A) → C
whether or not A is unital.

Non-unital examples will be very important to us. However, an unavoidable
complication of the theory of traces for non-unital C∗-algebras is that many inter-
esting examples are not defined on the whole of a C∗-algebra A, but only on some
dense subset. This phenomenon is apparent even in the commutative case. For
example if A = C0(R), then the most natural example of a trace is the functional

f 7→ ∫
f(x)dµ(x),

where µ is Lebesgue measure; but this functional is defined only on the dense
subspace L1(R, µ) ∩ C0(R). In fact, a systematic approach to the problem of
unbounded traces involves developing a sort of noncommutative integration theory.
We shall not do that here, but simply cite some basic results.

tr-weight-def 12.15 Definition. Let A be a C∗-algebra and denote by A+ the set of positive
elements in A. A tracial weight on A is a function τ : A+ → [0,∞] such that

τ(λ1a1 + λ2a2) = λ1τ(a1) + λ2τ(a2)

for all λ1, λ2 ≥ 0 and all a1, a2 ∈ A+, and such that τ(aa∗) = τ(a∗a) for all
a ∈ A. A tracial weight τ is (lower) semicontinuous if

τ( lim
n→∞an) ≤ lim inf

n→∞ τ(an)

for all norm-convergent sequences {an} in A+. It is densely defined if the set
{a ∈ A+ : τ(a) < ∞} is dense in A+.

Pursuing our analogy with integration theory, lower semicontinuity for a tracial
weight corresponds to Fatou’s lemma.

Let τ be a densely defined, semicontinuous tracial weight on a C∗-algebra A.
It may be shown that the linear span in A of the positive elements a for which
τ(a) < ∞ is a dense hereditary1 ideal Iτ in A, that τ extends by linearity to a
trace on this ideal, and that the inclusion of Iτ into A induces an isomorphism on
K-theory groups.

Because τ defines a dimension homomorphism τ : K(Iτ) → R, and K(Iτ) is
canonically isomorphic to K(A), we conclude that:

dd-prop 12.16 Proposition. A densely defined semicontinuous tracial weight on a C∗-
algebra A defines a dimension homomorphism K(A) → R.

1An ideal I in a C∗-algebra is hereditary if 0 ≤ a ≤ a ′ and a ′ ∈ I imply a ∈ I.
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12.17 Example. Let A = K and let τ be the usual operator trace defined by
τ(T) =

∑
〈Tei, ei〉 for T ≥ 0, where {ei} is an orthonormal basis. This is a densely

defined, semicontinuous tracial weight and the associated ideal Iτ is the ideal of
trace class operators. The dimension homomorphism associated to τ assigns the
rank of p to any finite rank projection p. It implements the canonical isomorphism
from K(K) to Z.

As we saw in Chapter ??, important elements of the group K(A) can be con-
structed from graded ∗-homomorphisms S → M2(A), where M2(A) is regarded
as a graded C∗-algebra. In particular the ordinary index of an elliptic operator
arises in this way (with A = K) and we shall see that various generalized indices
can also be constructed in the same way (with other choices of A). We are going to
compute the τ-dimension of a K-theory class arising in this way.

min-ideal-lemma 12.18 Lemma. Let ψ : C0(R) → A be a ∗-homomorphism. Let I be a dense
hereditary ideal in A. If h is a compactly supported continuous function on R,
then ψ(h) ∈ I.

Proof. We may assume that h ≥ 0. Let a = ψ(h1/2). There is a positive element
b ∈ A such that ab = a. For example if g ∈ C0(R) is nonnegative and equal to 1
on the support of h, then b = ψ(g) will do the job. By density, there is a positive
element c ∈ I such that ‖b− c‖ < 1

2 . Let us write

a2 = aba = a(b− c)a+ aca.

From the inequality ‖b− c‖ < 1
2 it follows that

a(b− c)a ≤ 1
2a
2.

As a result, a2 ≤ 2aca. But aca ∈ I since I is an ideal, so a2 = ψ(h) ∈ I since I
is hereditary.

index-trace-prop 12.19 Proposition. Let A be a C∗-algebra, and let τ be a densely defined, semi-
continuous tracial weight onA. Letψ : S → M2(A) be a graded ∗-homomorphism
defining a K-theory class [ψ] ∈ K(A), and let ε = ( 1 0

0 −1 ) be the grading operator
inM2(Ã). Then the τ-dimension of the K-theory class determined by ψ is equal to

τ(εψ(h)),

where h is any compactly supported function on R which is even and has h(0) = 1.

Notice thatψ(h) ∈ Iτ by Lemma 12.18, so the formula in the proposition makes
sense.

Proof (sketch). Let U be the Cayley transform associated to ψ (recall that U is the
unitary element of M2(Ã) obtained by applying the ∗-homomorphism ψ to the
function x 7→ (x + i)/(x − i)). By construction (??), the K-theory class [ψ] is
represented by the difference of projections

P1 = 1
2 (Uε+ I) and P0 = 1

2 (ε+ I).
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A short calculation reveals that we may write P1 as

P1 = 1
2

((
1− 2ψ(f) + 2iψ(f1/2)ψ(g)

)
ε+ 1

)
,

where f(x) = (x2 + 1)−1 and where g is the real-valued, continuous, odd function
on R such that

g2 = 1− f and lim
x→+∞g(x) = 1

(thus g(x) = x(x2 + 1)−1/2). Now if f is any even function in C0(R) such that
f(0) = 1 and 1 ≥ f ≥ 0, and if g is defined in terms of f in the manner displayed
above, then the formula for P1 displayed above defines a projection. If we take f
to be compactly supported, then we obtain a projection Q1 in the algebra Iτ (with
ε adjoined). Viewed as a projection in A it is equivalent to P1; in fact P1 and Q1
are path-connected through projections via the straight-line path connecting the
compactly supported function f to (x2 + 1)−1. It follows that [ψ] is represented
by the formal difference [P0] − [Q1] of projections in Iτ (with ε adjoined). But
τ(P0) = 0 and τ(Q1) = τ(εψ(f)), so the result follows.

12.5 INDEX THEORY FOR COVERING SPACES
higherind-sec

In this section and the next we shall use the ideas that we have developed so far
to investigate index theory for covering spaces. The following definition underlies
Example 10.7.

12.20 Definition. Let Γ be a discrete group. A (left) action of Γ on a topological
space if W is a principal action if each w ∈ W has neighborhood U ⊆ W such
that γU ∩U = ∅ for each element γ ∈ Γ other than the element γ = e.

12.21 Definition. Let Z be a topological space. A principal Γ -space over Z is
a topological space W equipped with a principal action of Γ , together with a
homeomorphism from the quotientW/Γ to Z.

We have stated the definitions for arbitrary topological spaces because in Chap-
ter 14, when we discuss classifying spaces, it will be appropriate to work in roughly
this generality. But in the current chapter we shall be exclusively concerned with
smooth manifolds, and in this context we shall always assume that Γ acts by dif-
feomorphisms. Notice that a smooth manifold structure on a principal Γ -space W
therefore determines a compatible smooth manifold structure on the quotientW/Γ ,
and vice versa.

uc-example 12.22 Example. Suppose that M is a connected smooth manifold whose funda-
mental group is Γ . The universal cover ofM, equipped with the action of Γ by deck
transformations, is a principal Γ -space overM.

Let W be a principal Γ -space over a smooth closed manifold M and let D be
a linear partial differential operator on M that acts on the sections of a smooth
complex vector bundle S over M. The pull-back of the bundle S to W is in a
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natural way a Γ -equivariant complex vector bundle onW. The operatorD lifts in a
natural way to a Γ -equivariant partial differential operator onW, acting on sections
of the pull-back of S. We shall use the notation DW for this lifted operator.

Suppose now that S is given the structure of a graded hermitian vector bundle,
thatM (and henceW) is equipped with a smooth measure, and thatD is an operator
of the sort we have studied in earlier chapters—a formally self-adjoint, odd-graded,
elliptic first-order partial differential operator on M. We noted in Theorem 10.32
thatDW is essentially self-adjoint, and we can therefore use the functional calculus
to form the operators f(DW), for f ∈ S = C0(R). Our first aim is to follow the
approach we took in Chapter ?? to define an analytic index of DW in the K-theory
group of a C∗-algebra of operators that contains all the operators f(DW).

12.23 Definition. IfW and Z are topological spaces equipped with Γ -actions, then
we shall denote byW ×Γ Z the quotient ofW × Z by the product action of Γ .

12.24 Definition. Let W be a principal Γ -manifold. An operator K on L2(W) is a
Γ -equivariant, Γ -compactly supported smoothing operator if there exists a smooth
Γ -invariant complex-valued function k onW×W that is compactly supported as a
function onW ×Γ W, such that

Kf(w) =

∫
W

k(w, v)f(v)dv

for all f ∈ L2(W). All such operators are necessarily bounded, and collectively
they constitute a ∗-algebra of operators on L2(W). We shall denote by K(Γ)
the C∗-algebra generated by the Γ -equivariant, Γ -compactly supported smoothing
operators on L2(W).

12.25 Remark. In fact, we need a small modification of this definition which
incorporates the complex vector bundle S on whose sections DW acts. Denote
by S ⊗ S∗ the complex vector bundle over W × W whose fiber over (w1, w2)
is Sw1

⊗ S∗w2
. A Γ -equivariant, Γ -compactly supported smoothing operator on

L2(W,S) is then an operator of the same form as in the display above, but where
k is a smooth, equivariant, Γ -compactly supported section of S ⊗ S∗. We shall
suppress S from our notation and denote simply by K(Γ) the C∗-algebra generated
by this ∗-algebra.

equiv-ell-reg-prop 12.26 Proposition. If D is a formally self-adjoint elliptic first-order operator on
M, and if f ∈ S, then f(DW) ∈ K(Γ).

Proof. This follows from Theorem 10.37 and the fact that K(Γ) is the C∗-algebra
of the groupoid W ×Γ W described in Example 10.7 (with coefficients in S, as
detailed in Remark 11.18).

Thanks to Proposition 12.26 the correspondence f 7→ f(DW) defines a grading-
preserving ∗-homomorphism from the graded C∗-algebra S into K(Γ). Thus, using
the construction in Section ??, we obtain an “index class” in the K-theory of K(Γ).

balanced-prod-morita-lemma 12.27 Lemma. The C∗-algebra K(Γ) is isomorphic to the tensor product algebra
C∗λ(Γ)⊗K(L2(M,S)). Hence K(K(Γ)) ∼= K(C∗λ(Γ)).
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Proof. Let F ⊆W be a bounded and measurable fundamental domain for the action
of Γ . Then the unitary isomorphism

U : L2(W,S) → `2(Γ)⊗ L2(F, S)
defined by (Uf)(γ,w) = f(γ−1w) conjugates K(Γ) to C∗λ(Γ)⊗K(L2(F, S)).

12.28 Remark. The choice of fundamental domain in the proof of Lemma 12.27
does not affect the associated isomorphism K(K(Γ)) ∼= K(C∗λ(Γ)).

eq-ind-op-def 12.29 Definition. Let D be a formally self-adjoint, odd-graded, elliptic first-order
partial differential operator on a closed manifold M and let W be a principal Γ -
space over M. Denote by IndΓ (D) ∈ K(C∗λ(Γ)) the index class associated to DW
by Proposition 12.26 and Lemma 12.27.

Following the pattern of the classical index theorem, we are going to identify this
index class with the image of a certain element of the group K(C0(T

∗M)⊗C∗λ(Γ))
under the Mischenko-Fomenko analytic index map

IndaC∗
λ(Γ) : K(C0(T

∗M)⊗ C∗λ(Γ)) → K(C∗λ(Γ)).

The Mishchenko-Fomenko index theorem will then give us an index theorem for
IndΓ (D).

For the purposes of the following definition, let us recall that C∗λ(Γ) is generated
by the group of unitary operators {uγ : γ ∈ Γ } described in Definition 12.13.

mishch-mod-def 12.30 Definition. Let M be a smooth manifold (or indeed any locally compact
Hausdorff space) and let W be a principal Γ -manifold over M. Denote by EW the
space of all continuous functions fromW into C∗λ(Γ) such that

(i) f(γw) = uγf(w), for all w ∈W and all γ ∈ Γ ; and

(ii) the function w 7→ ‖f(w)‖ belongs to C0(M).

12.31 Remark. Thanks to item (i) in the definition above, ‖f(w)‖ = ‖f(γw)‖
for all γ ∈ Γ and all w ∈ W. As a result, the correspondence w 7→ ‖f(w)‖ that
appears in item (ii) of the definition can be regarded as a function on the quotient
spaceW/Γ = M, as implied in the definition.

The space EW may be given the structure of a Hilbert module over the tensor
product C∗-algebra C0(M) ⊗ C∗λ(Γ), as follows. Regarding the tensor product as
the C∗-algebra of continuous functions from M into C∗λ(Γ) that vanish at infinity,
and regarding a function on M as the same thing as a Γ -periodic function on W,
the right action of C0(M)⊗ C∗λ(Γ) on EW is given by

(f1 · f)(w) = f1(w)f(w),

while the inner product is given by the formula

〈f1, f2〉(w) = f1(w)∗f2(w).

mish-fom-bundle-lemma 12.32 Lemma. The action of C0(M) on EW as Hilbert-module endomorphisms
given by formula (f · f1)(w) = f(w)f1(w) determines a ∗-homomorphism from
C0(M) into the C∗-algebra of compact operators on the Hilbert module EW .
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Proof. It suffices to prove that if f ∈ C0(M) is compactly supported within the
image of an open set U ⊆ W such that γU ∩ U = ∅, for γ 6= e, then the operator
f1 7→ f · f1 is compact. Define f ′ ∈ EW by{

f ′(γv) = uγf(v) if v ∈ U, γ ∈ Γ
f ′(w) = 0 if w /∈ Uγ for any γ.

Let g ∈ C0(M) be compactly supported within the image of U and such that
gf = f and define g ′ ∈ EW same way we defined f ′. Then f · f1 = f ′〈g ′, f1〉.

mishch-bundle-remar 12.33 Remark. The Hilbert module introduced in Definition 12.30 can be viewed
more geometrically, as follows. Let Γ act on C∗λ(Γ) (which we shall view as a right
module over itself) via left-multiplication, using the unitaries uγ. The quotient
space

LW = W ×Γ C∗λ(Γ)

is then a bundle over M whose fibers are Hilbert modules over C∗λ(Γ). It is called
the Mishchenko line bundle over M, and EW is its Hilbert module of continuous
sections that vanish at infinity.

mf-bundle-map-def 12.34 Definition. LetW be a principal Γ -manifold over a manifoldM. Denote by

νW : K(C0(M)) −→ K(C0(M)⊗ C∗λ(Γ))

the K-theory map determined as in Section ?? by the ∗-homomorphism from
C0(M) into K(EW) given in Lemma 12.32.

12.35 Remark. The map νW can be viewed more geometrically as follows. If
we assume for simplicity that M is compact, then K(C(M)) is generated by the
classes of vector bundles over M. A vector bundle E over M may be tensored
with the Mishchenko line bundle LW so as to obtain a bundle whose fibers are
finitely generated and projective (indeed free) modules over C∗λ(Γ). The map νW
associates to E this tensor product bundle, or equivalently its finitely generated and
projective module of continuous sections. Thus νW is the operation of “tensor
product with the Mishchenko line bundle”.

Actually we are most interested in the case where M is replaced by T∗M, and
W by T∗W (which is of course a principal Γ -manifold over T∗M). We obtain in
this case a map

νT∗W : K(C0(T
∗M)) −→ K(C0(T

∗M)⊗ C∗λ(Γ)).

This is the first part of the index construction. It may be interpreted as associating
to the symbol of an elliptic operator on M the symbol of a new operator that acts
not on sections of an ordinary vector bundle S overM, but on sections of the tensor
product of S with the Mishchenko line bundle.

12.36 Definition. LetM be a smooth manifold and letW be a principal Γ -manifold
overM. The topological Γ -index map

IndtΓ : K(T∗M) → K(C∗λ(Γ))
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associated to the principal Γ -spaceW is the composition

K(C0(T
∗M))

νT∗W // K(C0(T
∗M)⊗ C∗λ(Γ))

Indt
// K(C∗λ(Γ)),

where νT∗W is the map of Definition 12.34 and Indt is the topological index map
of Definition 12.8 (we have omitted the subscript A = C∗λ(Γ) to streamline the
notation). Similarly, the analytic Γ -index map

IndaΓ : K(T∗M) → K(C∗λ(Γ))

associated to the principal Γ -spaceW is the composition

K(C0(T
∗M))

νT∗W // K(C0(T
∗M)⊗ C∗λ(Γ))

Inda
// K(C∗λ(Γ)),

where Inda is the analytic index map of Definition 12.9.

