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1. Introduction

Let G be a ¢nitely presented group. Is G the fundamental group of some ¢nite
CW -complex whose integral homology is trivial (meaning the homology is the same
as that of a point)? Elementary homological algebra provides some simple necessary
conditions:

H1�G;Z� � 0 and H2�G;Z� � 0:

An elegant observation of Kervaire [3] shows that these necessary conditions are also
suf¢cient:

THEOREM 1.1. Let G be a ¢nitely presented group and suppose that H1�G;Z� and
H2�G;Z� are both zero. There is a connected three-dimensional ¢nite CW-complex
X with p1�X � � G such that Hk�X ;Z� � 0 for all k > 0.

Actually, Kervaire's attention was focussed on homology spheres, and what he
observed is this:

THEOREM 1.2. Let G be a ¢nitely presented group and suppose that H1�G;Z� and
H2�G;Z� are both zero. For every dimension nX 5 there is a homology n-sphere with
fundamental group G.

The theorems rely on a computation, due to H. Hopf [2], of the Hurewicz
homomorphism in degree 2. This and some other ingredients have been used by
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Farber and Weinberger [1] to construct examples of ¢nite CW -complexes
(three-dimensional) and smooth, closed manifolds (six-dimensional) whose universal
covers have vanishing `2-homology groups in all degrees. See the survey article [5] for
background material on `2-homology and the `zero in the spectrum question'.*

The purpose of this note is to indicate that the same ingredients can be used to
prove direct analogues of Kervaire's theorems:

THEOREM 1.3. Let G be a ¢nitely presented group and suppose that the homology
groups Hk�G; `2�G�� are zero for k � 0; 1; 2. Then there is a connected three-
dimensional ¢nite CW-complex X with p1�X � � G such that Hk�X ; `2�G�� � 0 for
all kX 0.

THEOREM 1.4. Let G be a ¢nitely presented group and suppose that the homology
groups Hk�G; `2�G�� are zero for k � 0; 1; 2. For every dimension nX 6 there is
a closed manifold M of dimension n and with p1�M� � G such that
Hk�M; `2�G�� � 0 for all k > 0.

Remark 1.5. The difference between nX 5 in Kervaire's theorem and nX 6 in ours
is accounted for by the absence in the literature of a suitable handle-cancellation
lemma in `2-homology. Since our main interest is in CW -complexes we shall not
consider this issue further here.

The de¢nitions of the `2-homology groups Hk�G; `2�G�� and Hk�X ; `2�G�� will be
reviewed in Section 2 below. It is not hard to see that the hypotheses in the theorems
can not be reduced (compare [6, 11.3]), so that in fact the vanishing of Hk�G; `2�G��
for k � 0; 1; 2 is both necessary and suf¢cient.

C�-algebra theory makes an appearance in the Farber^Weinberger proof, and the
main novelty of our note is the more systematic use of C�-algebras, including hom-
ology with coef¢cients in a C�-algebra. At other steps in the argument (notably
the construction of manifold examples from CW -examples) we have no improve-
ment to offer and we shall simply refer the reader to the paper of Farber and
Weinberger.

2. Homological Preliminaries

Let Z be a connected CW -complex and let G be the fundamental group of Z. Form
the cellular chain complex for the universal cover of Z,

C0�eZ�  ÿb C1�eZ�  ÿb C2�eZ�  ÿb � � �; �2:1�
which is a complex of projective (in fact free) rightZ�G�modules. The corresponding

*The question, or conjecture, was that no such examples of the sort that Farber and
Weinberger constructed could exist.
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cellular homology groups H��eZ� are right Z�G�-modules too, although not of course
projective.

If V is any left module over Z�G� then let us denote by H��Z;V � the homology of
the tensor product complex

C0�eZ� 
Z�G� V  ÿb C1�eZ� 
Z�G� V  ÿb C2�eZ� 
Z�G� V  ÿb � � �: �2:2�

EXAMPLE 2.1. If Z is a model for the classifying space BG then H��Z;V � is
isomorphic to the group homology of the moduleV :H��BG;V � � H��G;V �: Indeed,
if Z � BG then the cellular chain complex (2.1) for eZ is a free resolution of the trivial
Z�G�-module Z.

