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Introduction

I am going to discuss the following 2013 paper of Denis Perrot:

The paper calls to mind many things . . . Kasparov’s Dirac
operator, his index theorem for pseudodifferential operators,
Getzler’s local computation for the Levi-Civita Dirac operator, the
Mathai-Quillen explicit Chern character computations, the
Connes-Moscovici local index formula . . .

But it is rather different from all of these, I believe.
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An Overview
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What did Perrot do?

In a nutshell . . .

▸ Perrot built two cohomologous periodic cyclic cocycles for the
algebra of order zero complete pseudodifferential symbols. He
used the familiar JLO technique in cyclic theory, but in a new
and completely algebraic context (no Hilbert space operators,
no Hilbert space traces).

▸ The two cocycles are extremely similar in appearance (which
helps explain why they are cohomologous). But Perrot showed
that one is exactly the Radul cocycle that gives the analytic
index, whereas the other descends to the quotient algebra of
principal symbols. It is a de Rham current, and it is exactly
the Poincaré dual of the Todd form that appears in the
Atiyah-Singer formula.
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What am I going to do in this talk?
I shall follow a simplified route to some, but not all, of Perrot’s
results (the simplifications come in part from aiming to do less
than Perrot).

I shall concentrate on the descended cocycle for C∞(S∗M), and
view the rest of Perrot’s work as the solution of a lifting problem.

▸ I shall construct an algebra C(T ∗M) that essentially consists
of linear partial differential operators on a Clifford algebra
bundle over T ∗M . . .

▸ . . . except that it includes an indeterminate ε, and is
comprised of infinite-order differential operators.

▸ I shall construct a canonical supertrace

STr∶C(T ∗M)Ð→ C

(To be more precise, STr is defined on a bimodule over
C(T ∗M) that is free and singly generated as a left module.)

This is all due to Perrot, who does the constructions in the more
involved context of complete pseudodifferential symbols.
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Differential operators acting on spinors

▸ I shall use the generalized tangent bundle

GTM = T ∗M ⊕TM

and its canonical nondegenerate but indefinite bilinear form to
construct a bundle of Clifford algebras over T ∗M.

▸ Given an affine connection ∇ on the tangent bundle of M, I
shall construct a canonical Dirac operator D ∈ C(T ∗M). It is
not an elliptic operator! In fact in local coordinates,

D2 = ε∑∂xi∂pi + lower terms

▸ Combining this with a natural morphism of algebras

ρ∶C∞(S∗M)Ð→ C(T ∗M)

one obtains a triple (A,STr,D) for A = C∞(S∗M).
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What else am I going to do in this talk?

▸ I shall construct from the triple a cyclic cocycle Ψ∇ of JLO
type for the algebra C∞(S∗M). The exponential exp(D2)
that appears in the JLO formula is defined as a power series.

▸ I shall sketch Perrot’s computation that the above cyclic
cocycle is in fact a de Rham current, namely

α z→ ∫
S∗M

α ∧Todd(TCM,∇)

This involves

▸ A remarkable rescaling property for Ψ∇ using the tangent
groupoid, and

▸ Schur’s well-known formula for the derivative of the
exponential map to obtain the Todd class.
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Pseudodifferential operators

Before turning to infinite-order differential operators and the like, I
shall make some introductory remarks about (compactly supported,
classical) pseudodifferential operators on a smooth manifold M.

They include the (compactly supported) smoothing operators as an
ideal, and so there is an extension of algebras

0Ð→ PSDO-∞(M)Ð→ PSDO(M)
σcompÐ→ S(M)Ð→ 0

in which PSDO-∞(M) is the smoothing operators, and the
quotient algebra S(M) is called the algebra of complete symbols
on M.

The algebra of complete symbols, and simpler algebras that are
derived from it, will be the main focus here.
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Order, filtration, associated graded algebra
The algebra PSDO(M) carries an increasing filtration, of course,
given by the integer-valued pseudodifferential order.

The algebra S(M) inherits this filtration from PSDO(M), and
there are natural isomorphisms

Sk(M)/Sk−1(M) ≅Ð→ { s ∶T ∗′M C∞→ C

∶ s(tξ) = tks(ξ) ∀t > 0, ∀ξ ∈ T ∗′M }

(the prime denotes removal of the zero section from the cotangent
bundle; I’ll mostly omit the prime from now on).

The algebra S(M) is noncommutative, but the associated graded
algebra

Sgr(M) = ⊕k Sk(M)/Sk−1(M)
is commutative, with the obvious pointwise multiplication.