Of course, it follows immediately from the definitions and Theorem 12.10 that
the topological and analytic Γ -indices agree:

g-index-theorem 12.37 Theorem. LetW be a principal Γ -manifold over a smooth manifoldM. The
topological and analytic Γ -index maps

IndtΓ , IndaΓ : K(T∗M) → K(C∗λ(Γ))

are equal to one another.

The link with the analytic index of Definition 12.29 is provided by the next
proposition. It states that the analytic Γ -index map, like the ordinary analytic index
map, sends the symbol of an elliptic operator D on a closed manifold to the index
of D:

g-analytic-index-prop 12.38 Proposition. Let W be a principal Γ -space over a smooth closed manifold
M and let D be a first-order, odd-graded, elliptic self-adjoint partial differential
operator on M. The analytic Γ -index map IndaΓ : K(T∗M) → K(C∗λ(Γ)) takes the
symbol class of D to the element IndΓ (D) described in Definition 12.29.

This may be proved in the same general way that we proved Proposition 10.23,
using an approximation of DW near any given orbit of Γ by a constant coefficient
operator on Rn × Γ .

12.6 TRACES AND THE L2-INDEX THEOREM

In Chapter 14 we shall investigate the significance of the K-theoretic index theorem
for covering spaces that we have just proved, and this will lead us straight into some
central unsolved problems in noncommutative geometry. But first we shall use
traces and dimension functions to derive a numerical index theorem for covering
spaces.

Let us retain the notation of the previous section. We are going to compute the
image of IndaΓ (D) ∈ K(C∗λ(Γ)) under the dimension homomorphism induced from
the canonical trace on C∗λ(Γ). In order to express the answer in its simplest form, it
is convenient to introduce the notion of Γ -dimension.
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gamma-dim-def 12.39 Definition. Let W be a principal Γ -manifold and let M(Γ) be the algebra of
all bounded, Γ -equivariant operators on L2(W,S). Let P : L2(W,S) → L2(W,S)
be the orthogonal projection onto the L2-space of a fundamental domain in W. If
T is a positive element of M, define

τ(T) = Tr(PTP),

where the functional Tr on the right hand side is the usual operator trace: the sum
of the diagonal elements in any matrix representation of PTP (this sum may be ∞).

12.40 Lemma. The quantity τ(T) does not depend on the choice of fundamental
domain made in Definition 12.39. Moreover if S is any operator in M(Γ), then
τ(S∗S) = τ(SS∗).

Proof. We shall prove the second assertion first. Let Pγ = UγPU
∗
γ, where γ ∈ Γ

and Uγ : L2(W) → L2(W) is the unitary operator associated to the action of γ on
W. Then

∑
γ Pγ = I (with convergence in the strong operator topology) and so

using the definition of τ and basic properties of the operator trace we find that

τ(S∗S) = Tr(PS∗SP) =
∑
γ

Tr(PS∗PγSP) =
∑
γ

Tr(PγSPS∗Pγ).

But since S is Γ -equivariant it commutes with the unitary operators Uγ, so that

U∗γ(PγSPS
∗Pγ)Uγ = PSPγ−1S∗P.

Hence

τ(S∗S) =
∑
γ

Tr(PγSPS∗Pγ) =
∑
γ

Tr(PSPγ−1S∗P) = τ(SS∗).

To prove the first assertion, note that if Q is the projection associated to a second
fundamental domain, then there is a unitary operator U ∈ M(Γ) such that Q =
UPU∗. Therefore

Tr(QTQ) = Tr(UPU∗TUPU∗) = Tr(PU∗TUP) = τ(U∗TU) = τ(T),

where in the last step we invoked the trace property of τ.

tau-is-trace-lemma 12.41 Lemma. The functional τ is a semicontinuous tracial weight. The restriction
of τ to K(Γ) is densely defined.

Proof. The semicontinuity τ follows from the semicontinuity of the ordinary oper-
ator trace. If K ∈ K(Γ) is a Γ -invariant, Γ -compactly supported smoothing operator
with kernel function k, then

τ(K∗K) =

∫
W×ΓW

|k(w1, w2)|
2 dw1dw2,

and in particular τ(K∗K) < ∞. It follows that the restriction of τ to K(Γ) is densely
defined.

12.42 Definition. If H is a Γ -invariant closed subspace of L2(W,S), then its Γ -
dimension is the quantity

dimΓ (H) = τ(PH),

where PH is the orthogonal projection onto H.
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Unlike the ordinary dimension, the Γ -dimension of a subspace need not be
integral. For example if Γ is a finite group with N elements, then the Γ -dimension
of a subspace if 1/N times the ordinary dimension. For infinite groups the Γ -
dimension can assume arbitrary nonnegative real values.

12.43 Example. Let Γ = Zn and letW = Rn, on which Γ acts by translations. Let
E be a measurable subset of Rn and let H be the subspace of L2(W) consisting of
those L2-functions whose Fourier transforms vanish almost everywhere outside of
E. Then H is a closed, Γ -invariant subspace of L2(W) and its Γ -dimension is equal
to the measure of the set E.

We are going to sketch a proof of the following result:

l2-index-prop 12.44 Proposition. Let D be a first-order, odd-graded elliptic self-adjoint partial
differential operator on a closed manifoldM and letW be a principal Γ -space over
M. If ker±(DW) are the even and odd-graded components of the kernel of DW ,
then dimΓ (ker±(DW)) < ∞. Moreover if σ : K(C∗λ(Γ)) → R is the dimension
function associated to the canonical trace on C∗λ(Γ), then

σ(IndΓ (D)) = dimΓ (ker+(DW)) − dimΓ (ker−(DW)).

12.45 Remark. The quantity on the right hand side of the above display is usually
called the L2-index of the operator D (associated to the principal Γ -manifoldW).

Proof (sketch): The semicontinuous tracial weight τ defines a dimension homo-
morphism

τ : K(K(Γ)) → R

using the construction of Proposition 12.16. By Proposition 12.19, we have

τ(IndΓ (D)) = τ(εh(DW)),

where h is any compactly supported even function with h(0) = 1. Choose a
sequence {hn} of such functions such that hn(t) decreases monotonically to 0 (as
n → ∞), for each fixed t 6= 0. By the functional calculus, the operators hn(DW)
tend (in the strong operator topology) to

P =

(
P+ 0

0 P−

)
as n → ∞, where P± are the orthogonal projections onto ker±(DW). It can
be shown that τ is continuous with respect to monotone strong convergence (this
is a version of the Monotone Convergence Theorem from measure theory) and
therefore that τ(IndΓ (D)) is equal to

lim τ(εhn(DW)) = τ(εP) = dimΓ (ker+(DW)) − dimΓ (ker−(DW)).

On the other hand, one can show that under the isomorphism

K(Γ) ∼= C∗λ(Γ)⊗K
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provided by Lemma 12.27, the tracial weight τ on K(Γ) is equal to σ ⊗ Tr, where
Tr is the usual operator trace on K. Using this one can see that the diagram

K(K(Γ))

τ

##GGGGGGGGG

∼= // K(C∗λ(Γ))

σ
{{vvvvvvvvv

R
is commutative, and this completes the proof.

The following result about the topological Γ -index map will provide us with a
formula for the trace of the Γ -index of an elliptic operator on M. The proof is not
at all difficult, but since it is best presented using ideas we have not developed in
this book (the approach to characteristic classes using connections and curvature)
we shall omit it.

g-topological-index-prop 12.46 Proposition. Let W be a principal Γ -manifold over a smooth manifold M.
The composition

K(T∗M)
Indt

Γ // K(C∗λ(Γ))
σ // C

of the topological Γ -index map with the canonical trace is given by the formula

IndtΓ (x) = (−1)dim(M)

∫
T∗M

ch(x) Todd(TM⊗ C).

In other words, the trace of the topological Γ -index is equal to the ordinary
topological index.

Putting together Theorem 12.37, Proposition 12.38 and Proposition 12.46, we
obtain the following result, known as the L2-index theorem:

l2-index-thm 12.47 Theorem. Let W be a principal Γ -manifold over a closed manifold M and
let D be an elliptic operator onM. Then

dimΓ (ker+(DW)) − dimΓ (ker+(DW))

= (−1)dim(M)

∫
T∗M

ch(σD) Todd(TM⊗ C).

In other words the L2-index of the operator D associated to the principal Γ -
manifoldW overM is equal to the ordinary topological index of D onM.

heateq-rmk 12.48 Remark. Another way of formulating the L2-index theorem is to say that the
analytic index ofD onM is equal to the L2-index ofD associated to any principal
Γ -manifold W over M. This assertion is equivalent to the one in Theorem 12.47
by the ordinary index theorem. It bypasses topology and may be proved by purely
analytic methods. This was in fact the original approach.

The L2-index theorem should not be viewed as a negative result, despite the fact
that it shows that the L2-index ofD, which is a part of the equivariant index of Def-
inition 12.29, is not a new invariant but rather the ordinary analytic index ofD. The
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equality of the L2-index and the ordinary analytic index has a number of important
consequences. They arise because in certain circumstances it is possible to compute
the L2-index separately by analytic, geometric or representation-theoretic means.
We shall conclude this section by sketching an example related to the following
conjecture of Hopf:

hopf-conj 12.49 Conjecture. If M is a closed, connected, even-dimensional manifold with
contractible universal cover, then (−1)

1
2 dim(M)χ(M) ≥ 0.

hopf-prop 12.50 Proposition. If M is a closed, connected, even-dimensional manifold that
may be equipped with a Riemannian metric of constant negative curvature, then
(−1)

1
2 dim(M)χ(M) > 0.

Proof (sketch). Let W be the universal cover of M and let dim(M) = 2k. By our
hypotheses onM, it is an even-dimensional hyperbolic space. Using the geometric
structure of W, it may be shown that the spaces Hp(W) of harmonic, square-
integrable p-forms on W are zero unless p = k, while in the middle dimension
there are non-zero, square-integrable harmonic forms. Now let D be the de Rham
operator on M. The ordinary analytic index of D is the Euler characteristic of M,
while

dimΓ (ker+(DW)) − dimΓ (ker+(DW)) =

2k∑
p=0

(−1)pdimΓ (Hp(W)).

Hence χ(M) = (−1)k dimΓ (Hk(W)), and the proposition follows.

atiyah-conj-rem 12.51 Remark. Note that although the L2-index theorem implies the identity

2k∑
p=0

(−1)p dim(Hp(M)) =

2k∑
p=0

(−1)pdimΓ (Hp(W)),

it is not true that the individual terms in these two alternating sums may be identified
with one another.

12.7 A FAMILIES INDEX THEOREM FOR COVERING SPACES

We are going to study a generalization of the index theorem for covering spaces
in which, roughly speaking, equivariant, or periodic operators on a principal Γ -
manifold W are replaced by families of almost periodic operators on W. A good
picture to keep in mind is that of the Kronecker foliation depicted in Figure 13.2
below, in which a torus is decomposed into a family of lines, each wrapping around
the torus infinitely often and with dense image. A function on the torus restricts to
an almost-periodic function on each line.

We shall begin by describing a geometric construction which includes the Kro-
necker foliation. Let W be a principal Γ -manifold over a smooth manifold M, as
in the previous section. But now let X be second smooth manifold equipped with
an action of Γ by diffeomorphisms. We shall not assume that the action of Γ on X
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is principal. Construct the spaceW ×Γ X by forming the quotient ofW ×X by the
product action of Γ . The product action of Γ on W × X is principal, and therefore
the quotientW ×Γ X is a smooth manifold. We are going to study the index theory
of certain operators on W ×Γ X; these operators will not however be elliptic in the
conventional sense.

For each point x of X there is an immersion of W into W ×Γ X given by the
formula

ix : w 7→ (w, x) ∈W ×Γ X.

If the action of Γ on X is free, then each of the maps ix is injective and so embeds
W as a submanifold of W ×Γ X, although typically not as a closed submanifold.
In general, the image of each ix is a covering space ofM intermediate betweenW
andM. Anticipating the terminology of foliation theory to be discussed in the next
chapter, let us call the submanifolds ix[W] the leaves ofW ×Γ X.

kronecker-example 12.52 Example. Let Γ = Z and let W = R, on which Γ acts by translation. Let X
be the unit circle on which Γ acts by the action n : z 7→ e2πiθnz associated to some
θ ∈ R. The manifoldW ×Γ X is diffeomorphic to a torus. If θ is irrational, so that
the action of Γ on X is free, then the leaves ofW×Γ X are lines that wind infinitely
often around the torus, each one being dense in the torus. This is the Kronecker
foliation.

Figure 12.1 The Kronecker foliation. ir-slop-fig

The operators that we shall consider decompose into families of operators acting
on the leaves ofW ×Γ X:

12.53 Definition. Let D be a linear partial differential operator acting on sections
of some bundle S over W ×Γ X. We shall say that D is a leafwise operator if its
lift to the covering spaceW ×X commutes with multiplication by the functions on
W × X that factor through the projection fromW × X to X.

A linear partial differential operator D is a leafwise operator if and only if its
lift to W × X involves no derivatives in the X-directions, but only derivatives in
the W-directions. If D is a leafwise operator, then its lift to W × X restricts to a
partial differential operator Dx on each submanifold W × {x}. This is because if s
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is a section of the pull-back of S to W × X, then the restriction of Ds to W × {x}

depends only on the restriction of s to W × {x}. The family of operators {Dx}x∈X
is Γ -equivariant.

12.54 Definition. LetD be a first-order leafwise linear partial differential operator
acting on sections of some bundle S over W ×Γ X. We shall say that D is leafwise
formally self-adjoint if each of the operatorsDx is formally self-adjoint.2 We shall
say that D is a leafwise elliptic operator if each of the operators Dx is elliptic.

Assume that W ×Γ X is a closed manifold (that is, that both M = W/Γ and
X are closed) and let D be a leafwise formally self-adjoint, first order, leafwise
linear partial differential operator on W ×Γ X. Theorem 10.32 shows that each
operatorDx is essentially self-adjoint. Assuming thatD is leafwise elliptic we can
therefore attempt to construct an analytic index for the family {Dx} determined by
D as we did in the last section (note that if X reduces to a single point, then we
are in precisely the situation that we analyzed in the last section). The appropriate
C∗-algebra for the index is as follows:

12.55 Definition. Let K = {Kx}x∈X be a family of bounded operators on L2(W).
We shall call it an Γ -equivariant, Γ -compactly supported family of smoothing
operators (or an equivariant family of smoothing operators, for short) if there
is a smooth complex-valued function k on the three-fold product W × W × X
that is Γ -invariant for the product action and compactly supported as a function on
(W ×W)×Γ X, such that

Kxf (w) =

∫
W

k(w, v, x)f(v)dv

for every f ∈ L2(W) and every x ∈ X. We shall denote by K(Γ, X) the closure of
the ∗-algebra of equivariant families of smoothing operators onW in the norm

‖K‖ = sup
x∈X

‖Kx‖.

12.56 Remark. As in the previous section we shall need a small modification of
this definition which incorporates a complex vector bundle S on whose sections a
leafwise operator acts. But we shall not dwell on this.

From now on we shall be dealing with a leafwise formally self-adjoint, leafwise
elliptic, first-order leafwise linear partial differential operator onW×Γ X, acting on
sections of a bundle S over W ×Γ X. We shall further assume that S is graded and
that D is odd-graded. Rather than repeat this long list of assumptions continually,
we shall simply refer to D as a leafwise elliptic operator.

fam-ell-reg-prop 12.57 Proposition. If D is a leafwise elliptic operator on W ×Γ X, and if f ∈ S,
then {f(Dx)} ∈ K(Γ, X).

Proof. The manifold (W × W) ×Γ X is a smooth groupoid with object space
W ×Γ X, source and range maps the two natural projections, and composition law

[w3, w2, x] ◦ [w2, w1, x] = [w3, w1, x].

2This is generally not the same as requiring that D itself be formally self-adjoint.
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The C∗-algebra K(Γ, X) is the C∗-algebra of this groupoid, and the proposition
therefore follows from Theorem 10.37 (together with the modification needed to
take the bundle S into account detailed in Remark 11.18).

As in the previous section, it is convenient to identify K(Γ, X) with another C∗-
algebra, up to Morita equivalence.

12.58 Definition. Denote byC∗λ(Γ, X) theC∗-algebra of the smooth groupoid ΓnX
associated to the action of Γ on X as in Example 10.6.

Lemma 12.27 from the previous section may be generalized as follows:

fam-balanced-prod-morita-lemma 12.59 Lemma. The C∗-algebra K(Γ, X) is isomorphic to the tensor product alge-
bra C∗λ(Γ, X)⊗K(L2(M)), whereM = W/Γ .