There is an obvious coef¢cient homomorphism

hn:Hn�eZ� 
Z�G� Vÿ!Hn�Z;V �
and we shall need the following simple observation concerning its behaviour in
degree 2:

LEMMA 2.2. There is an exact sequence

H2�eZ� 
Z�G� V ÿ!h2 H2�Z;V � ÿ!H2�G;V �ÿ!0:

In particular, if H2�G;V � � 0 then the coef¢cient homomorphism is surjective in
degree 2.

Proof. This is essentially the computation of Hopf to which we referred in the
introduction. We shall prove the lemma in the case where Z is 2-dimensional, which
is the only case we shall need in this note. The cellular chain complex for Z
may be prolonged in higher degrees to obtain a projective resolution of the trivial
Z�G�-module Z:

0 ÿZ ÿC0�eZ�  ÿb1 C1�eZ�  ÿb2 C2�eZ�  ÿb3 C3 ÿb4 C4 ÿ� � � :
Now the groupH2�Z;V � is equal to Kernel�b2 
 1V �, while the groupH2�eZ� 
Z�G� V
is equal to Kernel�b2� 
Z�G� V , which is equal to Image�b3� 
Z�G� V . Therefore the
image of H2�eZ� 
Z�G� V within H2�Z;V � � Kernel�b2 
 1V � is Image�b3 
 1V �.
The quotient by this image is therefore

H2�Z;V �=�H2�eZ� 
Z�G� V � � Kernel �b2 
 1V �=Image �b3 
 1V � � H2�G;V �;
as required. &

IfA is an auxiliary ring, and ifV is equipped with a rightA-module structure which
commutes with the given left Z�G�-module structure then the complex (2) is a
complex of right A-modules, and the homology groups H��Z;V � have the structure
of right A-modules. Moreover the coef¢cient homomorphism is right A-linear.
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We shall use this observation in the proof of the main theorem, where we shall take V
to be a ring A (considered as a right module over itself), and where the Z�G�-module
structure on V will come from left multiplication by an embedded copy of G in the
group of invertible elements of A.

3. Analytic Preliminaries

We continue to denote by Z a connected CW -complex with fundamental group G.
The left regular representation of G on the Hilbert space `2�G� provides `2�G� with
the structure of a left Z�G�-module, and the homology groups Hk�Z; `2�G�� are
the `2-homology groups to which we referred in the introduction. They are denoted
in a variety of different ways in the literature.

Notice that `2�G� is a Banach space completion of the complex group algebra
C�G�, or the real group algebra R�G� if we are using real coef¢cients.* In the
following section it will be very convenient to work with completions which are
not merely Banach spaces but Banach algebras. For our purposes the best choice
is the reduced C�-algebra of G, denoted C�r �G�, which is the norm-completion of
C�G� in its left regular representation as bounded operators on `2�G�. The group
G embeds into the group of invertible elements of C�r �G�, and left multiplication
by G gives C�r �G� the structure of a left Z�G�-module. Hence we can form the groups
Hk�Z;C�r �G�� as in the previous section. They are right C�r �G�-modules.

The purpose of this section is to prove the following result:

THEOREM 3.1. Suppose that Z is a connected CW-complex with fundamental group
G and ¢nitely many cells in dimensions 0 through n. The following are equivalent:

. The homology groups Hk�Z;C�r �G�� are zero in degrees 0 through n.

. The homology groups Hk�Z; `2�G�� are zero in degrees 0 through n.

The argument is an exercise in functional analysis, and to set the proper context let
us ¢x a unital C�-algebra A and a complex

E0 ÿb E1 ÿb E2 ÿb � � �

comprised of Hilbert A-modules and bounded, adjointable Hilbert A-module maps
(here and below, see Lance's text [4], especially Section 3, for information on Hilbert
module theory).