In summary: S(M) is a deformation of the algebra Sgr(M) of
smooth, polyhomogeneous functions on T ∗M.
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The residue trace and the Radul cocycle
Perrot uses two crucial structures on S(M). The first is the
residue trace or Wodzicki residue

ResTr ∶ S(M)Ð→ C

which doesn’t really need to be explained to this audience.

Let me just recall that if T has order −n, where n = dim(M), then

ResTr(T ) = (2π)−n ∫
S∗M

σ−n(T )

after identifying order −n homogeneous functions on T ∗M with
top-forms on S∗M.

The second is the Radul cocycle, which is the cyclic 1-cocycle

Radul(A,B) = ResTr(A ⋅ δ(B))
Here δ is the outer derivation adlog(∆) on S(M). The Radul
cocycle is related to index theory via the formula

Index(T ) = Radul(T−1,T)
(Perrot proved a more precise result prior to his paper.)
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Differential Operators on

the Cotangent Bundle
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Polyhomogeneous functions and differential operators

Let M be a smooth manifold and denote by

Diffpoly(T ∗M) ⊆ EndC(C∞(T ∗′M))

the algebra of linear partial differential operators on T ∗M (minus
the zero section) whose coefficient functions are polyhomogeneous
in the fiber direction.

To be a bit more precise, introduce the Euler vector field

(Ef )(α) = d

dt
∣
t=0

f (etα), E =∑pi∂pi

and define Diffpoly(T ∗M) to be the direct sum of the integer
eigenspaces for the adjoint action of E on all differential operators.

Remark. The order zero part of Diffpoly(T ∗M) is the associated
graded algebra Sgr(M) from before.
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Infinite-order differential operators on the cotangent bundle

I’m going to define an algebra A(T ∗M) with

Diffpoly(T ∗M)[ε] ⊆ A(T ∗M) ⊆ Diffpoly(T ∗M)[[ε]]

In fact, I’ll work with the obvious sheaf of such algebras.

I’m going to do this because I want to form operators like

exp(ε∆) ∈ A(T ∗U)

associated to coordinate neighborhoods U ⊆M, where

∆ =∑∂xi∂pi

Remark. In reality exp(ε∆) will actually lie in a bimodule over
A(T ∗U) that I shall describe presently.

Caution. The operator ∆ above is not invariantly defined (it
depends on the choice of coordinates).
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The exact definition of the algebra

A(T ∗M) ⊆ Diffpoly(T ∗M)

is actually not that important, and there are various options. The
constraints are essentially that

▸ A(T ∗M) needs to be large enough to be invariant under the
adjoint action of exp(ε∆) (in a coordinate chart), with
∆ = ∑∂xi∂pi as above.

▸ A(T ∗M) needs to be small enough to allow for the definition
of a trace functional

Tr∶A(T ∗M)Ð→ C

(although in reality the trace will be defined on the bimodule
just mentioned)
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Some filtrations

There are various increasing filtrations

⋯ ⊆ Diffpoly(T ∗M)k ⊆ Diffpoly(T ∗M)k+1 ⊆ ⋯ (k ∈ Z)

on the algebra Diffpoly(T ∗M) associated to:

▸ the total vertical order—given by the adjoint action of E .

▸ the PDO order—the usual order as a differential operator.

▸ the horizontal PDO order—the modified partial differential
operator order in which vertical derivatives are given order 0.

Here is how these work in local coordinates:

xi ∂xi pi ∂pi

total vertical order 0 0 1 -1
PDO order 0 1 0 1

horizontal PDO order 0 1 0 0
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Another helpful filtration, and the definition of A(T ∗M)

Definition
helpful order(D) = 2 ⋅ total vertical order(D)

+ PDO order(D)
+ 2 ⋅ horizontal PDO order(D).

Examples

helpful order(∆) = 2, but also

helpful order(∂pi ) = −1 and helpful order(∂xi ) = 3

Definition
We define A(T ∗M) ⊆ Diffpoly(T ∗M)[[ε]] by

∑
k

Dkε
k ∈ A(T ∗M) ⇔ ∃N ∀k ∶ helpful order(Dk) ≤ k+N

Example (Nonexample?) exp(ε∆) does not belong to A(T ∗U).
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A(T ∗M) is large enough . . .