Proof. Let F ⊆W be a bounded and measurable fundamental domain for the action
of Γ . Then the unitary isomorphism

U : L2(W,S) → `2(Γ)⊗ L2(F, S)
defined by (Uf)(γ,w) = f(γ−1w) conjugates the natural representation of K(Γ, X)
on L2(W,S) associated to x ∈ X to the natural representation of C∗λ(Γ) ⊗
K(L2(M,S)) on `2(Γ)⊗ L2(M,S) associated to x.

fam-eq-ind-op-def 12.60 Definition. Let D be a leafwise elliptic operator on W ×Γ X. Denote
by IndΓ,X(D) ∈ K(C∗λ(Γ, X)) the equivariant index associated to D by Proposi-
tion 12.26 and Lemma 12.59.

As in the previous section, we can extract a numerical index from thisK-theoretic
index, although in the current context we shall need an additional piece of structure
to do so.

12.61 Definition. Let µ be a positive, Γ -invariant Borel measure on the closed
manifold X. Associate to µ the trace functional σµ : C∗λ(Γ, X) → C given by the
formula

σµ(f) =

∫
X

f(e, x)dµ(x).

(Recall that C∗λ(Γ, X) is a completion of the ∗-algebra of smooth, compactly sup-
ported functions on Γ n X. The trace σµ is defined initially on the smooth, com-
pactly supported functions, then extended by continuity to C∗λ(Γ, X).)

To compute the value of the trace σµ on the K-theoretic index of a leafwise
elliptic operator we shall need to extend the trace to a broader class of operators, as
in the previous section:

12.62 Definition. Let M(Γ, X) be the algebra of all bounded, measurable,3 Γ -
equivariant families of operators on L2(W) parametrized by X. Let µ be a finite,
Γ -invariant Borel measure on X and let P : L2(W) → L2(W) be the orthogonal

3A family {Tx} is measurable if for every v, w ∈ L2(W) the function 〈Txv, w〉 is a measurable
function on X.
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projection onto the L2-space of a fundamental domain in W. If T = {Tz} is a
positive element of M(Γ, X), then define

τµ(K) =

∫
X

Tr(PKxP)dµ(x).

If P = {Px} ∈ M(Γ, X) is a measurable family of projections onto a family
H = {Hx} of subspaces of L2(W), define

dimΓ,µ(H) = τµ(P).

The quantity τ(K) is independent of the choice of fundamental domain used
in its definition and has the property that τ(T∗T) = τ(TT∗), for every T ∈
M(Γ, X). If K is an equivariant family of smoothing operators with kernel function
k : W ×W × X → C, then

τµ(K∗K) =

∫
(W×W)×ΓX

|k(w1, w2, x)|
2 dw1dw2dµ(x).

The proof of Proposition 12.44 sketched in the previous section may be adapted to
provide a proof of the following result for families:

12.63 Theorem. If D is a leafwise elliptic operator onW ×Γ X, then

dimΓ,µ(ker±(D)) < ∞
and

σµ(IndΓ,X(D)) = dimΓ,µ(ker+(D)) − dimΓ,µ(ker−(D)).

There are also straightforward generalizations of the analytical and topological
Γ -index maps from the previous section. These are maps

K(C0(T
∗W ×Γ X)) // K(C0(T

∗M)⊗ C∗λ(Γ, X)) //
// K(C∗λ(Γ, X)),

where the right-hand maps are the topological and analytic index maps associated
to the C∗-algebra A = C∗λ(Γ, X) as in Definition 12.8 and Definition 12.9, while
the left-hand map is obtained by the following modification of Definition 12.34.

12.64 Definition. Let M = W/Γ and denote by EW,X the Hilbert C0(M) ⊗
C∗λ(Γ, X)-module of all continuous functions fromW into C∗λ(Γ, X) such that

(i) f(γw) = uγf(w), for all w ∈W and all γ ∈ Γ ; and

(ii) the function w 7→ ‖f(w)‖ belongs to C0(M),

Thus EW,X is the Hilbert module of continuous sections, vanishing at infinity of
the bundleW ×Γ C∗(Γ, X) overM.

The action of C0(W ×Γ X) on EW,X as Hilbert-module endomorphisms gives a
∗-homomorphism from C0(W ×Γ X) into the C∗-algebra of compact operators on
EW,X and so determines a map

νW,X : K(C0(W ×Γ X)) → K(C0(M)⊗ C∗λ(Γ, X)).

ReplacingW by T∗W andM by T∗M we obtain the map we need to complete our
definition of the analytic and topological index maps.
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12.65 Definition. The topological and analytic Γ -index maps

IndtΓ,X, IndaΓ,X : K(T∗W ×Γ X) → K(C∗λ(Γ, X))

associated toW and X are the compositions

K(C0(T
∗W ×Γ X))

νT∗M,X// K(C0(T
∗W)⊗ C∗λ(Γ, X))

Indt
//

Inda
// K(C∗λ(Γ, X)).

As is by now usual, the two indices agree, thanks to Theorem 12.10:

g-fam-index-theorem 12.66 Theorem. Let W be a principal Γ -manifold over a smooth manifoldM and
let X be a smooth Γ -manifold. The topological and analytic Γ -index maps

IndtΓ,X, IndaΓ,X : K(T∗W ×Γ X) → K(C∗λ(Γ, X))

are equal to one another.

Assume now thatD is a leafwise elliptic operator onW ×Γ X. Considered as an
operator on W ×Γ X (rather than as a family of operators), D has a symbol which
is an endomorphism of the pullback of the vector bundle S to T∗(W ×Γ X) (see
Section 5.4). There is a natural projection map

T∗(W ×Γ Z) → T∗W ×Γ X,

and the assertion thatD is a leafwise operator implies that the symbol ofD actually
defines an endomorphism of the pullback of S to T∗W ×Γ X. The assertion that D
is leafwise elliptic implies that this latter endomorphism is elliptic in the sense of
Definition ??, and so defines a leafwise symbol class

σD ∈ K(C0(T
∗W ×Γ X))

as explained in Section ??. The analytic index map sends this symbol class to the
analytic index of D:

12.67 Proposition. If D is a leafwise elliptic operator onW ×Γ X, then

IndaΓ,X(σD) = IndΓ,X(D).

12.68 Corollary. If D is a leafwise elliptic operator on W ×Γ X and if µ is an
invariant measure on X, then

σµ(IndaΓ,X(σD)) = dimΓ,µ(ker+(D)) − dimΓ,µ(ker−(D)).

In the remainder of this section we shall obtain from Theorem 12.66 a numerical
index theorem that extends the L2-index theorem presented in the last section.
While the development of the numerical theorem is a fairly straightforward matter,
it does involve one new geometric idea. To help introduce it, let us say that an open
subset ofW ×Γ X is basic if it is of the form π[U× X], where U is an open subset
of W and π : U × X → π[U × X] is a diffeomorphism (π is the projection from
W × X toW ×Γ X).
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12.69 Proposition. Let W be an oriented smooth manifold equipped with an
orientation-preserving, principal action of Γ . Let n = dim(W). Let X be a smooth,
closed Γ -manifold and let µ be an invariant Borel measure on X. There is a unique
linear functional

Cµ : Ωnc (W ×Γ X) → R

such that if α ∈ Ωn(W ×Γ X), and if α is supported in a basic open set π[U×X],
then

Cµ(α) =

∫
X

(∫
U×{x}

π∗(α)

)
dµ(x).

If α is exact as a compactly supported form, then Cµ(α) = 0.

Proof. Since every form α ∈ Ωnc (T∗W ×Γ X) is a finite sum of forms which are
compactly supported within basic sets, there is clearly at most one linear functional
with the required property. If α is supported in a basic set, then it follows from the
invariance of the measure µ that the formula in the proposition for Cµ(α) depends
only on α and not on the choice of the open set U ⊆ W. This in turn implies that
the formula determines a well-defined linear functional on Ωnc (T∗W ×Γ X). If α
is exact, so that α = dβ for some compactly supported (n− 1)-form β, then write
α =

∑
dβj for forms β1, . . . , βN that are compactly supported in basic sets to

conclude from Stokes’ Theorem that Cµ(α) = 0.

12.70 Definition. The functional Cµ : Ωn(W ×Γ X) → R is called the Ruelle-
Sullivan current on W ×Γ X associated to the invariant measure µ (a current is a
continuous linear functional on the space of differential forms).

Because Cµ vanishes on exact forms it defines a linear functional on the (de
Rham) cohomology group Hnc (W ×Γ X). We shall write this functional as α 7→∫
Cµ
α.

12.71 Example. Consider the Kronecker foliation of Example 12.52, obtained
from the action of Z on the circle X by an irrational rotation. If µ is Haar measure
on X (normalized to have total volume 1), then µ is of course invariant for the given
action of Γ . The associated Ruelle-Sullivan current maps the integral cohomology
group H1(W ×Γ X) to Z + θZ ⊆ R. This shows that the Ruelle-Sullivan current
need not correspond to an integral, or even a rational, cohomology class.

Replacing W by T∗W (which has a canonical orientation and orientation-
preserving action of Γ ) we obtain a Ruelle-Sullivan current

Cµ : H2nc (T∗W ×Γ X) → R.

Our interest in the Ruelle-Sullivan current stems from the following result. Like
its simpler counterpart in Proposition 12.46, the formula below can be proved
in a straightforward fashion using the approach to characteristic classes through
connections and curvature.
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12.72 Proposition. Let W be a principal Γ -manifold over a smooth manifold M,
let X be a smooth Γ -manifold, and let µ be a finite invariant measure on X. Then

σµ(IndtΓ,X(x)) = (−1)dim(M)

∫
Cµ

ch(x) ∧ Todd(TM⊗ C)

for every x ∈ K(T∗W ×Γ X).

Putting everything together, we obtain the following index theorem. It is a special
case of Connes’ index theorem for measured foliations, to be discussed in the next
chapter, as well as a generalization of the L2-index theorem from the previous
section.

12.73 Theorem. Let W be a principal Γ -manifold over a smooth manifold M, let
X be a smooth Γ -manifold, and let µ be a finite invariant measure on X. If D is a
leafwise elliptic operator onW ×Γ V , and if µ is an invariant measure on X, then

dimΓ,µ(ker+(D)) − dimΓ,µ(ker−(D))

= (−1)dim(M)

∫
Cµ

ch(σD) ∧ Todd(TM⊗ C),

where Cµ is the Ruelle-Sullivan current associated to the invariant measure µ.

12.8 NOTES

The K-theory reformulation of the index theorem presented in Section 1 is the same
as the approach of Atiyah and Singer to the index theorem in [?].

The index theory for covering spaces that we presented in Section 12.5 was in-
vented by Novikov and his student Mishchenko [?, ?]. A version of Theorem 12.10
appears in [].

The L2-index theorem appears in [?]. A survey of its applications to the Hopf
conjecture can be found in [] along with a great deal of additional information about
Γ -dimensions. An important application of the L2-index theorem not considered in
our discussion is to representation theory. If G is a Lie group of isometries of a
complete Riemannian manifold W, and if DW is an equivariant elliptic operator
on W, then the kernel of DW is a representation space for G. If Γ is a discrete
subgroup of G which acts principally and cocompactly on W, then DW descends
to an operator on M = W/Γ to which we may apply the L2-index theorem. If the
index of the descended operator is non-zero, then the kernel of the operator DW
on W is nonzero, and so is a nonzero representation of G. For applications of this
method to the construction of representations of G see [] or [].

The L2-index of any elliptic operator D is an integer since it is equal to the or-
dinary index of D. But the L2-index is the difference of the dimΓ (ker+(DW)) and
dimΓ (ker−(DW)), and one might ask whether these quantities are themselves in-
tegers. Certainly they are not in general equal to their counterparts dim(ker+(D))
and dim(ker−(D)) (compare Proposition 12.50 and Remark 12.51). This integral-
ity question was raised by Atiyah and remains a very challenging problem. See []
for a discussion of the case of the de Rham operator.
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Invariant measures and their associated currents were studied in various contexts
in the 1970s: see [?, ?]. As the text suggests, their appearance in index theory is
due to Connes. See [].
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Chapter Thirteen

Index Theory for Foliations

FoliationsChapter

13.1 FOLIATIONS
foliations-section

13.1 Definition. Let M be a smooth manifold of dimension n = p + q. A p-
dimensional foliation atlas for M is an atlas of smooth charts φα : Uα → Rn =
Rp × Rq (where Uα is open inM) such that the transition functions

φαβ = φαφ
−1
β ,

which are diffeomorphisms from one open subset of Rp × Rq to another, have the
form

φαβ(x, y) = (f(x, y), g(y))

where (x, y) ∈ Rp × Rq. In other words, the transition functions are required to
respect the relation of “having the same Rq coordinate”. We say that two foliation
atlases are equivalent if their union is also a foliation atlas.

13.2 Definition. A p-dimensional foliation F on M is an equivalence class of p-
dimensional foliation atlases. A manifold equipped with a foliation is called a
foliated manifold. The charts appearing in a foliation atlas are called flowboxes for
the foliation.

Let (M,F) be a foliated manifold. A plaque is a subset of M that is of the
form Rp × {y} in some foliation chart. We can define a new topology and
manifold structure onM by taking the plaques as coordinate neighborhoods. In this
topologyM becomes a p-dimensional manifold with uncountably many connected
components (except in trivial cases). These connected components are called the
leaves of the foliation. Each leaf can be considered as a submanifold ofM with its
usual topology, and the partition of M into leaves looks locally like the partition
of Rp × Rq into plaques. However, the global structure of the foliation may be
extremely complicated: the leaves need not be compact, they may wind densely
around inM (returning many times to the same foliation chart), and so on.

fam-fol-ex 13.3 Example. A submersion π : E → B (see Definition 13.9)gives rise to a
foliation, whose leaves are the fibers of π. By definition, every foliation has this
structure locally.

group-foliation-ex 13.4 Example. If a smooth manifold M is equipped with a locally free, smooth
action1 of a Lie groupH then a foliated manifold is obtained by defining F to be the

1An action is locally free if its isotropy subgroups are discrete.
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Figure 13.1 Parts of some leaves in the Reeb foliation. reeb-fig

bundle of tangent vectors on M which are tangent to the orbits of the action. Once
again, we may obtain the irrational slope foliation on the torus as a particular case
of this construction.

13.5 Example. A classical construction, due to Reeb, shows that there are 2-
dimensional foliations of S3. The construction depends on noting that S3 can be
obtained by identifying two solid tori along their boundaries. We regard each solid
torus as the quotient of a solid cylinder by a discrete group of translations. Each
such solid cylinder (such as x2 + y2 ≤ 1, in Cartesian coordinates) can be foliated
by translates of the surface obtained by rotating the curve z = f(x) around the
z-axis, where f is a smooth even function which increases to +∞ as x → ±1.
The quotient of this foliation by the group of translations gives a foliation of the
solid torus, having the torus itself as a boundary leaf; and by joining two copies
of this foliation we get a foliation of S3. Note that all the leaves except one are
diffeomorphic to R2; the exceptional leaf is a 2-torus. See Figure 13.1.

inf-fol-rmk 13.6 Remark. If (M,F) is a foliated manifold, the tangent vectors to the leaves
form a subbundle TF of TM. Clearly, this subbundle has the integrability property:
if X, Y are sections of TF, then their Lie bracket [X, Y] is a section of TF also.
Conversely, a classical theorem of Frobenius states that any subbundle of TM that
has the integrability property is tangent to a foliation.

Let (M,F) be a foliated manifold.

13.7 Definition. A differential operator onM is said to be a leafwise operator if it
restricts to a differential operator on each leaf. To put this another way, a differential
operator is a leafwise operator if, when represented in a foliation chart Rp ×Rq, it
only involves differentiation in the Rp directions.

Since TF is a subbundle of TM, T∗F is a quotient bundle of T∗M. The symbol
of a leafwise operator vanishes on the kernel of T∗M → T∗F, so it is a function on
T∗F (with values in the endomorphisms of the bundle on which the operator acts).
We’ll call this function the leafwise symbol.
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leaf-ell-def 13.8 Definition. A leafwise operator is leafwise elliptic if its restriction to each leaf
is elliptic. That is to say, a leafwise elliptic operator is one whose leafwise symbol
is elliptic in the sense of Definition ??.

In Example 13.3, the leafwise elliptic operators are simply the elliptic families
that we discussed in the previous chapter. In Example 13.39, leafwise elliptic
operators are closely related to higher index theory. We are going to study the
index theory of leafwise elliptic operators in a way that will include both of these
examples. As usual, the first stage is to construct a suitable groupoid that will
reflect the geometry of the situation.

13.2 THE INDEX THEOREM FOR FAMILIES

We shall now generalize the index theorem by considering not a single elliptic
operator but a family of elliptic operators.

mfam-def 13.9 Definition. Let B be a smooth manifold. By a manifold over B we mean a
smooth manifoldM equipped with a submersion π : M → B.

efam-def 13.10 Definition. LetM be a manifold overB. A linear partial differential operator
D acting on the sections of a bundle S over W, is compatible with the submersion
from M to B if D(φs) = φD(s), for every smooth section s and every smooth
function φ : M → C which factors through the submersion π : M → B.