LEMMA 3.2. The homology groups of the above complex vanish in degrees 0 through
n if and only if the `Laplace' operator D � bb� � b�b is invertible on the spaces E0

through En.

*For the purposes of this note it will be convenient to work over the reals. We note that the
real cases of the results in this section follow immediately from their complex counterparts by
complexification.
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Proof. Assume ¢rst D is surjective in degree k. For arbitrary x 2 Kernel�b� choose
y with Dy � x. Then 0 � bDy � bbb�y� bb�by � bb�by. Therefore

0 � hby; bb�byi � hb�by; b�byi; �3�
and so b�by � 0. Consequently, x � bb�y, so that x lies in the image of b and the k-th
homology group vanishes.

If the homology groups in degree k and kÿ 1 vanish then the ranges of
bk�1:Ek�1! Ek and bk:Ek ! Ekÿ1 are closed since they coincide with the kernels
of the succeeding differentials in our complex. From [4, Theorem 3.2] and its proof
we obtain an orthogonal decomposition

Ek � Image�b�k� � Image�bk�1� � Kernel�bk�? �Kernel�b�k�1�?:

By the Open Mapping Theorem the operator bk, and hence the operator b�kbk, is
bounded below on the ¢rst summand, while bk�1b

�
k�1 is bounded below on the second

(note that since Image�bk�1� is closed, so is Image�b�k�1�). So the self-adjoint operator
D is bounded below on Ek and is therefore invertible. &

Suppose now that A is represented faithfully and non-degenerately on a Hilbert
space H (we have in mind the regular representation of C�r �G� on `2�G�). Then
we can form the Hilbert spaces Ek 
A H by completing the algebraic tensor product
over A with respect to the norm associated to the inner product

he1 
 v1; e2 
 v2iE
AH � hv1; he1; e2iEv2iH :

The Hilbert spaces so obtained assemble to form a complex of Hilbert spaces and
bounded linear maps.

LEMMA 3.3. Let T be a bounded and adjointable operator on Ek. The operators T on
Ek and T 
 IH on Ek 
A H have the same spectrum.

Proof. The map T 7!T 
 I is an injective homomorphism of C�-algebras and so
preserves spectrum.

Putting the two lemmas together we obtain the following result:

LEMMA 3.4. Suppose given a complex of Hilbert A-modules

E0 ÿb E1 ÿb E2 ÿb � � �

and suppose that H is a Hilbert space equipped with a faithful and non-degenerate
representation of A. Then the following are equivalent:

. The above complex has no homology in degrees 0 through n.

. TheHilbert module tensor product of the above complex withH has no homology
in degrees 0 through n. &
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Now if A is a C�-algebra with unit and if E is a ¢nitely generated and projective
module over A (in the usual sense of algebra) then E may be given the structure
of a Hilbert A-module, and this structure is unique up to unitary isomorphism (this
is a generalization of the well-known fact that a complex vector bundle on a compact
space has an essentially unique Hermitian structure). See [4]. Moreover all A-linear
maps between such modules are automatically bounded and adjointable. Finally,
E is a ¢nitely generated projective A-module, and if A is represented faithfully
and non-degenerately on H, then the algebraic and Hilbert module tensor products
E 
A H agree. These observations allow us to formulate a more algebraic version
of the previous result:

LEMMA 3.5. Let A be a unital C�-algebra. Suppose given a complex of A-modules

E0 ÿb1 E1 ÿb2 E2 ÿb3 � � �

(in the ordinary sense of algebra) for which E0 through En are ¢nitely generated and
projective. Suppose that H is a Hilbert space equipped with a faithful non-degenerate
representation of A. Then the following are equivalent:

. The above complex has no homology in degrees 0 through n.

. The algebraic tensor product of the above complex over A with H has no hom-
ology in degrees 0 through n.