Lemma
For ∆ = ∑∂xi∂pi in a coordinate neighborhood,

helpful order(ad∆(D)) ≤ helpful order(D) + 1

Theorem
▸ The subalgebra A(T ∗U) ⊆ Diffpoly(T ∗U)[[ε]] is invariant

under the automorphisms

Adexp(tε∆) = exp(tε ad∆)

▸ If ∆ and ∆′ are defined using any two different coordinate
systems on U, then

exp(−ε∆′) exp(ε∆) ∈ A(T ∗U)

Proof For the second point, ∆ −∆′ has helpful order 0.
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The bimodule A(T ∗M) ⋅ exp(ε∆)

From the previous theorem, the linear space

A(T ∗U) ⋅ exp(ε∆) ⊆ Diffpoly(T ∗U)[[ε]]

is independent of the choice of coordinates and an
A(T ∗M)-bimodule.

There is therefore a canonical bimodule

A(T ∗M) ⋅ exp(ε∆) ⊆ Diffpoly(T ∗M)[[ε]]

and the next goal is to define a scalar-valued trace on this
bimodule.

Remark To be precise, the trace is defined on operators compactly
supported in the M-direction; I mostly won’t mention this again.
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The trace functional

The trace is built in several stages:

▸ Construction of an integral on polyhomogeneous functions,
inspired by the residue trace on pseudodifferential symbols.

▸ Local coordinate-based construction of a scalar-valued
Gaussian integral on constant-coefficient differential operators
of the form εkp(∂xi , ∂pj ) exp(ε∆).

▸ Combination of the above to obtain A(T ∗U)→ C (on
elements compactly supported in the base direction).

▸ Proof of coordinate-independence of this functional, and
construction of a global functional by partitions of unity.

▸ Proof of the trace property.
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Trace on polyhomogeneous functions

There is an obvious scalar trace functional ResTr on

C∞
poly(T ∗M) = Sgr(M)

that mimics (apes) the noncommutative residue:

▸ Select the order −n component f−n (which may be zero, of
course). Here n = dim(M).

▸ View f−n as a top-degree form on S∗M.

▸ Integrate this top-degree form over S∗M.
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Gaussian integrals

If A is a positive-definite 2n×2n matrix, and if p∶R2n → C is a
polynomial function, then

∫
R2n

p(w) exp(−1
2⟨w ,Aw⟩)dw = (2π)n√

det(A)
(exp(1

2⟨∂w ,A
−1∂w ⟩)p)(0).

So define (ignoring a multiplicative constant)

∫ εkp(∂xi , ∂pj ) exp(ε∆) = εk−n(exp(ε−1∂xi∂pi )p)(0)

This value lies in C[ε−1, ε].
Since every element of Diffpoly(T ∗U)[[ε]] can be written as a sum

of terms εk fαβk∂
α
x ∂

β
p exp(ε∆), the above extends (∗) to a Gaussian

integral morphism

A(T ∗U) ⋅ exp(ε∆)Ð→ C∞
poly(T ∗U)[ε−1, ε]]
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A technical detail, and the definition of the trace
(∗) There is a small problem with the above definition: infinitely
many of the terms from a sum

∑ εk fαβk∂
α
x ∂

β
p exp(ε∆) ∈ A(T ∗M)

could contribute to a single power of ε in C∞
poly(T ∗U)[ε−1, ε]].

That’s because the Gaussian integral for constant coefficient
operators involves possibly large negative powers of ε.

But because A(T ∗M) is small enough (as measured by the helpful
order), this only happens among terms with order(fαβk)→ −∞.

So if we integrate the coefficient functions and take the coefficient
of ε0 we obtain a well-defined functional

A(T ∗U) ⋅ exp(ε∆) Tr //

Gaussian integral
�� **

C

C∞
poly(T ∗U)[ε−1, ε]]

ResTr
// C[ε−1, ε]]

coefficient of ε0

OO
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Fundamental properties of the trace

Theorem
▸ The trace functional is independent of the choice of local

coordinates.

▸ The trace functional is actually a trace.

The second item in the theorem is proved using this fact: if

h(∂xi , ∂pj ) = p(∂xi , ∂pj ) exp(ε∆)

and if h is a partial derivative, then the Gaussian integral of
p(∂xi , ∂pj ) exp(ε∆) is zero. This, in turn, is proved by Wick
rotation to ordinary Gaussian integrals.

We may now use partitions of unity to define the trace functional
globally, on A(T ∗M) ⋅ exp(ε∆).
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Clifford algebra of the generalized tangent bundle

As I mentioned earlier, the generalized tangent bundle over M is

GTM = T ∗M ⊕TM

It carries a canonical nondegenerate but indefinite bilinear form.

We can in any case form the bundle of Clifford algebras
Cliff(GTM) over M. Pull it back to T ∗M.

We can now form the algebra

Diffpoly(T ∗M,Cliff(GTM))

of differential operators acting on sections of Cliff(GTM) over
T ∗M (not on spinors!) whose coefficient functions are
polyhomogeneous in the fiber direction.