If a linear partial differential operatorD acting on the sections of a bundle S over
M, is compatible with the given submersion fromM to B, then . . .

13.11 Definition. The B-tangent bundle of a manifold M over B is the vector
bundle

TBM = ker(π∗ : TM → TB)

overM.

The symbols of a family of elliptic operators (as in Definition 13.10 above)
provide an elliptic endomorphism of the pullback of S to TBM, and thus the family
has a symbol class

σ(D) ∈ K(TBM)

which generalizes the class constructed in the single-operator case.

13.12 Definition. B-tangent groupoid.

This is the ‘families’ version of Construction 9.3. Here is a sketch of one way
to carry it out. Recall that the we built the index map in the single-operator case
from an asymptotic morphism associated to the tangent groupoid TM. The tangent
groupoid is a smooth family of groupoids depending on a real parameter t; for
t = 0 it is the tangent bundle TM (considered as a bundle of abelian groups) and
for t 6= 0 it is a rescaled copy of the pair groupoid M ×M. Now for a family of
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manifolds π : W → B we can carry out the tangent groupoid construction fiberwise
on the family. In this way we obtain a groupoid TBM which for t = 0 is TBM
(considered as a bundle of abelian groups) and for t 6= 0 is a copy of the groupoidG
of Definition 13.13. From this groupoid one obtains as in Chapter 10 an asymptotic
morphismC0(T∗BM) C∗r(G), and the associated K-theory homomorphism is the
analytical index.

fam-gp-def 13.13 Definition. Let π : M → B be a family of manifolds over B. Then the
groupoid of the family G is the smooth groupoid defined as follows:

• The object space isM;

• The morphism space is {(x, y) ∈M×M : π(x) = π(y) ∈ B};

• The source and range maps are s(x, y) = x, r(x, y) = y;

• The composition law is (x, y) · (y, z) = (x, z);

In other words, G is a family of pair groupoids Mx ×Mx, parameterized by
x ∈ B. A right Haar system for this groupoid is a smoothly varying family of
Lebesgue measures on the fibers of π.

Recall from Example 10.19 that the C∗-algebra of the pair groupoid of a mani-
fold M is simply the algebra of compact operators on L2(M). A similar calcula-
tion identifies the C∗-algebra of the groupoid G. To be precise, consider the space
Cc(E) of continuous, compactly supported functions on E. Given two such func-
tions one can take their Hilbert space inner product on each fiber π−1(b), and this
inner product then becomes a continuous function on B. Thus, the space Cc(E) ac-
quires aC(B)-valued inner product, and by completing relative to this inner product
we obtain a Hilbert module (Section ??) over C(B). Now we have

famalg-morita 13.14 Lemma. The C∗-algebra of the groupoid G is exactly the algebra of com-
pact endomorphisms of the Hilbert C(B)-module described above.

(The proof follows the same lines as that of Example 10.19.) It follows from the
discussion in Section ?? that there is a natural map from K(C∗(G)) to K(B). In fact
this map is an isomorphism, but we shall not need this.

Now suppose that M is a closed manifold and that {Db} is a family of elliptic
operators over B. According to Theorem 10.37, the functional calculus determines
a graded homomorphism

φ : S → C∗r(G), φ : f 7→ f(D).

Using the construction described in Chapter ?? and the discussion above, this
graded homomorphism naturally determines and element of K(B).

13.15 Definition. We call the element of K(B) so defined the analytical index of
the family of operators Db.

aindfam-constr 13.16 Theorem. Associated to the B-tangent groupoid there is a natural analytical
index map

Inda : K(TBM) → K(B)
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which sends the symbol of each elliptic family to the analytical index of the family.

13.17 Remark. The construction needs to be elaborated to take into account the
bundle S on which D is operating. We must replace the ordinary groupoid algebra
by a version which has coefficients in S; the two versions have the same K-theory.
The details are the same as in the single-operator case, which we discussed in
Section 11.3. We will not repeat them here.

13.18 Example. If each operator Db is invertible (as a linear operator on smooth
sections), then it may be shown that the graded homomorphism φ is homotopic to
zero. As a result, the analytical index of the family {Db} is zero. More generally, if
there is a punctured neighborhood of 0 ∈ R that does not meet the spectrum of any
Db, then the families {kerD+

b } and {kerD−
b } form vector bundles over B and their

difference in K(B) defines the analytical index the family {Db}.

Now we shall define a topological index, and outline the proof of the index
theorem for families.

fam-inj-def 13.19 Definition. If W → B and Z → B are families of manifolds over the same
base, let us define an embedding over B to be an embedding W → Z which makes
the obvious diagram

W //

��

Z

��

B =
// B

commute. An embedding of families can be factored (by the tubular neighborhood
theorem again) into the inclusion of the zero-section of a vector bundle, followed
by the inclusion of an open subset. The induced wrong way maps on K-theory
are therefore topologically calculable. Let i : Z → W be an embedding of a
smooth family W as a submanifold of a smooth family Z. Define an associated
homomorphism

i! : K(TBZ) → K(TBZ)

as follows. . . .

As with the case considered in the previous section, it is not hard to show that
the map i! : K(TBM) → K(TBN) associated to the inclusion i : M → N of M as
a submanifold of N does not depend on any of the choices made in its definition.
Moreover, we obtain a functor:

13.20 Lemma. If i : M → N1 and j : N1 → N2 are embeddings of smooth
manifolds over B, then j! ◦ i! = (j ◦ i)! : K(TBM) → K(TBN2).

13.21 Definition. . . . of topological index

Indt : K(TBM) → K(B)

We now follow the pattern that we developed in the single-operator case.
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13.22 Theorem. If f : M → N is an embedding of manifolds over B, then the
diagram

K(TBM)
f! //

Inda

��

K(TBN)

Inda

��

K(B) =
// K(B)

commutes.

13.23 Theorem. Inda = Indt : K(T∗BW) → K(B).

13.24 Theorem.

ch(IndD) = (−1)n
∮

ch(σD) Todd(TBE⊗ C)

where
∮

denotes integration along the fiber, an operation that passes from H∗(E)
to H∗(B).

There is an important nuance here. The cohomological formula of necessity
computes the Chern character, ch(IndD) ∈ H∗(B). When B is a point, as in the
case of the ordinary index theorem, ch : K(pt) → H∗(pt) is injective so that the
Chern character captures all the information about the index. However, in general
the Chern character is not injective (it loses all torsion information). For this reason,
it is better to regard the K-theoretic statement as constituting the ‘correct’ form of
the index theorem for families; the cohomological statement is just a homomorphic
image of this.

13.3 THE FOLIATION GROUPOID

13.25 Definition. Tangent groupoid of a principal Γ -manifold

If Γ is infinite, no principal Γ -manifold can be compact, and therefore elliptic
operators on such manifolds will not have indices in the usual Fredholm sense.
However, we shall see that if we restrict attention to Γ -equivariant elliptic operators,
we can define an index which takes values in a K-theory group associated to the
Γ -action. In fact, the group in question is the K-theory of the C∗-algebra of the
following groupoid.

13.26 Definition. Let X be a principal Γ -manifold over M. Construct a groupoid
G as follows:

• The space of objects isM.

• The space of morphisms is the space of orbits of the diagonal action of Γ
on X × X. In other words, a morphism is an equivalence class of pairs
(x, x ′) ∈ X × X, two such pairs (x1, x

′
1) and (x2, x

′
2) being considered

equivalent if there is γ ∈ Γ such that γx1 = x2 and γx ′1 = x ′2.
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• The source and range maps are s(x, x ′) = π(x), r(x, x ′) = π(x ′), where
π : X → M is the quotient map.

13.27 Exercise. Check that this is a smooth groupoid, and that when X is the
universal cover of M (as in Example 12.22 above) it is in fact the fundamental
groupoid ofM as defined in Example ??.

In terms of the “families picture” of groupoids, what we have here is a groupoid
representing a family of copies of the universal cover ofM relative to different base
points inM, with non-trivial twisting provided by the deck transformations.

Once again (compare the discussion surrounding Lemma 13.14), we can identify
the C∗-algebra of this groupoid as the algebra of compact operators on a suitable
Hilbert module. Consider the vector space Cc(X) of compactly supported con-
tinuous functions on X. We can equip this with a C∗r(Γ)-valued inner product by
defining

〈f, g〉 =
∑
γ∈Γ

(∫
f(x)g(γ−1x)dx

)
· [γ] ∈ C∗r(Γ).

CompletingCc(X) relative to this inner product, we obtain aC∗r(Γ)-Hilbert module
and one can prove

13.28 Lemma. The C∗-algebra of the groupoid G is exactly the C∗-algebra of
compact operators on the Hilbert C∗r(Γ)-module described above.

Thus we obtain a map K(C∗r(G)) → K(C∗r(Γ)). Again, the map is in fact an
isomorphism (because the Hilbert module in question is full), but we do not need
to make use of this fact.

Let (M,F) be a foliated manifold. The partition of M into leaves defines an
equivalence relation, which we call leaf equivalence. We wish to define a smooth
groupoid which, in the quotient space picture of groupoids, represents the quotient
of M by the leaf-equivalence relation, and which in the families picture represents
the family which assigns to each point of M the leaf passing through that point.
Actually, a small modification is necessary in order to define a manifold structure on
this groupoid. We shall assemble the groupoid not just from pairs of leaf-equivalent
points, but from leafwise paths connecting leaf-equivalent points.

13.29 Definition. A leafwise path in a foliated manifold (M,F) is a piecewise
smooth path in M that lies in a single leaf (or, equivalently, whose tangent vector
is everywhere tangent to the foliation).

Leafwise paths have a kind of ‘foliated tubular neighborhood property’ which
is very important. To explain it, let us agree that if U is a flowbox (an open set
in M foliated diffeomorphic to Rp × Rq) then P(U) will denote the plaque set of
U, that is the quotient of U by the relation of “having the same Rq coordinate”.
The plaque set P(U) is of course diffeomorphic to Rq, and P is a functor on the
category of flowboxes and inclusion maps: if U ⊆ V are flowboxes, then there
is a natural diffeomorphism of P(U) into P(V). In particular, suppose that V and
V ′ are flowboxes that have nonempty intersection which is itself a flowbox. Then
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P(V ∩V ′) is diffeomorphic both to a subset of V and to a subset of V ′, and thus we
obtain a diffeomorphism from an open subset of P(V) to an open subset of P(V ′).

Now suppose that γ is a leafwise path from m0 to m1. We can cover γ by
flowboxes U0, U1, . . . , Un such that Ui ∩ Ui+1 is a flowbox, and by iterating the
above construction we get a diffeomorphism from an open subset of P(U0) to an
open subset of P(Un). That is, we obtain the germ of a diffeomorphism from the
space of plaques nearm0 to the space of plaques nearm1.

Standard arguments prove

hol-hom-lemma 13.30 Lemma. The germ of the diffeomorphism obtained above is well-defined
(independent of the choices involved in the construction). Moreover, if γ and γ ′

are leafwise paths which are leafwise homotopic (keeping endpoints fixed) then the
germ associated to γ is the same as the germ associated to γ ′.

13.31 Definition. This germ is called the holonomy of the path γ. Two leafwise
paths in a foliated manifold with the same beginning and end points are holonomy
equivalent if their holonomies are equal.

Holonomy is an equivalence relation; according to Lemma 13.30, it is a coars-
ening of the leafwise homotopy relation. Quite frequently it is much coarser. For
example, it may be shown that for a dense Gδ set of beginning and final points, all
paths are holonomy-equivalent to one another.

Holonomy is compatible with concatenation of paths: if γ is a leafwise path from
m0 to m1, and if η is a leafwise path from m1 to m2, then the holonomy class of
the concatenated path η∨γ fromm0 tom2 depends only on the holonomy classes
of γ and η. It follows that the set of holonomy classes of leafwise paths from a
pointm to itself is a group under concatenation.

13.32 Exercise. Let M be a smooth manifold equipped with a smooth, locally
free action of a connected Lie group H, and let (M,F) be the associated foliated
manifold (see Example 13.4). Assume that on a dense subset of M the action of
H is in fact free. Show that the holonomy group of p ∈ M is isomorphic to the
isotropy group for the action.

13.33 Definition. Let (M,F) be a foliated manifold. Its holonomy groupoid
G(M,F) is given as follows:

• The space G(M,F) of morphisms is the set of all holonomy classes of
leafwise paths γ inM.

• The space of objects is the manifoldM.

• The source and range maps assign to a path γ its initial and final points.

• Composition is given by concatenation of paths.

The identity morphisms are the constant paths; the inverse of a path γ : [0, 1] → M

is obtained by composing with an orientation-reversing diffeomorphism of [0, 1].
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The space G(M,F) is made into a manifold in the following way. Let γ be
a leafwise path from m to m ′, and let U and U ′ be flowboxes containing m
and m ′ and small enough that the holonomy of γ provides a diffeomorphism
φ : P(U) ∼= P(U ′). Let U ×φ U ′ denote the set of pairs (u, u ′) ∈ U × U ′ such
that

φ(π(u)) = π ′(u ′),

where π : U → P(U) and π ′ : U ′ → P(U ′) are the obvious quotient maps. Clearly,
U×φU ′ is diffeomorphic to R2p+q. Moreover, each point ofU×φU ′ corresponds
to a nonempty holonomy class of leafwise paths: those which start at u, finish at
u ′, and remain close to γ. Thus U×φ U ′ is identified with a subset of G. We can
define a topology and a manifold structure on G by using sets of the formU×φU ′

as local coordinate charts. (It is of course necessary to check that the transition
functions between any two such sets are smooth; this is a routine matter.)

13.34 Example. If our foliation is given by a submersion π : E → B (Exam-
ple 13.3), then the groupoid of the foliation is just the groupoid Gπ associated
to the submersion in Definition 13.13.

13.35 Example. In the case of the foliated manifold (M,F) obtained from an
effective, locally free action of a connected Lie group on a manifold M, the
foliation groupoid G(M,F) may be identified with the transformation groupoid
HnM.

A Haar system for the groupoid G(M,F) is given by a smoothly varying family
of Lebesgue measures on the leaves; such Haar systems always exist. Using the
techniques of Chapter 10, we can now define the foliation C∗-algebra C∗(M,F)
to be the C∗-algebra of the groupoid G(M,F). We think of this as the “function
algebra” of the noncommutative spaceM/F— the space of leaves of the foliation.

A leafwise elliptic operator on (M,F) is the same thing as an equivariant elliptic
operator on the groupoid G. From Theorem 10.37 we therefore obtain

13.36 Proposition. The functional calculus for a leafwise elliptic operatorD gives
a ∗-homomorphism

f 7→ f(D) : S → C∗(M,F).

Consequently, a leafwise elliptic operator has a well-defined longitudinal index in
K(C∗(M,F)).

In the case of the foliation given by a submersion, this construction reduces to
the families index of the previous chapter. Notice that we have again suppressed
explicit mention of the bundle on which D acts; compare Remark ??.

13.37 Remark. Although the topology that we have defined always makesG(M,F)
into a smooth manifold, it is not necessarily Hausdorff2. When G is not Hausdorff,
the foliation groupoid C∗-algebra C∗λ(M,F) is still defined as a completion of a

2It is Hausdorff in many important cases, such as when all the leaves are simply connected, or when
the foliation is not merely smooth but real analytic.
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dense subalgebra C∞
c (G(M,F)), but the latter is now defined to be the linear span

of all smooth, compactly supported functions on coordinate charts as defined above
(these functions are extended by zero so as to obtain functions defined on all of
G(M,F), but these extended functions need not be continuous on G(M,F)). The
algebraic operations, and the regular representations are defined as before.

13.38 Exercise. Show that the holonomy group of the toral leaf of the Reeb
foliation is equal to its homotopy group Z2.

Let G denote the holonomy groupoid of the Reeb foliation. Let p be a point of
the toral leaf, let γ be a constant path at p, and let γ ′ be a meridian of the torus that
begins and ends at p. Show that the two paths γ and γ ′ define different points of
G, but any two neighborhoods of them in G intersect. Thus G is not Hausdorff.

A leafwise elliptic operator on the foliated manifold (M,F) has a leafwise
symbol, which gives rise to a K-theory class for the cotangent bundle T∗F to
the foliation (see Definition 13.8). Using the same tangent groupoid techniques
that have been employed in the previous chapter, we can construct an asymptotic
morphism that gives rise to an analytical (longitudinal) index map

K(T∗F) // K(C∗(M,F))

which sends the symbol class of any leafwise elliptic operator to its longitudinal
index. The longitudinal index problem for foliations is to find a means to compute
this map.