Proof. Suppose ¢rst that the complex E� has zero homology in degrees 0 through n.
The range of the differential bn:En! Enÿ1 is closed, since it is the kernel of bnÿ1, and
so by [4, Theorem 3.2] the module En splits as a direct sum of Kernel�bn� and its
orthogonal complement. In particular, the module Kernel�bn� is a direct summand
of a ¢nitely generated module, and is therefore ¢nitely generated itself. It follows
that Image�bn�1� is ¢nitely generated, and so we can ¢nd a ¢nitely generated free
module E 0n�1 and a module map f :E 0n�1! En�1 for which the complex

E0 ÿb1 E1 ÿb2 . . . � � �  ÿbn En  ÿ
bn�1f

E 0n�1

has vanishing homology in degrees 0 through n. Since all the terms which appear now
have Hilbert module structures we can appeal to Lemma 3.4 to conclude that the
tensor product of the displayed complex by H has vanishing homology in degrees
0 through n. This implies the same vanishing result for the tensor product of the
original complex by H.

Suppose, conversely, that the algebraic tensor product complex E� 
A H has
vanishing homology in degrees 0 through n. Then by the previous lemma, the hom-
ology of E� vanishes at least though degree nÿ 1, and so by the same argument
as above, the module Kernel�bn� is still ¢nitely generated. We can therefore ¢nd
f :E 0n�1! En�1 as in the ¢rst part of the proof, but so that the tensor product
complex involving E 0n�1 has vanishing homology in degrees 0 through n. Once again,
Lemma 3.4 now applies to complete the proof. &
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Proof of Theorem 3.1. The algebraic tensor product of the module
Ck�eZ� 
Z�G� C�r �G� over C�r �G� with the Hilbert space `2�G� is Ck�eZ� 
Z�G� `2�G�.
So the theorem is an immediate consequence of the last lemma. &

Here are the consequences of the theorem that we shall need:

COROLLARY 3.6. If G is a ¢nitely presented discrete group then the following are
equivalent:

. Hk�G; `2�G�� � 0 for k � 0; 1; 2,

. Hk�G;C�r �G�� � 0 for k � 0; 1; 2. &

Remark 3.7. It is very easy to ¢nd examples of groups to which the proposition
above applies. As Farber and Weinberger note, any threefold direct product of
¢nitely presented non-amenable groups will do the job.

COROLLARY 3.8. If Z is a ¢nite CW-complex with fundamental group G then the
following are equivalent:

. Hk�Z; `2�G�� � 0 for all kX 0,

. Hk�Z;C�r �G�� � 0 for all kX 0. &

4. Proof of the Main Theorems

We shall prove the following result:

THEOREM 4.1. Let G be a ¢nitely presented group and suppose that the homology
groups Hk�G;C�r �G�� are zero for k � 0; 1; 2. Then there is a connected, 3-dimensional,
¢nite CW-complex X with p1�X � � G such that Hk�X ;C�r �G�� � 0 for all kX 0.

In view of the results in the previous section, this is equivalent to Theorem 1.3.
Theorem 1.4 follows from Theorem 1.3 by a regular neighborhood construction.
We refer the reader to the Farber-Weinberger paper [1] for details.

We shall work with the real group C�-algebra below, although we note that the
real and complex cases of Theorem 4.1 are easily derived from one another.

NOTATION 4.2. In the following, G will denote a ¢xed ¢nitely presented group for
which Hk�G;C�r �G�� � 0, for k � 0; 1; 2. All tensor products will be taken over
the ring Z�G� (in particular they will be algebraic ö no Hilbert module tensor prod-
ucts will be involved).

Nearly all of the argument below follows that of Farber andWeinberger [1], which
in turn is inspired by the argument of Kervaire mentioned earlier.

LEMMA 4.3. There exists a connected ¢nite 2-complex Y with fundamental group G
for which H2�Y ;C�r �G�� is a ¢nitely generated and free C�r �G�-module.
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Proof. Let Z be a ¢nite 2-dimensional CW -complex with p1�Z� � G (for instance
the presentation 2-complex of our ¢nitely presented group G). Then in view of
our assumptions on G, it follows that H0�Z;C�r �G�� and H1�Z;C�r �G�� are zero
(compare the proof of Lemma 2.2). Therefore, in view of the exact sequence