We can now repeat the constructions that we have just sketched in
the scalar case . . .
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Infinite-order operators on the Clifford algebra bundle
We now form the subalgebra

C(T ∗M) ⊆ Diffpoly(T ∗M,Cliff(GTM))[[ε]]

and the bimodule

C(T ∗M) ⋅ exp(ε∆) ⊆ Diffpoly(T ∗M,Cliff(GTM))[[ε]]

using exactly the same prescriptions (involving the helpful order) as
in the scalar case.

Remark. Think of C(T ∗M) ⋅ exp(ε∆) as something like

C(T ∗M) ⋅ exp(ε∆) ≈ Operators on L2(T ∗M,Cliff(GTM))

This is where Kasparov’s version of the Dirac operator T ∗M lives.
More on Dirac operators in a moment.

Inserting the supertrace on the Clifford algebra into the previous
construction we obtain a supertrace

STr∶C(T ∗M) ⋅ exp(ε∆)Ð→ C
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Connections and the Dirac operator

If you’re still with me after all that algebra . . . it’s time for some
geometry.

Fix an affine connection ∇ on TM over M. It determines an affine
connection on T ∗M over M.

The connection induces an identification of the tangent bundle for
T ∗M with the generalized tangent bundle for M, pulled back to
T ∗M. So we can form a Dirac operator (not elliptic, of course!),
which we do, with one modification:

D = ε(c ⋅ ∇)horiz + (c ⋅ ∇)vert

Remark The Clifford multiplication operators are defined using
right multiplications on the Clifford algebra, arranged with signs to
graded commute with left multiplications. This is exactly what
Kasparov does.
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A Dirac triple

Define an algebra homomorphism

ρ∶C∞(S∗M)Ð→ C(T ∗M)

by following these simple steps:

▸ View functions on S∗M as 0-homogeneous functions on T ∗M.

▸ Use the canonical isomorphism

Cliff(GTM) = EndC(Λ●T ∗M)

to define the 0-form projection Π ∈ Cliff(GTM). View it as an
order zero PDO on Cliff(GTM) by left multiplication.

▸ Define ρ(f ) = f ⋅Π.

We have constructed a sort of “algebraic spectral triple”
(A,STr,D) with A = C∞(T ∗M).
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Cyclic Cocycles
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Even version of Perrot’s index cocycle
For p even and f0, . . . , fp ∈ C∞(S∗M), Perrot defines, using the
JLO formalism,

Φ∇
p (f0, . . . , fp)

= ∫
∆p

STr(ρ(f0)e−s0D
2[D, ρ(f1)]e−s1D

2⋯[D, ρ(fp)]e−spD
2)ds

or more briefly
Φ∇ = JLO(A,STr,D)

This is a finitely-supported, even, periodic cyclic (b,B)-cocycle (a
bit of a mouthful for most audiences, but not this one). But . . .

Theorem (Perrot)

If ∇ is a Levi-Civita connection, then for all even p and all
f0, . . . , fp ∈ C∞(S∗M), Φ∇

p (f0, . . . , fp) ≡ 0.

That may seem a bit anticlimactic . . . but Perrot uses this
computation to prove the vanishing of the noncommutative residue
in the cyclic cohomology of S0(M).



30

Odd version of JLO cocycle

To get a nonzero answer, we need to return to the Radul cocycle
on pseudodifferential symbols, find a semiclassical counterpart, and
incorporate it into the JLO formalism.

Fortunately all these steps are quite easy (for this audience).

▸ A derivation δ may be built from the Hamiltonian vector field
of the symbol of any (genuine) Laplace operator on M.

▸ The supertrace is closed with respect to δ.

▸ The pair (STr, δ) may be incorporated into the JLO formalism
(following e.g. Quillen, as pointed out by Rodsphon).

▸ Attached to this there is an odd JLO cocycle

Ψ∇ = JLO(A,STr,D,δ)
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Perrot’s main theorems
The first theorem involves the development of everything that has
been discussed today for pseudodifferential symbols on M in place
of functions on T ∗M.

Theorem
If ∇ is any torsion-free connection, then the pullback of Ψ∇ along
the principal symbol homomorphism

S0(M)Ð→ C∞(S∗M)

is cohomologous to the Radul cocycle.

The second theorem is a remarkable direct computation:

Theorem
If ∇ is a Levi-Civita connection, then for all odd p and all
f0, . . . , fp ∈ C∞(S∗M),

Ψ∇
p (f0, . . . , fp) ≡ ∫

S∗M
f0df1 . . .dfp ⋅Todd(TCM,∇)
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Lie algebra action on pseudodifferential symbols

My focus is on the evaluation of Ψ∇. But I shall say a few words
about pseudodifferential symbols and the index theorem.