We shall approach this problem by analogy with the other index theorems that
were considered in the previous chapter. Thus, we plan to construct a topologically
defined index group I(M,F) and a topological index map K(TF) → I(M,F), in
such a way that the analytical index factors through the topological index.

We can think of this as an abstract index theorem for foliations. As in other
examples, the usefulness of this result will depend on the extent to which we can
compute the index group.

13.4 THE INDEX THEOREM FOR FOLIATIONS

higher-fol-ex 13.39 Example. The above construction can be generalized as follows: let Γ be a
discrete group whose classifying space BΓ is a compact manifold, and let EΓ be the
universal cover of BΓ . Suppose that Γ also acts on some other compact manifold
N. Then the ‘balanced product’ EΓ ×Γ N — that is, the quotient of EΓ × N by
the diagonal Γ -action — is a compact manifold and it is foliated by the images of
EΓ × {y}, y ∈ N. If the action of Γ onN is free, the leaves are all diffeomorphic to
the universal cover EΓ .

13.40 Example. A very significant example in noncommutative geometry has been
the irrational slope foliation of the 2-torus T2 = R2/Z2, in which the leaves are
the images of the lines y = αx + c for some fixed irrational α. Because α is
irrational, each leaf is diffeomorphic to R and winds densely around the torus. See
Figure 13.2, which shows a portion of one leaf of the irrational slope foliation. This
foliation does not come from any submersion (because its leaves are not compact).
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Figure 13.2 The irrational slope foliation. ir-slop-fig

Alain Connes’ first version of the index theorem for foliated manifolds was
analogous to the L2-index theorem for coverings. The key concept here is that
of an (invariant) transverse measure on a foliation.

13.41 Definition. A transverse measure on a foliated manifold (M,F) is a map
which assigns to each flowbox U a Borel measure µU on the plaque set P(U), in
such a way that if U ⊆ V is an inclusion of flowboxes then µU is the restriction of
µV to P(U).

Informally, a transverse measure is a measure on transversals that is invariant
under holonomy.

13.42 Example. If F has a compact leaf L, then we can define a transverse measure
on (M,F) by assigning a plaque with mass 1 if it belongs to L and with mass 0
otherwise. (This is called the counting measure associated to L.) In the case of the
Reeb foliation, for example, it can be shown that the only transverse measures are
scalar multiples of the counting measure associated to the unique compact leaf.

Let µ be a transverse measure on (M,F), and assume thatM is compact and that
F is oriented (that is, TF is oriented as a vector bundle over M). Let α be a p-form
onM, where p = dim F. Find a finite cover ofM by flowboxes {Ui}, and choose a
partition of unity {φi} subordinate to {Ui}. We can define a function on the plaque
set P(Ui) by sending a plaque P to

∫
P
φiα— notice that α is a p-form and P is an

oriented p-manifold, so the integral is well-defined. Now define

Cµ(α) =
∑
i

∫
P(Ui)

(∫
P

φiα

)
dµUi

(P).

13.43 Lemma. The definition of C(α) is independent of the choices made in its
construction. Cµ is a linear functional on the space of p-forms (a p-current).
Moreover, Cµ is closed: that is, Cµ(dβ) = 0 for all (p− 1)-forms β.

The proof of this lemma is elementary. The current Cµ is called the Ruelle-
Sullivan current associated to the transverse measure µ. Because Cµ is closed it
defines a linear functional on the de Rham cohomology group Hp(M; R); that is,
it defines a homology class [Cµ] ∈ Hp(M; R).

Using the Ruelle-Sullivan current we can define a trace on the groupoid algebra
C∞
c (G(M,F)). Recall that the construction of the groupoid algebra makes implicit
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use of a Haar system on the groupoid. For the groupoid G(M,F), a Haar system
is simply a smooth family of Lebesgue measures on the leaves of F. Equivalently
(since we are assuming that F is oriented) a Haar system is given by a p-form ωF
onMwhich restricts to a volume form on every leaf of F. Thus, from the transverse
measure µ and the Haar system, we can construct an ordinary Borel measure ν on
M by the formula ∫

gdν = Cµ(gωF)

for a continuous function g onM.
Since M is the space of objects of the groupoid G = G(M,F), there is a

‘restriction to the diagonal’ linear map

δ : C∞
c (G) → C∞(M).

Given a transverse measure µ, construct the linear functional φµ

k 7→ ∫
δ(k)dν = Cµ(δ(k)ωF)

on C∞
c (G).

13.44 Lemma. The functional φµ is tracial.

Proof (sketch). Consider the case where the foliation is given by a product M =
F × B. In this case a transverse measure is simply a measure µ on B, and a
Haar system is a family of Lebesgue measures λb on F, depending smoothly on
b ∈ B. The groupoid algebra is the algebra of smooth functions on F× F×B, with
composition law

k1 ◦ k2(x, z, b) =

∫
k1(x, y, b)k2(y, z, b)dλb(y).

The functional φµ is given by the formula

φµ(k) =

∫∫
k(x, x, b)dλb(x)dµ(b).

Thus

φµ(k1 ◦ k2) =

∫∫∫
k1(x, y, b)k2(y, x, b)dλb(y)dλb(x)dµ(b),

and this is symmetrical in k1 and k2 by Fubini’s theorem.
The general case is reduced to this one using foliation charts and partitions of

unity.

13.45 Lemma. The functional φµ is normal.

Proof. Exactly as in Lemma ??.

Extend φµ to an unbounded trace τµ on C∗(M,F) according to the procedure of
Section ??. In turn, τµ defines a dimension function τµ∗ : K(C∗(M,F)) → R.



higson-roe November 19, 2009

INDEX THEORY FOR FOLIATIONS 167

embed-tm 13.46 Exercise. Let (M,F) be a foliation equipped with a transverse measure µ.
According to Example ??, a closed transversalW to F determines a homomorphism
K(W) → K(C∗(M,F)). Show that the diagram

K(W) //

&&MMMMMMMMMMMM
K(C∗(M,F))

��

R
commutes, where the right-hand vertical arrow is the dimension function τµ∗
defined above and the left-hand vertical arrow is the dimension function defined
by the restriction of the transverse measure toW (this induces a measure onW and
therefore a trace on C(W)).

We can now state the measured foliation index theorem, which is the foliation
analog of Atiyah’s L2 index theorem.

13.47 Theorem. Let (M,F) be a compact foliated manifold equipped with a
transverse measure µ, and let D be a leafwise elliptic operator on M. Denote
by Ind(D) the longitudinal index of D in K(C∗(M,F)). Then

τµ∗(Ind(D)) = (−1)dim(F)〈[Cµ], ch(σD) Todd(TF⊗ C)〉

where Cµ denotes the Ruelle-Sullivan current associated to µ.

Connes’ first proof of this result used the heat equation method that we have
discussed in Remark 12.48. The virtue of the heat equation method (when it
works) is that it produces a local formula for an index. This is particularly useful
in a situation (such as the foliation case) where local structure is simple although
global structure may be extremely complicated. A later proof of the measured
foliation index theorem, by Connes and Skandalis, derives it from the foliation
index theorem that we have discussed in this chapter. The key idea is to use an
embedding into Euclidean space to reduce the theorem to the result proved in
Exercise 13.46.

13.48 Example. Consider the Reeb foliation, with µ being the counting mea-
sure associated to the compact (toral) leaf. The holonomy cover of this compact
leaf is simply the universal cover. Restricting to the compact leaf thus gives a
∗-homomorphism from the C∗-algebra of the foliation to the C∗-algebra of the ho-
motopy groupoid of the compact leaf, and µ∗ factors through this homomorphism.
We see that in this case the measured foliation index theorem reduces to Atiyah’s
L2-index theorem for the compact leaf.

Using Proposition ?? we obtain a geometric result on foliations by surfaces.

ps-leaf 13.49 Proposition. Let F be an oriented 2-dimensional foliation of a compact
manifold M, equipped with an invariant transverse measure µ. Suppose that F
is given a Riemannian metric, and let Ω be the Gauss curvature 2-form of the
leaves. If 〈[Cµ],Ω〉 > 0 then the foliation has some compact leaves (indeed, the
set of compact leaves has positive µ measure).
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Proof. We apply the measured index theorem to the leafwise de Rham operator:
that is, the operator D = d + d∗ acting on the space of leafwise differential
forms, graded by the degree of forms. The measured index is just a constant times
〈[Cµ],Ω〉 in this case. Since this is greater than 0, the positively graded part of
the kernel of D must be nonzero, by Proposition ??. Thus there must be some L2

harmonic functions on the leaves (the spaces of harmonic functions and harmonic
2-forms are identified by Poincaré duality). But a complete Riemannian manifold
(such as a leaf) admits L2 harmonic functions if and only if it is compact.

13.5 NOTES

The index theorem for families is due to Atiyah and Singer [?].
For the classical theory of foliations and many examples see the two-volume

work by Candel and Conlon [?, ?]. Foliation index theory was the first context
in which Connes developed his noncommutative geometry, and it provides a rich
source of ideas and examples. The basic reference for Connes’ ideas about fo-
liations and operator algebras is [?]. The general index theorem for foliations is
proved in [?].

A proof of the index theorem for measured foliations which minimizes the use
of C∗-algebraic ideas is in [?].
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Chapter Fourteen

The Baum-Connes Conjecture

BCChapter
In the previous two chapters we showed that C∗-algebra K-theory plays a role in
index theory by providing value groups for the analytic and topological indices
of operators on covering spaces or foliations. In this final chapter we shall turn
things around by using index theory to conjecturally describe, and in some cases
actually calculate, C∗-algebra K-theory groups. We shall formulate the Baum-
Connes conjecture, indicate several of its consequences, and describe some of the
genuinely non-commutative geometric ideas which have led to the proof of the
conjecture in certain instances.

14.1 THE ASSEMBLY MAP FOR COVERING SPACES

Let Γ be a discrete group and let W be a principal Γ -space over a smooth manifold
M. In Section 12.5 we associated toW topological and analytic index maps

IndtΓ , IndaΓ : K(T∗M) → K(C∗λ(Γ)).

The main point in Section 12.5 was that these two maps are equal to one another.
In this chapter we shall view either map as a means to construct elements in the
K-theory group K(C∗λ(Γ)). We should like to consider whether or not every class in
K(C∗λ(Γ)) is an index, and whether or not the only relations among these indices are
consequences of relations among symbol classes in K(T∗M). In other words, we
should like to ask to what extent the index maps displayed above are isomorphisms.

A first issue that needs to be addressed is the obvious dependence of these
questions on the choice of the manifold M and the principal Γ -space W over it.
Our goal in this section is to deal with this point, at least for torsion-free groups Γ
(the presence of torsion in Γ requires an additional idea, to be presented in the next
section).

Principal Γ -manifolds form a category whose morphisms are the Γ -equivariant
smooth maps. Since we shall want to keep track of quotient spaces, we shall think
of morphisms of Γ -spaces as commuting diagrams

W1
h //

π

��

W2

π

��

M1
f

// M2,

in which f and h are continuous and h is Γ -equivariant (the vertical maps are the
projections to the quotient spaces). We shall say that the map f of spaces is covered
by the morphism h of principal spaces.
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If f is an embedding of smooth manifolds, then there is an associated map

f! : K(TM1) → K(TN2),

as defined in Section 12.2. More or less as a result of its definition, the topological
Γ -index is compatible with this map:

compat-higher 14.1 Proposition. Associated to every morphism of principal Γ -spaces

W1
h //

��

W2

��

M1
f

// M2

in which the map f is an embedding of manifolds there is a commuting diagram of
index homomorphisms

K(TM1)
f! //

Indt
Γ

��

K(TM2)

Indt
Γ

��

K(C∗λ(Γ)) =
// K(C∗λ(Γ)).

Proof. This is a consequence of Theorem 12.10 (and, in the current context, the
main step in the proof of that theorem).

It will be convenient to slightly extend the construction of the “wrong-way” maps
f! featured in the above lemma, as follows. Let f : M1 → M2 be an arbitrary
smooth map. Realize M1 as an embedded submanifold of some euclidean space
Rn and define an embedding g : M1 → M2 × Rn by means of the formula
g(x) = (f(x), x). Now define a K-theory map

f! : K(TM1) → K(TM2)

by means of the commutative diagram

K(TM1)

=

��

f! // K(TM2)

i!

��

K(TM1) g!

// K(TM2 × TRn)

in which the right-hand vertical map is the Bott periodicity isomorphism induced
from the inclusion of a point into TRn. The definition agrees with our previous one
if f is an embedding.

14.2 Proposition. The map f! : K(TM1) → K(TM2) defined above depends only
on the homotopy class of f. The correspondence f 7→ f! is a covariant functor.

Proof. This is an easy consequence of the functoriality property for embeddings in-
dicated in Lemma 12.4, together with the remarks made following our introduction
of the K-theoretic topological index in Definition 12.5.
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Returning to principal spaces, if the smooth map f : M1 → M2 is covered by a
morphism h of principal Γ -spaces, then associated to the embedding

g : M1 → M2 × Rn

defined above are embeddings of principal Γ -spaces

W1
k //

��

W2 × Rn

��

W2
ioo

��

M1 g
// M2 × Rn M2,

i
oo

where k(w) = (h(w), π(w)) and where the maps i are obtained from the inclusion
of 0 into Rn. Applying Proposition 14.1 to this diagram we obtain the following
strengthening of that result:

compat-higher2 14.3 Proposition. Associated to every smooth morphism of principal Γ -spaces

W1
h //

��

W2

��

M1
f

// M2

is a commuting diagram of topological index homomorphisms

K(TM1)
f! //

Indt
Γ

��

K(TM2)

Indt
Γ

��

K(C∗λ(Γ)) =
// K(C∗λ(Γ)).

Proposition 14.3 gives us the means to combine all the groups K(TM) into one
object, and so formulate an index homomorphism whose target is K(C∗λ(Γ)) and
whose source is independent of a choice of smooth manifold M or principal Γ -
space over it.

ig1-def 14.4 Definition. Let Γ be a torsion-free discrete group. A Γ -symbol is a triple
(M,W,α) consisting of a principal Γ -space W over a smooth manifold M and a
class α in the group K(TM).

14.5 Remark. Our reason for limiting Definition 14.4 to torsion-free groups is that
a modified definition will be required in order to fully account for all the classes in
the group K(C∗λ(Γ)) in geometric terms when Γ has elements of finite order. As we
mentioned earlier, the modification will be presented in the next section.

14.6 Definition. Let Γ be a torsion-free discrete group. The topological K-group
Ktop(Γ) is the abelian group generated by all isomorphism classes of Γ -symbols
(M,W,α), subject to the following relations:
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(a) IfW is a principal Γ -space overM, and if α1, α2 ∈ K(TM), then

[M,W,α1] + [M,W,α2] = [M,W,α1 + α2]

in the group Ktop(Γ).

(b) If f : M1 → M2 is a smooth map that is covered by a morphism of Γ -spaces
h : W1 → W2, and if f!(α1) = α2, then

[M1,W1, α1] = [M2,W2, α2]

in the group Ktop(Γ).

14.7 Remarks. The zero element of Ktop(Γ) is represented by any cycle of the
form (M,W, 0). By taking disjoint unions of principal Γ -spaces (and noting that
these disjoint unions are themselves principal Γ -spaces) we find that every class
in Ktop(Γ) can be represented by a single Γ -symbol (M,W,α). Such a symbol
represents the zero element of Ktop(Γ) if and only if there is some smooth map f,
covered by a morphism of principal spaces, such that f!(α) = 0.

We can now formulate a version of the index map for covering spaces that gathers
together all index problems associated to principal Γ -manifolds.

tf-assembly-def 14.8 Definition. Let Γ be a torsion-free discrete group. The assembly map

µ : Ktop(Γ) → K(C∗λ(Γ))

is the homomorphism that associates to a class [M,W,α] in Ktop(Γ) the image of
α ∈ K(TM) under the index homomorphism

IndtΓ : K(TM) → K(C∗λ(Γ))

associated to the principal Γ -spaceW.

14.9 Remark. The assembly map is well-defined by virtue of Proposition 14.3 and
the definition of Ktop(Γ). Its range is the subgroup of K(C∗λ(Γ)) generated by the
index homomorphisms associated to all principal Γ -spaces over smooth manifolds
without boundary.

14.10 Example. Suppose that Γ is the trivial one-element group.

14.2 THE ASSEMBLY MAP FOR PROPER ACTIONS

If Γ is a group that contains elements of finite order, then the construction outlined
in the previous section certainly will not exhaust all the elements in K(C∗λ(Γ)).
Indeed, suppose H is a non-trivial finite subgroup of Γ . The element

p =
1

|H|

∑
h∈H

[h] ∈ C∗λ(Γ).

is a projection and its trace is |H|−1. But according to the L2-index theorem, the
trace of any K-theory class in the range of the assembly map is an integer.