0 ÿb C0�eZ� 
 C�r �G�  ÿ
b

C1�eZ� 
 C�r �G�  ÿ
b

C2�eZ�

C�r �G�  ÿ

b
H2�Z;C�r �G��  ÿ

b
0;

the module H2�Z;C�r �G�� is ¢nitely generated and stably free (note that all the
modules except perhaps the rightmost one are actually free). By wedging Z with
¢nitely many 2-spheres we obtain a ¢nite 2-complex Y with fundamental group
G for which H2�Y ;C�r �G�� is a free C�r �G�-module, as required. &

De¢ne j:H2�eY � ! H2�eY � 
 C�r �G� by associating to the class x 2 H2�eY � the
elementary tensor x
 1 2 H2�eY � 
 C�r �G�. Let us continue to denote by
h:H2�eY � 
 C�r �G� ! H2�Y ;C�r �G�� the coef¢cient map considered in Section 2.

PROPOSITION 4.4. The image of the composition

h � j:H2�eY � ! H2�Y ;C�r �G��

contains a basis for the free C�r �G�-module H2�G;C�r �G��.
Proof. Since by Lemma 2.2 the coef¢cient map h is surjective, we can certainly ¢nd

a basis b1; . . . bd for H2�Y ;C�r �G�� in the image of h. Let us do so and write the basis
elements as

bk �
Xnk
i�1

h�xi;k 
 ai;k� �
Xnk
i�1

h�xi;k 
 1�ai;k

with xi;k 2 H2�eY � and ai;k 2 C�r �G� (in the displayed formula we have used the fact
that h is C�r �G�-linear). Since H2�Y ;C�r �G�� is a free and ¢nitely generated module
overC�r �G� it has a HilbertC�r �G�-module structure. The module multiplication oper-
ation

H2�Y ;C�r �G�� � C�r �G� ! H2�Y ;C�r �G��

is continuous and the set of bases for H2�Y ;C�r �G�� is open within the set of ordered
d-tuples of elements in H2�Y ;C�r �G��. Therefore sinceQ�G� is dense in the real group
C�-algebra C�r �G�, we can replace the elements ai;k 2 C�r �G� by suf¢ciently close
a0i;k 2 Q�G� in such a way that the elements

b0k �
Xnk
i�1

h�xi;k 
 1�a0i;k
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constitute a basis for H2�Y ;C�r �G��. We have now shown that the map

H2�eY � 
Q�G� ! H2�Y ;C�r �G��
has within its image a basis forH2�Y ;C�r �G��. But multiplication with a non-zero real
number is an automorphism of H2�Y ;C�r �G��. So multiplying with the common
denominator of all coef¢cients of all a0i;k 2 Q�G� we obtain basis elements

b00k �
Xnk
i�1

h�xi;k 
 1�a00i;k

with a00i;k 2 Z�G�. Moreover, since

h�xi;k 
 1��a00i;k � h�xi;k 
 1�a00i;k� � h�xi;k 
 a00i;k �1� � h�xi;k �a00i;k 
 1�;
the elements b00k lie in the image of h � j as required. &

Proof of Theorem 4.1. Choose elements v1; . . . ; vd 2 H2�eY � which are sent by h � j
to a basis for H2�Y ;C�r �G��. By the Hurewicz Isomorphism Theorem each vk is rep-
resented by a map S2! Y . Let us use these maps to attach d 3-cells to Y , and
let us denote by X the three-dimensional CW -complex obtained in this way. By
construction,

H0�X ;C�r �G�� � 0 and H1�X ;C�r �G�� � 0:

Moreover, the attaching maps are chosen exactly in such a way that the differential
b:C3�eX � 
 C�r �G� ! C2�eX � 
 C�r �G� gives an isomorphism between C3�eX �
 C�r �G�
and the space

H2�Y ;C�r �G�� � Kernel
ÿ
b
 1:C2�eX � 
 C�r �G� ! C1�eX � 
 C�r �G�

�
:

Thus we have killed all homology in degree 2 without creating any new homology in
degree 3. Therefore we achieve Hk�X ;C�r �G�� � 0 for all k, as required. &
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