Recall that the order filtration on the classical pseudodifferential
symbols has associated graded algebra Sgr(M) = C∞

poly(T ∗M).

To do index theory, we need to deform from Sgr(M) to S(M). I’ll
use crossed product algebras to indicate how this is done.

Denote by g the Lie algebra of first order (scalar) differential
operators on M (I shall ignore Clifford algebras here, for
simplicity). It is filtered by order and there is an (inner!) action

g × S(M)Ð→ S(M)

that is compatible with the order filtrations. So there is induced
action of ggr on Sgr(M). One computes that ggr acts by vector
fields on T ∗M of total vertical order 0 or −1.
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Crossed product algebra

Now form the crossed product algebras (twisted tensor products)

S(M) ⋊ U(g) and Sgr(M) ⋊ U(ggr)

There are obvious representations

S(M)⋊U(g)→ EndC(S(M)) and Sgr(M)⋊U(ggr)→ EndC(Sgr(M))

and the image of the second is Diffpoly(T ∗M). Accordingly we set

L(M) = Image(S(M) ⋊ U(g)→ EndC(S(M)))

(Perrot’s notation) and define

D(M) ⊆ L(M)[[ε]]

(Perrot’s notation again), in exact analogy with A(T ∗M) earlier.
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Bimodule, trace, Dirac operators and cocycles

Perrot defines a bimodule from D(M) and a trace, and lifts
everything to the Clifford algebra context (in which S(M) becomes
the algebra of symbols of operators acting on sections of Λ∗T ∗M).

▶ The bad news . . .

The Dirac operator associated to a connection ∇ is not canonically
defined in S(M) ⋊ U(g). This is already a problem in
Sgr(M) ⋊ U(ggr) (N.B. One divides by the ideal generated by all

Af ⊗X −A⊗ fX (f ∈ C∞
poly(T ∗M))

to obtain differential operators from the crossed product.) Instead,
Perrot uses local coordinates and partitions of unity.
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Proof of the index theorem

▶ The good news . . .

There are two Dirac operators! This is suggested by the canonical
isomorphism

S(M) ⋊ U(g) ≅ S(M)⊗ U(g)

for inner actions—which gives two copies of g in the crossed
product.

The second copy of g, coming from the right-hand side in the
isomorphism above, actually commutes with S(M).

It follows that the commutator terms [D, a] in the JLO formula are
zero, for the corresponding Dirac operator, and so the JLO cocycle
associated to the second Dirac operator collapses to its lowest
term, which is a cyclic 1-cocycle—the Radul cocycle.

To prove an index theorem, Perrot (i) shows that the JLO-type
cocycles for the two Dirac operators are cohomologous, and (ii)
computes the cocycle for the first Dirac operator . . .
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Scale-Invariance of the

Dirac Operator
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Rescaled Clifford algebra bundle on the tangent groupoid

Now I shall return to Ψ∇ (the other cocycle, in effect). The
computation of Ψ∇ is greatly simplified by a remarkable
scale-invariance property of the square of the Dirac operator.

Denote by M⇉M×R the tangent groupoid for M, and denote by
T∗M the fiberwise cotangent bundle for the source fibers. It is a
smooth family of cotangent bundles over M×R via the source map:

T∗MÐ→M×R

The rescaled generalized tangent bundle RTM over M×R is the
bundle whose smooth sections are smooth families of sections st of
GTM = TM ⊕T ∗M over M with s0 a section of T ∗M alone. Pull it
back to T∗M and form the Clifford algebra bundle.

Theorem
Perrot’s Dirac (D∇)2, repeated on each fiber T∗M(m,t) with t ≠ 0,
extends to a smooth equivariant family over all fibers of T∗M.
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Computation of Perrot’s cocycle
The JLO integrand is assembled from exp(−sD2) and [D, a] (and
δ(a) and δ(D)), and all share the same scale invariance.

So the computation of Ψ∇ can be reduced to a computation at
t = 0, involving operators on the linear spaces T ∗Tm that are
translation invariant in the Tm-direction.

The ingredients of the computation are

(D∇)2
m = ε∆ + Rm

where the operator Rm is formed from the curvature of ∇ at m,
along with

[D, f ]m = ε(df )horiz,m + (df )vert,m

(and δ-terms). Under the trace,

exp(ε∆ + Rm) = Todd(Rm) ⋅ exp(ε∆)

by a variation on the usual Lie theory computation (Schur, 1891).
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Thank You!
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