To account geometrically for the K-theory classes determined by p and similar
elements, we need to broaden the notion of principal Γ -space, as follows:
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14.11 Definition. Let Γ be a discrete group. A topological spaceW equipped with
an action of Γ is a proper Γ -space if for every point w ∈W there exists

(a) a finite subgroup H ⊆ Γ ,

(b) a Γ -invariant open neigborhood U of w ∈W, and

(c) a continuous equivariant map from U onto Γ/H.

A proper Γ -space is Γ -compact if the quotient spaceW/Γ is compact.

14.12 Remark. In the context of manifolds (our primary and nearly exclusive
interest), we shall always assume that the action of Γ is via diffeomorphisms, as
we did for principal actions.

If Γ is torsion-free, then there is no difference between the new notion of “proper
Γ -space” and the notion of “principal Γ -space.” However in the presence of torsion
the new notion gives what we need to account for K-theory classes associated to
finite subgroups of Γ . To see that this is so, we need to extend index theory from
principal manifolds to proper manifolds.

As a first step, we shall associate to a Γ -equivariant elliptic operator on a Γ -
compact proper Γ -manifold M an analytic index in the K-theory group K(C∗λ(Γ)).
One way to do this is to copy the approach that we took in Section 12.5. If D
acts on sections of a Γ -equivariant, graded hermitian bundle S onM, and ifD is an
equivariant, formally self-adjoint, odd-graded, elliptic first-order partial differential
operator acting sections of S, then D is essentially self-adjoint and if f ∈ S, then
the operator f(D) lies in the C∗-algebra K(Γ) generated by the Γ -equivariant, Γ -
compactly supported smoothing operators.

14.13 Definition. LetW be a proper Γ -manifold. We shall denote by C∗λ(Γ,W) the
C∗-algebra of the crossed product groupoid Γ nW.

For the purposes of index theory, Γ -compact proper Γ -manifolds W are analo-
gous to principal Γ -manifolds over closed manifolds M, and the K-theory group
K(C∗λ(Γ, T

∗W)) is analogous to the K-theory group K(T∗M).
Let S be a Γ -equivariant Hermitian vector bundle over a proper Γ -manifold

W and let D be a Γ -equivariant first-order, formally self-adjoint, elliptic partial
differential operator acting on sections of S.

symbol gives element of K(C∗λ(Γ, T
∗W))

14.14 Remark. If W admits a Γ -equivariant spinc-structure, then the symbol
construction exhausts the K-theory group K(C∗(Γ, T∗W)).

index gives element of K(C∗λ(Γ))

14.15 Definition. Let Γ be a discrete group. A Γ -symbol is a pair (W,α) consisting
of a smooth proper Γ -manifoldW and a class α ∈ K(C∗λ(Γ, T

∗W)).
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wrong way functoriality

14.16 Definition. Let Γ be a discrete group. The topological K-group Ktop(Γ) is the
abelian group generated by all isomorphism classes of Γ -symbols (W,α), subject
to the following relations:

(a) IfW is a proper Γ -space, and if α1, α2 ∈ K(C∗λ(G, TW)), then

[W,α1] + [W,α2] = [W,α1 + α2]

in the group Ktop(Γ).

(b) If f : W1 → W2 is a smooth morphism proper of Γ -spaces, and if f!(α1) = α2,
then

[W1, α1] = [W2, α2]

in the group Ktop(Γ).

We can now repeat Definition 14.8 almost verbatim so as to obtain an assembly
map for an arbitrary discrete group.

14.17 Definition. Let Γ be a discrete group. The assembly map

µ : Ktop(Γ) → K(C∗λ(Γ))

is the homomorphism that associates to a class [W,α] in Ktop(Γ) the image of
α ∈ K(C∗λ(Γ, T

∗W)) under the index homomorphism

IndΓ : K(C∗λ(Γ, T
∗W)) → K(C∗λ(Γ)).

14.18 Example. Suppose that Γ is a finite group.

14.3 THE BAUM-CONNES CONJECTURE

14.19 Baum-Connes Conjecture. If Γ is any discrete group, then the assembly
map

µ : Ktop(Γ) → K(C∗λ(Γ))

is an isomorphism of abelian groups.

The kernel of the assembly map consists of all symbol classes [W,α] that have
vanishing index. An element [W,α] of the kernel is non-zero if α is geometrically
non-trivial in the sense that f!(α) is never zero, for any f. So the Baum-Connes
conjecture (for torsion-free discrete groups) amounts to the assertion that every
element of K(C∗λ(Γ)) is an index, and that the only relations among these indices
are those which are implied by the compatibility of the index with the K-theory
maps associated to embeddings of proper Γ -manifolds f : W1 → W2.

The conjecture was first formulated by Baum and Connes on the basis of rather
modest evidence. However good progress on the conjecture has since been made
for several classes of examples.
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14.20 Definition. Let Γ be a group. A matrix coefficient function on Γ is any func-
tion φ : Γ → C of the form φ(g) = 〈v, π(g)v〉, where π is a unitary representation
of Γ on a Hilbert space H, and v is a unit vector in H.

14.21 Definition. A Γ group has the Haagerup property if the constant function 1
on Γ is a pointwise limit of c0-matrix coefficient functions.

14.22 Theorem. If Γ is a discrete group with the Haagerup property, then the
Baum-Connes assembly map

µ : Ktop(Γ) −→ K(C∗λ(Γ))

is an isomorphism.

Suppose that M is compact and carries a Riemannian metric of strictly negative
sectional curvature. A classical theorem of Hadamard in differential geometry
then states that the universal cover M̃ is diffeomorphic to Rn, and in particular
it is contractible. Thus M is a compact BΓ . The validity of the Baum–Connes
conjecture in this case was established quite recently by Lafforgue [?, ?]; it is a
difficult and subtle result.

14.23 Theorem. Suppose that M is compact and carries a Riemannian metric of
strictly negative sectional curvature. The assembly map

µ : Ktop(Γ) → K(C∗λ(Γ))

is an isomorphism.

. . . significance . . . property T . . .
Another very significant aspect of Lafforgue’s approach is that it applies to quite

broad classes of non-discrete groups, with consequences for the representation
theory of these groups. See Section 14.7.

14.4 UNIVERSAL SPACES

The following notion of universal space allows us to simplify Ktop(Γ) in important
special cases. It also helps point the way toward generalizations of the Baum-
Connes conjecture to classes of groups beyond discrete groups.

14.24 Definition. A proper Γ -manifold W is universal if and only if for every
proper Γ -manifold X there exists a morphism of proper Γ -spaces from X toW, and
this morphism is unique up to equivariant homotopy.

14.25 Remark. Clearly we can make a similar definition within the broader context
of proper Γ -spaces. We have refrained from doing so immediately in order to avoid
some niceties in general topology (having to do with paracompactness and related
notions).

14.26 Example. If Γ is a finite group, then the one-point space is a proper Γ -
manifold and it is clearly universal.
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14.27 Proposition. Let Γ be a discrete group. If W is a universal proper Γ
manifold, then the map fromK(C∗(G, TW)) intoKtop(Γ) sends α ∈ K(C∗(G, TW))
to [W,α] ∈ Ktop(Γ), is an isomorphism.

Proof. The inverse map is defined by sending the class [M1,W1, α] in Ktop(Γ)
to f!(α) ∈ K(TM), where f : M1 → M is covered by a map of principal Γ -
spaces from W1 to W. Note that f is unique up to homotopy, and because of
this our prescription for the inverse is compatible with the defining relations for
Ktop(Γ).

In order to apply the proposition we need some means of identifying universal
proper Γ -spaces. In fact there is a simple criterion.

universal-thm 14.28 Theorem. A proper Γ -spaceW is universal if and only if the two projections
from W ×W to W are Γ -equivariantly homotopic to one another, and in addition
each finite subgroup of Γ has a fixed point inW.

Proof.

14.29 Example. The manifold W = Rn, equipped with the natural translation
action of the group Γ = Zn, is a universal principal space. The two projection
maps fromW ×W toW are homotopic via the straight line homotopy

(w0, w1) 7→ (1− s)w0 + sw1 (s ∈ [0, 1]).

It follows that Ktop(Γ) = K(TTn), where Tn is the torus Rn/Zn.

symm-space-ex 14.30 Example. LetG be a connected, linear semisimple (or reductive) Lie group.
It may be realized as a closed subgroup of some GL(n,R) that is closed under the
operation of matrix transpose, and having done so, the Lie algebra of G admits
a Cartan decomposition g = k ⊕ p in which the first summand consists of skew-
symmetric matrices and is the Lie algebra of a maximal compact subgroup K, while
the second summand consists of symmetric matrices. The homogeneous space
W = G/K identifies with exp(p) and is therefore contractible. Moreover it admits
a complete,G-invariant Riemannian metric, given on tangent vectors at the identity
coset e ∈W by the formula

‖X‖2 = Tr(X2) (X ∈ p = TeW).

This metric has nonpositive curvature and as a result, a well-known theorem in
Riemannian geometry implies that between any two points w0, w1 ∈ W there is
a unique geodesic φw1w2

such that φw0w1
(0) = w0 and φw0w1

= w1. The
two projection maps from W ×W to W are therefore homotopic via the geodesic
homotopy

(w0, w1) 7→ φw0w1
(s) (s ∈ [0, 1]).

Moreover by another well-known geometric result about nonpositively curved
manifolds, every compact group of isometries of W has a fixed point. It follows
from Theorem 14.28 that if Γ is a discrete subgroup of G, then W, equipped with
the left-translation action of Γ , is a universal proper space.
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14.31 Remark. In fact it is known that if G is any connected Lie group, then the
homogeneous space G/K is universal for any discrete subgroup of G.

14.32 Conjecture. IfW is a universal proper Γ -manifold, then the index map

IndΓ : K(C∗λ(Γ, T
∗W)) −→ K(C∗λ(Γ))

is an isomorphism. In particular, if Γ is torsion-free andW is a universal principal
Γ -manifold with quotientM, then the index map

IndΓ : K(T∗M) −→ K(C∗λ(Γ))

is an isomorphism.

14.5 DUALITY
duality-sec

14.33 Definition. Let V be a finite-dimensional real vector space. A lattice in V is
the abelian group generated by a basis for V .

If Γ is a lattice in V , then as we observed in Example ??, the vector space V ,
equipped with the translation action of Γ , is a universal principal Γ -space. As a
result,

Ktop(Γ) ∼= K(TM)

whereM is the torus V/Γ .

14.34 Definition. Let Γ be a lattice in a finite-dimensional vector space V . Let V∗

be the dual vector space to V . Define

Γ∗ =
{
φ ∈ V∗ |φ[ Γ ] ⊆ Z

}
.

This is a lattice in V∗, called the dual of Γ . Let M∗ = V∗/Γ∗. This is the dual of
the torusM = V/Γ .

14.35 Lemma. The C∗-algebra C∗λ(Γ) is isomorphic to the C∗-algebra of contin-
uous functions onM∗ = V∗/Γ∗ via the correspondence a 7→ â, where

a =
∑

aγ[γ] ⇒ â(φ) =
∑

aγe
2πiφ(γ)

It follows, therefore, that the assembly map can be viewed as a homomorphism

µ : K(TM) −→ K(M∗).

14.36 Definition. . . . of Poincaré line bundle

Let us investigate higher index theory for the free abelian group Γ = Zn. In
this case the compact manifold M = Tn will serve as a model for BΓ . Since Γ is
abelian, C∗r(Γ) is an abelian C∗-algebra and it is thus of the form C(M∗), where
M∗ is some compact space. In fact, it is not hard to see thatM∗ is again an n-torus.
The universal index map is then a map from the K-theory of the torusM (or rather
of its tangent bundle) to the K-theory of the torusM∗. Notice that althoughM and
M∗ are diffeomorphic, there is no canonical identification between them. Instead,
each one is a sort of ‘Fourier transform’ of the other.
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14.37 Theorem. The assembly map

µ : K(TM) −→ K(M∗)

is given by the formula

µ(α) = Ind(p∗(α) · [P]),

and it is an isomorphism.

This allows us to use the index theorem for families to investigate the Baum–
Connes conjecture for Zn. In fact, the Baum–Connes conjecture is true in this
case.

14.38 Remark. As we noted above, the full K-theoretical form of the Baum–
Connes conjecture for Zn can be proved in the same way from the K-theoretic
families index theorem. It is more elegant, however, to make use of the implicit
symmetry of the construction (compare Exercise ??): the same line bundle L also
allows us to define a ‘dual index map’

K(TM∗) → K(M).

It can be shown that the index and the dual index maps are essentially inverse to one
another (and therefore that they are both isomorphisms). In a more precise form,
this is known as Mukai duality; it is of interest in physics.

14.39 Theorem. The composition

K(M)
µ

−−→ K(M∗)
µ∗

−−−→ K(M)

of the assembly maps for Γ and Γ∗ is the identity map on K(M).

14.6 CONNECTIONS TO GEOMETRY

14.40 Theorem. Suppose that Γ is a discrete subgroup of a connected Lie group.
The assembly map

µ : Ktop(Γ) −→ K(C∗λ(Γ))

is a split injection.

14.41 Remark. This result and its proof (see Section 14.5) has served as a model
for a variety of others. For example, the same result is now known to hold for
arbitrary subgroups (discrete or not) of connected Lie groups, and in particular for
arbitrary linear groups.

. . . we shall assume for the rest of this section that Γ is a torsion-free discrete
group.

14.42 Proposition. IfW is a principal Γ -manifold over a closed Riemannian spin-
manifold M with positive scalar curvature, then the index of the Dirac operator in
K(C∗λ(Γ)) is zero.
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Proof. For the ordinary index, this is simply Lichnerowicz’ vanishing theorem
(8.34). But the same argument in fact works for the higher index. We apply the
Bochner-Lichnerowicz formula to the essentially self-adjoint operator D̃ which is
the lift of the Dirac operator to M̃. The scalar curvature of M̃ is the lift of the scalar
curvature ofM, and is therefore bounded from below by a strictly positive constant.
The Bochner-Lichnerowicz argument now shows that D̃2 is bounded from below
by a positive constant, which is to say that there is an interval (−ε, ε) which does
not meet the spectrum of D̃. But now the family of ∗-homomorphisms S → C∗r(G)
defined by

f 7→ f(s−1D), s ∈ [0, 1]

gives a homotopy between the homomorphism defining the higher idnex (when
s = 1) and the zero homomorphism (when s = 0).

14.43 Theorem. If the Baum-Connes assembly map for Γ is injective, then there is
no Riemannian metric of positive scalar curvature onM.

Proof. Since the assembly map is injective, it cannot have the symbol of the Dirac
operator (which is the Thom class for K∗(TM)) in its kernel.

14.44 Proposition. The index of the signature operator is an oriented homotopy
invariant.

14.45 Theorem. If the Baum-Connes assembly map for Γ is injective, then each
higher signature is an oriented homotopy invariant.

14.7 CONNECTIONS TO REPRESENTATION THEORY
rep-sec

Connections to representation theory arise when the Baum-Connes conjecture is
extended from discrete groups to topological groups. The extension has been
carried out for arbitrary second countable, locally compact Hausdorff groups.
But for groups such as p-adic groups that typically act only trivially on smooth
manifolds, more machinery is required to carry out the extension than we are
prepared to survey here. For that reason we shall confine our attention to Lie
groups.

In fact we shall assume for the rest of the section that G is a connected, linear
semisimple group. The results below could be stated and proved in greater gener-
ality, but our account is made simpler by making these assumptions throughout.

We noted in Example 14.30 that the symmetric spaceG/K is a universal principal
manifold. Copying what we did for discrete groups, we shall therefore formulate
the Baum-Connes conjecture for G as follows:

ck-conj1 14.46 Conjecture. Let K be a maximal compact subgroup of G, and let W be the
symmetric space G/K. The index homomorphism

IndG : K(C∗λ(G, T
∗W)) −→ K∗(C∗λ(G))

is an isomorphism of abelian groups.
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This is consistent with the more elaborate formulation of the Baum-Connes
conjecture for general locally compact groups.

Conjecture 14.46 can be simplified by introducing and analyzing Dirac-type
operators on the manifold W = G/K, as follows. Recall from Example 14.30
that for a semisimple group there is a natural K-invariant decomposition g = k⊕ p
and K-invariant inner product on p. The vector space p can be viewed as the tangent
space ofW at the identity coset, and the inner product on p determines a complete,
G-invariant Riemannian metric onW.

14.47 Definition. A Dirac-type symbol for the pair (G,K) is a Dirac-type symbol
in the sense of Definition 8.1 for the cotangent bundle of the complete Riemannian
bundle W = G/K in which the hermitian Z/2-graded bundle S over W is G-
equivariant, as is the Clifford multiplication action c : T∗W → End(S).

max-compact-formulation 14.48 Remark. Because of its G-equivariance, a Dirac-type symbol for (G,K) is
in fact determined by the fiber s of the bundle S at the identity coset in W = G/K.
Thus we could equally well have defined a Dirac-type symbol to consist of a finite-
dimensional hermitian vector space s equipped with:

(a) a Clifford multiplication action c : p → End(s), and

(b) a unitary action τ : K → Aut(s) that is compatible with Clifford multiplication
in the sense that c(Adk(P)) = τ(k)c(P)τ(k)−1 for all k ∈ K and P ∈ p.

The module of smooth sections of S identifies with the space{
ξ : G

smooth
−−−−→ s

∣∣ f(gk) = τ(k)−1ξ(g), ∀g ∈ G ∀k ∈ K
}

or equivalently

C∞(W,S) ∼=
[
s⊗ C∞(G)

]K
,

and under this identification an associated Dirac-type operator is given by the
formula

D =

n∑
i=1

c(Pi)⊗ Pi.

Here {Pi} is an orthonormal basis for p and each Pi acts on C∞(G) as a left-
invariant vector field. This explicit form is very convenient for computations (and
henceforth we shall refer to it as the associated Dirac operator).

Following the approach we have taken in the rest of this book, and in particular
in Chapter 8, we shall now focus on the even dimensional case.

14.49 Definition. Assume that W = G/K is even-dimensional and fix an orienta-
tion on the vector space p. The spin-module Rspin(G,K) is the Grothendieck group
of positively oriented Dirac symbols for the pair (G,K) (see Definition 8.13).

Using Remark 14.48 we can now recast the left-hand side of the Baum-Connes
conjecture in concrete terms involving the representation theory of K. The follow-
ing result is a K-equivariant formulation of the Bott periodicity theorem; we shall
not give the proof, although one could be given by making minor adaptations to the
argument we presented in Chapter ??.
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14.50 Proposition. The homomorphism

µ : Rspin(G,K) −→ K(C∗λ(G, T
∗W))

that associates to a Dirac-type symbol the symbol its class in K-theory is an
isomorphism of abelian groups.

This of course leads to the following reformulation of the Baum-Connes conjec-
ture; it agrees with an earlier conjecture of Connes and Kasparov.

14.51 Conjecture. Let G be a connected unimodular Lie group, let K be a max-
imal compact subgroup of G, and let W be the homogeneous space G/K. The
homomorphism

µ : Rspin(G,K) −→ K(C∗λ(G))

that associates to a Dirac-type symbol the index of its associated Dirac operator is
an isomorphism of abelian groups.

14.52 Proposition. If π is an irreducible unitary representation of G, then each
irreducible unitary representation of K occurs with at most finite multiplicity in the
restriction of π to K.

14.53 Corollary. If π is an irreducible tempered unitary representation of G, then
the image of the associated representation of the C∗-algebra C∗λ(G) is the C∗-
algebra of compact operators.

Proof.

14.54 Definition. An irreducible tempered unitary representation ofG is a discrete
series representation if the singleton set it determines in the tempered dual is both
open and closed.

14.55 Proposition. LetG be a linear semisimple group. If S is a Dirac symbol and
π is a discrete series representation, then〈

µ(S), π
〉
G

= dimC
(
HomK(S,Hπ)

)
= 〈µ∗(π), S

〉
K
.

14.56 Theorem. If π is any discrete series representation of G, then there is a
unique irreducible Dirac symbol S such that Ind(DS) = [π].

Proof.

14.57 Definition. An irreducible unitary representation π ofG is square-integrable
if any one of the following equivalent conditions holds:

(a) Every matrix coefficient function 〈v, π(g)w〉 is a square-integrable function on
G.

(b) The irreducible representation π may be realized as a subrepresentation of the
regular representation.

(c) The Plancherel measure of the singleton set in the dual of G determined by π
is nonzero.
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14.58 Lemma. Let S be a Dirac-type symbol for (G,K) and assume that the index
in K(C∗λ(G)) of the associated Driac-type operator is the class of a discrete series
representation π. Then

dimG(ker+(DS)) − dimG(ker−(DS)) = deg(π).

That is, the L2-index of DS is equal to the formal degree of π.

14.59 Remark. The spin module is in part so-named because it is a module over
the representation ring of K . . . cV(Pi) = c(Pi)⊗ I : S⊗ V → S⊗ V .

The adjoint action ofK on p can be viewed as a homomorphism fromK to SO(p),
and for index-theoretic purposes it is important to determine whether or not this
homomorphism lifts to the spin double cover of the special orthogonal group, as in
the following diagram:

Spin(p)

��

K

<<y
y

y
y

y
Ad

// SO(p)

14.60 Theorem. Assume that the hermitian space Vλ carries an irreducible repre-
sentation of K with highest weight λ. IfDλ is the twisted Dirac operator associated
to V then

dimG(ker+(Dλ)) − dimG(ker−(Dλ)) =
∏ 〈λ, α〉

〈ρ, α〉
,

where the product is over a set of simple positive roots forG and ρ is the associated
half-sum of positive roots.

A very significant feature of Lafforgue’s work is that it applies to the situation of
reductive Lie groups.

14.8 GENERALIZATIONS OF THE BAUM-CONNES CONJECTURE

Let X be a smooth manifold equipped with a smooth action of a discrete group Γ ,
and let W be a principal Γ -space over a smooth manifold M. In Section ?? we
constructed topological and analytic index maps

IndΓ,X : K(T∗W ×Γ X) −→ K(C∗λ(Γ, X))

and proved them to be equal to one another.

14.61 Definition. Let Γ be a discrete, torsion-free group. The topological K-group
Ktop(Γ, X) is the abelian group generated by all symbols (W,α) where W is a
principal Γ -manifold and α ∈ K(T∗W ×Γ X), subject to the relations

(a) IfW is a principal Γ -manifold, and if α1, α2 ∈ K(T∗W ×Γ X), then

[W,α1] + [W,α2] = [W,α1 + α2]

in the group Ktop(Γ, X).
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(b) If f : W1 → W2 is a smooth morphism principal of Γ -manifolds, and if
f!(α1) = α2, then

[W1, α1] = [W2, α2]

in the group Ktop(Γ, X).

14.62 Definition. The assembly map

µ : Ktop(Γ, X) → K(C∗λ(Γ, X))

is the homomorphism that associates to a class [W,α] in Ktop(Γ, X) the image of
α ∈ K(TW ×Γ X) under the index homomorphism

IndtΓ : K(TW ×Γ X) → K(C∗λ(Γ, X)).

14.63 Example. Suppose that Γ = Z and that X is the unit circle, equipped with
the rotation action

n · z = e2πiθnz,

where θ is a fixed element of R.

14.64 Example. Simple, projectionless C∗-algebras

14.65 Generalized Baum-Connes Conjecture. If Γ is any torsion-free group and
X is any smooth Γ -manifold, then the assembly map

µ : Ktop(Γ, X) → K(C∗λ(Γ, X))

is an isomorphism of abelian groups.

We have seen that one can interpret various kinds of generalized index theorems
as a manifestation of a correspondence between the topology and the analysis of
objects associated to smooth groupoids, expressed by the Baum-Connes conjecture.
This method is extremely powerful but it has recently become clear that it also
has certain limitations. In fact, there are examples of foliations for which the
Baum-Connes conjecture fails. This is not the place to go into detail about the
construction of these examples, but the basic idea is rather simple and involves
a fundamental point which has already appeared both in our discussion of tensor
products (Chapter 2) and in our discussion of group C∗-algebras (Chapter 12).

The point is that in general there may be more than one way to complete a
given ∗-algebra to a C∗-algebra. The group (or groupoid) algebras appearing in
Baum-Connes conjecture use completions relative to the regular representation of
that group (or groupoid). The disadvantage of these completions is that they are
not functorial: if φ : G → H is a group homomorphism, the representation of G
induced by φ from the regular representation of H may be entirely unrelated to the
regular representation of H itself. Indeed, it is possible to give specific examples
(related to Kazhdan’s property T) where this lack of functoriality can be detected
and analyzed.

14.66 Definition. A discrete group Γ has property T if there is a projection
p ∈ C∗(Γ) with the property that in each unitary representation p acts as the or-
thogonal projection onto the G-fixed vectors. The element p is called the Kazhdan
projection.
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14.67 Lemma. If Γ has property T , then any net of matrix coefficient functions that
converges pointwise to 1 in fact converges uniformly to 1.

Proof. Suppose that φα(g) = 〈vα, πα(g)vα〉. The function φα extends to a
functional on C∗(G) using the formula

φα(f) = 〈vα, πα(f)vα〉 (f ∈ C∗(G)),

and if p is the Kazhdan projection, then φα(p) → 1. It follows that ‖πα(p)vα‖ →
1, or in other words that vα minus its orthogonal projection onto the G-fixed
vectors for the representation πα converges to zero. The lemma follows easily
from this.

The lemma shows that no infinite property T group has the Haagerup property.
On the other hand, the left hand side of the conjecture — the K-theory of BG—

involves no analytic questions about representations and is completely functorial.
Thus the conjecture itself predicts that K(C∗r(G)) should depend functorially on
G, but this would be a functoriality for which one could not give an analytic
explanation. The counterexamples that are now known to various versions of the
Baum-Connes conjecture use constructions based on property T to show that no
such inscrutable functoriality can exist.

Such constructions deepen the mystery surrounding the Baum-Connes conjec-
ture. Since we now know that it is not universally true, the enormously wide scope
of its validity becomes still more intriguing.

14.9 NOTES

The relationship between the higher index and the families index, when Γ is abelian,
was worked out in Lusztig’s thesis [?]. There is a nice account of Mukai duality in
Chapter 3 of [?].

The Baum–Connes conjecture appears first in [?] and the definitive account
of the conjecture is [?]. Kasparov had independently arrived at similar ideas,
motivated partly by problems in differential topology where an analog of the Baum-
Connes assembly map makes an appearance. There are various counterparts to the
Baum–Connes conjecture in this purely topological context. For the history see [?].

For counterexamples to various forms of the Baum-Connes conjecture see [?].
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Chapter Fifteen

Appendix: Bivariant Theories

15.1 A FUNCTORIAL PROPERTY
funct-prop-sec

We saw in Section ?? that if E is a graded Hilbert module over A, then a graded
homomorphism φ : S → K(E) gives rise to an element of K(A). In this section we
are going to generalize that construction as follows.

s-map-prop 15.1 Construction. Let A and B be trivially graded C∗-algebras and let E be a
graded Hilbert module over A. A graded ∗-homomorphism φ : S ⊗ B → K(E)
determines a K-theory map φ∗ : K(B) → K(A), with the following properties:

(i) The correspondence φ 7→ φ∗ is functorial with respect to composition with
∗-homomorphisms B1 → B.

(ii) The map φ∗ depends only on the homotopy class of φ.

(iii) If A = B, if E = A (with no odd-graded part) and if φ : S⊗ B → K(E) is of
the form

φ(f⊗ a) = f(0)a ∈ A = K(E),

then φ∗ : K(A) → K(A) is the identity.

One way to give the construction is to use the ring that we introduced when we
discussed relative K-theory in Chapter 2. Let J be an ideal in a ring R, and let
φ0, φ1 : B → R be two ring homomorphisms which are equal, modulo J. The pair
(φ0, φ1) determines a ring homomorphism φ : B → DJ(R). Recall now that there
is a split exact sequence

0 // K(J, R) // K(DJ(R)) // K(R) // 0

By composing the induced map φ∗ : K(C) → K(DA(B)) with the projection
K(DA(B)) → K(A) we obtain from the pair (φ0, φ1) a homomorphism

φ∗ : K(C) → K(A).

With this construction in hand, let us proceed to the proof of the asserted properties.

Proof. Let F = φ[S⊗A] · E. Each operator in the image of the graded homomor-
phism φ : S ⊗ A → K(E) maps the Hilbert submodule F ⊆ E into itself, and is
a compact operator on F. It follows that φ determines a graded homomorphism
φ : S⊗A → K(F). This in turn determines homomorphisms

φS : S → B(F) and φA : A → B(F)
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(this follows from Exercise ?? and the fact that S and A belong to the multiplier
algebra of S ⊗ A). From φS we obtain a pair of projections P0 and P in B(F),
using exactly the same formulas we derived in Section ??: thus we pass from φS

to a unitary U, then to the self-adjoint unitary (Uε), and then to the projections
P1 = 1

2 (Uε+ I) and P0 = 1
2 (ε+ I). These projections commute with the image of

the ∗-homomorphism φA. So the maps

φ0 : : a 7→ P0φA(a) and φ1 : a 7→ P1φA(a)

are both ∗-homomorphisms. The difference of φ0 and φ1 maps A into K(F), so,
as we noted before the proof began, the pair (φ0, φ1) determines a homomorphism
from K(A) to K(K(F)). If we follow with the map K(K(F)) ∼= K(A), we obtain a
map

φ∗ : K(B) → K(A).

The verification of the properties listed is left to the reader.

A more elegant but less concrete construction of this functoriality is given in
Section 15.3.

15.2 A NEW DESCRIPTION OF C*-ALGEBRA K-THEORY
new-desc-k-sec

In the remaining two sections of this chapter we shall use the algebra S to explore
K-theory for C∗-algebras in a bit more detail, and in fact provide a new description
of K-theory based on maps from S. The description puts the constructions of this
chapter into a clearer perspective, but it will not otherwise be used in these notes.

15.2 Definition. For C∗-algebras A and B let [A,B] denote the space of homotopy
classes of ∗-homomorphisms from A to B (grading-preserving, if A and B are
graded).

LetH = H0⊕H1 be a graded Hilbert space with separable, infinite-dimensional
even and odd parts, and let K = K(H), graded as in Example ??. Then A ⊗ K

can be realized as the C∗-algebra of compact endomorphisms of the graded Hilbert
A-moduleA⊗H. Thus any ∗-homomorphism from S toA⊗K gives rise to a class
in K(A) by Construction ??.

We are going to show that this procedure gives an isomorphism between K(A)
and [S, A⊗K]. (The proof will work directly with A⊗K, and will not require its
realization as the algebra of compact operators on a Hilbert module.)

diff-K-constr 15.3 Proposition. With notation as above, Construction ?? gives a natural isomor-
phism [S, A⊗K] ∼= K(A).

Proof. Denote by Map(S, A ⊗ K) the space of graded ∗-homomorphisms from S

into A⊗K, equipped with the topology of pointwise convergence. Thus a path in
Map(S, A⊗K) is a homotopy of graded ∗-homomorphisms from S toA, and there
is a natural isomorphism

[S, A⊗K] ∼= π0(Map(S, A⊗K))
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between [S, A⊗K] and the set of path components of Map(S, A⊗K).
As we did in Section ?? let us use the Cayley transform

x 7→ x+ i

x− i
,

to identify S = C0(R) with the algebra of continuous functions on the unit circle
T which vanish at 1 ∈ T. An element of Map(S, A ⊗ K) can be extended to a
unital ∗-homomorphism φ from C(T) into the multiplier algebra of A ⊗ K. If
u ∈ C(T) denotes the standard generator u(z) = z, then the unitary U = φ(u)
is equal to 1, modulo A ⊗K and satisfies the relation α(U) = U∗, where α is the
grading automorphism. Conversely, every unitary U which is equal to 1, modulo
A ⊗ K, and which satisfies the relation α(U) = U∗, determines an element of
Map(S, A⊗K).

From a unitary U of this type we obtain a projection P1 by the formula

P1 = 1
2 (Uε+ 1)

is a self-adjoint projection (here ε denotes the multiplier ε : a⊗k 7→ a⊗εk, where
the last ε denotes the grading operator on H). The projection P1 has the property
that P1 − P0 ∈ A ⊗K, where P0 is the projection 1

2 (ε + 1). These computations
can be reversed to construct a unitary from the projection P1.

Putting together the observations of the last two paragraphs, we see that the
space Map(S, A ⊗ K) is homeomorphic to the space of projections P1 such that
P1 − P0 ∈ K. But we noted in Lemma ?? that the set of components of this space
of projections is isomorphic to K(A), and this proves the result.

15.4 Exercise. (For readers familiar with the rudiments of Kasparov’s KK-theory.)
Show that a map [S, A⊗K] → KK(C, A) can also be constructed in the following
way. Identify A ⊗ K with the compact operators on a universal graded Hilbert
A-module E (see Exercise ??). Given a ∗-homomorphism φ : S → KA(E), let Eφ
be the Hilbert submodule φ[S]E. Then φ extends to a homomorphism from the
bounded, continuous functions on (−∞,∞) to the bounded operators on Eφ. Let
F ∈ B(Eφ) be the operator corresponding to the odd function x 7→ x(1+ x2)−1/2.
Verify that F determines a Kasparov cycle for KK(C, A) = K(A).

15.3 THE HOMOTOPY CATEGORY OF GRADED C*-ALGEBRAS
gtp-sec

In this final section we shall place K-theory into a still more general context. The
homotopy category of graded C∗-algebras has objects the graded C∗-algebras and
morphisms between A and B the homotopy classes of graded homomorphisms
from A to B. This category has two interesting elaborations, both involving the
notion of (spatial) tensor product of graded C∗-algebras.

15.5 Definition. The graded tensor product of two graded algebras A and B is the
algebraic tensor productA⊗B over C, equipped with the multiplication determined
by the formula

(a1 ⊗ b1) · (a2 ⊗ b2) = (−1)∂b1∂a2(a1a2)⊗ (b1b2)
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involving homogeneous elements of A and B (here ∂ is the grading degree, defined
on homogeneous elements by α(x) = ∂(x) ·x). The formula extends by linearity to
define the multiplication on A⊗ B. The graded tensor product is a graded algebra
with grading automorphism

α(a⊗ b) = α(a)⊗ α(b).

IfA and B are graded ∗-algebras, then the graded tensor product is a ∗-algebra with
∗-operation

(a⊗ b)∗ = (−1)∂a∂b(a∗ ⊗ b∗)

on homogeneous elements a ∈ A and b ∈ B.

In order to avoid confusion with ordinary tensor products, from now on we shall
use the notationA ⊗̂B to denote the graded tensor product of graded algebras. Note
that if one of A or B is trivially graded, then A ⊗̂B = A ⊗ B as graded algebras
(the grading on A⊗ B is given by the same formula as the grading on A ⊗̂B).

The graded tensor product of two graded C∗-algebras may be equipped with a
compatible norm and completed so as to obtain a C∗-algebra. As in the trivially
graded situation, there is in general more than one way of doing this, and in this
book we shall concentrate on the spatial norm, which is defined by a small variation
of the procedure used in Section ?? to define the spatial tensor product of trivially
graded C∗-algebras. The graded tensor product HA ⊗̂HB of two graded Hilbert
spaces is the usual tensor product HA ⊗ HB with the usual norm and the grading
given by the operator ε(vA ⊗ vB) = ε(vA) ⊗ ε(vB). If TA and TB are bounded
operators on HA and HB, respectively, then TA ⊗̂ TB is the operator given by the
formula

(TA ⊗̂ TB)(vA ⊗̂ vB) = (−1)∂TB∂vATAvA ⊗̂ TBvB.

To define the spatial norm on the graded tensor product of two graded C∗-algebras
A and B, fix faithful, graded representations of A and B on graded Hilbert spaces
HA and HB, and represent the graded tensor product A ⊗̂B on HA ⊗̂HB by the
formula

π(a ⊗̂b) = πA(a) ⊗̂πB(b).

The spatial norm is the operator norm in this representation. It does not depend on
the choice of faithful representations πA and πB, and is functorial in A and B.

As in the trivially graded case, ifA and B are gradedC∗-algebras, then from now
on we shall denote by A ⊗̂B the completion of the algebraic graded tensor product
in the spatial norm.

15.6 Exercise. Check that the formula given above for π gives a graded homomor-
phism from A ⊗̂B into B(HA ⊗̂HB).

15.7 Exercise. Let HA and HB be graded Hilbert spaces. Prove that the graded
homomorphism K(HA) ⊗̂K(HB) → K(HA ⊗̂HB) is an isomorphism of graded
C∗-algebras.compact-multiply
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Returning to the homotopy category of graded C∗-algebras, let F denote the
functor on this category of graded tensor product with K = K(H), where H
is a fixed graded Hilbert space H with separable, infinite-dimensional even and
odd parts. There is a natural identification F2(A) ∼= F(A) given by the two
isomorphisms

K(H) ⊗̂K(H) ∼= K(H ⊗̂H) ∼= K(H).

The first is given by Exercise 15.7. The second is induced by any grading-
preserving unitary isomorphism H ⊗̂H ∼= H (there is a unique such isomorphism,
up to homotopy). As a result of the identification, we can form a new category
whose objects are graded C∗-algebras and in which the morphisms fromA to B are
the homotopy classes of graded homomorphisms fromA to F(B). The composition
of two morphisms in this category,

φ : A → F(B) and ψ : B → F(C),

is given by the formula

A
φ

// F(B)
F(ψ)

// F2(C)
∼= // F(C)

15.8 Exercise. Prove that this composition law is associative. What are the identity
morphisms in this category?

The second elaboration is similar but involves the algebra S in place of K.
Denote by S the functor of graded tensor product by S. We are going to describe a
natural transformation ∆A : S(A) → S2(A) (not an isomorphism), using which we
can define a category whose objects are the graded C∗-algebras and in which the
morphisms from A to B are the homotopy classes of graded homomorphisms from
S(A) to B. The composition of two morphisms in this category,

φ : S(A) → B and ψ : S(B) → C,

is given by the formula

S(A)
∆A // S2(A)

S(φ)
// S(B)

ψ
// C

Associativity of this composition law will follow from the commutativity of the
diagram

S(A)
∆A //

∆A

��

S2(A)

∆S(A)

��

S2(A)
S(∆A)

// S3(A)

We shall discuss the existence of identity morphisms in a moment.
The natural transformation ∆A : S(A) → S2(A) is defined by the formula

∆A = ∆ ⊗̂ 1 : S ⊗̂A → S ⊗̂ S ⊗̂A,

where ∆ : S → S ⊗̂ S is the graded homomorphism given by the following lemma.
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delta-lemma 15.9 Lemma. There is a unique graded homomorphism ∆ : S → S ⊗̂ S such that

∆(e−x2

) = e−x2

⊗̂ e−x2

and ∆(xe−x2

) = xe−x2

⊗̂ e−x2

+ e−x2

⊗̂ xe−x2

.

Proof. Uniqueness follows from the fact that the functions e−x2

and xe−x2

gen-
erate the C∗-algebra S. To prove existence, note first that the algebra generated by
e−x2

and xe−x2

is dense in S and consists of all functions of the form p(x)e−x2

,
where p(x) is a polynomial, and that the formula

∆(p(x)e−x2

) = p(x ⊗̂ 1+ 1 ⊗̂ x)e−x2

defines a graded homomorphism from this algebra into S ⊗̂ S. It suffices to prove
that the formula extends by continuity to all of S. To do this, let us represent S ⊗̂ S

on the Hilbert space L2(R) ⊗̂L2(R). If we denote by X the unbounded operator of
multiplication by x (with domain the compactly supported functions in L2(R), then
X is essentially self-adjoint, as is the operator X ⊗̂ I+ I ⊗̂X on L2(R) ⊗̂L2(R) (its
domain is the algebraic tensor product of the domain of X with itself). The operator
∆(p(x)e−x2

) is equal to

p(X ⊗̂ 1+ I ⊗̂X)e−(X b⊗ I+I b⊗X)2

,

which is equal to f(X ⊗̂ I + I ⊗̂X), where f(x) = p(x)e−x2

. Its norm is therefore
no more than the supremum norm of f.

15.10 Exercise. Show that the algebra S ⊗̂ S is isomorphic to the algebra of matrix-
valued functions on the quarter-plane, f : (R+)2 → M2(C), having the properties
that for each x the value f(x, 0) belongs to the 2-dimensional subalgebra of matrices
of the form ( a bb a ), and for each y the value f(0, y) belongs to the 2-dimensional
subalgebra of matrices of the form ( a b

−b a ). (Hint: First give a similar description
of S itself as functions on the half-line with values in a certain graded algebra.) Use
this description of S ⊗̂ S to give another proof of Lemma 15.9.

15.11 Proposition. Denote by e : S → C the graded homomorphism e(f) = f(0).
The diagrams

S
∆ //

∆

��

S⊗̂S

1b⊗∆
��

S⊗̂S
∆b⊗1 // S⊗̂S⊗̂S

and S⊗̂S
1b⊗e

//

eb⊗1
��

S

S S=
oo

=

OO

∆

``BBBBBBBB

commute.

Proof. It suffices to check commutativity on the generators e−x2

and xe−x2

, which
is a simple computation.

The first diagram gives the information we need to conclude that the composition
law in the category constructed from the functor S is associative. The second
diagram shows that the graded homomorphism e : S(A) → A is the identity
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morphism for A in this category. Moreover, the correspondence which maps
f : A → B to the composition

S⊗̂A
eb⊗φ

// B

is a functor from the ordinary homotopy category into our new category.
If we combine our two elaborations of the homotopy category, we obtain a new

category C in which the objects are graded C∗-algebras and the morphisms from
A to B are the homotopy classes of graded morphisms from S(A) to F(B). By the
results of Section 15.2, the K-theory functor has a very simple description in terms
of this category:

K(A) = Hom C(C, A)

(strictly speaking we have not defined K(A) for nontrivially graded C∗-algebras; a
good approach is to define K(A) using the above identity). The important functorial
property exhibited in Section 15.1 is now just a consequence of the way we have
defined the composition law in the category C.

We shall return to these category-theoretic ideas at the end of the next chapter,
where we shall enrich the category C to incorporate homotopy classes of asymptotic
morphisms. This provides a powerful tool for the computation of C∗-algebra K-
theory groups.

15.4 ASYMPTOTIC MORPHISMS

The purpose of this section is to present the notion of asymptotic morphism between
C∗-algebras. We shall show that an asymptotic morphism from A to B induces an
ordinary homomorphism of groups from K(A) to K(B), and as an application we
shall formulate and prove the Bott periodicity theorem. At the end of the chapter we
shall briefly sketch the construction of a bivariant K-theory for C∗-algebras based
on the notion of asymptotic morphism.

asymp-morphism-def 15.12 Definition. Let A and B be C∗-algebras. An asymptotic morphism from A

to B, denoted φ : A  B, is a family of functions φt : A → B, where t ∈ (0, 1],
such that

(i) For each a ∈ A the map t 7→ φt(a) ∈ B is continuous and bounded.

(ii) For all a, a1, a2 ∈ A and λ1, λ2 ∈ C,

lim
t→0


φt(a1a2) − φt(a1)φt(a2)

φt(λ1a1 + λ2a2) − λ1φt(a1) − λ2φt(a2)

φt(a
∗) − φt(a)∗

 = 0.

15.13 Example. Ordinary ∗-homomorphisms give rise asymptotic morphisms: if
φ is a ∗-homomorphism we can set φt = φ, for all t. We shall give a nontrivial
example of an asymptotic morphism in the next section.
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Asymptotic morphisms may be composed on the left or right with ∗-homo-
morphisms so as to obtain new asymptotic moprhisms. The composition of two
asymptotic morphisms is a more complicated operation that we shall study later in
this chapter.

15.14 Definition. Two asymptotic morphisms φ and ψ, from A to B, are asymp-
totically equivalent if

lim
t→0 ‖φt(a) −ψt(a)‖ = 0,

for every a ∈ A. The asymptotic morphisms φ0 and φ1 are asymptotically
homotopic if there is an asymptotic morphism fromA toC([0, 1];B) from whichφ0
and φ1 can be recovered by composing with the ∗-homomorphisms C([0, 1], B) →
B given by evaluation at 0 and 1.

Asymptotic morphisms are important because they induce maps on K-theory, as
follows. Given an asymptotic morphism φ : A  B, there is a natural extension
of φ to an asymptotic morphism φ : A+  B+ between C∗-algebras with units
adjoined. If p ∈ Mn(A+) is a projection matrix with entries in A+, then let us
denote by φt(p) the matrix obtained by applied φt entrywise to p. It is not a
projection matrix, but

lim
t→0 ‖φt(p)2 − φt(p)‖ = 0 and lim

t→0 ‖φt(p) − φt(p)
∗‖ = 0.

15.15 Lemma. There is a norm-continuous path of projection matrices qt ∈
Mn(B+) such that limt→0 ‖qt − φt(p)‖ = 0.

Proof. Let bt = 1
2 (φt(p) + φt(p)

∗). Then bt is self-adjoint, for all t, and in
addition

lim
t→0 ‖bt − φt(p)‖ = 0 and lim

t→0 ‖b2t − bt‖ = 0.

We shall show that there is a norm-continuous path of projection matrices qt such
that limt→0 ‖bt − qt‖ = 0. For every neighbourhood U of {0, 1} ⊆ R, the
spectrum of bt is contained within U, for all sufficiently small t. In fact, for any
ε > 0, the spectrum of bt is contained within [−ε, ε] ∪ [1 − ε, 1 + ε] whenever
‖b2t −bt‖ < ε− ε2. It follows that if h : R → R is a continuous function such that
h(x) = 0 near 0 and h(x) = 1 near 1, then for all sufficiently small t, the element
pt = h(bt) is a projection matrix, and morever

lim
t→0 ‖bt − pt‖ = 0,

as required.

Let φ : A  B be an asymptotic morphism. We may define a homomorphism
φ∗ : K(A+) → K(B+) by mapping the class of a projection matrix p ∈ Mn(A+)
to the class of any of the projection matrices qt given by the lemma above (by
Lemma ?? the K-theory class of qt depends only on p). The homomorphism
φ∗ restricts to a map of K(A) ∼= ker(K(A+) → K(C)) into the K-theory group
K(B) ∼= ker(K(B+) → K(C)).
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15.16 Definition. We call φ∗ : K(A) → K(B), defined as above, the homomor-
phism induced by the asymptotic morphism φ : A B.

asympt-prop 15.17 Proposition. The K-theory map φ : K(A) → K(B) associated to an asymp-
totic morphism φ : A B has the following properties:

(i) The construction of φ : K(A) → K(B) is functorial with respect to composi-
tion with ∗-homomorphisms A1 → A and B → B1.

(ii) The K-theory map φ : K(A) → K(B) depends only on the asymptotic homo-
topy class of φ.

(iii) If each φt : A → B is actually a ∗-homomorphism, then φ : K(A) → K(B) is
the map induced by the ∗-homomorphism φ1 : A → B.

15.5 CATEGORIES AND BIVARIANT THEORIES

The proof in the preceding section is best viewed in the context of a suitable
category which includes “generalized” morphisms between C∗-algebras. Let us
assume that we have a category with the following features:

(a) The objects are C∗-algebras.1 Every ∗-homomorphism φ : A → B determines
in a functorial way a morphism from A to B, which depends only on the
homotopy class of φ. (Thus there is a functor from the homotopy category
of C∗-algebras into our category, which is the identity on objects.)

(b) The category has a natural product operation, so that morphisms σ1 : A1 →
B1 and σ2 : A2 → B2 may be multiplied in a functorial way to produce a
morphism

σ1 ⊗ σ2 : A1 ⊗A2 → B1 ⊗ B2.

The product should be compatible with tensor product of ∗-homomorphisms,
and should have the property that σ ⊗ 1 : A ⊗ C → B ⊗ C identifies with
σ : A → B, once A⊗ C is identified with A and B⊗ C is identified with B. It
should also be compatible with the flip isomorphisms A ⊗ B → B ⊗ A in the
natural way.

(c) A morphism σ : A → B induces in a functorial way a homomorphism from
K(A) to K(B), which is the standard induced homomorphism when σ is de-
termined by a ∗-homomorphism. (Thus there K-theory functor should factor
through our category.)

1It is customary to work with separable C∗-algebras, but this detail need not concern us here.
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With this category in hand, the rotation argument may be expressed as follows
(we shall write X in place of C0(X), and × in place of ⊗ in this commutative
context). In view of the diagram

R2n × pt
α×1

// pt× pt
β×1

//

flip =

��

R2n × pt

flip∼=

��

pt× pt
1×β

// pt×R2n

to prove β ◦ α is an isomorphism it suffices to show (1 × β) ◦ (α × 1) is an
isomorphism. But consider now the commuting diagram

R2n × pt
α×1

//

1×β
��

α×β

&&MMMMMMMMMM
// pt× pt

1×β
��

R2n × R2n
α×1

// pt×R2n

It shows that it suffices to show (α× 1) ◦ (1× β) is an isomorphism. Now we can
use the diagram

R2n × pt
1×β

// R2n × R2n
α×1

//

flip =id
��

pt× R2n

flip∼=

��

R2n × R2n
1×α

// R2n × pt

to complete the argument, bearing in mind that the left-hand flip induces the identity
map in K-theory.

The morphisms constructed in Chapter ?? provide a suitable category: one sets

Hom(A,B) =

{
Homotopy classes of graded asymptotic mor-
phisms from S⊗A to B⊗K

}
.

We didn’t show it, but these are the morphism sets in a category with a suitable
product. This is the E-theory category of operator K-theory.

15.6 NOTES

The picture of K-theory using the algebra S is sketched in Higson’s notes [?], which
mostly dwell on more advanced topics than these notes. The same source also
develops more fully the category-theoretic point of view sketched in Section 15.3.
(Actually there is a small error in [?] in the discussion of [S, A⊗K]. Exercise: find
it.)


